Applications of
Symbolic Evaluation®

_ Lori A. Clarke
Debra J. Richardson

COINS Technical Report TR—84—20
July 1984

Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

! This work was supported by the National Science Foundation under grants NSFMCS 81—-04202 and
8£3—03320.

? This paper will appear in Joumna] of Systems and Software, VolS, No.l, January 1985.

plications of
Symbolic Evaluation'

Lori A. Qlarke
Debra J. Richardson

Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

Symbolic evaluation is a program analysis method that
represents a program’s computations and domain by symbolic
expressions. In this paper a general functional model of a program
is first presented. Then, three related methods of symbolic
evaluation, which create this functional description from a program,
are described: path—dependent symbolic evaluation provides a
representation of a specified path; dynamic symbolic evaluation,
which is more restrictive but less costly than path—dependent
symbolic evaluation, is a data dependent method; and global
symbolic evaluation, which is the most general yet most costly
method, captures the functional behavior of an entire program when
successful. All three methods have been implemented in
experimental systems. Some of the major implementation concemns,
which include effectively representing loops, determining path
feasibility, dealing with compound data structures, and handling
routine invocations, are explained. The remainder of the paper
surveys the range of applications to which symbolic evaluation
techniques are being applied. The current and potential role of
symbolic evaluation in verification, testing, debugging, optimization,
and software development is explored.

! This work was supported by the National Scicnce Foundation under grants NSFMCS 81—04202 and
83—03320.

1. INTRODUCTION

The ever increasing demand for larger and more complex programs has created a
need for automated support environments to assist in the software development process.
The primary components of such an environment will include validation tools to detect
errors and determine conmsistency, as well as development tools to assist in design,
construction, and optimization. The use of such tools will reduce the development costs
and improve the reliability of the resulting program. Several of the tools presently being
developed employ a method, called gymbolic evaluation, that creates a symbolic
representation of the functional behavior of a program. This paper describes symbolic
evaluation and surveys many of the current applications of this method.

Symbolic evaluation i8 a program analysis technique that derives an algebraic
representation, over the input values, of the computations and their applicable domain.
Thus symbolic evaluation describes the relationship between the input data and the resulting
values, whereas normal execution computes numeric values but loses information about the
way in which these numeric values were derived. There are three basic methods of
symbolic evaluation: path—dependent symbolic_evaluation describes data dependencies for a
specified path; dynamic_symbolic evaluation produces a trace of the data dependencies for
particular input data; global symbolic evaluation represents the data dependencies for all
paths in a program. When further analyzed, the algebraic representations produced by
symbolic evaluation provide the basis for a wide range of applications, including verification,
testing, debugging, program optimization, and program development.

Formal verification techniques have typically applied symbolic evaluation techniques to
develop verification conditions. (Formal verification has been extensively described in the
literature and is not discussed further in this paper.) There are a number of less
comprehensive verification techniques that have used symbolic evaluation to certify the
correctness of selected program properties. In addition, some current work is being directed
at developing methods that integrate testing and formal verification, based upon symbolic
evaluation.

For the most part, current testing research is directed at either the problem of
determining the paths, the particular sequences of statements that must be tested, or the
problem of selecting revealing test data for the selected paths. For the path selection
problem, techniques such as program coverage, data flow testing, and perturbation testing
have been proposed. For the test data selection problem, there has been recent research
on developing systematic test data selection techniques that can either climinate certain
classes of errors or provide a quantifiable error bound. Many of these path selection and
test data selection techniques base their analysis on the information provided by symbolic
evaluation. Moreover, if testing reveals an error, debugging techniques that are based on
symbolic evaluation can be used to search for the cause of the error.

Symbolic evaluation also provides information that is useful in program optimization
and, if applied early in the software development process, in program development. It is
thus a tool that can be employed throughout the software development lifecycle and made
wide use of within an automated programming eavironment.

The next section of this paper introduces the basic concepts of symbolic evaluation as
well as some terminology. The three methods of symbolic evaluation are then described.
Examples of the three methods are given to demonstrate their corresponding strengths and

2

weaknesses. The third section discusses implementation considerations related to all three
methods, while the fourth section describes some of the applications of symbolic evaluation.

2. GENERAL METHODS

This section presents some concepts fundamental to symbolic evaluation. Some
terminology is introduced and general descriptions of each of the three methods are
provided. Initially, these descriptions are restricted to single routines and to routines whose
input and output are done only via parameters. These restrictions are made merely to
simplify the preseatation. The modifications necessary to ecliminate these restrictions are
addressed later.

2.1. Basic Concepts

A routine R can be viewed as a function that maps elements in a domain X into
elements in a range Z. An eclement in X is a vector x with specific input values,

x = (x4, Xp,..., X)), and corresponds to a single point in the M—dimensional input space X.
Likewise, R(x) in Z is a vector z with specific output values, z = (z,, z,,.., z\), and
corresponds to a single point in the N—dimensional output space Z. A routine’s variables,
which store input, intermediate and output values, are represented by a vector y = (y,,

