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Abstract

The research presented describes in detail the implementation of
a parallel simulator for the Vehicle Monitoring Testbed (VMT). The
VMT simulates a distributed problem solving network, and is used for
empiracally evaluating different strategies for organizing networks of
loosely-coupled and semi-autonomous nodes which must cooperatively
interact to solve a single problem. In implementing a parallel simulator
for the VMT, the goal was to both reduce the real time required and to
increase the scope of the simulations by splitting the existing simulator
(written in Lisp) to run on a network of VAX 11/750s connected by
DECNet/ETHERNET-II

A pumber of important issues are involved in the implementation
of a parallel simulator, such as providing the communication facilities
to support cooperation between processes on different machines,
maintenance of a global view in a distributed system, testing and
debugging in a distributed environment, synchronization between
cooperating processes to insure deterministic results, and task
allocation among processes to optimize concurrency. This paper
describes how these issues were addressed in the parallel simulator for
the VMT, and provides experimental data indicating that the parallel
simulator results in significant real-time speedup due to the additional
CPU powerand the combined physical memory available in the network
of VAXs.
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“Curtsey while you're thinking what to say. It saves time.”
Alice wondered a little at this, but she was in too much awe of the

Queen to disbelieve it.
— Lewis Carroll

CHAPTER I
INTRODUCTION

The purpose of this chapter is to motivate the rcasons behind the development
of parallel simulations, both in general and in the specific context of distributed
problem solving networks. An overview of the relevant parts of the particular
problem solving network upon which the parallel simulation described in this thesis is

carried out, the Vehicle Monitoring Testbed, is also included.

1.1 The Need for Parallel Simulations

As the Red Queen observes in the quote preceding this chapter, one can save
time by doing two or more things at once. This is an underlying assumption upon
which the need for organizing groups of individuals so that they can cooperatively
achicve some mutually beneficial goals is based. In an organization, a number of
workers can be applying themselves to separate tasks. If properly coordinated, each
worker contributes to the overall goals of the organization, and the organization can
attain these goals much faster than if only one worker were to tackle these tasks

one after the other.



Similarly, this is the basic assumption behind parallel processing. That is, by
dividing a problem into a set of tasks which can be solved in unison, and by
assigning each of these tasks to a separate processor, then the amount of time
required to solve the overall problem can be reduced. From an external perspective,
the organization of processors appears to be doing many things at once, and so, is
saving time.

There is an increasing trend toward achieving greater computational power by
combining the processing capabilities of a large number of smaller processors, in part
due to the recent advances in VLSI and related technologies which have resulted in
the decreased price and increased availability of small processors. An important
aspect to the realization of improved computational power is that the problems to be
solved by these networks of computers must be capable of being divided into
subtasks, so that each of the computers has a piece of the problem for which it is
responsible. Furthermore, the separate computers must be able to interact in some
organized manner so that the results that each produces can be combined to yfeld
an overall solution. If such an organized division of the problem can be achieved,
the problem can be solved in reduced time.

As pointed out by Jefferson and Sowizral [JEFF82], one of the most expensive
types of computational tasks is simulation. Some simulations can require hours or
even days of computer time, and such delays may result in the simulation being of
no true value. Coansider, for example, a flight simulator that takes five minutes to
generate the next image to preseant to the human aviators. If one of the purposes
of the simulator is to train the pilots’ reflexes, the particular implementation does

not serve this purpose.



The use of parallel processing in the implementation of simulations can result
in a better real-time response. Theoretically, one could decrease the run time of a
simulation to the serial run time divided by the number of processors used in the
parallel simulation (ignoring memory .limitations). However, such a result is difficult
if not impossible to realize, due to the requirements of the simulation. A
simulation is based on a sequence of simulated events occurring in a particular
order. Implementation of a simulation on a number of processors running in
parallel must insure that the physical distribution of tasks does not alter the ordering
of simulated events. Hence, it is likely in a parallel simulation that some processors
will have to wait for others in order to keep the simulation time consistent. In
other words, there will occur times at which continued computation of one processor
could potentially cause errors in the ordering of the simulated events. Mechanisms
to insure correct event ordering are summarized in [JEFF82) and [PEAC?9}].

Hence, there are two major difficulties in the parallel implementation of a
simulation that will be addressed in this thesis:

® How the tasks in the simulation should be divided among processors so0 as
to maximize coacurrency, thus minimizing run time.

® How the processors should be synchronized so that simulated eveats occur
in the correct order.

Although a number of solutions to each of these problems has been proposed, there
does not seem to be any consensus as to the best general solution. Instead, it
appears that the methods for task allocation and synchronization are very dependent
on the simulation that is to be implemented. It is the purpose of this thesis to
explore both of these issues in the specific context of the parallel simulation of a

distributed problem solving network.



12 Distributed Problem Solving Networks

Problem solving tasks in which the system’s input and output are spacially
dispersed would require a large amount of communication to route information to a
single, powerful computer. In order to reduce the amount of communication as well
as the computational demands on such a centralized processor, a distributed network
of cooperating, semi-autonomous computer systems can be used. If these computer
systems are sufficiently well coordinated, such an arrangement could be quite
effective in solving the distributed problem.

The cooperating, semi-autonomous computer systems are refered to as nodes,
and a distributed problem solving network is composed of a network of these nodes.
Although the nodes need not in practice be physically distributed, it is assumed
throughout this thesis that they are. Therefore, communication between nodes is
limited by the physical properties of the communication channel, such as delay, error
rate, and channel capacity.

The physical isolation of nodes means that node activity is loosely<coupled;
node interaction is limited. For example, this means that there are times when it
may be faster for a node to redundantly derive information rather than wait for
another node to supply it. Nodes will not necessarily possess current views of the
state of problem solving at the other nodes in the network, and so, a node may
have information that is incomplete or inconsistent with the information of another
node. Hence, results on a node are considered to be tentative, and nodes exchange
tentative partial results in order to cooperatively converge to acceptable results

despite incomplete or inconsistent views of the problem. This approach is called



functionally accurate, cooperative distributed problem solving [LESS31).

An area of particular interest in distributed problem solving networks is that
of imposing some sort of higher level organizational control upon these relatively
independent problem solving nodes so as to effectively solve a distributed problem.
Each node must have some general concept as to what part of the problem it is
responsible for, and how it is expected to interact with its fellow nodes. In order
to study the complex issues involved in the specification of an organizational
structure for cooperating semi-autonomous nodes, a simulation of such a node
network was implemented so0 as to act as a framework in which such organizations
could be studied. This simulation is the Vehicle Monitoring Testbed
[CORKS3,LESS83].

It is beyond the scope of this thesis to explain all of the details of the
Vehicle Monitoring Testbed. Rather, the major thrust of the research presented
herein involves exploiting the fact that the tasks of the simulation are already divided
among the simulated loosely~coupled nodes. It is the inhereat concurrency of these
nodes which will allow a straightforward implementation of a simulator capable of
dmﬁng&emn@e@u@mﬂeﬁm—&a&pimno&stomte
processors running in parallel, the tasks of the simulation will be performed in
parallel. This thesis will thus address the previously mentioned issues of how to
divide the computational demands of the simulation among processors and how to
keep these processors sufficieatly synchronized such that the order of simulated

events remains deterministic.
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The basic idea behind this work is simply to modify the simulator so that
some number of processes each running an instance of the simulator can interact to
cooperatively run an entire simulated eavironment. Each node in the simulated
cavironment would be assigned to one of these processes, and by distributing the
nodes among the concurrently running processes, parallelism will result.

It is important to differentiate between the simulation of the distributed
problem solving network and the implementation of that simulation. This research
deals principally with the latter; the fact that the simulation is being run on more
than one machine should have no bearing on the results of the simulation, but only
on the rate of the simulator. In order to further differentiate between the
simulation and its implemeatation, the following terminology will henceforth be used
(figure 1):

® node — A simulated semi-autonomous problem solving system.

® node network — A simulated distributed network of communicating,
semi-autonomous problem solving nodes.

® process — An instance of the VMT simulator.

¢ machine — A physical computer capable of supporting one or more
processes.

® network — A physical collection of one or more machines, capable of
communicating with each other.

The implementation of the parallel simulation is inextricably linked with the
simulation of the node network itself. Heace, the development of the
implementation requires an understanding of certain relevant aspects of the VMT.
This is the purpose of the next section. Following this, an overview of the rest of

the thesis will be presented.
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Figore 1: An E:mpl:(cof the Terminology.

An example node network consisting of four nodes, each respoasible for
a portion of the total sensed area (a). Note the sensor overlap. In (b)
the non-distributed assignment is shown, while (c) presents a possible
hierarchical assignment of nodes to processes, processes to machines, and
machines within the network.




13 Relevant Aspects of the VMT

The Vehicle Monitoring Testbed, as mentioned above, is a simulator for a
cooperative distributed problem solving network. The testbed simulates a network of
semi-autonomous nodes attempting to identify, locate, and track vehicles moving
through a two-dimensional space using signals detected by acoustic sensors. Nodes
receive signal data at discrete intervals and attempt to use this data to generate
hypotheses as to the movements of vehicles. Each node is a sophisticated problem
solving system that can modify its behavior as circumstances change and plan its
own communication and cooperation strategies with other nodes. A crucial aspect of
the network is that no single node has sufficient local information to make
completely accurate processing and control decisions without interacting with other
nodes.

Each of the problem solving nodes has the architecture first developed in the
Hearsay-Il speech understanding system [ERMAGS0], with extensions to this
architecture that enable the nodes to have more sophisticated control and to éive
the nodes the ability to communicate hypotheses and goals (figure 2). Hypotheses
and goals are kept on separate data structures called blackboards, and each of these
blackboards is further divided into levels, corresponding with the level of abstraction
of the hypotheses or goals contained therein. Currently, there are four levels,
ranging from the least abstract (signal data) to the most abstract (patterns of vehicle

tracks).
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Figare 2: The Problem Solving Architecture.

The problem solving architectures of two nodes, and communication links
between them.
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A hypothesis is created and inserted oato the data blackboard as a result of
the execution of a knowledge source (KS). Examples of KSs include KSs to create
signal hypotheses out of sensor data, KSs to group hypotheses from a lower level of
abstraction into likely hypotheses at a higher level, KSs to take hypothesized tracks
and attempt to extend them forward or backward, and KSs to merge two pieces of
a track into a single track. Each created hypothesis has a calculated belief
associated with it which acts as an indication as to how accurate that hypothesis is
estimated to be.

The data blackboard is monitored, and the appearance of hypotheses on it
trigger the creation of goals. These goals represent potential hypotheses that might
eventually be created, as indicated by the curreat state of the data blackboard.
Each goal has a rating which is based on a number of factors, including the beliefs
of the hypotheses that triggered its creation and the node’s perception of its role in
the problem solving network.

In turn, the goal blackboard is used by the planner. The planner determines
which KSs can be used to satisfy each of the goals, or can create subgoals in order
to cventuall.y satisfy a goal. In particular, the planner can execute precondition
functions for specific knowledge sources acting on certain data, and these
precondition functions will provide some estimate of the utility of the knowledge
source in processing that data. Based on this information, the planner creates
knowledge source instantiations (KSIs). Each KSI represents a request to execute a
KS on specific hypotheses in order to satisfy certain goals, and is rated based on
the goals it satisfies as well as the hypotheses it uses. PEach node maintains a

queue of pending KSIs, kept in order of rating and a node will always execute the
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highest rated KSI currently oa its pending queue.

Therefore, the execution of a KSI results in the creation of some number of
hypotheses, which trigger the creation of some number of goals, which in turn cause
the creation of some number of KSIs, and the cycle repeats until either a hypothesis
which covers the entire solution is created with sufficient belief, or the pending KSI
queue becomes empty and the node goes into a state called quiescence. The use of
goals and the rating of KSIs serves to focus the attention of the problem solving

nodes along the path that appears most promising.

13.1 Node Commaunication.

There are special knowledge sources that exist for communication of
hypotheses and goals. As mentioned above, each node has some knowledge as to
its global role in the development of the solution, and this information is contained
in the interest areas data structure. Based on this knowledge, a node knows to
what other nodes it should send hypotheses and goals, as well as when to send
them. This data structure also contains the information that a node needs as to
what nodes it can receive hypotheses and goals from, as well as how to modify
their beliefs and ratings, respectively, before incorporating the transmitted information
into its own blackboards.

When a node creates a hypothesis which should be sent to some other node
(as specified in the interest areas), the planner will create a KSI to invoke the
hypothesis sending knowledge source. Similarly, when a goal is created that could
be a useful goal for another node (again, specified by the interest areas), a KSI is

created to send it. Another reason that a goal might be sent is if the local
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processing needs a hypothesis lying in the range of another node (to extend a track,
for example). In this case, the node instantiates a different type of goal sending
knowledge source, which will be perceived at the receiving node as a request for
information rather than a suggestion for the focussing of atteation.

Conversely, there is a matching set of receiving knowledge sources. When a
hypothesis is received, it causes the instantiation of a KS which will incorporate that
hypothesis into the data blackboard. The reception of a goal will similarly cause a
goal reception KSI to be inserted on the pending KSI queue, and in the case of a
goal which requests information, the KS will also stimulate the instantiation of the
hypothesis sending KS that will reply to the request. The interest areas play a role
in determining if the received hypothesis or goal is of any interest, whether its
belief or rating should be altered, and the role of that hypothesis or goal in future
calculations. For example, if a node is very locally directed (as specified in the
interest areas), it might choose to ignore or rate lowly any received goals. On the
other hand, if the node is externally directed, it might drop whatever it’s doing in
order to satisfy a received goal. The specification of the interest areas may
therefore make a great deal of difference in the cffectiveness of the network of

nodes in deriving the solution.

132 Node Scheduling.

Because the testbed must simulate a network of loosely-coupled nodes running
concurrently, strategies have been developed to interleave node activities in order to
achieve apparent concurrency on a single machine. To this end, the initial

implementation gave each node access to the processor in a round-robin fashion.
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Each node would execute the next KSI on the pending queue, and then relinquish
the processor; if the pending queue for that node was empty, the potential
knowledge source execution was lost. When cach of the nodes had been given a
turn, the node network cycle counter was incremented and another cycle was beguan.
Heace, simulation time was measured in terms of the number of cycles executed.
The node network cycles would continue uantil any node had generated a satisfactory
answer. It should be noted that this method of scheduling results in a simulation
where all knowledge sources require the same amount of simulated time to execute.

In order to simulate communication, each node had separate queues for
transmission KSIs and for reception KSIs. This was intended to simulate separate
sending and receiving processors which could operate concurrently with the local
problem solving processor. Certain parameters were included in order to simulate
bursts of communication, allowing nodes to transmit a certain number of messages
over a set number of cycles. Clearly, if the simulation would allow the sending and
recciving knowledge sources to take some amount of time relative to the locally
running KS, such approximations would be unnecessary. In addition, since a
message that was simulated to be sent was merely put into a buffer at the receiving
node, and this buffer was emptied each time the receiving node executed, all
messages were assumed to take the same amount of time to reach their destinations.
It appeared that a much more realistic simulation would involve the specification of

delays between pairs of nodes.
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14 The Remainder of the Thesis

The remainder of this thesis is concerned with the implementation of a

parallel simulation of the VMT, and can be broadly divided into these major parts:

Chapter II is concerned with the implementation of the tools that will
enable the user to create the processes to be run in parallel, and the
methods by which the processes can communicate.

Chapter III outlines the changes required to the VMT eavironmeat in
order to provide for the parallel simulation. The fact that all of the
simulated nodes no longer share memory is addressed, and techniques for
testing and debugging the parallel simulation are described.

Chapter IV deals with the methods used to achieve satisfactory
synchronization between processes, and will explore the interrelationship
between scheduling nodes on a process and synchronization.

Chapter V briefly investigates the second major issue, that of allocating
tasks to processes in order to achieve a well balanced simulation. With
that background, experimental results are provided in order to make some
conclusions as to the effectiveness of the parallel simulation.

Chapter VI summarizes the contributions of this research, and considers
areas in which future work might be warranted.



“Speak when you're spoken tol” the Queen sharply interrupted her.

“But if everybody obeyed that rule,” said Alice, who was always
ready for a little argument, “and if you only spoke when you were spoken
to, and the other person always waited for you to begin, you see nobody
would ever say anything, so that—"

“Ridiculous!” cried the Queen. “Whky, don't you see child—" here she
broke off with a frown, and, after thinking for a minute, suddenly changed
the subject of the conversation.

— Lewis Carroll

CHAPTER I

PROCESS CREATION AND COMMUNICATION

A major concern in the implementation of the parallel simulation was to
attempt to provide a clear interface between the VMT and the underlying processes
and communication routes upon which the VMT was run. Due to the perceived
likelihood that the operating systems for the individual machines as well as the
network might change over time, it was hoped that these changes would be
transparent to the VMT system. That is, the VMT should achieve communication
between nodes via a small number of commands (such as send-to-node and
read-incoming-messages), the éaa implementation of which is handled on a lower
level and is transparent to the VMT. In this chapter, the details of this lower level
of communication are presented. This level includes the details of establishing the
VMT processes that will be run in parallel, providing communication routes between
them, and enabling the run to eliminate these processes when they are no longer

needed.

I
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2.1 Bouffer Processes

The parallel simulation was implemented on a set of Vax 11750 computers
operating on VMS and interconnected by DECNetVETHERNET-II. Interprocess
communication is achieved through the use of mailboxes, as provided by the VMS
system service. Associated with each of the VMT processes that are cooperating on
the run is a mailbox that will contain the incoming messages to that process.
Hence, in order to communicate with another process, a process need merely put a
message into the other process's mailbox.