Y2rees YR0)-

Program analysis methods typically represent a routine by a directed graph, called a
control flow graph, which describes the possible flow of control through the routine. The
nodes in the graph, {1, 2,.., q}, represeat executable statements. Figure 1 presents
RECTANGLE, a routine that is used below to illustrate symbolic evaluation; note that the
statements in RECTANGLE are annotated with node numbers. An edge is specified by an
ordered pair of nodes, (i, j), which indicates that a transfer of control exists from node i
to node j. Associated with each transfer of control are conditions under which such a
transfer occurs. The branch predicate that governs traversal of the edge (i, j) is denoted by
bp(i, j). For a sequential transfer of control, the branch predicate has the constant value
true and thus need not be considered. For a binary condition at node i that transfers
control to either node j or k, the branch predicate for edge (i, j) is the complement of the
branch predicate for the edge (i, k) — thus,

bp(i, j) = not (bp(i, K)).
In RECTANGLE for example, node 1 precedes nodes 2 and 3 and

bp(12) = (H > B — A),

bp(13) = (H = B — A).
Note that each IF statement, nested or otherwise, forms a pair of complementary branch
predicates. Some conditional statements, such as the FORTRAN computed GO TO or the
Pascal and Ada CASE statements, may have more than two successor nodes, and each
branch predicate must be represented appropriately. To facilitate analysis, the coatrol flow
graph has a single entry point, the start node s, and a single exit point, the final node f.
Without loss of generality, a null node can be added to a graph for the start node, and
likewise for the final node, if necessary, to accomplish this single—eatry, single—exit form.
Figure 2 shows the control flow graph for RECTANGLE.

A subpath in a control flow graph is a sequence of statements, (J;, Ji4q,-» Jp), Where
for all k,i =k <t J; is a node in the control flow graph such that there exists edge
(g to J 41)- A partial path is a subpath that begins with the start node and is denoted

procedure RECTANGLE (A ,B: in real; H: in real range —10..10;
F: in array [0.2] of real; AREA: out real; ERROR: out boolean) is
— RECTANGLE approximates the area under the quadratic equation
— F[0] + F[1}*X + F[2]*Xs2 from X=A to X=B in increments of H.
X,Y: real;
s begin
— check for valid input
if H>B — A then
ERROR := true;
else
ERROR := false;
X = A;
AREA := F[0] + F[1¢X + F[2]sX#2;
while X + H =< B loop
X=X+ H;
Y := F[0] + F{1}#X + F[2}sX=2;
AREA := AREA + Y;
end loop;
10 AREA := AREA+*H;
endif;
f end RECTANGLE;

N =

WO & W

Figure 1: Procedure RECTANGLE.

by Pju, where P-'u = (8, J1» I3,y J). Hence, for any partial path PJu with u = 1,
Pju = (PJu—l’ J,), where PJO = (s). A path is a partial path that ends with the final

node and is denoted by Py, thus Py = (s, J;, Js,.., I, f). A routine R is composed of a
set of paths {P;, P, .., Pg | 1 = R = o}; there may be an infinite number of paths due
to program loops. The routine RECTANGLE contains a loop whose iteration count is

dependent on unbounded input values; there are, therefore, an infinite number of paths
through RECTANGLE.

There is no guarantee that a sequence of statements representing a path is executable;
a path may be nonexecutable due to contradictory conditions governing the transfers of
control along the path. Path (513456,10f) in RECTANGLE is an example of a
nonexecutable path, while (s,1,3,4,5,6,789,6,10f) is an executable path. The control flow
graph is a representation of all possible paths, both executable and nonexecutable, through
the corresponding routine.

Themh_Mg‘gD[l’J]isthesetofanxGXforwhichthepathPJcouldbe
executed. The path domain of a nonexecutable path, therefore, is empty. Execution of
path P; performs a path computation C[Pj] that provides R(x) = z in Z. For each
executable path, the path domain and the path computation define the function of the
path. Since the executable paths of a routine divide the domain X into disjoint
subdomains, the function of a routine R is composed of the set of functions of all
executable paths in R.

il
g

72X =X+H

10:AREA = AREA * H ‘
8 Y := flOH+F[IX+F2J+X++2

9: AREA = AREA + Y

¥
f

Figure 2: Control Flow Graph for RECTANGLE.

Symbolic evaluation provides symbolic representations for the path domains and path
computations of a routine. For any path, these symbolic representations can be developed
incrementally as the statements on a path are interpreted. To create this representation,
symbolic evaluation assigns symbolic names for the input values and evaluates a path by
interpreting the statements on the path in terms of these symbolic names. During symbolic
evaluation, the values of all variables are maintained as algebraic expressions in terms of
the symbolic names. At any point in the evaluation of path P;, some partial path

P_,u=(s, Ji, 33, « J,) has been evaluated. The symbolic values of the variables after

evaluation of that partial path are referred to as the path values and denoted PV[PJu].
The PV (the partial path will not be referenced when unnecessary) is a vector (s{y;), s(y;),
«» $(Yw)), where s(y}) denotes the current symbolic value of variable y;. After

interpretation of the entire path Py, the path computation C[P;] is represented by the

5

components of PV[P;] that correspond to the output parameters. The symbolic
representation of the path domain can also be formed incrementally by maintaining a
representation of the domain of input values for the partial path that has been interpreted
so far. This is done by interpreting the branch predicates for the conditional statements on
a path. Thus, each such branch predicate is represented by constraints in terms of the
symbolic names for the input value. The conjunction of these constraints is called the path

condition and is denoted PC[PJu]. PC[PJu] = s(bp(s, J1)) and s(bp(Jy, J5)) and .. and
s(bp(Jy—1, J))» where s(bp(Jp,, J,41)) 1=m<u, denotes the symbolic value of the branch
predicate bp(Jp,, J,+1) When evalvated over the values of the program variables preceding
traversal of the edge (J,,, J, 1) — that is, over PV[PJm]. The path domain is represented

by the path condition after interpretation of the entire path PC[P;]. For nonexecutable
paths, the PC is inconsistent, thus no input values exist that could cause execution of the
path.

The next three subsections demonstrate how this technique can be employed to derive
the symbolic representations of the path computation and path domain in the context of
path—dependent symbolic evaluation, dynamic symbolic evaluation, and global symbolic
evaluation. The methods differ primarily in their techniques for selecting the paths to be
analyzed. With path—~dependent symbolic evaluation, each path to be analyzed is chosen by
the user or selected by heuristics employed by the system. Dynamic symbolic evaluation is a
data—~dependent method that analyzes a path while it is actually being executed for specific
input data. Rather than analyze a routine on a path—by—path basis, global symbolic
evaluation attempts to create a closed—form expression that represents all paths.

22. Path—Dependent Symbolic Evaluation

Path—dependent symbolic evaluation analyzes distinct paths. In general,
path—dependent symbolic evaluation is attempted on only a subset of the paths in a routine
since a routine containing a loop may have an effectively infinite number of paths. The
description of path—dependent symbolic evaluation that follows is independent of the
method of path selection; it is assumed that path selection information is provided
externally. This section provides an overview of the way path—dependent symbolic
evaluation systems develop the symbolic representation of a given path.

Several path—dependent symbolic evaluation systems have been described [BOYE7S,
CLAR76, HOWD77, HUAN75, KING76, MILL75, RAMA76, VOGES0]. These systems
employ either of two evaluation techniques, forward expansion or backward substitution.
The forward expansion technique [BOYE?S, CLAR76, KING76] begins at the start node
and develops the symbolic representations as each statement on a path is interpreted. The
backward substitution technique [HUAN75, HOWD77] begins with the final node and works
toward the start node. While both techniques produce equivalent results, backward
substitution requires additional processing when further analysis, such as determining path
condition consistency, is desired. Thus, forward expansion is the technique outlined below.
The path—dependent symbolic evaluation of the feasible path (5,1,34,56,7,896,10f) is
described below, and Figure 3 shows the expressions that are generated.

Forward expansion begins at the start node, where the path condition is initialized to
the value true and the path values are set to their initial values: the input parameters are
assigned symbolic names, variables that are initialized before execution are assigned their
corresponding constant value, and all other variables are assigned the undefined value “?”.

%
|
!
%

10

A=a

B=b

H=h

F=f

AREA =17

ERROR = ?

X =7

Y =27

PC = true

PC = true and not (h > b — a)
=(@-b+h =00

ERROR = false

X =a

AREA = f[0) + f[l}sa + f[2]sas2
= f[0] + asf[1] + 2.0%aef[2)

PC=(a-b+h=00and{(a+h=s>H
=(@-b+h =< 00

X=a+h

Y = [0} + fl1}a+h) + f[2}x{a+h)e=2
= f[0] + asf{1] + f[i}h + awe2+f[2] + 20vaef[2Jeh + f[2Jshes2

AREA = f[0] + a«f[1] + 2.0+a+f[2] + f[0] + asf[1]
+ f{1]sh + ass2+f[2] + 2.0ea~f[2]sh + f[2]shee2
= 20+f[0] + 2.0vasf[1] + 2.0vasf2] + f[1jsh
+ ass2sf(2] + 2.0sasf[2]sh + f[2]shes2

PC=(@-b+h=00andnot(a +h+h=0Db)
=@~-b+h=00)and (a — b + 20+sh > 00)

AREA = (20+f[0) + 2.0%asf[1] + 2.0sa+f[2] + f[1]oh
+ ass2ef[2) + 20%asf2ph + f[2Jehes2) * h
= 20+f[0]sh + 20+asf[i}sh + 20sasf[2}sh + f[1]shes2
+ ass2ef[2sh + 20sasf[2lehes2 + f[2]ohee3

(a-b+h=00)and (a — b + 20sh > 00)

C: ERROR = false

AREA = 20+f[0]sh + 2.0+asf[l}¢sh + 2.0%asf[2]sh + f[1]shes2
+ ase2¢f[2]oh + 2.0sa¢f[2]shes2 + f[2]sh=s3

Figure 3: Path—Dependent Symbolic Evaluation of Path in RECTANGLE.

7

Thus, before symbolically evaluating a path in RECTANGLE, the variables would be set to
the initial values specified for node s in Figure 3, where variable names are written in
upper case and symbolic names in lower case.

After initializing the path values and path condition, each statement is interpreted, as
it is encountered on the path, by substituting the current symbolic value of a variable
wherever that variable is referenced. Thus, when an assignment statement, such as
Yy = YK * YL, is interpreted, the algebraic expression s(yg) * s(y;) is generated and
provides the new symbolic value for yj, updating the corresponding element in PV. For
the assignment statement at node 5 in RECTANGLE, for example, the current symbolic
values of X and F after interpretation of statements (s,1,3,4) are substituted into the
expression on the righthand side, resulting in

AREA = f[0] + a«f[1] + 2.0%a+f[2].
If AREA is subsequently referenced on the path, then this new value would be substituted
for AREA. For a conditional statement, the branch predicate corresponding to the selected
path is interpreted. When interpreting a branch predicate, such as bp(i, j) = Ok >y
the conditional expression (s(yk) > s(yp)) is generated and provides a symbolic value for
the branch predicate s(bp(i, j)), which is conjoined to the evolving PC. When interpreting
node 1 in RECTANGLE, the branch predicate representing the condition to go from node
1 to node 3 is the complement of the condition at mode 1. This evaluated branch
predicate is first simplified and then conjoined to the previously generated path condition,
resulting in the path condition
true and not (h > b —-a)=(a — b + h < 00).

It is possible that the new PC is inconsistent, which implies that the path is nomexecutable.
Methods for determining PC consistency are discussed in Section 3.1.

In RECTANGLE, the output parameters are ERROR and AREA, and thus the path

computation is represented by
(s(ERROR), s(AREA)).
For path (s,13,4,5,6,7,89,10,6,10,f) in RECTANGLE, the path domain is represented by
(bp(1,3)) and s(bp(6,7)) and s(bp(6,10)).
The path domain and path computation resulting from path—dependent symbolic evaluation
of path (5,1,3,4,5,6,7,8,9,6,10,f) are shown in Figure 3.