Because the processes are running concurrently it is very unlikely that a
process will be reading from its mailbox at exactly the same Atime that a sending
process will be inserting a message. Since we do not want either process to be
forced to wait on the other at this level (synchronization between processes occurs
on the VMT level), the mailboxes should be asynchronous, so that a process can
deposit a mail message without waiting for it to be read, or can return from
inspecting its mailbox even if there was not a message in it. Such capabilities are
available in in the local operating system, requiring some setting of bits associated
with the mailbox object. However, network operating system does not support
asynchronous communication; all communication across the network must be done
syachronously.

Therefore, it was necessary to provide a means by which the enforced
synchronous communication across the network would not cause VMT processes to
wait for each other. The means by which this was accomplished lead to the

development of the buffer process. Each machine involved in the simulation has a
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buffer process, and it is the responsibility of the buffer process during a run to wait
for messages to be put into its mailbox and transfer them to the appropriate
mailboxes of VMT processes on that machine. VMT processes on different machines
would thus communicate to cach other through the buffer processes on those
machines.

Buffer processes are coded in FORTRAN rather than CLisp (a LISP dialect in
which the VMT is encoded) for a number of reasonms. First, since the relatively
simple string manipulations needed for determining the destination of a message and
forwarding it are much more optimized in FORTRAN, speed is increased. Second,
because CLisp images require much more memory, FORTRAN helps minimize
requirements for memory resources better speat on the VMT' processes. Finally,
because calls to system services can be made directly from FORTRAN, buffer
processes could easily take on the added responsibilities for initializing many features
of the parallel run, as will be discussed below.

It should be noted that this is certainly not the only way to provide
asynchronous communication across the network. For example, the use of
asynchronous traps (ASTs) in alerting processes to message arrivals in their mailboxes
is another alternative. Even if the receiving process were not ready to make use of
that message, it could simply store the message until it was ready. This course was
not taken for a number of reasons, the principal reason being that CLisp does not
support ASTs. Future changes in the language of implementation used in the
testbed may make this choice feasible. The major tradeoffs involved in buffer
processes concern whether the increased flexibility of the buffer processes

compensates for the extra overhead of creating an extra process per machine.
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22 Buffer Process Creation

The user desiring to begin a VMT run starts a VMT process on a machine.
This process, as the process responsible for the run, is known as the master process.
Its first act is to read the parallel simulation information from a previously prepared
file specified by the user. This file is known as a distribution file, and an example
of such a file is given in Appendix A. In this way, the master learns what other
processes to create, what machine to create each on, what nodes each will be
respoasible for, and what commands to have each execute.

The first step is to create the buffer processes on each machine, starting with
the machine on which the master resides. The master creates a mailbox and then
spawns a temporary subprocess, which in turn invokes the DECNet remote task
capability to begin a task on the specified machine. This task is passed the name
of the master’s mailbox. The task then enters the buffer process code which creates
a mailbox for the buffer process. Finally, the buffer process inserts the name of
this mailbox into the master's mailbox, and a communication link between the two
is thus formed.

Note that this scenario was somewhat simplified. For example, in order to
pass the mailbox names between the command language and the code, the names
had to be passed indirectly using services provided by the system. Also, it is
important to realize that only the buffer process on the master's local machine is
given the name of the master’s mailbox. All other buffer processes are given the
name of the buffer process local to the master, which forwards the messages on to

the master.
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23 Detached VMT Process Creation

Once all of the appropriate buffer processes have been created, it is time to
create the VMT processes that will work with the master process on the parallel
VMT simulation. The master process informs all of the buffer processes as to what
VMT processes to create on their respective machines. Each buffer process in turn
creates a mailbox for each of its local VMT processes, and then uses the system
service to create each process. This system service allows the buffer process to
specify the input and output devices for the created process, so that by specifying
the proper mailboxes, communication between the buffer process and each of its
detached processes is automatically achieved.

Each of the detached processes is told by the buffer process to enter a VMT
image. The buffer process can then initialize some of the process’s variables,
particularly those required to establish communication links with the other VMT
processes on the same machine. It is important to note that, since the buffer
processes are cach doing these things in parallel, significant time savings can occur
compared to a scenario in which the master had to create each of the detached
VMT processes itself. In addition, the ability for the buffer processes to make
direct calls on the system services allows much more flexibility in terms of the
specific parameters used to establish the detached VMT processes. This has proven
to be quite useful, although the details will not be meationed here for brevity.

Deletion of all of these processes should also not be overlooked. Again, the
master has control of the future of the processes created on its commands. The

master can send a message to a buffer process asking it to delete a specified
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detached VMT process. In addition, the master can also ask the buffer process to
delete itself. This is a more important aspect of the simulation than might be
obvious. Since the VMT processes are detached, they will not disappear if the
master is deleted, and will remain on the system using up resources until stopped
explicitly. In a run involving a large number of detached processes, failure to stop
them at the conclusion of a run could mean wasted time and resources spent on
tracking them down and eliminating them.

Finally, between the creation and deletion phases of a run, the buffer process
enters its transfer mode. PEach incoming message is examined and the header
describing the destination is stripped off. The message is then inserted in the
mailbox of the destination process, and the cycle repeats. Headers contain certain
symbols which are immediately recognized by the buffer process, and differences in
these symbols inform the buffer process as to whether the message is to be
transferred to another process, or if the message contains coantrol information for the
buffer process itself (such as commands to delete a VMT process, etc.). The simple

protocols for these messages will be briefly summarized later in this chapter.

24 Sample Stepwise Scenario of Run Initialization

In order to illustrate the previous description, the sequence of events for the
simple example from figure 1 will here be described. The steps refer to the
numbers in figure 3.

1. MASTER VMT process creates its mailbox and makes a process logical
with its name.
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2. MASTER spawns process which begins its local buffer process
(BUFFER_PROCESS_A) and then spawned process is deleted.

3. BUFFER_PROCESS.A creates its mailbox, translates the previously made
logical to find MASTER’s mailbox and establishes link.

4. BUFFER_PROCESS_A sends its mailbox name to the MASTER, which
then establishes communication link.

5. MASTER spawns process which begins remote buffer process
(BUFFER_PROCESS_B). Spawned process then  deletes  itself.
BUFFER_PROCESS_A’s mailbox name passed as a logical.

6. BUFFER_-PROCESS_B creates its mailbox, and translates logical to
establish link with BUFFER_PROCESS_A. Sends its mailbox name to
BUFFER_PROCESS_A.

7. BUFFER_PROCESS_A passes BUFFER_PROCESS_B's mailbox name on
to MASTER and MASTER establishes communication link with
BUFFER_PROCESS.B.

8. MASTER then informs buffer processes of other VMT processes. They
concurrently perform: i) BUFFER_PROCESS.B creates PROCESS_2 (8a)
and ii) BUFFER-PROCESS_.A creates PROCESS_1 (8b) and establishes
communication links between MASTER and PROCESS_1 (8¢).

9. Finally, MASTER informs each detached process of the buffer processes
remote to it, and each establishes links to all buffer processes remote to
it.

Deletion of processes is a much simpler task, since the master can now send
messages directly to the buffer processes, which can in turn do the deletion. Note
that by deleting a process, the communication links involving that process are

automatically deleted.

2S5 Shortcomings of the Approach

Clearly, this approach performs its tasks of creation and deletion of the
processes needed to perform the parallel simulation. However, consider its
performance on the task for which it was originally conceived, the task of

transferring messages from processes on remote machines to their destination
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processes on the local machine. This task is provided for only in a very simple
manner. Messages coming into the buffer process are examined to determine the
destination, and passed on to the mailbox of the destination process.

However, what occurs if this mailbox is full? The capability of writing
asyachronously into a local mailbox depends on there being sufficient room in that
mailbox for the entire message to be deposited. If there is not sufficient space, the
writing process waits until there is. Thus, if the mailbox is full, communication into
that mailbox becomes essentially synchronous because the writing process must wait
until at least one of the preceding messages is read.

Consider the scenario where two processes each have full mailboxes, and each
is trying to send a message to the other. Each is waiting for the other to read
from its mailbox, and as Alice duly points out in the quotation preceding this
chapter, if everyone were to wait for someone else to start something, then nothing
would ever occur. If there is any cycle of processes trying to write into full
mailboxes, the underlying communication mechanism will eater a state of deadlock.
As a matter of fact, in one of the earlier versions of the code, synchronization
required the master to send a message to itself. If its own mailbox was full, the
master would put itself directly into deadlock.

One may minimize the probability of deadlock occurance by increasing the size
of the mailboxes to such an exteant that they never get filled up. However, there is
no way to predict what size the mailboxes must be to insure that they will never
get full. Different runs of the VMT can produce vastly different amounts of
messages. Therefore, another method must be found which prevents the system

from entering a deadlocked state.
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Another difficult problem with the transfer of messages concerns two facts.
First, there is no way to predict the maximum size that a message can attain, so
that it must be possible for a message to be broken up into pieces, each sent with
the appropriate header. Second, since each process has only one incoming mailbox,
it is possible for two or more processes to be inserting messages into the same
mailbox at the same time.

Taken together, these two facts indicate potential difficulties. If messages are
broken into pieces when they are sent, it is possible for the pieces of two or more
messages (being sent by two or more processes) to become interieaved in a mailbox.
Since messages to VMT processes have no headers, it is impossible for those
processes to determine what pieces go together. Indeed, it is hoped that this should
not be a concern for the VMT processes, and instead is a problem for the
underlying communication tools to solve.

The problem of interlcaved messages is certainly less detrimental than the
deadlock problem in the respect that the processes will continue with the dat? if
possible and terminate abnormally otherwise. Hence, at least the processes will
terminate eventually. On the other hand, on the unlikely chance that interleaving
bas occurred and has not caused an unreadable message to be constructed, the
effects of an interleaved message might be difficult to detect and could result in a
faulty run being accepted as accurate.

Both the possibility of deadlock and of interleaved messages must therefore be
eliminated from the underlying communication structure as presented. The majority
of the remainder of this chapter deals with the method used to insure that these

problems never arise.



26 Modification of Buffer Processes

Although there are a number of ways of dealing with the problems of
deadlock and interleaved messages, the way adopted in this research involves adding
to the buffer process the ability to store and forward messages. Buffer processes
will thus have two modes, one for transferring messages directly, and the other for
storing incoming messages until those messages are requested by their destination
process.

When in a store and forward mode, the buffer process will automatically store
any incoming messages. Whenever a process desires the messages intended for it, it
must send a control message to its buffer process requesting ‘that it forward the
messages. An added modification is that there are two ways that forwarding can be
requested. One of the ways requires the buffer process to forward all messages (if
any), terminated by a message to inform the receiving process that all messages have
been forwarded. The other way requires the buffer process to check to see if there
are any messages to be forwarded. If so, forward them, but if not, then do not
respond to the requesting process until there is a message for it. Basically, these
two methods correspond to read-no-wait and read-wait commands, respectively.

Since buffer processes are only interposed between processes on different
machines, this solution does not prevent deadlock if processes on the same machine
get into a cycle. A simple way to remedy this is to force all processes to
communicate via the buffer processes, regardless of their relationship with the process

to which they are sending.
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The need for this change has been obviated by a simplification to the buffer
processes themselves. It was found that having multiple detached VMT processes on
the same machine causes tremendous amounts of page faulting. For example,
runping two VMT processes concurrently on the same machine causes each process
to take much more than twice the amount of time that it takes each to run alone.
Therefore, in order to avoid all this thrashing of memory, it is a much better
solution to combine all of the nodes from the processes on a particular machine into
a single process to be run on that machine. In addition, this causes major
simplifications to the buffer processes. If the buffer process were to be able to
store and forward messages for numerous processes, it would require the overhead of
allocating sufficient space for the storage of each processes messages, as well as the
computational overhead of keeping track of the status of the storing and forwarding
for each process.

The modification of the buffer processes thus called for adding the additional
complication of providing a store and forward capability while eliminating the need
for maintenance of state information for each of the detached VMT processes on
the machine. In this manner; the overhead of message transference has been kept
to a minimum, while the benefits of deadlock prevention and message integrity, as

outlined below, have been gained.
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2.7 Deadlock Prevention

During initialization and termination of the parallel run, the master has
complete control over commuanications that occur. Either the master is itself sending
a message, or has requested another process to send a message to some process.
During these phases of the run, all of the other processes are waiting on messages
from their mailboxes, and so, are constantly in a reading mode. Therefore, the
master knows when it expects a response and will wait for messages in its mailbox
whenever appropriate. Since the master always accepts messages coming into it, no
process will have to wait on the master’s mailbox. Furthermore, unless they are
sending messages to the master (which will always be read), the processes are always
reading from their mailboxes, so the master will never have to wait for any other
process’s mailbox. As a result, there can be no deadlock during these phases.

Simply put, because all communication during initialization and termination of
the parallel run follows in a deterministic order, there can be no deadlock as long
as the master is programmed correctly. In fact, during these phases of the rum, it
is extremely important for the processes to behave this way, since the processes
created by the master must react to messages seat by the master. It is for this
reason that the buffer processes have a transfer mode of operation. While in this
mode, a buffer process merely acts as a transferring station, assuming that the
system behavior is deterministic and there is no need to prevent deadlock. The
detached VMT processes need not explicitly request the buffer processes to forward

messages since it is done automatically.
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However, during the actual run of the VMT, processes can be sending
messages to other processes in an unpredictable manner. It is at this time that
deadlock looms. For this phase of the run, the buffer processes go into a store and
forward mode, in which they will store any incoming messages. The detached
processes must explicitly ask the buffer processes to forward these messages.

It can be seen that, if the VMT processes are properly programmed, no
deadlock can occur in this mode. Specifically, if a VMT process goes into a
reading mode immediately after issuing a forward command to its buffer process,
and does not stop reading until the buffer process informs it that all of the
messages have been forwarded, then the VMT process’s mailbox can never contain
messages that will not be read. Similarly, since the buffer process is only
forwarding messages when the VMT process is guaranteed to be reading them, the
buffer process will never be forced to wait for any extended amount of time for
there to be sufficient room in the mailbox of that VMT process. When forwarding,
the buffer process is assured of returning in finite time, at which point it will
continue reading messages out of its own incoming mailbox. Since the buffer
process is guaranteed to read from its mailbox in a finite amount of time, any
process sending messages to the buffer process is guaranteed of successfully inserting
the messages in finite time.

From this description, it is apparent that there is no possibility of a process
baving to wait for an infinite amount of time for an event to occur (assuming that
the VMT processes are correctly programmed), so deadlock cannot occur. Therefore,
the combination of simple message transfer during deterministic phases of the run

with a store and forward mechanism during the more complicated phases of the run
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serves to insure that deadlock will never occur.

A final point to mention concerning deadlock involves the size of the message
buffers in the buffer processes for storing the messages to be forwarding. It has
already been noted that there is no way to predict the amount of space needed to
store all of the incoming messages in a mailbox, and similarly, there is no way of
predicting how much storage space should be allocated to the buffer processes.
However, there is an important distinction between the two types of space. For
mailboxes, there is no way in which a sending process can determine ahead of time
whether there is enough storage space to accept the message. The sending process
merely tries to insert it, and waits if there is not sufficient room. This is how the
deadlock occurs. On the other hand, the buffer process keeps a running tally of
what storage space is used and what is available. If there ever occurs a point
where there is insufficient space to store an incoming message, the buffer process
will know this without going into a deadlock state. Instead, the buffer process
could simply throw out the overflow messages, and send some error message on to
the VMT process informing it of a buffer overflow. In this way, although the
problem of buffer size has not been solved (it is really an empirical problem) and
there is no guarantee that messages can always be transferred successfully, errors
caused by insufficient buffer space will cause the run to abort, rather than causing

deadlock.



28 Message Integrity

The problem of insuring that messages will be received correctly at their
destinations can be divided into two cases, in a manner similar to the deadlock
problem previously discussed. The more simple case, that of deterministic
communication, is trivial. Since the master is communicating with the other
processes in a serial fashion and no other process could possibly be communicating
without the master’s knowledge, then correct coding of the master's activities make it
impossible for any message interleaving to occur. Because messages sent by a
process are received in the same order in which they were sent, errors in order of
message pieces can only occur if two or more processes are simultaneously
transmitting to the same destination.

In order to protect against message interleaving in the more general case, the
buffer process, as it stores messages, must have three pieces of information. It must
know the destination of the message (trivial for our modified buffer processes that
serve only one detached process). It must know the source of the message, since it
wishes to combine parts of a message from the same source together. Finally, it
must know when a particular message is complete; that is, it must know when all
of the pieces for a message have been received. This information is provided to the
buffer process via the message headers and a trailer message and these are described
below.

All messages to a buffer process are preceded by a header and have the form
%DESTINATION%%SOURCE %$message. =~ DESTINATION is the name of the

destination process, SOURCE is the name of the sending process, and %, %%, and
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%$ are used simply as delimiters to these fields. As a matter of contrast, all
control messages to buffer processes begin with a §, and in this manner the two
types of messages are distinguished from each other.

Upon receipt of a message, the header is stripped off, and the message and
its source are stored. A list of message sources is also updated if mecessary, and a
flag with the source is set, marking that a possibly incomplete message is in transit.
This flag is checked whenever the destination process requests that its messages be
forwarded. The buffer process will only forward messages if none of the incomplete
message flags for the sources is set. If one or more are set, then the buffer process
will record the forward request, and then continue reading in messages and storing
them, each time checking whether they can now be forwarded. As soon as all of
the flags are reset, the buffer process forwards the messages to the destination
process.

When a process has completed sending a message, it sends a terminator
message after it. This has the same form as any other message, but includeg a
special sequence of characters in the message that the buffer process keys in on.
When such a message is received by the buffer process, the flag associated with the
source of that message is reset to indicate that the message has been reccived in
full, and the actual terminator message is then discarded.

The buffer process does not allocate scparate storage area to cach source
process, since the number of source processes for a given store and forward cycle
cannot be predicted, and statically allocating storage space for each at the start of
the run could result in one source overflowing its space while another source has

unused space. Therefore, the buffer process has onc large block of storage space,
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and simply places messages into it as they amrive, being careful to associate with
cach of these messages its source.