The paths to be evaluated by path—dependent symbolic evaluation can be either
chosen by the user or seclected automatically by a component of the system. Most
path—dependent symbolic evaluation systems support an interactive path selection facility that
allows the user to ‘walk through” a program, statement by statement. Such capabilities
have been described for DISSECT [HOWD77] and ATTEST [CLAR76, WINT78]. This
feature is useful for debugging since the evolution of the PC and PV can be observed.
More extensive program coverage can be expedited by an automated path selection facility

for choosing a set of paths based on some coverage criterion. Several coverage criteria are
discussed in Section 4.2.

23. Dynamic Symbolic Evaluation

Dynamic symbolic evaluation is one of the features often provided by dynamic testing
systems [BALZ69, FAIR7S, STUC73]. Using test data to determine the path, the dynamic
symbolic evaluation method monitors the execution of the path and provides symbolic
representations of the results created by executing the path.

8

The dynamic symbolic evaluation component of dynamic testing systems provides a
symbolic representation of the computation of each executed path. In addition to the
user—supplied test data, symbolic names are associated with the input values. Throughout
the execution, dynamic symbolic evaluation maintains the symbolic values of all variables as
well as their usual computed values. As with path—dependent symbolic evaluation, the
symbolic values are represented as algebraic expressions in terms of the symbolic names.
Since dynamic testing systems monitor the normal execution process, the forward expansion
technique described for path—dependent symbolic evaluation is a natural approach for
creating these symbolic values.

After executing path Pj, the symbolic value for each output parameter is shown,
providing the path computation. With dynamic symbolic evaluation, these expressions are
generally displayed as trees instead of as algebraic expressions, although both or either form
could be displayed. The computation trees that would be created for the specified input
values to RECTANGLE are shown in Figure 4. Note that these input values cause path
(5,1,3,4,5,6,7,89,6,10,f) to be executed.

Most dynamic symbolic evaluation systems are only concerned with providing the path
computation. Since the input values are known, each interpreted branch predicate evaluates
to the constant value true (or a run—time error is encountered). The PC is, therefore,
equal to true and thus it is not necessary to check for PC consistency. Since the PC is
often useful in validating the path, dynamic symbolic evaluation systems may also provide
the symbolic representation of the path domain.

24. Global Symbolic Evaluation

The goal of global symbolic evaluation [CHEA79a, PLOE79] is the derivation of a
global representation of a routine — a symbolic representation of the domain and
computation for all paths, rather than along one specific path. Since there may be an
effectively infinite number of executable paths in a routine, using path—dependent symbolic
evaluation is unreasonable. Instead, global symbolic evaluation attemps to replace each loop
with a closed form expression that captures the effect of that loop [CHEA79a, CLARSI1].
Using this technique, a path may then represent a class of paths in which each member
differs from the others only by its number of loop iterations.

Global symbolic evaluation, like path—dependent symbolic evaluation, uses the control
flow graph of a routine to guide evaluation. Loops are evaluated first by a loop analysis
technique. For each loop, this technique attempts to create a loop expression, which is a
closed form representation encompassing the effects of the loop. An analyzed loop can be
replaced by the resulting loop expression, which can thereafter be evaluated as a single
node. Thus, inner loops must be analyzed before outer loops. After all loops have been
analyzed, the control flow graph has been reduced to a directed acyclic graph. In this
section, an efficient interpretive technique for acyclic programs is described and then loop
analysis, which also uses this intepretive technique, is explained.

For acyclic programs, or programs that bave been made acyclic by using loop
analysis, a more efficient interpretive technique than the forward expansion technique
described above can be used. This technique interprets each node only once but in the
context of all its predecessors and then saves this interpreted representation to be used
when interpreting any of its successor nodes. To do this, a node can not be interpreted
until all its predecessors have been interpreted. Thus, global symbolic evaluation starts by

Symbolic and Actual Input Values
A=a=20
B=b=10
H=h=10
F =f = (30, 20, 1.0)

Output Parameters

AREA = (330)
/ "2 b9
/+(11-0) >+(27-0)
+(1.0) \/.(4\11) /+<.0) /-ai.o)
f[0](3.0)/\-(4.0) 20 2 030 /-Q q21(2.w)
f1]2.0) a20) f2)(1.0) 3(2.0) f1120) +(3.0) /+(3.0) 2
a(2.0) h(1.0) 4(20) hb(1.0)

ERROR = false

Figure 4: Dynamic Symbolic Evaloation of Path in RECTANGLE.

interpreting the start node, then all nodes which have only the start node as a predecessor,
and so on. For a node in the control flow graph, a case expression’ is maintained, where
each subcase represents one partial path reaching that node. Each subcase is composed of
the PC for a partial path, as well as the symbolic values of all the variables computed
along that partial path.

To see how a node is interpreted, consider a particular node m, with predecessor
nodes i, .., j, which have been previously interpreted. Control may reach m via any of
the edges (i, m), .., (j, m), and the transfer from a predecessor node occurs under the
conditions of the corresponding branch predicate. Thus, when m is interpreted, each
subcase of the case expression of each predecessor node must be considered independently.
For predecessor node i, for instance, the branch predicate bp(i, m) is evaluated in the

! In the case expression used by global symbolic evaluation, a subcase consists of an arbitrary boolean
expression followed by the symbolic values assigned to the variables.