Whean the buffer process forwards messages, therefore, it cannot simply empty
the storage buffer in order since pieces of messages from different sources may be
interleaved in this storage. However, since a source process cannot interleave with
itself, the simple remedy is to step through the source list that has been maintained,
and for each source, send the stored messages from that source in the order in
which they were received. As previously noted, all of the pieces for a divided
message must be present during a forward operation, so the VMT process is

guaranteed to receive only complete and correct messages.

29 Suommary of the Interprocess Level

The tools described in this chapter are those used to implement the uaderlying
process maintenance and interprocess communication needs for the parallel simulation.
They interface with the VMT code in such a way that the details of this
implementation are all but transparent to the VMT.

In providing the details of methods of creating and deleting processes and
establishing communication routes, it is hoped that many of the important
considerations involved, as well as the limitations encountered within the framework,
bave been introduced. Although the tools might have been implemented in other
ways, the author hopes that at least the reasons behind his choices are now clear.
In addition, the problems of deadlock and message integrity are important in many

applications of cooperating and communicating  processes. Although the
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implementation discussed above offers no new solutions, it is hoped that it does
indicate how one solution can be implemented in this particular domain that insures
against these difficultics without the incurrance of unreasonable overhead.

Finally, it should be noted that the tools indicated here were the first step in
the development of the parallel simulation, since without them there could be no
communication.  Throughout many the changes to the VMT code itself, the
underlying tools for process maintenance and communication have remained basically
unchanged and have provided a dependable foundation to the remainder of the

simulation.



“Of course they answer to their names?” the Gnat remarked
carelessly.

“l never knew them do it."

“What's the use of their having names,” the Gnat said, “if they won't
answer to them?”

“No use to them,” said Alice; “but it's useful to the people that name
them, I suppose. If not, why do things have names at all?”

— Lewis Carroll

CHAPTER 11

CHANGES TO THE VMT ENVIRONMENT

In the design and implementation of simulations of distributed systems, a
major concern is that of maintenance of some sort of global perspective or
centralized information. By reference to such information, the uscr can observe the
overall state of the simulaticn. Such information can also be used by the simulation
itself in the fulfillment of its objectives.

Because the VMT was originally implemented to be run on a single process,
the user of the simulation had direct access to all of the information in the
simulation. In addition, since all of the simulated nodes in actuality shared
memory, nodes could read and even modify the data structures on different nodes.
With careful planning, the use of such techniques could allow the implemeator to
take some shortcuts in information passing and global maintenance.

A parallel simulation of the VMT requires that nodes be distributed over some
number of processes. Although the nodes simulated on the same process will share
memory, nodes on different processes will not have this capability. Hence, the

communication between nodes can no longer coasist of reading and modifying each
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others data structures, but instead requires nodes to send explicit messages to each
other, these messages containing all of the pertinent information. In addition, a
single process will no longer have a global view of the simulation; the processes
themselves must communicate in order to maintain a relatively current view of the
overall state of the simulation.

In this chapter, the changes required to the VMT environment needed to
effect the parallel simulation are addressed. Changes to the data structures, to the
creation and maintenance of global information, and to the implementation of
explicit message passing between nodes have been necessary.  Furthermore, the
methods by which a run is analyzed and debugged have been required to change,

and the techniques used in performing these tasks will also be briefly addressed.

3.1 The Parallel Simulation from an Internal Perspective

In order to enable the VMT to run on a set of parallel processes, a number
of changes to the internal organization of data and the methods by which both
global and nodespecific information are used are necessary. The requisite
modifications affect only the internal mechanics of the simulation and are nearly

transparent from an external view of the testbed.

3.1.1 Changes to the Data Structures.

Each node in the VMT system has a tremendous amount of information
associated with it. Attributes of the node, its queues, its blackboards, its sensor
data — all require space in which to be stored. In order to maintain this

information, large data structures are created at the start of a run which reserve
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space for all of the data for each node in the node network. Since nodes are
given consecutive integers as names, these data structures typically take the form of
arrays whose indices correspond with the node names.

In a parallel simulation, only a subset of the nodes in the entire node
network will be resident on a particular process, so there is a tradeoff to be
considered in the implementation of the data structures. If each process were to
bave a data structure with a slot for each node in the node network, then there
will be a large amount of space allocated on each process for information about
nodes that are on other processes. This space will therefore be wasted. However,
if one reduces the size of the data structures so that they only allocate space for
the nodes residing on the particular process, then one must also provide a mapping
from node names to the array positions in these smaller data structures.

In order to reduce space requirements in the already data intensive VMT, this
second course was taken. Each process creates a new data structure that maps each
node name into the correct array position, and this is referenced whenever c}ata
about that node is needed. In addition, functions that previously made changes to
all the nodes by starting at the lowest node and incrementing up to the last node

bad to be changed so as to step through a list of the nodes resident on the

particular process.

3.12 Global Data.
Because of the loosely-coupled nature of the simulated nodes in the node
network, there are not a large number of global values that must be maintained.

As a matter of fact, the only data that changes during the run that must be shared
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among processes running the parallel simulation concerns the state of the nodes of
each process. This data is required in order to synchronize the processes, and will
be addressed in the next chapter.

Since all other information common to the processes remains constant, there
are two possibilities in the strategy for generating this information. Either each
process can generate the information for itself, or elsc one process can generate the
information and then pass the results on to all of the other processes. In actuality,
both of these schemes are used, depending on the computational requirements
necessary for generating the information.

Many of the important system-wide parameters are contained in the
environment file. Since cach process reads a copy of the environment file, the
majority of the system wide variables are automatically created within each process.
However, certain attributes of the environment require a large amount of
computation before they can be stored in the appropriate structure.

For example, at the beginning of a VMT run, a structure referred to as'the
consistency blackboard is created. This contains information as to the form that the
solution hypothesis should take, as well as the intermediate hypotheses that are
consistent with the solution. A detailed explanation of the uses of this data
structure are beyond the scope of this thesis and arc addressed in [CORKS3]. For
the purposes of this thesis, we can assume that the consistency blackboard can be
used to increase the perceived intelligence of the knowledge sources, as well as to

provide the system with knowledge as to when it has achieved the solution.
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There is a large amount of processing required in order to build the
consistency blackboard, and fill it with the necessary information. Furthermore, the
information in the counsistency blackboard is the same for all processes in a parallel
simulation, and this information is not modified during the run. This is therefore
an occassion where it would be advantageous to have only one process generate all
of this data, and this process would simply send the data to the other processes in
the simulation.

Another detail in the initialization of the VMT eavironment thus involved
providing the functions needed to have a designated process calculate and send the
consistency data to all of the other processes, and have the recipient processes put
the information into the appropriate data structures. In this' manner, redundant
processing is drastically reduced at the cost of some extra communication. Since the
amount of information actually transmitted is relatively small, the tradeoff is
worthwhile.

Therefore, because the global data required by the system remains unchan'ged
throughout the run (except for the synchronization information described next
chapter), setting the global data is done either directly by the process based on the
eavironment file, or else provided to the process by some other process which was

given the responsibility for generating the data.

3.13 Message Structares.
Another very important change to the system involves the method in which
communication between nodes is simulated. In a single process version of the

testbed, the message passing mechanism is based on the fact that the nodes can
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access each other's memory. Hence, when one node wishes to send a hypothesis or
goal to another node, it merely places the name of that hypothesis or goal into the
receiving node’s incoming message buffer. The receiving node can use this name as
a pointer to the structure in which the attributes of that hypothesis or goal are
stored in order to extract any pertinent information.

As Alice points out in the quote preceding this chapter, a name is useful to
the people who name things. The name coatains no information in itself — its use
is as a mutually understood label for some other object. As noted above, in a
single process version of the VMT, nodes can pass each other the names of
hypotheses and goals, because the recipient node can use the name as a pointer to
the actual hypothesis or goal. However, all nodes do not share memory with all
other nodes in the parallel simulation where nodes are distributed among processes.
If a node receives only the name of some object, it will not always be able to use
that name as a pointer to the object. Because such names no longer have any
global significance, it is necessary to implement message passing that would send the
information - about the hypothesis or goal explicitly to the recipient node.

The messages take the form of lists, each list containing fields from which the
recipient node can extract the necessary information to coastruct its own copy of the
hypothesis or goal. For example, a hypothesis message would contain information
about the sensed times and locations for the hypothesis, the supporting hypotheses,
the belief, and a number of other attributes, including the node which is sending
the hypothesis. The sending node builds this message, and then calls on a function
to send this message to the specified node. This function in turn either inserts this

message into the node’s message buffer (if the node is on the same process), or uses
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the tools outlined in the previous chapter to send the message to the appropriate
process, where it will be inserted in the correct node’s message buffer.

It should also be noted that messages are not inserted into message buffers in
strictly the order in which they arrive, but are instead inserted in order of
increasing receptica time (as provided by the timestamp which will be explained in
the next chapter), with secondary ordering in terms of the sending node. Because
the simulation is insured to be deterministic, all messages required by a node during
a particular node execution must be in the buffer at the time of that node
execution. Since the messages are ordered in the manner described, the message
buffer will always bave the same messages in the same order no matter what the
actual order of message reception was. In this manner, differences in rates for
processes will not affect the ordering of messages in a buffer, and the deterministic

behavior is maintained.

32 The Parallel Simulation from the User's Perspective

As mentioned in the introductory chapter, the parallel simulation of the VMT
should result in no changes to the simulation results of the VMT. Since a user is
usually interested in the performance of the entire node network, it is important
that the output from the parallel simulation be such that an overall view of the
problem solving can be achieved. That is, the output from a simulation should not
depend on the actual distribution of nodes to processes. Furthermore, there are
times when a user wishes to interact with the system in order to uncover data that

is not provided in a trace or to detect and diagnose errors in the coding, so there
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must also be facilities that will allow the user to interact with the detached

processes. These matters will now be addressed.

32.1 Combining the Distributed Results.

Each of the processes running in parallel produces certain output which the
user has requested. Typically, this output might include a trace of the events
occurring in the run, data to be used to give a graphical display of the events, and
statistics about the run. This output will provide the user with a picture of what
bappened during the run and why. Because the basic use of the VMT is as a tool
to study the interactions between the cooperating nodes, the user will typically desire
to compare the activities of nodes during a run, and study their interaction. If the
nodes are distributed among a number of processes, then because each process will
create its own output, it may be difficult for the user to make the kinds of
observations desired.

A more minor issue in the creation of a parallel simulation therefore involves
methods by which the distributed results of the simulation can be combined such
that the entire node network is represented in a single output file. Basically, these
methods involve the interleaving of output from ecach source in order to achieve
some chronological ordering of the overall events in the node network. For
example, a trace from a run would typically consist of a sequence of node
executions in order of increasing simulation time. In the case of a parallel
simulation, trace files generated by separate processes could be interleaved by
examining the next node execution in each and printing the one with the earlier

simulation time next. In the case of equal simulation times, the node number might
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be used as a secondary ordering criterion (Appendix B).

In similar ways, other types of output from a set of parallel processes can be
combined to form node network-wide output, and this output will accurately describe
the results of the simulation. It is important to note that the output files thus
produced should in no way be different from those produced by running the same
VMT environment distributed in a different way (unless of course the output is
collecting statistics about the parallel simulation itself) since a parallel simulation of
the VMT should have no effect on the simulated results, but only on the rate of

the simulation.

322 Testing and Debugging the Parallel Simaolation.

One of the more challenging aspects of implementing a parallel simulation
involves the testing and debugging of the implementation. Due to the distributed
nature of the implementation, there will often be bugs that occur on remote
processes or are caused by incorrect message passing. Detecting, diagnosing, and
repairing such deficiencies in a distributed system is a difficult and time consuming
job.

Certain tools and capabilities allow one to make the job of detection and
diagnosis much simpler. Some of these tools are provided by the system, and others
are functions that had to be created especially for the purpose of debugging. In

this section, the more important of these tools and their utility will be discussed.



Log Files.

The creation of remote tasks across the network automatically initializes a file
which will act as the default output from the task. By developing the task such
that it prints information as to its actions, these actions will be recorded in the file,
and can be inspected at a later date if so desired. The log file can thus be a
useful tool for analyzing the activities of the remote task after the task has
completed.

In the implementation involved in this thesis, each buffer process was a remote
task and had one of these log files associated with it. The buffer code was written
such that the more important actions performed would be recorded in the log file.
For example, the reception of a message, what is done with the message, and when
and where messages are passed to are recorded. A part of a log file for a buffer
process is provided in Appendix C.

The use of log files provides the user with the ability to inspect the actions of
the remote activity once this activity has completed. Such capabilitics proved
sufficient for debugging the buffer process code. However, debugging of the VMT
code is typically more complex, and methods for interactive debugging during a rua
were desired.

Terminal Allocation.

If a detached VMT process exists on a machine with suitable output devices,
then if the process allocates onc such device and sends its output to this device, the
user can monitor the progress of the detached process directly. For a majority of
the debugging of the parallel simulation, this method was used. Instructions for the

detached VMT process to allocate the terminal and send its output to it were simply
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included in the set of commands forwarded by the master to that process, as
specified in the distribution file.

This method proved very. useful both in debugging the system software, since
any error messages were also reported oan the allocated terminal’s screen, and in
testing the synchronization methods, since one could watch the processes lying idle
or working depending on the states of the nodes oa the other processes. However,
just watching the detached process often was not enough. At times it was necessary
to find out certain information from the system that was not on the screen, and in
order to do this, tools had to be created that would allow the user to interact with
the detached processes.

User Interaction.

The interface between the VMT and the underlying communication
mechanisms described in the last chapter provided much of the tools needed to
enable interaction between the user (working on the master process) and the
detached VMT processes. For example, there already existed functions that would
allow the user to pass an arbitrary message to a detached VMT process, and this
process would evaluate the message and respond accordingly. Heace, if a detached
process had a terminal allocated to it, the user could send it messages as to
instructions to carry out, and watch the results of these instructions on the allocated
terminal.

Other tools were created with which one could interact with a detached
process that did not have an allocated terminal. In this case, the command to the
detached process would include sending the results of the evaluation of the message

back to the master. Furthermore, methods were enabled by which a user could
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interrupt a detached process, and by which the buffer processes could be instructed
to change from a store and forward mode to a transfer mode so that the master
could directly communicate with the detached VMT processes.

Interactive testing and debugging of the parallel simulation was thus achieved.
Although it has been found that general debugging of the simulation is still best
carried out on a single process, for debugging the problems specific to the parallel
simulation, the methods above have together formed a wuseful and effective

mechanism for detecting and diagnosing errors.

33 Summary

In this chapter, the major changes to the VMT environment that were
required in order to implement the parallel simulation were presented.  These
changes affect both the internal working of the system (data structures, message
passing) and the interface that the eavironment presents to the user. With the
background provided by both this chapter and the previous chapter on ‘the
underlying communication mechanisms, the questions of how to synchronize the

processes and how to allocate tasks to each process can now be investigated.



“Yes, that's it,” said the Hatter with a sigh: “it's always tea-time, and
we've no time to wash the things between whiles.”

“Then you keep moving round, | suppose?” said Alice.

“Exactly so,” said the Hazster: “as the things get used up.”

“But what happens when you come to the beginning again?” Alice
ventured to ask.

“Suppose we change the subject,” the March Hare interrupted,
yawning.

— Lewis Carroll

CHAPTER IV

PROCESS SYNCHRONIZATION AND NODE SCHEDULING

The distribution of the VMT over a number of processes running in parallel
poses problems in terms of insuring that the simulation results are independent of
the number of processes used to run the simulation. In the single process case, the
simulations are fully deterministic, and hence, reproducible. = However, because
processes on different machines may run at different rates, the parallel simulation
must have some sort of synchroaization mechanism built in to it. Since the nodes
interact, there must be guarantees that one node not get too far ahead of a node
from which it can receive a message, lest it go beyond a simulated time at which it
should receive a message. In other words, the implementation must insure that
eveats in the simulation occur in their proper order regardless of the rate differences
of the processes involved.

It should be noted that such determinism will inevitably result in some degree
of resource waste. Since it is unlikely that at any given time all processes will
proceed at exactly the same rate, there is a high probability that processes will

occasionally have to wait for other processes to catch up. It is probable that there
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will be times when processes lie idle while waiting for some set of slower processes,
and so, the processing resources of these idle processes are not being used to the
fullest advantage.

It is also important to realize that there are alternative methods to the
syachronization proposed herein. For example, rather than avoiding synchronization
errors by forcing processes to wait for each other, one could instead use a detection
and recovery mechanism ([JEFF82). In such a strategy, detection of a
synchronization error requires that the process recognize when an event ordering
error occurs. Recovery is a more difficult problem, and typically requires that some
record of the changes to the system be kept so that the system can backtrack to
some appropriate earlier state (before the error occurred) by undoing some of the
changes and their effects. The advantage of this strategy is that processes never lie
idle, and if the rate of errors is low, then the rate of the simulation can be
improved. However, this mechanism requires much more memory, and if the rate
of errors is high, then there will be a large amount of backtracking, lowering the
rate at which the simulation can be performed. In the VMT, such a strategy is
infeasible because the massive amounts of data and the far-reaching (and often
subtle) effects of any changes to the data would make records of changes unwieldy
and undoing the effects virtually impossible.

As pointed out earlier, the purpose of the parallel simulation is to increase the
speed of the simulation in real time while keeping the simulation results unchanged.
To achieve the goal of providing a deterministic system, it is therefore necessary to
include some degree of synchronization between processes. This chapter focuses on

how synchronization between processes can be achieved, and the interdependence of



synchroaization methods and node scheduling within a process.

4.1 Node Network Cycle Based Synchronization

Recall the scheduling methods of the system expounded in the brief overview
of the VMT. The processor’s atteation steps from one node to the next as time
appears to stand still, in a manner reminiscent of how the participants at the Mad
Hatter’s Tea Party move from chair to chair around the table while it is always
tea-time (see quote preceding the chapter). Unlike the March Hare, we have an
answer as to what happens when we get back to the beginning — we allow the
time (as represented by the number of these cycles) to be incremented and then go
around again. Based on this scheduling strategy, a straightforward synchronization
method would involve allowing each process to execute a single node network cycle
and once the process has finished its cycle, it sends a control message to some
specified synchronizing process indicating this fact. The process then waits for a
message from that specified process which will allow it to continue on to the next
network cycle. This is an example of a tight time-driven centralized synchronization
method [PEACT9).

This synchronization method was implemented as a first attempt at creating a
parallel simulation. The process that was responsible for the system wide
synchronization was the master process since the master process has complete
knowledge about the topology of the system. It was the responsibility of the master
process to keep track of which processes had finished the current cycle, and when

all processes had done so (including itself), it would alert them all to continue on to
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the next network cycle.

In order to achieve even more parallelism, the user was allowed to specify the
possible interactions between processes (i.e. for a given process, what other processes
bhad nodes that could send messages to any node on that process). The master
could instruct a process to continue if all of the processes from which it could
reccive messages had finished, even if there were other processes that had not
completed the cycle yet. However, since there was so much interconnectivity
between nodes in the simulated environments tested, this latter optimization did not
result in any significant gains.

The centralized manner in which this synchronization was achieved certainly
had some drawbacks. Because all processes were dependent on a single process, the
implementation was not altogether pleasing in terms of robustness in the face of
hardware and software failures. In addition, the extra computational demands on
the master process resulted in this process often acting as a bottleneck and slowing
down the simulation.

The synchronization is also not particularly flexible. In part, this is due to
the manner in which communication is simulated, as outlined in a previous chapters.
Since communication between nodes is simulated so rigidly, this very strict lockstep
type of synchronization is the most logical recourse. Since messages always have a
delay of one network cycle, nodes cannot get any more out of step with cach other
than one network cycle, so the processes’ network cycles must increment all together.

Among the positive aspects of this synchronization mechanism, the most
attractive is its simplicity. By implementing this mechanism first, the parallel

simulation was achieved in such a way that debugging the code was much simpler,
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and following the events coatrolling the parallel simulation was practically trivial,
Another positive aspect is that .the control messages needed to achieve this
sychronization were short and predictable. While some synchronization methods
might require large amounts of information to be transmitted between processes to
enable them to maintain a reasonable global view of the system, the rigidness of
this mechanism allowed control to be achicved in a relatively small number of short
messages.

The network cycle based synchronization allowed significant decreases in the
amount of real time required to achieve a VMT simulation. Typically, in a perfect
parallel implementation, one would expect the real time required to run a parallel
simulation to equal the real time required to run a serial simulation divided by the
number of processes running the simulation. This assumes that all of the processes
are busy all of the time. The mechanism described above allowed the real time
required to be equal to the serial time divided by about two-thirds of the number
of processes.

For example, a run that would require one hour of real time on a serial
machine would complete in about forty-five minutes if on two machines, and about
thirty minutes if on three machines. Because this mechanism was a stepping stone
toward the mechanism to be described later in this chapter, there was not much
time devoted to optimizing it and determining through experimentation details of the
improvement that this method yields. However, it is safe to say that the node
network cycle based synchropization is a mechanism by which significant but

suboptimal real-time rate improvements can be realized.
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The limitations of the node network cycle based synchronization stem primarily
from the way that the node executions are scheduled and internode commuanication
is simulated. By using the round-robin node execution technique, the scheduler
might waste time executing nodes that have no processing to do. In addition, by
incrementing time after each node network cycle, there is no way to simulate
various KS execution times. The assumption that all messages have a delay of one
node network cycle is implemented by having messages inserted into buffers that are
emptied by the receiving nodes during the next node network cycle. Simulation of
more interesting communication issues, such as varying communication delays between
nodes, is not possible. In order to achieve a better parallel simulation, it was
required that major changes be made to the scheduling of nodes within a process as

well as the simulation of communication.

42 Changes to the Scheduler

The principal consideration in changing the system involves incorporating the
concept of time along with events; there must be the capability of associating with a
simulated event the simulated time at which that event occurred. In this manner, it
is possible to allow knowledge sources to take a certain amount of simulated time to
execute. Instead of each local knowledge source execution being considered as a
single event during a node execution, and each node progressing forward in steps of
these events, each node will instead have a clock, and synchronization and
scheduling of nodes would depend on the interrelationships of these clocks rather

than the events occurring on the nodes.
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The new implementation will thus allow some nodes to execute a number of
koowledge sources in the time that other nodes can execute only one. In addition,
transmission and reception events also have times associated with them, and these
times can be used to simulate various delays in the communication channel. The
modification of the scheduler in this manner changes the system from a node

network cycle based implementation to a event-time based system.

42.1 The Conceptoal Model.

The conceptual model behind the event-time based simulation is one in which
cach node is actually composed of three processors (figure 4). The majority of the
computation occurs on the local processor. This processor is responsible for running
all of the local problem solving knowledge sources, and has direct control over the
other two processors. These processors are the transmitting and the receiving
processors. The transmitting processor has a queue containing the hypotheses and
goals which should be sent to other nodes, as specified by the interest areas. The
receiving processor has a queue containing received messages that must be processed
and incorporated on the appropriate blackboard in shared memory.

Each processor is responsible for generating KSIs, enqueuing them, and
executing them, The local processor instantiates local KSIs, the transmission
processor send KSIs, and the reception processor receive KSIs. Each processor has
access to the shared memory, and so, each can read from and write to the
blackboards. However, the activities on the transmission and reception processors are
coantrolled by the local processor. The model therefore simulates a powerful local

processor that has both a transmitting and a receiving processor at its disposal. In
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this way, local processing, and the transmission and reception of messages can all be
done concurrently.

Knowledge source executions are considered to be non-interruptable. Because
the local processor exerts some control over the other processors, and this control
can only be exerted between local knowledge source executions, the transmission and
reception processors can be controlled such that events on one of these processors
has no effect on the other processor during the execution of a local knowledge
source. The reception of a message cannot cause a transmission to occur, or vice

versa, without the local processor intervening. Therefore, the activities of each
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processor during a local knowledge source execution can be fully predicted at the
start of the execution. This fact will be used in the simulation’s scheduler because,
as a result, a node execution can be considered to be composed of a single local
knowledge source execution and some number of communication knowledge source

executions.

422 Node, Transmission, and Reception Time.

The simulation must not only keep track of the simulated time of a given
node (incremented by the times required to run each local knowledge source), but
also the simulated times of the transmission and reception processors; each processor
must have a separate clock associated with it. The communication processors may
be at somewhat different clock times from the time of the local processor, although
all of the times are related, since a node cannot get too far ahead of its reception
processor lest it proceed beyond the time that it should incorporate some received
data into its blackboards.

The invocation of a knowledge source must always be in the context of which
processor is being simulated as running that knowledge source, and the clock time
of that processor is modified appropriately. Furthermore, if a processor has no
knowledge source to run at a given time, its clock may be advanced to a point in
the future representing when the next possible event for that processor may occur.

The use of simulated times allows much more flexibility in the simulation of
communication between nodes. Within the context of the run, a delay between
each pair of nodes can be specified. At the conclusion of a sending knowledge

source, the delay between the sending and receiving nodes is found and added to
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the completion time of the sending knowledge source. The result is the time at
which the message is simulated to arrive at the destination node, and this time
value is included in the message. In this manner, all messages are said to be
timestamped [CHAN78).

Similarly, a receiving node cannot begin processing a message unless the
reception time of that node is at least as advanced as the timestamp of the
message. In order to achieve this, messages for a node are placed into that node's
message buffer in order of increasing timestamps (reception times), as meationed in
the discussion of message structures. For a given node execution, only those
messages with timestamps not greater than the simulated time of the local processor
are extracted from the buffer and processed. Therefore, unlike the earlier
implementation in which all of the messages in the buffer are processed during a
node execution, the modified implementation allows much more flexibility as to

when a particular message is perceived to arrive at a node.

423 Node Executions.

In order to simulate the concurrent processing of a number of nodes in a
single process, it is still necessary to interleave parts of the nodes’ activities. Each
of these small pieces of activity is refered to as a node execution and typically
consists of some number of communication knowledge source invocations and a
single local knowledge source invocation.

In the eventtime based simulation, a major concern is to insure that as long
as any node is capable of executing (is not waiting for some event) the process will

not be idle. Thus, it is very important that a node execution not be started ualess
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it can also be completed. For this reason, in order to execute a local knowledge
source at a given time, it is necessary that all messages that could be incorporated
into the blackboard up until that time bave indeed been received. If all nodes
from which the node in question can receive messages are up to the given time,
then, since instantaneous message transmission is not allowed, the node can go on to
its next local knowledge source execution.

In order for a node to be executable, the above criteria must be met. A
node execution consists of first simulating all of the receptions that are processed up
until the local time, since these can affect the blackboards and, hence, the KSI
queue from which the local processor will choose its next KSI. Next, the local KSI
is extracted from the queue, and the simulated runtime of this KSI is calculated.
Based on this time and the current transmission time, transmissions will be simulated
until the transmission time exceeds the simulated finish time of the local knowledge
source execution. Finally, the local knowledge source is executed, and the local
time of the node is advanced to the end time of this knowledge source execution.
Note that it is important that transmission knowledge sources be executed before the
local knowledge source, since the changes on the blackboard due to the local
knowledge source should not affect the transmission knowledge sources.
Transmission knowledge sources do not alter the blackboards, so their executions will
have no effect on the local knowledge source.

As an example of these concepts, consider a node execution as portrayed in
figure 5. The last local knowledge source executed from simulated time 100 to time
120 (1), so that the local node time of this node execution begins at simulated time

120. First, all reception eveats that can be processed up to and including time 120



57

are simulated in the reception processor. Note that if the processor is idle, then
processing of a received message begins just when the message arrives, but when it
is currently processing a message, the incoming messages must wait. The reception
time begins at 100, and four messages are received (il — i4), three of which can
fully processed before time 120. The simulation determines that the data received
from the last message will be fully processed only after time 120 (2), and, because
data from this KSI should not be on the blackboards before the local KSI
execution, this KSI is not executed in this node execution, but remains on the queue
so that it can be invoked during the next node execution.

At this point, all reception events that can affect the local and transmission
processing during the upcoming local knowledge source execution have been
incorporated on the blackboards. The local processor can then select the most
highly rated KSI in its queue, and the simulated run time of this is found (3).
Beginning at time 122, the time that the last transmission knowledge source of the
last node execution completed (4), transmissions that can be invoked before the
completion time of the local KSI are then executed. In this example, four such
KSIs are invoked, and four outgoing messages (01 — o4) are produced. Note that
the completion time of the last is beyond the completion time of the local KSI (5).
Because transmission knowledge sources do not alter the blackboard and the KSI
was invoked before the local KSI completed, the non-interruptable nature of
knowledge sources allow this to be sent. Indeed, since KSIs are not timestamped, it
is possible that, if this KSI were not executed, a more highly rated KSI formed due
to the local KSI execution could supplant this KSI at the top of the queue. When

the transmission processing was resumed during the next node execution, this KSI
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would be sent out where the last one left off — at a time carlier than it was
actually instantiated.

Finally, the local KSI will be invoked. The hypotheses produced by the
knowledge source execution are simulated to appear on the blackboard at the time
the knowledge source execution completes. In addition, at this time, all new goals

and resulting KSIs are produced and placed in the appropriate data structure. The
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node’s local time is altered to reflect the simulated time to run the local knowledge
source, and then the node execution is completed.

It is likely that there will not always be sufficient communication KSIs to
keep the transmitting and receiving processors completely busy. If the queue for the
reception processor is empty before the initial local time is reached, the reception
clock is incremeated to exactly the initial local time, since we are guaranteed that
no messages can be received before that time. Similarly, because the sending queue
can only be updated between local node executions, the transmission time can be
incremented to the completion time of the local knowledge source if the sending
queue becomes empty.

On the other hand, if the local KSI queue becomes empty, the runtime of the
local KSI is calculated to be zero. Reception and transmission are carried out as
outlined above (receptions up until time local time, transmissions until transmission
time exceeds local time). However, since the node has no useful local processing to
perform, the node enters an idle state. Similarly, a node that does have lgcal
processing to do is referred to as being in an active state. The state that a node is
in bas an effect on the manner in which scheduling is done, as will be outlined

below.

424 Next Event Calculation.

If a node is in an active state, then the next time that the node will have
processing to do is the time of the next local KSI invocation. Local KSIs are
simulated to execute one after the other, so that the invocation time of a local KSI

is equal to the completion time of the previous KSI. Hence, if a node is active,



60

the next time that a node execution is needed is simply equal to the completion
time of the last local KSI execution.

However, if a node is idle, then the calculation of the next event occurring at
that node (and, hence, the next time that that node should be executed), is
somewhat more complex. In such a case, the simulation time can be accelerated to
the simulated time of the next event [BRYA79). Without local processing to be
done, the node can only be executed if it has a sensor event, transmission event, or
reception event.

If sensor data is provided for some time in the future, then the node must
execute at that time. Thus, at any given time, a node can calculate when its next
simulated sensor input will occur (if ever), and this is the next sensor event time.

Similarly, if a node has pending KSIs on the transmitting processor’s queue,
then the node can predict when the next transmission event will occur. Since
transmission KSIs require a certain amount of runtime, the time at which the last
transmission will be complete is calculable, so that if there are peanding transmission
KSIs, then the next one is scheduled to be executed when the current transmission
is complete.

Finally, if a message is reccived at a node, this constitutes an event that could
stimulate a node execution. Upon receipt of a message, the message has its
timestamp inspected to determine the simulated time that it is to arrive. Given this
time and the runtime of the knowledge source needed to process this message, the
time at which the resulting hypothesis or goal from this message will be incorporated
onto the appropriate blackboard can be determined. In this manner, the next time

a node execution can be caused by a reception is found.
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When a node becomes idle, the next event time for the node is determined as
the minimum of the times for any of the types of events described above. If there
is no event found of any sort, then the next event time is considered to be at
infinite time (never). Of course, during the course of other modes’ executions, it is
possible that new reception events for the idle node may occur, and the next event
time of that node is changed accordingly. The next event time for a node is used
in the scheduling of node executions, as well as in synchronization, as will now be

discussed.

425 Interleaving Node Executions in a Process.

A given process has a list of all of the nodes residing on it. Associated with
each node is the next event time of that node, and by comparing these times, the
process can determine which node is furthest behind. A general scheduling method
is to always execute the node that is furthest behind. In a non-distributed
implementation, when all nodes in the network reside on a single process, this
method is sufficient to insure a deterministic run, because if no node has time less
than the node to be executed, then no message with a timestamp less than the
node’s time can possibly arrive in the future.

The basic scheduling algorithm for interleaving nodes in a process is simply to
execute the node with the earliest next cvent time. Provisions must also be included
to detect if all nodes have no next event (all have infinite next event times). In
this case, there is no more processing to be done in the system, and a state of
quiescence is reached. The run can then be terminated. This will be addressed in

more detail later on in the discussion of synchronization. In addition, if a node
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creates a hypothesis that meets the criteria for being considered a solution, the run
should also be terminated. This is done by assuming that the node broadcasts the
fact to the other nodes, with the broadcast messages subject to simulated delay just
like any other messages. This will also be considered in more detail in the next

sectioq.

43 Event-time Based Synchronization

Recall that a node cannot be executed until all messages that could be
received prior to the node’s local time have indeed been received. Knowledge of
the current times of any nodes that can send it a message are thus crucial to a
given node. The node cannot proceed until all nodes capable of sending it messages
have advanced beyond a certain time. Therefore, the minimum transmission delay
between nodes is the maximum amount of time that nodes can get out of
synchronization without potential non-determinism.

As an example of this, consider nodeA, which can receive messages from
nodeB, and the minimum message delay is ten time units. NodeA currently has
executed knowledge sources such that its time is twenty time units, but last it heard,
nodeB was at nine time units. Because nodeB might send a message at its time ten
which could reach nodeA at time twenty, nodeA cannot proceed. NodeA must wait
either until the message produced by nodeB at time ten arrives, or else until it
receives news that nodeB has executed at time ten or beyond, at which point no

message is forthcoming at time twenty.
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In a parallel simulation, therefore, it is possible that the node furthest behind
on a given process cannot proceed because it is waiting for a potential message from
a node that is even further behind on another process. The waiting node is said to
be blocked. In this case, the simple scheduling strategy of choosing the node
furthest behind might not yicld an executable node. Hence, the scheduling strategy
is modified such that the node furthest behind that is unblocked is the next node to
be executed. As long as there is a node that can be executed, the process will not
lie idle, so that the best use of the processing resources can be attained.

Since there must be some subset of nodes with the furthest behind time at
any given point, and since these nodes must be executable (no messages could
possibly arrive at an ecarlier time), there will always be one or more executable
nodes in the node network. This is not to say, however, that there will not be a
time when a given process has no executable nodes. Rather, there will never be a
time when all processes have no executable nodes. Hence, there is no possibility
that the system will deadlock.

However, there is a difficulty in the treatment of idle nodes. Although they
should be scheduled based on their next event time as outlined above, if a node
can rececive a message from an idle node, at what time should the node perceive
the idle sending node to be? The last event executed by that node may have been
far in the past, but the node’s time will not be updated until it performs its next
execution. Hence, the last executed time is inappropriate. The next cvent time is
also inappropriate, because there is no guarantee that there will be no event sooner
than this value; that is, if the node receives a message, its next event time may be

changed to an earlier time.
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As a solution to this predicament, the concept of globa! rime is introduced
into the system. The global time is the minimum of all the nodes’ next event
times, as perceived by a particular process [PEACS80). Since the process is insured
that no node can execute at a time earlier than the global time, thea it is
guaranteed that that no idle process can have an event earlier than this time.
Therefore, in determining whether a node is blocked, any idle node from which it
can receive a message is assumed to be at the global time.