10

context of each subcase for node i, and for a particular subcase, bp(i, m) is interpreted in
terms of the symbolic values of the variables for this subcase. This interpreted branch
predicate is then conjoined to the PC for the partial path associated with this subcase of
predecessor node i. As with path—dependent symbolic evaluation, it is desirable to check
the consistency of the PC. If the PC is found to be inconsistent, this subcase is discarded.
Otherwise, the statement at node m must be interpreted in the context of this subcase for
node i. After all the subcases for node i have been considered, this same procedure is
followed for all other predecessor nodes of m. Finally, the subcase expressions derived
from evaluating all the subcases of the predecessor nodes are combined and the resulting
case expression represents all executable partial paths reaching node m. To illustrate this
technique, Figure 5 shows a fragment of a control flow graph, gives a hypothetical case
expression for node Il in the graph, and shows the resulting case expressions for nodes 13,
14, and 15.

In global symbolic evaluation, a global representation of all paths is only possible
when the loop analysis technique can create closed form representations for all loops in the
program. This loop analysis technique attempts to represent each loop by a loop
expression, which describes the effects of that loop. For each analyzed loop, a conditional
expression is created representing the final iteration count for any arbitrary execution of the
loop. The final iteration count is expressed in terms of the symbolic values of the
variables at entry to the loop. In addition, for each variable modified within the loop its
symbolic value at exit from the loop is created in terms of both the final iteration count
and the symbolic values of the variables at entry to the loop. Figure 6 shows the results
from loop analysis; these results as well as the loop analysis technique are explained in the
remainder of this section.

A loop is not analyzed until all its nested loops have been replaced by their
associated loop expression. At the time of analysis, therefore, each loop' contains only one
backward branch. If we temporarily ignore this one branch, the loop body can be
represented as an acyclic directed graph to which the interpretation technique described
above can be applied. To initiate this interpretation, an iteration counter, say k, is
associated with the loop. For each variable y, y, represents the value of the variable y on
entry to the first iteration of the loop and y,, k=1, represents the value of the variable y
after execution of the kth iteration of the loop. The body of the loop is then symbolically
evaluated to get a representation of a typical iteration. This evaluation, suppose it is for
the kth iteration, is identical to the process described above, except that the symbolic name
initially assigned to each variable is its value after execution of iteration k—1 — that is,
the assumed value for y is y,_, if y is changed in the loop and y, otherwise. The result
of this interpretation is a set of recurrence relations, which are in terms of the values of
the variables after iteration k—1. Next, the branch predicate controlling exit from the loop
is interpreted in terms of the values of the variables after execution of the kth iteration.
This provides the loop exit condition, denoted lec,, which represents the condition under
which the loop will be exited after the kth iteration. The first part of Figure 6 shows the
results of this evaluation for the WHILE loop in RECTANGLE. (Since the loop in
RECTANGLE only contains straight line code, each node only has one predecessor and so
no case expression need be formed.)

! Only single—entry, single—exit loops are considered here.

11: ¥Y: =3

11

B

13: X == AsX

14 Y := BsX

|

v
15: Y =

11 case
(a<0) and (a<b):
a

Sy
[
2
|
§

— 4sb2

M
«xw>é<xw>
[
wnc‘»

%

13 case
(a<0) and (a<b) and (a>b)
= false
(a=0) and (a>b):
=a

sass2 — 3eass2eh

'<><UJ>

2
3

0

endcase

14 case
(a<0) and (a<b):
a

[

<X >

b

2%a — 3sash
2sasb — 3sasbhes?
(asb):

X
"n.

(a=0) an

I T
(S~

8
P

N

g

[~

|

H

[3

i

2oX+Y

15 case

(a=0) and (a>b):

A =a

B=©»b

X = 2eass2 — 3sawe2sh

Y = dsass2 — Geaws2sh + 3
(a<0) and (asb):

A=a

B=b

X = 2¢a ~ 3sash

Y = 4sa — 4eash — 3sash=2
(a=0) and (aSb)

n g II

<Xoy»

b
2¢a — 4sbws2
4

endcase

Figure S: Hypothetical Interpretation with Global Symbolic Evalnation.

*a — 8sbes + 2eash — 4sbe3

Recurrence Relations and Loop Exit Condition for RECTANGLE
Created by Symbolic Evaluation of kth Iteration of Loop
ARBAk = AREAk_l + Yk
= ARBAk—l + f[O] + f[l]‘xk + f[2]txk“2
Xk = Xk_l +h
=h + Xk_l
Yk = f[0] + f[l]‘xk + f[2]‘xk“2
leck=not(xk+hsb)
= (b + h + Xy > 00)
Solved Recurrence Relations and Loop Exit Condition for RECTANGLE
AREA(k) = AREAg + sum { i:=L.k | f{0] + f{1]s(hei+Xy) + f[2]s(bei+Xg)w2 }
= AREA(+ fl0lk + fl]skeXy + f[2]skeXyee2
+ sum { it=L.k | f{l}shei + f[2]ehes2eisa2 + 2.0sf[2]sheinX,, }
= AREA(+ f[0]ok + fl1]skeXy + f[2JskeXye2 + f[1]sheke(k—1)/2.0
+ f[2]shes2eke(k+1)%(2+k+1)/6.0 + 2.0+f[2]shoke(k—1p»X/2.0
= AREAg + f[0]k + f{i]JsksX, + f[2]skeXye2 — f[1]shek/2.0
+ f{1]sheke+2/2.0 + f{2]shes2ek/60 + f[2]shes2ekes2/2.0
+ f[2]shes2¢ke3/30 — f[2]shekeX, + f[2]shekea2eX
= AREAg + f[O]sk — f{l]shek/2.0 + f[1]skeX, + f[1]shekes2/20
+ f{2]ehes2¢k/6.0 — f[2]shekeXy + f[2]okeX 2
+ f2]shea2ek+2/2.0 + f[2]shekes2eX, + f[2]shes2ekee3/3.0
X(k) = hsk + X,
Y(k) = f[0] + f[l]s(hek+Xy) + f[2]s(hek+Xg)e2
= fl0] + f{i]shek + f[1]}X + f[2]shes2ekes2 + 2.0sf[2]shekeXy + f[2]oX o2
lec(k) = (b + h + hek + X, > 00)
Loop Expression for RECTANGLE
case
—fall through
(-b +h + X, > 00):
AREA := AREA,
X =X,
Y = Yo
—exit after first or subsequent iteration
(-b +h + Xy = 00) and (k, = min { k | (k=1) and (-b + h + hek + X;> 0.0) })
= (-b + h + Xy =< 00) and (k. = int(b/h — Xy/h)):
AREA := AREAj + f[0}sk, — fli]shek /20 + {1}k sXy + f{1}shek_e+2/2.0
+ f[2]shes2¢k /60 — f[2]shek oX, + f[2]ek eXgee2
+ f[2]shes2ek #42/2.0 + f[2]shek +s2¢X, + f[2]shes2ek ++3/30
X = hek, + X,
Y := f[0] + f[1]sXq + f[l]shek, + f2}sXgee2 + 2.0sf[2]shek oX + f[2]shes2ek o2