The global time is based not just on the state of each node that can
communicate with the node in question, but on all of the nodes in the system. It
is therefore important for each process to have a relatively timely view of the state
of all nodes in the system. There must be a method by which processes trade

information concerning the states of their nodes.

43.1 Node Update Messages.

Note that the scheduling of actions in the parallel simulation is really quite
simple. The process merely schedules the furthest behind unblocked node. ‘The
difficulties with this synchrogization method lie not in the scheduling of node
executions within each process, but instead with the communication of state
information about the nodes in the network. Obviously, any messages passed
between nodes will act as state information carriers due to the timestamping of the
messages. However, the number of messages passed in the node network may often
be insufficient to carry all of the necessary information such that each process has a
satisfactory understanding of the state of the nodes in all of the other processes.

Hence, explicit state information messages must be sent.
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When dealing with using the communication of state information between
cooperating processes, onc must consider the tradeoff between the degree to which
cach process is kept up to date and the cost of such a strategy in terms of
communication overhead. In particular, one cannot fill the communication
bandwidth with too many state information messages lest there be insufficient
communication capacity to also deal in a timely fashion with actual hypothesis and
goal messages. Furthermore, one must consider the overhead involved in processing
each of these messages; it is hoped that the synchronization of the processes would
require a minimum of added computation.

At the outset of this research, it was anticipated that establishing the best
algorithm for achieving these results would be a difficult problem. However, in
practice, the best method in the particular domain of a parallel simulation of the
VMT, the simplest algorithm seems to be the best.

When considering a parallel simulation of the VMT, one must understand the
nature of the problem solving that occurs in each node. In particular, the
invocation of a single knowledge source can result in the generation of a large
number of hypotheses, which in tum can generate a large number of goals. Briefly
put, a single node execution can and usually does encompass a large amount of
computation and memory usage and therefore will often take a very large amount
of time relative to the amount of time required by the network. For example, it is
likely that a node execution for a typical run might require a number of minutes of
real time, while the communication of an update message would require an average

of a couple of seconds.
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When the relative times are considered, it seems hardly likely that update
messages occurring after each node execution of each process could come close to
clogging up the communication channels. The tradeoff between minimizing
congestion while maximizing information flow seems to not be particularly difficult
to solve. Even if information passed between processes was maximized, there would
be no appreciable congestion as a result. Hence, a strategy involving piggybacking
state information to hypothesis and goal messages is inappropriate because of the
additional computation required to determine how to send an update.  Since
congestion is not an issue, it makes more sense to unthinkingly send explicit updates
than to incur the overhead of deciding whether piggybacking can be achieved.

Furthermore, the fact that the calculation of global time depends on an
adequate view of the states for all of the nodes in the network means that there is
not much benefit in sending updates only to processes that can receive messages
from the node being updated. The extra computational overhead involved in
determining which of the processes could receive a message from the node does not
warrant the relatively small amount of bandwidth that this would save, and, as
mentioned above, the state of a node may be important in an indirect way in a
process's calculation of global time.

In addition, since the amount of resources speat on an update message are so
low relative to the resources required to execute a node, it is unlikely that
aggregating update messages over a number of node executions and sending this
aggregation out will save much resources. A process that withholds an update for a

node in order to combine in with subsequent updates could force a process waiting

for that update to become idle. The resulting loss of computation time would not
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justify the modest savings in bandwidth.

Finally, updating methods involving the interaction between processes are not
viable in the current implementation environment. In order to for an interactive
strategy to achicve the desired results, the response time for a particular request for
update information must be kept at a minimum. Since interrupt mechanisms are
not currently supported, this means that processes would have to frequently poll
their mailboxes for incoming update requests. The overhead of such a large amount
of polling would degrade the performance of the simulator.

Therefore, the most feasible method for processes to inform other processes as
to a change in the state of one of their nodes is simply to broadcast a message
with the appropriate information to all of the other processes. It should be noted
that a similar conclusion might not be reached when trying to determine a strategy
for another parallel simulation, and a number of strategies are presented in
[PEAC80]. The success of this simple strategy rests on the fact that in the
application of the VMT, the looseness of the connectivity of the system results in
processes being able to do a large amount of computation without interacting. Also,
if a process does not receive update information in a timely manner, much potential
computation time could be wasted. For these reasons, the best strategy is to simply

broadcast updates whenever a local node is executed.

432 Blocked Processes and Termination.
If a process has no node which is not blocked, then the process itself is said
to be blocked. That is, until another process sends it some information, the process

will lie idle. However, if some exceptional situation such as a hardware or software
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failure has occurred, it is possible that the awaited information will never arrive.
The system must be capable of recognizing this kind of a situation and dealing with
it in an appropriate manner.

During a run, the synchronization is carried out by the broadcasting of update
messages as outlined above. The control is fully distributed — there is no single
process responsible for the synchronization of the system. However, in the case
where exceptions occur, it is important that one process be responsible for detecting
if the system is in a state in which the run should be terminated. This
respoasibility falls to the master process since this is the process from which the run
began.

For all processes other than the master, if the process becomes blocked, it
responds in a very simple manner. The process simply waits for a message to enter
its mailbox and processes the message. If the message allows a node to proceed,
then the process is no longer blocked. If the process is still blocked, it repeats this
procedure until is is not blocked. Hence, processes other than the master are purely
dependent upon stimulus from an external source.

On the other band, the master process must be capable of initiating events in
the case of some exception. To this end, when the master process enters a blocked
state, it sets a timer. The master then waits for a message to eater its mailbox
much like any other process. If a message arrives before the timer expires, then
the master processes the message and proceeds either to an unblocked state or
repeats its blocked state procedure. However, if the timer expires before a message
arrives, then the master forces an error, warning the user that an exception has

occurred.
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Any hardware or software error that causes a process to crash will thus
eventually cause the master to issue an error message (since there will be no update
messages from that process, eventually all other processes will have to wait for it).
If the master itself crashes, this will be immediately apparent to the user. Hence, if
the run terminates abnormally, the user will be warned of that fact and the master
will allow control to return to the user.

It should be noted that, besides hardware and software crashes causing the
system to become blocked, it is possible for all processes to become biocked simply
because there are no more events to occur in the system. This situation is known
as quiescence.

If the master becomes blocked, and as far as it knows, all nodes have their
next event at infinity, then it begins a test for quiescence. The master sends to all
processes a request for them to determine whether they perceive the system as
quiescent also. If any respond negatively, then the master treats the situation simply
as blocked, sets its timer, and goes into its blocked mode. However, if all processes
agree with it, then the master waits a small amount of time, and sends a second
round of quiescence test requests. In this way, if some message were in transit
during the first quiescence check, it will have arrived before the second and the
second quiescence test will fail (in the case where another message is in transit,
there must have been an intervening state update message which will cause the
master to start the quiescence procedure from the beginning). If all processes still
believe that the system is quiescent, then the master sends all processes a quiescence
message, which allows the processes to end the run, reporting that the solution could

not be found.
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433 Termination due to Solution Generation.

As mentioned before, the copsistency blackboard allows the system to
determine if a given hypothesis is consistent with the solution, or is the solution
itself. Whenever a node generates a solution hypothesis, the process on which that
node resides broadcasts the an explicit solution-found message to all other processes
stating the name of the solution bypothesis and the node that found it.

When all solution bypotheses have been generated, the system can terminate
the run. In order to insure that runs terminate in a deterministic manner, the
implementation simulates each node as being required to receive the message.
Hence, a particular node will enter a finished state at the time which it is simulated
to bave received the message informing it that the solution had been found. This
reception is based on the simulated delay between nodes, and it is assumed that the
message took the shortest path to the node.

Therefore, it is possible for activity to continue in the system cven after a
solution is found, because the solution must be propagated among the nodes. Once
a node has been simulated to have received the solution message, the node is no
longer eligible to be executed. When all nodes in a process are thus unable to
execute, the process terminates the run, alerting the user as to what solutions had
been found.

It should be noted that whether the run terminates normally or abnormally,
the set of processes involved in the run remain. This allows the user to specify
post-run processing and to interrogate processes as to certain characteristics of the
run. Separate commands exist for terminating the processes involved in the run.

These may be invoked at any time before the master process is ended, but must
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eventually be executed or else the detached processes on other machines will not be

deleted.

44 Summary

The implementation of a parallel simulation where each process must simulate
concurrent processing of the nodes on that process while remaining synchronized with
the other processes running in parallel to it is a complex problem. In this chapter,
the implementation to two solutions of this problem were presented.

The first involved centralized synchronization where a single processor has the
responsibility for maintaining the correct ordering of events in 'the simulation. The
interrelationship between this synchronization mechanism and the fact that simulated
time was measured in terms of events (network cycles) was investigated, and
indicated the need for an event-time based strategy.

The second implementation of the synchronization was based on this more
flexible representation of simulated time. The modifications resulted in the alteration
of bow nodes on a process were scheduled as well as how synchronization was
performed. In particular, the synchronization mechanism was distributed among the
nodes, so that both a more equal distribution of the synchronization responsibilities
as well as a potentially more robust system resulted. In addition, more interesting
representations of the knowledge sources and the communication capabilities were

achieved.
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With the successful implementation of the synchronization mechanism, one of
the two major goals of this research has been achieved — a parallel simulation in
which the simulated events will occur in the correct order regardless of the rate
differences between the processors. The second major goal, that of establishing some

load allocation criteria, will next be addressed.



“You don't know how to manage Looking-glass cakes,” the Unicorn
remarked. “Hand it round first, and cut it afterwards.”

This sounded nonsense, but Alice very obediently got up, and carried
the dish round, and the cake divided itself into three pieces as she did so.
“Now cwt it up,” said the Lion, as she returned to her place with the

empty dish.
— Lewis Carroll

CHAPTER \4

LOAD BALANCING AND EXPERIMENTAL RESULTS

The previous chapters have supplied the details of how the parallel simulation
of the VMT is implemented so that the results of the simulation are independent of
the specific node to process allocation. It is the purpose of this chapter to
investigate what kind of improvements in the real-time rate of a simulation can be
achieved with the implementation outlined, and how these improvements are
dependent upon the assignment of nodes to processes.

The scheduling mechanism outlined last chapter insured that if there was a
node residing on a process that could be executed, then the process would not be
idle. In order to maximize the processor utilization, it is important to distribute
nodes to processes such that the amount of time that processes spend blocked is at
a minimum.

It could be argued that if the number of nodes that were assigned to each
process was increased, then the probability that all of the nodes would be blocked
would be reduced. However, one of the major motivations for implemeating the
parallel simulation was the observation that, as the number of nodes simulated on a

process increases, the time required to run the simulation increases at a
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disproportionately faster rate due to the demands placed on the memory by the
data-intensive VMT. Gains in utilization of processing resources is at the cost of
slower simulations. This is similar to trying to maximize the throughput of some
communication channel by flooding it with messages — throughput increases but
only at the cost of increased response times.

Distributing the simulation among machines can therefore decrease real-time
needs both by allowing computations to be performed in parallel and by increasing
the total memory available to the simulation. In order to best balance the
requirements of the simulation, one must assign the nodes to VMT processes so as
to divide the memory and computational needs in the best possible way. This is

known as load balancing, and will be investigated in the next section.

5.1 Load Balancing

Much of this thesis has been devoted to outlining methods by which
computational parallelism can be increased, and little attention has been paid to the
ways in which memory needs can be distributed. This is because the memory needs
of nodes are roughly equivalent since they each have similar data structures.
Therefore, the strategy for balancing memory requirements is simply to assign
approximately the same number of nodes to each process.

Computational requiremeants, on the other hand, are more difficult to balance
because of the variations in a node’s computational needs over the course of a run.
In order to maximize the use of the computational resources, it is important to

minimize the amount of time processes lic idle due to having all of their nodes
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blocked (figure 6). Therefore, nodes should be distributed among processes so that
the overall computational needs of all processes at any given fime are nearly equal.

Furthermore, the simulated run time of executing a particular KS need not
reflect the actual real-time requirements needed by that KS. For example, the real
time necessary to extend a track is very dependent on the length of that track, but
the simulated run time of such a knowledge source need not take this into accouat.
Concurrency of simulated events thus does not imply real-time concurrency, although
these concepts are intertwined because of the dependence of real-time processing to
the synchronization of simulated time.

Because the computational needs of a node can vary over time, a static
assignment of nodes to processes might often result in sections of the run in which
the load is poorly balanced. However, dynamically moving nodes among processes
might introduce high overhead. Each of these strategies will be considered in the

next sections.

5.1.1 Dynamic Load Balancing.

As the processing needs of nodes change over time, there may be times when
the initial allocation of nodes to processes results in some processes being inundated
with work while others lie idle. If the simulation could recognize such a situation,
then by having a busy process transfer some node or nodes to an idle process, the
processing load of the simulation would be better balanced, so that better utilization

of the processing resources would result.
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Figure 6: Computational Time Graph.

A graphical depiction of a small portion of a simulated run. The
X-axis represents time (in seconds). Each block represents a node
execution (to the left of each process is the correspondence between
nodes and bitmap patterns). The height of a block corresponds to the
CPU utilization during the execution (height of the block divided by the
height of the y-axis for the process gives CPU utilization). Above each
block are the simulated start and end times of the node execution.
Because the maximum amount of simulated time that nodes are allowed
to be out of synchronization in this particular simulation was 2, the
nodes on the MASTER process and PROCESS_]1 must wait at times 45
and 46 for PROCESS_2 to bring its nodes up to times 43 and 44
respectively. The MASTER and PROCESS.1 are thus idle for much of
this 2 minute interval.
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Such gains are not without cost. For aaﬁﬂc, the processes in the simulation
must have some knowledge as to the activities in the other processes in order to
decide that the load is unbalanced. Hence, there is the overhead required in
moanitoring for a poorly balanced situation. Furthermore, once such a situation is
detected, some decision must be made as to how the nodes should be redistributed
so that a better balancing is achieved. Because moving a node from a process on
one machine to a process on another would involve the transfer of very large
amounts of data between processes (during which memory acts as the bottleneck due
to the accessing and storing of the data), the processes should try to find a way to
optimize the load balancing while minimizing the number of nodes transferred.
Such a calculation in itself might be very time consuming and prone to error since
the future real-time requirements of a node cannot be accurately predicted, Finally,
while nodes are being transferred, resources that could be used in processing for the
simulation are instead being expended in order to achieve better load balancing.
Therefore, dynamic load balancing is very expensive, but if increased concurrency
results from a better balance, the gains from this more effective use of the
processors might offset the costs in achieving it.

In determining whether dynamic load balancing is appropriate to the parallel
simulation of the VMT, a anumber of factors must be considered. The most
important concern deals with the rate at which a node’s processing needs change. If
a node changes processing needs very rapidly, then the load balancing may also
fluxuate rapidly. In such a circumstance, the improvements achieved by dynamic
load balancing will be short-lived, and the load balancing procedures might be

invoked frequently. The overhead of the dynamic load balancing would result in a
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heavy cost for only a small amount of gain. Furthermore, an eventual goal of the
VMT is to provide a mechanism by which the organizational responsibilities of nodes
can change as the problem solving in the network progresses, so that a node that
has exhausted its local processing needs may be given additional responsibilities by
the simulated network. Although other factors such as responsiveness and
redundancy will affect the assignment of responsibilities, the need for dynamic load
balancing will be obviated to the extent that the processing requirements are
balanced dynamically among the nodes within the simulation.

Currently, there is insufficient evidence indicating that the implementation of a
dynamic load balancing mechanism in the parallel simulation would result in any
gains. Furthermore, when considering the tremendous amount of data associated
with a node that would have to be transferred if a node were moved from one
process to another, intuition dictates that such a mechanism would be useful only if
rarely invoked. The current implementation environment is therefore not suitable
for dynamic load balancing. As alternative clustering hardware in which all dxsk
IO occurs on a high speed bus and file server is obtained, movement of
information between machines may be sufficiently fast to justify dynamic load

balancing.

5.12 Static Load Balancing.

Currently, all of the runs of the parallel simulation are based on the static
assignment of nodes to processes established at the outset of the run. Unlike a
dynamic load balancing situation where a poor initial assignment would be modified

as the run progresses, the static load balancing situation means that the run
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continues with the initial assignment no matter how poorly it balances the load. It
is therefore important that the assignment of nodes to processes achieve as good a
load balancing over time as possible.

In order to make such an assignment, the processing requirements for each
node must be estimated, and the activities of the each node as the problem solving
progresses must be predicted. Making such predictions and estimations is a difficult
problem. An optimal assignment could only be guaranteed if all of the future
processing needs of the nodes were known — but such information can oaly be
obtained by running the simulation. In the quote preceding this chapter, Alice finds
that she cannot divide up the cake uatil it is already divided. Similarly, we cannot
make a completely accurate decision as to how to divide up the nodes until the
system has already been run — which would require that the nodes be divided
already!

It is possible that this strategy might be used in determining eveantual node to
process assignmeats. Typically, a set of experiments on which the VMT is run are
comprised of one environment upon which very small modifications might be made.
For the first such experiment, oodes might be allocated arbitrarily, and a sub-optimal
run might be executed. Once this run is complete, it may be used to decide the
processing needs of each node, and a better, perhaps optimal, node to process
allocation would be developed and used for all of the remaining experiments in that
set.

Rather than make an arbitrary initial assignment, however, it is possible that
simply by inspecting the particular environment being simulated, one could determine

a good approximation to the optimal node to process assignment. The assignment



would be based on a prediction of the problem solving activities of the nodes (which
provide an rough indication of the real-time computational needs of the nodes). By
distributing nodes to processes such that the estimated processing done by the nodes
is relatively balanced over time, a better allocation can be obtained.