endcase

Figure 6: Loop Analysis of RECTANGLE.

12

13

Next, loop analysis attempts to find solutions to the recurrence relations for each
variable in terms of the values of the variables on entry to the loop. The solution to the
recurrence relation for yy is denoted by y(k) and represents the value of the variable y on
exit from the kth iteration of the loop. Solutions are found first for those variables that
do not reference other variables whose recurrence relations are as yet unsolved. Once a
solution is found for a variable, it is substituted for all references to it in the remaining
recurrence relations. This process is repeated, if possible, until all recurrence relations are
solved. The loop exit condition lecy is then solved by replacing each y, referenced in the
condition by its solution y(k) and simplifying. This provides lec(k), the condition under
which the loop will be exited after execution of the kth iteration. The second part of
Figure 6 provides the solutions to the recurrence relations for the loop in RECTANGLE.
Although not illustrated in this example, sometimes two subcases must be considered
independently: 1) the first iteration of the loop (k=1), where the recurrence relations and
loop exit condition depend on the values of the variables at entry to the loop; and 2) all
subsequent iterations (k>1), where the recurrence relations and loop exit condition depend
on the values computed by the previous iteration.

After solutions to the recurrence relations have been determined, the loop expression
can be created. The loop expression for the loop in RECTANGLE appears in the last
part of Figure 6. Each subcase consists of the loop exit condition and the values of the
variables at exit from the loop. The first subcase in this figure represents the fall-through
condition, which must be included for any WHILE loop or similar loop construct. For this
subcase, the values at entry to the first iteration of the loop satisfy the loop exit condition
and provide the values on exit from the loop. The second subcase represents one or more
iterations of the loop and is derived from the solved recurrence relations and loop exit
condition. Usually, for this subcase, the final iteration count, call it k., is represented in

terms of the minimum k, k = 1, such that the loop exit condition is true. Thus, for this
subcase the condition is

not(lec(0)) and (ke = minfkl (k = 1) and lec(k)}).
and the value for each variable y; at exit from the loop is represented by yi(k.)- In this

example, it is possible to precisely represent k. by int(b/h — Xg/h). Since the loop
expression is a closed form representation capturing the effects of the loop, the nodes in
the loop can be replaced by a single node, annotated by this loop expression. If the loop
body contains nodes i through j, this single node is denoted (i — j).

When a loop is encountered during global symbolic evaluation, each subcase in the
loop expression must be considered in the context of each subcase of each predecessor
node. Consider the interpretation of one subcase of the loop expression in the context of
one subcase of a predecessor node. The results of this interpretation will be a single
subcase for the interpreted loop node. The symbolic values of the variables of the
predecessor subcase provide the values of the variables at entry to the loop. Thus, for
variable y, the symbolic value of y in the subcase of the predecessor node is the value to
be substituted for y,. The PC of the loop node subcase is developed by interpreting the
condition from the loop expression subcase and conjoining it with the PC of the predecessor
subcase. The symbolic values of the variables of the loop node subcase are developed by
interpreting the assignments specified by the loop expression subcase.

The above process is repeated for each subcase in the loop expression with each
subcase of each predecessor node. The resulting subcases are then combined to form the
case expression for the interpreted loop node. Global symbolic evaluation can proceed as

14

usual from this point. Figure 7 demonstrates the global symbolic evaluation of
RECTANGLE. Here, only the start node, the final node, the nodes corresponding to
conditional statements, the node preceeding the loop, and the loop node are shown. The
symbolic values of variables that cannot be modified are shown only at the start node.
Note that node 5 is the only predecessor node to the loop and node (6—9) provides the
case expression resulting from interpretation of the loop expression. The final output of
global symbolic evaluation of RECTANGLE also appears in Figure 7, where path Py
represents the class of paths with one or more iterations of the loop.

As one might expect, there are several problems associated with loop analysis.
Obtaining the solutions to the recurrence relations is not always straightforward and
sometimes may not be possible. Complications arise in several situations. In particular, the
interdependence between two recurrence relations may be cyclic — y may depend on x,
which depends on y — in which case the recurrence relations cannot be solved. Problems
also arise when conditional execution occurs within the loop body, causing conditional
recurrence relations. This results in a more complicated loop expression, provided these
recurrence relations can even be solved. Thus, loops often cause an explosion in the size
and complexity of the global representation of a routine. Nested loops exacerbate this
problem. In addition, determining consistency of a PC incorporating a loop exit condition
may also be problematic if this condition is represented in terms of conditional expressions
or a minimum value expression, or both. Deciding the existence of these minimum values
is essentially proving routine termination. When none of these problems arise, however, the
loop analysis technique provides a general evaluation of a loop that is very useful. In
practice, not only can loops often be represented in a closed—form, but many loops are
variants of common patterns. Recognizing these patterns [WATE79] may be easier and
more efficient than invoking general axiomatic and algebraic mechanisms to solve recurrence
relations.

3. IMPLEMENTATION CONSIDERATIONS

The above section described the general methods associated with symbolic evaluation.
When implementing a symbolic evaluation system there are many additional issues to be
considered. @ This section discusses several of these issues, some of which are well
understood and others that remain areas of current research.

3.1. Further Analysis of the Symbolic Representations

In the purest sense, the path domain and path computation are all that need be
provided by symbolic evaluation. To do further analysis, however, it is often desirable to
simplify the symbolic representations, determine the consistency of the PC, and find
alternative solutions for the PC that serve as test data.

Simplification can be done by converting the symbolic expressions into canonical
forms. There are several available algebraic manipulation systems [BOGE75, BROW?73,
RICH78a] that can be used to accomplish this simplification. A canonical form for the
symbolic value of each output parameter might be one in which like terms are grouped
together and terms are ordered first by degree and then lexically. The PC might be put
into conjunctive normal form and each relational expression put into a canonical form.
This canonical form might be one in which the constant term is on the right—hand-side of
the relational operator and the left—hand—side has the same form as that for an output
parameter. To enhance readability, we have simplified the output from symbolic evaluation

endcase

6 case

= 8’13:4!576

th =sb - a)

=(a-b+h =00
AREA = f{[0] + f[i]sa + f[2]sa+2

= f[0] + a~f{l] + 2.0%as2
ERROR = false
X=a
Y =1
endcase

10 case
- 8,113’475)6
(@a-b+h=<00and (—b+h=a>00
= false

- 5,134,56,7896)%,10
(@a-b+h=00and (-b+h =a =00
and (k, = int(b/h — a/h))
=(-b +h =< 00) and (k, = int(—a/h + b/h)):
AREA = f{[0] + asf[l] + 2.0+asf[2]
+ f[0]sk — f[1]shek/2.0 + asf[i}*k
+ f{1]shekes2/2.0 + f[2]sh*s2¢k/6.0 — asf[2]shek + as2ef[2]sk
+ f[2]shes2ek»2/2.0 + aef[2]shek=s2 + f[2]shss2ek+3/3.0
= f[0] + aef[l] = 2.0+aef[2] + f[O]+k + aef[i]sk — f[1]shek /2.0
— asf[2]shek, + aws2ef2]sk + f[1]shek o02/2.0+f[2]shes2¢k,/6.0
+ aef[2]shek =32 + f[2]shes2ek +2/2.0+ f[2]shes2ek 3/3.0
ERROR = false
X = hek +a
= athek,
Y = f[0] + f[l]ea + f[l}shek, + f[2]sass2
+ 2.0+[2]shek #a + f[2]shes2ek 2
= f{0] + a~f[1] + ase2ef[2] + f[1]shek,
+ 20+sasf2]shek, + f[2]shes2ek =2
endcase

15

16

f case

-—s,l,Z,f

(h>b-a)

=(@-b+h>00):
AREA =17
ERROR = true
X =17
Y =1

non

- 5,13,4,56,789)%,10f
(@ —b +h =00) and (k, = int(—a/h + b/n)):

AREA = f[0] + asf[1] = 2.0%asf[2] + [0}k,
+ asfl]sk — f[l]ehek /20— aef[2]shek, + ass2ef[2]sk,
+ f{1jshek *+2/2.0 + f[2]shes29k,/6.0+ asf[2]shek =2
+ f[2]shes2ek ++2/2.0+ f[2]shes2ek 3/3.0)+h
= fl0]sh + a«f{l]*h + 2.0sasf[2}sh + f[O]shek,
+ asf[ishek — f[1]shee2ek /2.0~ asf[2]shes2ek, + ase2ef[2]shek,
+ f[1]ehes2ek +42/2.0 + f[2]shes30k /6.0+ asf[2]shes2ek s
+ f[2]shes3ek ++2/2.0+ f[2]shee3sk +3/3.0
ERROR = false
X=a+hsk,
Y = f[0] + a~f[1] + ass2+f[2] + f[1]shek,
+ 2.0vasf[2]shek, + f[2]shes2ek =2
endcase

: (8,1.2,6)

D[Pyl : (@ - b+ h > 00
C[Py] : AREA =?
ERROR = true

P, : (5,134,56,10,0)
D[P)J:(a-b+h=00)and (a —b+h>00
= false *»» infeasible path »+»

P; : (813,4,56,(7.896)%.10.0)
D[Py} : (@ — b + h =< 00) and (k. = ints(-a/h + b/h)
C[P3] : AREA = {[0kh + af[1sh + 2.0%asf[2h + {[O]shek, + aef[I]shek, — f[1]shee2ek /2.0
= adf[2pshea2ek, + as2+f[2pthek, + [[1]shes2ek +2/2.0 + {[2]shee3ek /6.0
+ aof[2]shes2ek 02 + f[2]shes3ek ++2/2.0 + [[2]shes3ek ++3/3.0
ERROR = false

Figure 7: Path Domains and Computations for RECTANGLE.

17

to these canonical forms in all the examples given in this paper.