It is, therefore, very important to understand the characteristics of a particular
environment being simulated in order to determine a good node to process
allocation. For this reason, a brief study of the environments upon which the

experimental results are based will now be made.

52 The Simulated Environments

The parallel simulation presented in this thesis has been used on a large
number of eavironments, ranging from two to twenty-five nodes. In all cases, the
real time required by the simulation was smaller than that required by the same
environment run on a single process. The amount of improvement has been based
predominantly on the size of the environment. For example, small environments
(less than five nodes) are easily run on a single process, and do not provide enough
nodes per process to allow for good CPU utilization when run in parallel. On the
other hand, very large environments (over twenty nodes) require more memory than
can currently be provided by a single machine, and can therefore only be run by
the parallel simulation.

In order to gain some quantitative results on the improvements possible by the

parallel simulation, environments were chosen such that they would be large enough

to allow for interesting node to process allocations, while small enough so that they
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could be run on a single process (and push the memory to its limits). These
environments were based on a ten sensor configuration as portrayed in figure 7.
Over the eighteen discrete sensed intervals, data for both the “true™ track extending
from (6,2) to (40,36), and the “ghost” track from (4,4) to (38,38) are received. Note
that the ghost track is moderately sensed throughout, while the true track has
interleaved sections of strongly and weakly sensed data. The presence of the ghost
data serves to distract the problem solving activities as sections of the ghost track

are created and merged with sections of the true track.

52.1 Eavironment El.

The first environment (E1) consists of ten nodes, the sensors being assigned to
the nodes on a one-to-one basis. Node i will therefore refer to the node associated
with sensor i. In this environment, nodes with overlapping sensors can communicate,
and each node attempts to form a track hypothesis that encompasses the entire true
track.

The solution generation in this heterarchical environment can be broken into
three phases: First, the nodes with strongly sensed true data (2,4,7,9) create track
hypotheses which they pass to their ncighbors. Second, the nodes with weak true
data (58,10) join the highly rated received tracks through the weak section, then
pass these longer tracks to their ncighbors. Third, node 8, having generated one of
these longer tracks and receiving both of the others, merges these pieces together to

generate the solution track.
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Figure 7: The Ten Sensor Environment.

The cighteen discrete intervals at which sensing occurs are marked, and
the line thickness for the track indicates the strength of the sensed data
at that point.

From this high level perspective on the nodes’ activities, one can surmise that

nodes 1, 3, and 6 will bave little processing to do once they have processed their

small amount of sensor data, while nodes 5, 8, and 10 will be busiest later in the

run.

It would be anticipated that the remaining nodes would be relatively busy
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throughout the run. When assigning nodes to processes, one should keep in mind
what nodes will require less computational resources as the run progresses and which

will require more.

522 Envirooment E2.

The second environment (E2) is composed of eleven nodes. Ten of these are
assigned to the sensors as in El, but the last node has no sensor responsibility. The
nodes are organized hierarchically; the ten sensing nodes send information only to
node 11, which in turn is responsible for integrating the received data into a
solution track.

Solution generation in E2 can be broken into two phases: First, the ten
sensing nodes generate track hypotheses spanning their sensor areas and pass these to
node 11. Second, node 11 combines these pieces into a single solution track.

In this environment, it is apparent that node 11 will become significantly
busier as the run progresses, while the other nodes would require processing in
proportion to the amount of sensor data they have. It is interesting to note that
both E2 and El require the same amount of simulated time to generate the
solution.  Although E2 incurs fewer delays due to transmission of intermediate
results, node 11 must integrate data from the entire sensor network. By requiring a
single node to combine all of the pieces into a solution, much potential concurrency
in simulated time is lost. Also, in El, the reception of highly rated true hypotheses
by nodes 5, 8, and 10 stimulate activity on the weaker true data sooner than if
these hypotheses were not received. Thus, the richer interaction provided by the

heterarchical environment can help to focus the attention of the individual nodes on



the true data earlier.

53 Experimental Results

In this section, results from the experiments performed on eavironments El
and E2 will be presented. The statistics shown were gathered during the problem
solving part of the run and do not reflect the relatively small overhead of
establishing and deleting the distributed eavironment (activities which typically require
2-3 minutes of real time per process). At the time that the experiments were
performed, the machines used were fully dedicated to the simulation to provide as

consistent an environment as possible.

53.1 Experiments on Eavironment El.

The results for a number of experiments on environment El1 are presented in
table 1. Experiments 1.1 and 12 were each run on a single process and represent a
basis for comparison for the distributed simulator. Notice that, as previously
mentioned, the doubling of memory drastically improves the real-time requirements
and CPU utilization. In addition, the smaller amount of paging behavior results in
reducing the amount of CPU time nceded. Finally, note that in experiment 12 the
CPU utilization approaches one, implying that increasing the memory further will not
improve the run significantly.

In experiments 13 and 14, we can see that the effects of distributing the run
over three machines with small amounts of memory can drastically reduce the
real-time needs compared to the single machine case (1.1). The bulk of the

improvement can be attributed to decreasing the memory requirements per machine.



Experiment Process.d Process.3 Process.3 Real Cpu Cpu Concurrency Speed-up
1.3

Nodes M Nodes M Nodes M Time Time Utllluation 1.1
1.1 1-10 2 . . - 388 119 33 . . .
1.2 1-10 4 . . . . 98 97 99 - 3.66 .
1.3 18,9 2 246,00 2 35,7 2 56 84 .68 46 .38 1.73
1.4 1,2,6 2 3478 2 6910 2 62 84 72 31 6.73 1.5¢
1.5 1,389 2 246,710 2 . . 84 1} 59 .83 4.28 1.17
1.6 1-6 2 6-10 2 . - 84 20 .63 89 4.26 1.1¢
1.7 13589 ¢ 2,46,7,10 4 . 50 80 98 84 7.16 1.96
1.8 1-8 4 6-10 4 . . 49 79 .98 67 7,36 2.01
1.9 1,3,5,6,8,10 ¢ 2,479 ¢ {6 79 98 75 7.72 2.11
1.10 1,236,909 ¢ 45,7.8,10 ¢ - . 54 81 98 52 6.57 1.80
1.11 1.89 2 240,10 ¢ 357 2 36 78 85 .67 9.94 2.72
Abbreviations:

M Megabytes of memory

Real Time Elapsed time in minutes

CPU Time Computation time in minutes

CPU Utilization $CPU time) / (Real Time — Idle time)

Concurrency T Elapsed time all processes are busy) / (Real Time)

Speedup (Real Time for single process experiment) / (Real Time of current experiment)

Table 1: Experiment Set 1.

However, concurrency considerations do play a minor role, as can be seen by
comparing 13 and 14. Both distribute nodes to processes in equal numbers, but 13
runs faster. Because the sensed data is incorporated over time, those nodes that
receive data. earlier will have processing to do earlier. In 14, the nodes assigned to
a particular process are all from one region of the sensed area, while in 13 nodes
are more evenly distributed. Hence, in 13 each process will have busy nodes
throughout the sensing time and more concurrency results.

In experiments 15 through 18, two distributions are considered both on
machines with small amounts of memory and on machines with large amouats.
Once again, real-time improvements can be attributed to both reduced memory
requirements and increased concurrency. It is interesting to note that both of the

distributions resulted in nearly equal rate improvements even though they had very
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different node assignment strategies. In 1.6 and 18, the allocation strategy groups
locally adjacent nodes together, a strategy that caused experiment 1.4 to run slower
than 13. Although this clustering of nodes does indeed reduce concurrency early in
the run, the fact that the clustering reduces the number of nodes that can receive
messages from nodes on other processes means that there are fewer potential points
where blocking can occur (recall that an unblocked node cannot block any nodes on
the same process). Therefore, a reduction in blocking results in an increase in
concurrency.

Experiments 19 and 1.10 illustrate the fact that assigning equal numbers of
nodes to the processes might not always be the best strategy. In environment El,
nodes 1, 3, and 6 receive only a small amount of sensor data, and process this
quickly. These nodes lie idle for half of the run, and assigning them to a single
process (experiment 1.10) can result in reducing the concurrency later in the run.
However, if one assigns them to a process and gives that process additional
responsibility (for example, nodes 5, 8, and 10 which are more busy later in the
run), a better balance can occur (experiment 1.9). Because memory limitations had
little effect in these experimeats, they are a good indication as to how rate can be
improved by increased concurrency.

The node to process allocation problem becomes more difficult when machines
with different capabilitics arc used together. Some estimation must be made as to
the relative rates at which the machines can run the VMT simulator. Although this
problem will not be deeply considered in the experiments, experiment 1.11 does
indicate how replacing one machine with a more powerful machine can affect the

rate. Here, we note that the same allocation used in experiment 13 can be
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improved dramatically if the machine that has the largest aumber of nodes is more
powerful (has more memory). Where before this machine was the bottleneck, now

more concurrency can result.

§32 Experiments on Environment E2.

Environment E2 presents more interesting capabilities than environment E1 due
to its hierarchical organization.” Because all nodes could receive information from
their neighbors in El, there was a limit as to how far any node in the simulation
could get ahead of the furthest behind node. However, in E2, nodes one through
ten only send information, and so, will never be blocked. Hence, these run-away
nodes will always be executable as long as they have some work to do.

This has the potential of causing problems. Because the nodes are always
executable, it is possible that they might simulate activities beyond the simulated
time at which the solution is generated. Although such activities will have no effect
on the manner in which the solution is generated, they do require that the
techniques for merging output from the VMT processes be more intelligent so as to
edit out this unnecessary information.

Furthermore, although run-away nodes with advanced simulated times will not
progress as long as there are uablocked nodes at earlier times, the question of
whether the generation of large amounts of extraneous results could hamper the
effectiveness of the simulator is raised. In order to test for this, provisions were
made so that a user could supply an optional value that would specify the
maximum difference between a node's simulated time and the minimum time of the

nodes in the node network. In this manner, the potential run-away nodes could be



constrained.

Experiments 2.1 and 22 (table 2) provide a basis for comparison in the E2
simulation. Once again, notice that increased memory results in decreased real-time
needs. Comparing these values to experiments 1.1 and 12, we note that E2 requires
less processing even though the solution is found at the same simulated time. These
differences can be attributed to the fact that KSs that work on tracks require more
real time as the tracks get longer. In El, each node may be working on long
sections of the track, while in E2 only node 11 will be doing so. Since E2 has
fewer nodes running these long KSs, the run time will be shorter.

Experiments 23 and 24 summarize the effects of distributing E2 over three
machines with small amounts of memory. Rate improvements can be attributed

both to reduction in thrashing as well as to concurrency. Note that the concurrency

Experiment Process.d Process.3 Process. 3 Real Cpu Cpu Concurrency Speed-up

Nodes M Nodes M Nodes M Time Time Utllisation 1.1 1.3
2.1 1-11 2 . . . - 138 72 53 . . .
2.2 1-11 4 . . . - 64 a3 99 . 2.12
2.3 1,6,9,11 2 2,4,68,10 2 887 2 97 83 74 98 3.62 1.71
2.4 1-4 2 5.8 2 911 2 3 a2 .84 97 4.08 1.92
2.5 1,236,9,11 2 4675810 2 - - (1) 72 78 99 2.96 1.39
2.6 1.2369 2 45781011 2 859 71 T3 K13 2.28 1.08
2.7 1,2,3,6,9,11 2 46,7810 2 . 54 62 J4 54 2.49 1.17
2.8 1,2,3,69 2 4,5,78,10,11 2 87 62 .76 43 2.39 1.13
2.9 1,3589,11 4 246710 ¢ . 34 65 90 99 3.98 1.88
2.10 1-5 4 6-11 4 . 38 72 97 99 3.61 1.70
2.11 1,3,689,11 ¢ 2,4,6,7,10 ¢ . 36 58 97 .68 3.76 1.77
2.12 1-5 4 ¢-11 4 . €2 58 97 40 .21 151
Abbreviations:

M Megabytes of memory

Real Time Elapsed time in minutes

CPU Time Computation time in minutes

CPU Utilization (CPU time) / (Real Time — Idle time)

Concurrency (S Elapsed time all processes are busy) / (Real Time)

Speedup (Real Time for single process experiment) / (Real Time of current experiment)

Table 2: Experiment Set 2.
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is very high because the run-away nodes do not allow the process to become idle.
Furthermore, comparing experiment 23 with experiment 13, notice that by arbitrarily
adding the eleventh node to one process, a well balanced distribution can become
less well balanced.  Experiment 24, on the other bhand, is an entirely new
assignment and performs better.

In experiments 25 and 2.6, we use the poorly performing allocation from
experiment 1.10 and see if we can improve it by adding the eleventh node. By
comparing 25 and 2.6, it is apparent that in 25 the addition of the eleventh node
improved the concurrency, while in 2.6 it made it even worse. These same
assignments were run again but this time the amount of time by which nodes could
get ahead was limited. The results are shown in experiments 2.7 and 28. It is
interesting to note that 2.8 actually performed better than 2.6 even though there is
less concurrency. This can be attributed to the decreased demands on the memory
by 28 because it does not creatc unnecessary information. Finally, note that, on
the average, the processes in 25 and 2.6 are doing about ten minutes of unnecessary
computation.

Experiments 2.9 and 2.10 serve to test the distributor on two machines with
large amounts of memory. Experiment 2.9 performs better than 2.10, and it is
interesting to note that the same node assignment schemes (without node ecleven)
provided opposite results in ecxperiments 1.7 and 18. As a point of comparison,
results for experiments 2.11 and 2.12 are shown. These are the same as 2.9 and
2.10 except that the amount of time nodes could get apart was coastrained. Due to
decreased concurrency, both cases performed worse, but one can see that the

concurrency for 2.11 is indeed higher than that for 2.12.



5§33 Counclosions from the Experiments.

A number of conclusions can be based on these experiments. First, it is quite
apparent that the simulation requires a large amount of memory, and when
insufficient memory is available the real time needed for a simulation is drastically
increased. In such cases, the distributed simulator can allow larger experiments to
be performed because it can divide the memory requirements among machines so
that each is within an acceptable range.

Second, the problem of assigning nodes to processes in order to maximize the
concurrency is complex. In order to solve it, one must have knowledge as to the
role of the node in generating the problem solution, the times and locations for
sensor data, and a grasp of the communication strategies involved since these affect
the degree to which nodes can get ahead of each other.

Third, and most importantly, to the question of whether the distributed
simulator can significantly reduce the real-time requirements for running a
simulation, the answer is a definite yes. In the case where memory is limited, the
distributed simulator can run a simulation in less than a quarter of the time by just
distributing it over two machines (experiments 15 and 1.6) while distributing it over
three machines results in even better performance (experiments 13 and 14). In the
case where memory is not the limiting factor, the concurrency achieved in the
distributed simulator still results in impressive rate increases. Depending oa the
degree to which the load is balanced, real-time requirements can be nearly halved

by dividing the simulation over two machines (experiment 2.9, for example).
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First, it was necessary to provide some lower level facilities that would enable
communication between concurrent processes on remote machines. This led to the
development of buffer processes, which not only satisfy this need, but also provide
mechanisms that will insure message integrity across the net, prevent deadlock due
to full message buffers, and aid in the initialization and termination of the parallel
simulation.

With the facilities in place for creating the processes and communication links
needed in the parallel simulation, the next concern involved the changes needed in
the VMT that would make the internal mechanisms more flexible so that they could
treat with only a subset of the nodes. Provisions were made to climinate reliance
of shared memory for communication between nodes, and facilities to allow for user
interaction with the distributed simulation were created.

Ounce the simulator was capable of being distributed, the next issue was to
ensure that the cooperating processes be sufficiently synchronized such that the
simulated events would still occur in the proper order. This was achieved in two
different ways, one involving centralized control and the other distributing the
control. In order to implement the latter, the scheduling of node executions on a
single process evolved so as to both improve the synchronization mechanism and to
increase the flexibility in the simulation itself.

Finally, with the parallel simulation implemented, the question of assigning
‘tasks to processes was investigated. It was found that some rough predictions on
the future activities of nodes could provide a basis for allocating nodes to processes
so as improve the parallelism. Experimental results were preseated that confirmed

that the parallel simulation does indeed provide significant amounts of rate increase.
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The experiments also suggested some important coasiderations in choosing a node to

process allocation.

62 Future Research Opportunities

Just as the King finds that he cannot manage his large pencil (in the quote
preceding this chapter), so too do rescarchers often find it difficult to manage large
systems.  Although an overall sense of direction is maintained, the different
influences of past and present workers can have such surprising effects that it is
sometimes difficult to predict the details of the evolving system, particularly if one
also considers the rapid rate at which changes to the available hardware occur.

The implementation outlined in this thesis was coanstructed such that changes
in hardware or software can be incorporated with a minimal amount of extra effort.
For example, changes in the language of implementation may make interrupting
mechanisms feasible, so that alternative communication strategies might be employed.
The implementation of these new strategies should be relatively straight-forward.

As the available facilitiq expand, it is hoped that experiments on ten or more
VAXs will be possible. It is also hoped that tools may be developed that will
automatically generate a good node to process assignment based on some aspects of
a particular environment. Furthermore, dynamic load balancing might become more
feasible as alternative hardware is obtained. With faster VO capabilities, nodes or
even processes may be moved between machines. By increasing the amount of
primary memory per machine, it may become possible to assign numerous processes

to each machine, each process responsible for a single node. In such a scenario,
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dynamic load balancing will consist of the movement of processes among machines.

63 Significance of this Research

The principal motivation for the research presented in this paper was to
improve the real-time rate of the VMT. As indicated by the experimental results,
this objective was met. Therefore, a very significant aspect of this research is that
it will allow larger and more interesting distributed problem solving networks to be
studied.

In and of itself, the rescarch is significant because it represents one of the few
actual implementations of a large-scale distributed simulation, and perhaps the only
distributed simulation of a distributed problem solving network.  Although it
introduces no new coacepts to the theory of distributed simulations, this research is
significant in that it extracts the pertinent ideas from a aumber of sources and
integrates them to achieve effective results.

In converting systems so as to run in a distributed environment, some
researchers might alter their systems significantly. If the modified systems are not
run in a distributed environmeat, they could behave much worse than the original
systems. Fortunately, in the simulation presented in this thesis, this was not the
case. The changes that allow explicit message passing and variable numbers of
nodes per process introduce negligible overhead. The more sophisticated scheduling
mechanism has also not had a noticeable effect on the simulation rate. The single
process rate of the simulation has therefore remained essentially the same, while

distributing the simulation results in significant real-time rate gains.

.
3
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Therefore, the research substantiates the initial claim that the simulation of a
distributed problem solving network has an inherent propensity for parallelism that
can be exploited to improve the real-time rate. Although this should not come as
much of a surprise, it is hoped that the success of this work might stimulate other
researchers to implement parallel simulations of other types of distributed problem
solving networks. As has been mentioned throughout this thesis, the implementation
is closely related to the particular problem solving network of the VMT. It is
hoped that the details presented in this thesis can provide a framework for
subsequent distributed simulations, and it would be of interest to see how the
distributed simulation of a different problem solving network would differ from that

presented here.
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APPENDIX B

MERGED TRACE FILES

This appendix contains excerpts from the trace files of a distributed run. The
environment run consisted of four nodes divided among two machines. The first
two excerpts correspond to the traces from the individual processes, and the third is
the merger of these two traces. Finally, an excerpt from a trace of the same
environment run on a single process is provided for comparison. For a description

of trace files, see [CORKS3].

:3:::xz::xx:::z:::t:::sx::::::::tstt:::sx:ss:x:::g:sx;::::::z;t:s::::x:z:t:xxx
Excerpt from trace generated by HASTER process which had nodes 1 and 4.

A R R R R R R e R e R S L R T L T T I
33:8888888:888888888833838888888!883383888:883888888838888888888888883383

Executing Node | ---—-- Inv Keis 19 <caeae Timo Frame 8 -——--- Node Time 39
~ [INVOKED KS] -ceeecmaeee- > kei181:18816 21 e:gl:vi 39 (g:1081:08818) (h:81:0028
h:01:8821 h:81:18022) {244)
~ CREATED HYP <ccmccuaa-- > h:81:08035 vI {(5 (12 12})) 2 (683}
- INSTANTIATED KS! -eee-- > ksi:01:0822 fbrvitvt (g:81:8825) (h:81:8935) <341 683> (488)
38l38l338880888888883388838888338883‘88883888l8838!8338888883888888888888
Executing Node 4 ==e--- Inv Ksia 19 ——acee Time Frame 8 «———n- Node Time 39
- RECEIVED HYP c-meemeees > 1 38 hiB81:8831 vt ((4 (19 18)) (5 (12 12))) 1} {3373}
INSTANTIATED KS] —~-=e-e > k8i:84:8032 hyp-receivesvt nil nil <-18889 3973> {3973}
INVOKED KSI ~eecmmmaea- > k8i:04:80832 38 hyp-receive:vt 38 nil nil {3973)
- CREATED HYP ~—cmemameee > h:84:8086 vt ({4 (18 18)) (S (12 12))) 1 (3973}
~ INVOKED KS| ~-mcecemeeee > ksi:84:80817 11 s1nl:gl 39 (g:84:8813) (h:84:882)
h:84:8822) {1467}
~ CREATED HYP —ccemeeeee > h:84:8067 gl ((S (12 12)}} 1 {3688)
- CREATED HYP ~=cmmmeeeeo > h:84:0068 g! ((5 (12 12)}) 2 {6519} .
- CREATED HYP —cecmmeeeee > h:84:8869 gl ((5 (12 12))) 3 (3688}
~ INSTANTIATED KSI ------ > kei:04:8833 arglivl (g:84:18025) (h;04:8849

h: 8418058 h18418085]1 h:B4:8857 h:B4: @068 h: 24:8069)
<794 9286> (2492}
838388888833lt888888888838838888838888388888888388883l3388838883888838888

Executing Node | -—~~-eao Inv Ksis 20 ————-- Time Frane 8 ———--- Node Time 41
INVOKED KS] wcoeccaeaa- > kei:01:80822 41 fbsvi:vt 41 (g:81:8825) (h:81:8a35) (488)
CREATED HYP ~cccceeeea- > h:01:8836 vt ({4 (18 18)) (5 (12 12))) 2 (683}

INSTANTIATED KSI
INSTANTIATED KSI

> ksi:81:8023 asvt:pt (g:01:8823) (h:81:8835) <683 683> {682}
> ksi101:8024 hyp-send:vt nil (h:181:8835) <-18288 883> (683}

INVOKED KSI ~eccaneeea- > koit81:8026 43 hyp-sandivt 43 nil (h:81:8035) {683)
38888888888‘888333888888888883888l8888888l8888888383388!88888‘88888838‘88
Executing Node 4 ------ Inv Keis 20 «--—o- Time Frame 8 ——---- Node Time 41
- INVOKED KS] ——ccmmee o > k8i:04:8025 23 e:gl:vl 41 (g:84:18823) (h:B4:8843
h:84:0044 h:84:8845) {1429}
- CREATED HYP w—ccaaa—o > h:B64:8978 vI ((4 (18 18))) 1 (3973}
~ INSTANTIATED KSI ~--ma- > k8i18418034 fbiviivt (g:184:180831) (h:B4:8978) <1986 6838> (2954}
833888883888888888888!833838883888888838883888838888833883888888883838888
Executing Node 1 -~e--- Inv Ksis 21 —weeeo Timo Frame 8 ———u-_ Node Time 43
~ INVOKED KS! —cmceaae——o > k8i:81:8023 43 s1vtipt 43 (g:01:08829 9:81:8038)
{h:81:8036) (736}
~ CREATED HYP —ccmaeo_- > h:81:8037 pt ({4 (18 1@)) (S (12 12))) 2 (683
~ CREATED HYP cecccmaceae > h:81:8838 pt ((4 (13 7)) (S (15 9))) 3 {341}
38888383!8388888888888888888388388883383!83888l88'833888888388!83!8388888
Executing Node 4 e----- Inv Ksig 21 ——cee Time Frame 8 —-e-—o Node Time 43
- INVOKED KSI ~ecaceceaa- > k9i:84:80827 25 s:gi:vl 43 (g:84:8825) (h:84: 80843
h: 8408858 h:84:BBgl) (1423}
- CREATED HYP —eaeemeeeo > h:84:8871 vI ((S (12 12))) 1 (3373}

- INSTANTIATED KSI e~cw-- > kei:84:0835 ff:visvt (Q:84:80834) (h:84:8871) <1986 6838> {2954)
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Excerpt from trace generated by PROCESS1 which had nodes 2 and 3.

!8!3383383333”883888!:3333333338338883333l%:%%tt%l!tt:!:t‘:ll!!!!i33333833838
$888888888888333888888858888853888888888333883888883838888883383883838833888
Executing Node 2 ----~- Inv Keig 19 -cacu- Timo Frame 8 -—-—-- Node Time 39

- RECEIVED HYP -—-ceccee- > 1 38 hi1981:080831 vt ((4 (18 18)) (S (12 12))) 1 (39731
INSTANTIATED KS] =<=--- > k8i:82:8846 hyp-raceiveivt nil nil <-18088 3973> (3373}
INVOKED KS] -=ew==v-——- > k8i:82:0046 38 hyp-receiveivt 38 nil nil {3973}

- CREATED HYP ~----eac-e- > h182:8183 vt ({4 (18 18)) (5 (12 12))) 1 (3973}

s [NVOKED KS] ceco-——-eee > k8i:82:08043 35 s1glsvi 39 (g:02:8028) (h:82:080846

h:@2:0047 h:02:8048 h:02: h: 02:0895 h:82:08036) (2637}

& CREATED HYP -ccmeo—e——- > h:82:0184 vi ((6 (16 12))) 1 (9688)
$388888888385883853338888888388888888888833888883388888888338888383388888
Executing Node 3 -~-=-- fnv Keis 19 ——-uua Timo Frame 8 --=--- Node Time

- RECEIVED HYP ~-cvcecem--- > 1 38 h:81:8031 vt ({4 (10 18)) (S (12 12)}) 1 {3973}
INSTANTJATED KS] =eveeu= > k8i:03:8846 hyp-receiveivt nil nil <-18080 3973> {39731
INYOKED KS| —--cmecca--- > ksi:83:80846 38 hyp-receivesvt 38 nil nil {3373}

-« CREATED HYP -~-cceo———- > h:03:8103 vt ((4 (10 18)) (S (12 12))) 1 (3973}

x INYOKED KSl ---veccece- > ksi:83:8843 35 a:glsvl 39 (g:83:0028) (h:83:8846

h:03:0947 h:03:0048 maasaega h:83:0095 h:83:0896) { 2637)

x CREATED HYP —-cc-—ecece > h:83:8184 vI ((1 (6 2))) 1 {9688}
ll"388383838388838.8888'888888888838883883888388888'888888.8888838‘88883
Executing Nods 2 ====-- Inv Ksis 20 —-=ca- Time Frame 8 —-=--- Node Time 41

= INVOKED KS| --=receee-- > ksi182:0844 37 eiglivl 41 (g:182:0038) (h:82:80852

h:82: 00853 h:BZ:BBglo h182: 8897 h:02:8838 h:082:8833) {2637)

s CREATED HYP c-vocem—e-a- > h182:8105 vi ((7 (18 14))) 1 {(9688)

= INSTANTIATED KS| ------ > k8i:02:68847 fbivliivt (g:82:8848) (h182:18185) <4844 9688> (5812}
$388888888885888858888888888388388888888833838838888888388838888338888888
Exacuting Node 3 -=---- Inv Ksis 20 —==~—- Time Frame 8 --c-a- Node Time 41

s INVOKED KSI --=cceeeu-- > k8i:83:8844 37 erglivl 41 (g:1@3:0838) (h:83:8052

h:83:8853 h:083: h: 83: 8897 h:83:8898 h:@3:8033) (2637)

& CREATED HYP eer--ecece- > h:83:8105 vIi ((2 (8 4))) 1 {9688}

s INSTANTIATED KSl ------ > k0i:83:8847 fbivi:vt (g183:8845) (h183:0185) <4844 9688> (S812)
88333833888‘333388888888l883833338838838838383888888!88388838888'!88333.8 .
Executing Node 2 ~----- Inv Ksis 21 =cce-e Timo Frame 8 ------ Nocde Time 43

s INVOKED KS] -—=eoceccau- > k8i:82:0045 39 ssgisvl 43 (Q:182:0032) (h:82:8058

h:82:0059 h;82:8068 h:82:0188 h182:8181 h:82:08102) (2637}

s CREATED HYP --ccoce——-- > h:82:8106 vI ((8 (20 16))) 1 {9688}

% INSTANTIATED KS| ------ > k8i102:8348 fbivisvt (g:82:8848) (h:182:8106) <4844 9688> (5812)
‘“8888388333838383888883383383883338888883l!'S8888'88838'3388888!3833388
Exascuting Nods 3 ----=-~ Inv Kois 21 -~—==- Tine Frome 8 ------ Node Time 43

& INVOKED KS| ----cccc--- > k9it03:8045 39 e1glivl 43 (Qg:183:18832) (h:83:0058

h: 8318659 h:83:8068 h:83:8180 h:183:8181 h:83:8162) (2637}
s CREATED HYP ee-ceccee-- > h:03:8106 vI {(3 (18 6))) 1 (9688}
& INSTANTIATED KSl -=c--- > ksi1B83:18848 fbivirvt (g183:18847) (h:83:8106) <4844 9688> (S812)
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l33333:“i”!ltl!lll883:l!8333833!llSI!8!!3383!!3!!33333!188‘88!!33:!!38¥38=33
Excerpt from trace formed by merging traces of MASTER and PROCESS].
R AR AR R R R R R R R R R R R R AR A R R A R R R A R R R R A R R R A A R R L A R A A R R R A R R R A R R R R R R R R R A R AR AR R AR 22 |

8"8“88“838“8t"8"88"88"“"888"8“"88"8888“8388‘"88“"888“3

Executing Node | ------ Inv Kaig 19 «-euue Timea Frame 8 ------ e Time 39

- INVOKED KS] -=v-ecccee- > kai:81:8016 21 sigliv! 33 (g:01:8010) (maueaze

h:81:8821 h:101:8022) (244}

= CREATED HYP -cvccccee-- > h181:0883S vI ((S5 (12 12))}) 2 (683}

- INSTANTIATED KSI -=~-~- > k8i101:8022 fbrviivt (g:81:80825) (h:181:08035) <341 683> (408}
$858888888888888888388888838888833888888888888888888888888888888888888888
Executing Node 2 ------ Inv Kaig 19 —mceee Tine Frame 8 --e--- Node Time 33

= RECEIVED HYP eeceeceam- > 1 38 h:B81:8031 vt ((4 (19 18)) (5 (12 12))) 1 (3973}
INSTANTIATED KS| -=---- > k8i182:80846 hyp-receivesvt nil nil <-188808 3373> (3973}
INVOKED KS| -evevcee—ee- > k8i182:8046 38 hyp-recsive:ivt 38 nil nil (3973}

~ CREATED HYP —ceccccmaaa > h:82:0103 vt ((4 (18 18)) (5 (12 12))) 1 (3973}

® INVOKED KS] «-vocecccaa > kei:82:0843 35 s:gl:vl 39 (g:192:0828) (h:82:0846

h:82:8047 h:82:18848 h:82: Bﬁgﬁ h:02: 8895 h:082:0096) (2637}

% CREATED HYP --vecwo—aa—- > h:02:081684 vi ((6 (16 12))) 1 {9688}
'338"8838888888888838888888338‘8888888883888l'8883883'383333333338388888
Exscuting Node 3 Inv Kais 19 ———--- Tim 8 8 —coue- Node Time 33

- RECEIVED HYP —wve-- 1 38 h:01:0831 vt (Uo (13 10)) (S (12 12))) 1 {3973}
INSTANTIATED KSI -- ksi:03:08046 hgp-racolva:vt nil nil <~18098 3973> {39731
INVOKED KS[ ~=vecuv- ksi1083:8046 3 -receivesvt 38 nil nil (3973}

- CREATED HYP —ccee-a h:83:0103 vt ({4 (18 19)) (5 (12 12))) 1 (3973}

x INVOKED KS| evvaceceee- > kei1@3:80843 35 s:glitvl 39 (g:03:0028) (h:183:8846

h:83:80847 h:083:00848 h:83: h103:8835 h;83:8836) (2637}

& CREATED HYP -cvccceew-- > h193:0184 vI ({1 (6 2))) 1 (9688}
8388‘883833318888883“338888888838883'883333888388'888888338338888!888838
Executing Node & ~----- Inv Koig 19 —-ceee Time Frame 8 --——-- ime 39

= RECEIVED HYP -ccccecn-- > 1 38 h:81:0831 vt ((4 (1@ 18)) {5 (12 12))) 1 {3973}
INSTANTIATED KS| -=-v-- > k8i184:0832 hyp-recaivetvt nil nil <-18808 3973> (3973}
INVOKED KS] --cocncem-- > ksi:B438032 hyp-recaiveivt 38 nil nil (3973}

- CREATED HYP ccccmcceaa- > h184:8866 vt ({4 (18 18)) (5 (12 12))) 1 (3973}

- INYOKED KS| ecmcecceeaa > koi184:0017 11 e:slsgl 33 (g:84:8813) (h:84:8021

h:B84:0022) (1467}

- CREATED HYP ~-cccccnv-- > h:064:8867 gl ({S (12 12))) 1 (3680}

- CREATED HYP —ccccceauea > h:04:8868 gl ((5 (12 12))) 2 (6518}

- CREATED HYP —cccecmmeaa > h:04:8863 g1 ({5 (12 12))) 3 (3688}

-~ INSTANTIATED KS] ---e-- > k8i:1084:08833 s:gl:vl (g:84:8025) (h:84:00849

h: 8418050 h:846:8851 h:B84:80867 hiB4:8068 h:B4:8869) .
<794 9286> {2492}
38‘.8838"3ll"t8883883883388838388ll88888833838888338883‘888333888888883
Exscuting Node 1 ------ Inv Keis 20 «ccece Tims F ralo 8 ———eua Node Time 41

- INVOKED KS| ccecemcaan- > kai:81:8822 41 fosvisvt 41 (g:81:18825) (h:181:8835) (488}

- CREATED HYP ccccccecee- > h181:8836 vt ({4 (10 18)) (S (12 12))) 2 (683}

- INSTANTIATED KSl --=--- > k0i181:8023 ervtipt (g:181:8829) (h:181:8838) <683 683> (682)

= INSTANTIATED KS| «--v-- > k8i:81:80824 hyp-ssndivt nil (h:B81:8836) <-180800 633> (6831

- INVOKED KS| <cccocccea- > k8i1B81:8026 43 hyp-aendivt 43 nil (h:81:0036) (683}
8”"“8”"““8"3”"8”"“88"888"8“88388“8”"888“"”"88“888
Executing Node 2 ---~--- Inv Ksis 20 --ceau- Time Frome 8 -=---- Node Time 41

& INVYOKED KS] <-cocmmeaana > kei102:8844 37 si1glivi 61383802308381 (h:82:0852

h: 82180853 h:02: aaga h:82:8837 h:82:0838 h:82:80833) (2637)

% CREATED HYP —-ececccaa- > h:82:8105 vi ((7 (18 14))) 1 (9688}

s INSTANTIATED KS] -=we-- > k8itB2:0847 fbivisvt (Q182:8846) (h:182:18185) <4844 9688> (5812}
$838388388888888888888383838888888888838388888858383888383888388888838838
Executing Node 3 ------ lnv Kais 28 -==eu- Tuo Frame 8 ------ Node Time 41

x INVOKED KS| ~evcecceca-- > ksit@83:108844 37 e1gltvl 41 (g:83:8838) (h:083:0052

h:983:80853 h:03: h:83: 8037 h:083:00898 h:83:8999) (2637}

% CREATED HYP wecccmcaaa. > h:03:8105 vI ((2 (8 4))) 1 {9688}

& [INSTANTIATED KSI -----—- > k8i:B3:0847 fosviivt (g:083:8845) (h:03:0105) <4844 9688»> (5812)
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Executing Node & =---- - Inv Kais 20 -wwu-- Time Frame 8 =~---- Node Time 41
= INVOKED KS! ~vecmccaaa > k8i108410925 23 siglivl 41 (gi1B4:8923) (h1B4:08043
h: 8430844 h:B4:08B4S) {1429)
- CREATED HYP -ccccccaca- > maa.wa vl ({6 (10 108))) 1 (3973} .
- INSTANTIATED KSI --c--- 130418836 fbiviivt (9184:80831) (hiB4:10078) <1986 6330> (2954}
“"8"8“”88"83“""8”8838“8"“88“"8“"8383““8“8"“88““"
Exscuting Node 1 -=-==- Inv Kais 21 ~ccee- Tise Framo 8 ------ Node Time 43
- INVOKED KSI --=eeeee=e- > keis01:18023 43 stvtipt 43 (g181:8823 o:81:80839)
{h:81:8036) (736}
- CREATED HYP eveeeccamn— > h:1@1:8837 pt ((4 (10 18)}) (S (12 12))) 2 (683}
- CREATED HYP -w-e——-——---> h:01:00838 pt ({4 (13 7)) (S (15 9))) 3 {341}
"8“““““““88"“888“!8888"888888“8"33.388883888“88“"8833883
Executing Node 2 ------ [lnv Keis 2] -=-ee- Time Framwe 8 ~e-v—- Node Time 43
& INVOKED KS] «=cccecmee-=> koi:102:18845 39 s:glivl 43 (g:82:8832) (h:@2:8058
h:02: 8059 h:82: h:102: 0168 h:82:8181 h:82:0102) (2637}
® CREATED HYP —v-veeem—ee > h:BZ:BlBG vl ((8 (28 IG)H 1 (9688)
& INSTANTIATED KSI -———-- 1182:8048 forviivt (g102:18848) (h:182:0106) <4844 9688> (5812}
““8“88““88“3888"38“"88"838“"8”“8"“8"”888"88"””"”8
Executing Node 3 ====e= Inv Kele 21 -ecewa Tias Froue 8 ~ceee- Node Time 43
& INVOKED KS| ~eceece—c—ee > koit@3:8845 39 esglivi 43 (g183:18832) (h:183:8058
h183:0959 h:83:18060 hi1@3:81088 h:83:01081 h:83:0102) (2637)
s CREATED HYP ~—ccccccaea> hzﬂ?tﬂﬁ vl ((3 (186 6))) 1 (9688}
& INSTANTIATED KSI «-ee-- 1103:8048 fbrvitvt (gi03:18847) (h183:08186) <4844 9688> (5812)
"8”8“"8“"88”8888888883“8““888"3“8838383."8“"88888"88"8"
Executing Node & ===--- Inv Ksis 2] «~ccee- Tine Frane 8 ~----- Node Time 43
-~ INVOKED KSl -==e- ceemee> kol318410827 25 e1glsvl 43 (g:184:8925) (hxaluws
h:104:8050 h:84:0851) (1429)
- CREATED HYP —e=emca—a-- > h10438071 vi ((S (12 12))) 1 {3973}

- INSTAN'I’IATED KS! ~=ee-- > kel3B84:8035 ffrvizvt (gi184:18034) (h:184:8971) <1886 6830> (2954}
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Excarpt from the trace generated by the non-distributed four node run.
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Executing Node ] ~----- Inv Kais 19 ——a-uu Time Frame 8 ------ Node Time 39
- INVOKED KSI] -cccceeee-- > ksi:B81:0016 21 esgl:vl 39 (g:81:0818) (h:01:0020
h:181:8021 h:B1:8022) (244}
-~ CREATED HYP wcccmcacaaa- > h:081:8835 vi ((5 (12 12))) 2 {683}
~ INSTANTIATED KSI ~=w=e- > ksi:B81:0822 fbsvitvt (g:081:80825) (h:Bl18B83S) <341 683> {488}
$583853588880883888333888888085538888388838838383888383888888888338838388
Executing Node 2 ~----- Inv Keig 19 —cece- Time Frawgs 8 ---w-- Node Time 39
~ RECEIVED HYP cccecece-- > 1 38 h:01:8831 vt ((4 (18 18)) (S (12 12))) 1 (3973}
INSTANTIATED KSI ~e-==e > kei:B82:8046 hyp-receive:vt nil nil <-18888 3973> (3973}
INVOKED KS] wccccccacaa > koi:182:8046 38 hyp-receiveivt 38 nil nil (3973}
~ CREATED HYP cecevcecmen- > h182:0103 vt ((4 (10 18)) (5 (12 12))) 1 (3973}
# INVOKED KS| <vccocceeae- > koi31082:8043 35S si1glivl 33 (g:182:8028) (h:02:8846
h:02:8847 h182:8848 h:82:8 h:182:08095 h:02:8896) (2637}
& CREATED HYP ccccccccaa- > h102:8184 vi ((6 (16 12))) 1 (9688}
"888”“8”"“““883l"8"8"8"“"88333“888888888"8"“8888“883“
Exscuting Node 3 ------ Inv K8in 19 ——ceeue Time Frame 8 ------ Node Tims 33
- RECEIVED HYP eweccwee-- > 1 38 h:01:08031 vt ({46 (16 18)) (S5 (12 12)" 1 {39731
INSTANTIATED KSI «eee-- > kei103:0846 3gp-recoivoxvt nil nil <-18888 3973> (3973}
INVOKED KS] cccaceccee- > kai:183:00846 hyp-receivesvt 38 nil nil (3973}
- CREATED HYP —wecmceeaa- > h:183:8183 vt ((4 (16 18)) (5 (12 12))) 1 (3973}
& INVOKED KS] ~wveccaca-a- > k0i:03:8843 35 siglivl 39 (g:183:8028) (h:83:8846
h:83:8847 h:03: 8 h:103: h:183:8095 h:83:8896) (2637}
x CREATED HYP ccecccceca- > h:83:08184 viI ((1 (6 2))) 1 (9688)
$SS3588883833888888838888883888888888888888838883388838383888888388388388
Executing Node & ------ Iov Keis 19 -vvuee Time Frame 8 ------ Node Time 39
- RECEIVED HYP ceecveeen-- > 1 38 h:81:8031 vt ((4 (18 108)) (S (12 12))) 1 {3973}
INSTANTIATED KS! wweew- > ksi104:108032 hyp-receiveivt nil nil <-18808 3973> (3973}
INVOKED KS| eeevecceenw > k8i1084:80832 38 hyp-receivervt 38 nil niil (3973}
~ CREATED HYP weveceewn--- > h184:8666 vt ({4 (10 19)) (S (12 12})) 1 (3973}
- INVOKED KS| -=-eceeaee- > kei:B84:08817 11 esel:gl 39 (g:84:08013) (h:84:0021
h: 84:8022) (1467}
- CREATED HYP —ececeecewa- > h:84:8867 gl ((S (12 12))) 1 (3888}
- CREATED HYP ----------- > h184:8868 gl ((S (12 12})) 2 (6519}
- CREATED HYP —weccvace-- > h:84:8869 gl ((S (12 12))) 3 (3888}
- lNSTANTIATED KSl —-eeu- > keitB4:8033 a1glivl (g:84:10825) (h: 0438849

h;gtgggg m‘gzég@ h:B4:8067 h:B4:8068 h:B4:80693)
$888588888888588883885888883888388888338888388883888888888838388888838388388

Executing Node 1 --w-wu- Inv Keio 20 -=cue- Time Frame 8 ~wwe-- Node Tims 41
INVOXKED KS] -cecvecewe- > k8itB1:80822 41 forvisvt 41 (g:81:80825) (h:8118835) {488}
CREATED HYP wewceue- -> h:01:0036 vt ((4 (18 18)) (S (12 12))) 2 (683}

INSTANTIATED KS| ---

INSTANTIATED KSI -~-ee- > k8i101:8024 hyp-eendsvt nil (h:81:0836) <-18888 683> (683}
INVOKED KS| -ccccccca-- > kal1:1081:8024 43 hyp-sendivt 43 ni! (h101:8038) (683}
8888883838838383338SS388888.38888!'88883l8833'333333333888833388883833333
Executing Node 2 ~~-w-- Inv Keis 20 --——-- Time Fralo 8 —cceee Node Time 41

% INVOKED KS] «cemecaaaaa > kois02:80844 37 s1glivl 41 (g182:8830) (h:982:8852

h:82:005S3 h:102: hs 82: 7 h:82:68398 h:02:8839) (2637}

& CREATED HYP cccccccacaa > ht82:01085 vI ((7 (18 14))) 1 (9688}

& INSTANTIATED KS| «evce-- > ksi102:8047 fbsviivt (g:102:8846) (h:182:8105) <4844 9688> (5812}
$383888885888388888838388888888383833888388888888388838388888888338388888
Executing Node 3 --—v-- Inv Ksis 20 ~—-w-u- Timo Fralo 8 —=cee- Node Time 41

® INVOKED KS! —cececaceae > koit1@3:0844 37 ei1glivl 41 (g183:80830) (h:B83:80852

h183:8053 h:83:0 h:83:0897 h:083:8098 h:183:8839) (2637}

CREATED HYP —c-ececaa—- > h:83:0105 vi ((2 (8 4))) 1 {9688)

-> k8i:81:8023 ssvt:pt (g:81:8029) (h:681:8836) <683 683> (682)

=
= INSTANTIATED KS[ «=wc-- > kais83:8847 fbtviivt (g:@3:8845) (h:03:8185) <4844 9688> (5812}
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Executing Node 4 ~==c== Inv Ksis 280 -~-ve- Tima Frame 8 ------ Node Time 41
INVOKED KS] c-emecee-e- > k81:084:00825 23 o:gl:vl 41 (g184:0823) (h:84:8843
h:04:68844 hsB84:18845) (1429)
CREATED HYP -—ceeme—a-aa > h184:8078 vI ((4 (18 18))) 1 (3973}
INSTANTIATED KS1 —wee-- > kei:B84:0834 fbrvisvt (g:84:18831) (h:84:08878) <1986 6838> (2354)
$58558558888533858885838885888853858883888388838483888888888838383838888388
Exscuting Node 1 ——=ac- Inv Kais 2] ==-v=x Timo Frame 8 ------ Node Time 43
INVOKED KS] -=-cceeee-- > k8itB81:0823 43 sivt:pt 43 (g:81:8029 g:081:08838)
{(h:01:8836) (736)
CREATED HYP =—eeememmee > h:181:8037 pt ((4 (18 108)) (5 (12 12))) 2 (683}
CREATED HYP ——-macccaaa > h:01:8038 pt ((& (13 7)) (S (15 9))) 3 (341}
88888888888 8888888888888888888358888288888838338888883838888888888888888888
Executing Node 2 ===c-- Inv K8is 21 —-cee- Time Frame 8 -—-e--- Node Time 43
INVOKED KSl ---c-ceeea- > kei:102:0845 39 eigl:vi 43 (g:102:8832) (h:02:8858
h:82:8859 h:02:8 h:82:8180 h:82:8181 h:082:01082) (2637}
CREATED HYP =me——mmeeme > h:82:0106 vi ((8 (28 16))) 1 {5688}
INSTANTIATED KSI -wewee > kei:02:0848 fosvisvt (g:02:0848) (h:B82:8106) <4844 9688> (S812)
$$85588885858853558388388858883888888888588833838388388288888385883838888
Executing Node 3 —----- Inv Kele 21 -<cca- Time Frame 8 ~----- Node Time 43
INVOKED K51 ~e-eccacaaa > koi:@83:6045 39 e:glsvl 43 (g:83:0832) (h:83:0058
h:83:00859 h:03:0968 h:83:0188 h:03:8181 h:83:0102) (2637
CREATED HYP eeem———aea- > h183:8186 vi ((3 (18 6))) 1 (9688)
INSTANTIATED KSI ------> k8i:03:8848 foivisvt (g183:8847) (h:B3:8106) <4844 9688> {5812)
$388888888885888833835388858888888388888833888388333888383883838338882818
Exscuting Node & --—--- Inv Keig 21 ~=oee- Tino Frame 8 «----- Noda Time 43
INVOKED KSl ~cece-—newe- > k8i1@4:8027 25 s:glivl 43 (g:84:8825) (h:84:0849
h: 84308050 h:B4:8051) (1423}
CREATED HYP -v--e-cce=- > h184:08071 vI ((S (12 12))) 1 (3973}

INSTANTIATED KSI --=--- > kei18418035 ffivizvt (g:18418834) (h:84:0071) <1986 6838> (2954)
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The following is an excerpt from a log file generated by a four node run.

Annotations are included within braces and are not part of the generated output.

This ie an excerpt of the log file genorated by the buffer process on the
machine that did not contain the MASTER procesa for the four node run
dn'trnbuted over tuo machines (MASTER had nodes 1 and 4, PROCESS1 had nodes

2 and 3). }

transfer = F foruard « F wait « F { these flags indicate:
transfer - sro we in transfer mode?
foruard - are we trying to forward
mossages?
uait - are we in a read-wait atate? }
The message is { This is the message as read from the buffar process’s
mailbox. It is @ hup/goal message.
!PROCESSI!!HASTERSO(hup/goal (2 S8 (4) hyp (g hoBl h8818 h802
¢ghB885S9 ghd (1234) nil (13 (10b)) (6 (1810))) § 3873)

gh8e58
h28428072 nil vt))

Store { Storing the message |

positions is 17 poeitiond ie S (parsing the header)

Source is MASTER Destination is PROCESS]

Message is (and extracting the
message)

(hyp/goal (2 58 (4) hyp (gh8883 ghdBll ghBBlS gh8927 gh8®35 ghBBS8 ghBBSS ghdes
8) (1234)nil ({3 (18 6)) 1 (10 10))) 1 6838 ( 3973) h:84:8872 nil vt))

transfer = F foruard = F uait « F
The message is (reception of end-of-message messagsl

1PROCESSI$ZHASTERXS(undoflouaagos)

Store

positions is 17 positiond ie

Source ls MASTER Destination is PROCESS1
Heasage is

{endofueasages)

tranafer = F foruward = F wait = F
The message is ( rocoptlon of another
hgoal massage!
XPEOCESSI!!HASTER!S(hup/goal (3 S8 (4) hyp (ghﬂﬂﬂ3 ghaall ghB819 gh8827 ghBa35
84 A ;3853 ghﬂ??a) (1234 nil (13 (10 }) (4 (18 18))) 1 { 3973)
h: H nil vt

Store

positions is 17 positiond is 9 { and storing it |}
Source is MASTER Destination is PROCESS]
llessage is

(hyp/goal (3 58 (4) hyp (g h8811 gh8B19 gh8827 ghBB3S ghBES8 gh88S9 gh886
8) (1234} nil (3 (10 }) {4 {18 t@))) 1 6838 ( 3973) h:64 8872 nil vt))
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transfer « F foruward « F wait = F { and end-of-message message |
The message is
XPROCESS1 XIMASTERYS (endofmessages)

Store

poeitions is 17 positiond ie

Source is MASTER Oestination is PROCESS1
Hessage is

{endofuensages)

transfer = F foruward = F wait « F

The message io { Reception of an update message
stating that node 4 is active and
is at time 47. Note that update
maessages do not need send-of-massage
messages bacauss they are
uaranteed not to ba divided. }

XPROCESS1XZMASTERYS (update (4 active 47 67?)

Store

positions is 17 positiond is 9
Source is MASTER Destination ie PROCESS]
Measage is

{update (4 active 47 &47))

transfer « F forward » F wait = F

The message i { Reception of a control message
shich asks buffer process to
foruard the msssagaes. |

$fpss

Thies ie a control meseage

Forward enabled, numag is 3 { Thia Is the number of messagas }
Foruarded message is {update (4 active 47 47)) [ firat foruard updates |
Forwarded message is { Then hyp/goal neoaagaa ) -

{hyp/goal (2 S8 (4) hyp (gh8683 ghB8011 ghB8139 gh8027 gh8B835 ghBBs8 ghgos
B)U?IQZ 3 4) nil ((3 (10 8)) (4 (10 18))) 1 6830 (5688 3973} h38618872 nil vt))
Foruarded message ie

{hyp/goal (3 5B (4) hyp (gh8BE83 gh8B11 oghBB19 gh8827 ghB8835 ghaasaegggass ghB806
8) (1 234)ail ((3 ?10 )) (4 (198 18))) 1 ( 3973) h:84s ail vt))

{ And then back to reading mallbox |
transfer « F foruard = F wait « F

The message e

SS1XXMASTERYS (hyp/goal (2 52 (4) hyp (gh8886 ghBBl4 ghBE22 h8838
h8o63 83;964 ghBBSSIU?IGZ 3 4} nl) (5 (12 gZ)) 6 (16 12)N 1 6232832893 9688

h:84:0874 nil vt))
Store
positione is 17 positiond ls
Source is MASTER Destination is PROCESS1
Hessage i

[

{hyp/goal (2 52 (4) hyp (ghBBO6 ghBBl4 gh8822 gh8038 ghBB38 ghBBE3 ghBBt4 ghl3P6

?’97192 34) nil (5 (12 gZID (6 (16 12?)) 1 8238 (3993 9888? hxabxgs76 nil vt)
{ otc. )

o
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