As noted above, only a subset of the paths in a program are executable and,
therefore, for path—dependent symbolic evaluation or global symbolic evaluation it is
desirable to determine whether or not the PC is consistent. Not only is it desirable to
recognize nonexecutable paths but to recognize the inconsistency as soon as possible. Early
detection of a nonexecutable path prevents worthless, yet costly, symbolic evaluation. A
nonexecutable path can be detected as soon as possible by developing the PC as the
statements on a path are interpreted and examining the evolving PC for consistency as each
branch predicate is interpreted. For partial path Pju = (8, J1sy Jy), the path condition is

denoted PC[PJu]. When a node J,;; is considered as an extension to the partial path PJu,

the interpreted branch predicate s(bp(J,, J,4;) is first simplified and then examined for

consistency with PC[PJu]. Unless inconsistency is determined, the interpreted branch
predicate is conjoined to PC[PJu], creating

PCIP;] = PCIPy | and s(op(J,, Jy41)

Thus at any point in this interpretation, there is a symbolic representation of the domain
for the partial path that has been evaluated so far.

When used with the path—dependent symbolic evaluation, the incremental development
of the PC allows an alternative edge to be selected on a partial path when an inconsistent
branch predicate is initially encountered. Thus, the evaluation of the partial path up to an
inconsistent branch predicate can usually be salvaged. For example, the nonexecutable
partial path (s,1,3,4,5,6,10) in RECTANGLE can be terminated as soon as the inconsistent
PC is discovered. The symbolic value of the branch predicate for the edge (6,10), where
the inconsistency occurred, is replaced by the symbolic value of the branch predicate for
the alternative edge (6,8), and analysis continues.

Consistency or inconsistency may possibly be determined by performing simple
reductions [DEUT73, DILL81] on the newly interpreted branch predicate s(bp(.ly,.ly) in the
context of the existing consistent PC. On the one hand, it may be possible to determine
that s(bp{J,, J,+;) is dominated by relational expressions in PC[PJu], in which case

PC[PJu+l] must not be inconsistent, since PC[PJu] is not inconsistent. On the other hand,
s(bp(Jy> Jy+1)) may be contradicted by a relational expression in PC[PJu], in which case
PC[PJu+l] is inconsistent. In the evaluation of path P, in RECTANGLE for example,

s(bp(6,10)) = (a — b + h > 00) is contradicted by s(bp(1,3)) = (a — b + h =< 00), thus
PC[s,13,4,5,6,10] is inconsistent. While such reductions are sometimes applicable, it is often
necessary to rely on more costly techniques, such as an automatic theorem prover
[BOYET79] or one of a number of algebraic techniques. The ATTEST system [CLART76,78],
for example, uses a linear programming algorithm [LAND73]. The advantage of choosing
an algebraic technique is that a solution is provided when the PC is determined to be
consistent. This solution serves as test data to execute the path. The next section
discusses more sophisticated strategies for selecting test data for the PC, which are aimed at
detecting errors on the path. Both automatic theorem provers and algebraic techniques
work well on the simple constraints that are generally created during symbolic evaluation.
No method, however, can solve all arbitrary systems of constraints [DAVI73]. In some
instances, PC conmsistency or inconsistency can not be determined; the symbolic
representations for such a path can be provided, but whether or not the path can be

18
executed is unknown.

32. Arrays

Array element determination causes a problem whenever the subscript of an array
depends on input values, in which case, the element that is being referenced or defined in
the array is unknown. The flow charts in Figure 8 illustrate this problem. The first part
of Figure 8 shows indeterminate array subscripts. Note that at nodes 5 and 6 there is a
constraint on the range of values for the subscript due to the PC. In the second part of
Figure 8, the subscript values are constant and thus cause no problem. Although an
indeterminate array element can be represented symbolically, determining PC consistency
may become extremely complicated when such an occurrence affects the PC. This problem
occurs frequently during both path—dependent symbolic evaluation and global symbolic
evaluation. It can not occur during dynamic symbolic evaluation since all values, including
subscript values, are known.

Inefficient solutions for determining an appropriate array element exist, for in the
worst case all possible subscript values can be enumerated. Though there has been some
work on this problem [BOYE?S, CLAR76, RAMAT6], the results are still unsatisfactory.
Efficient solutions requiring a minimal amount of backtracking are still being explored.

33. Routine Invocation

Several approaches to routine invocation during symbolic evaluation have been
proposed. The simplest approach, which is not applicable for dynamic symbolic evaluation,
is to represent the results of a routine invocation symbolically. For a procedure, such an
approach might assign unique symbolic names for the output parameters each time the
procedure is called. For a function (with no side effects), this approach might represent
each invocation by the function name along with the arguments” symbolic values at the
point of invocation. The advantage of this approach is that the calling routine can be
evaluated even when the called routine is not available. Thus this approach supports unit
testing.

Another straightforward approach to routine invocation is to symbolically evaluate a
path (or paths in the case of global symbolic evaluation) through the called routine by
passing information to and from the called routine via the parameters. This approach is
similar to normal execution. When a routine invocation is encountered, the symbolic values
of the arguments are passed to the called routine. Any branch predicates that are
interpreted within the called routine are conjoined to the PC in the usual manner. The
symbolic values of the parameters are updated by the interpretation of assignment
statements on the path in the called routine. When control returns to the calling routine,
the symbolic value of each parameter is returned and assigned to the corresponding
argument. This is the only approach to routine invocation that is applicable for dynamic
symbolic evaluation.

The drawback of the first approach is that the precise effect of the invocation is
unknown and this loss of information may degrade the results of any subsequent analysis.
The drawback of the second approach is the inefficiency of interpretating a routine each
time that routine is invoked. A third approach, called subroutine substitution, may avoid
these drawbacks by utilizing the previously created symbolic representations of a routine.
With path—dependent symbolic evaluation, the PC and PV of a path in a routine are saved

19

Figure 8: Array FElement Determination.

for substitution. Later, when the routine is invoked, the symbolic values of the arguments
are substituted for the symbolic names that were assigned to the parameters in the saved
PC and PV of the called routine. The updated PC of the called routine is then conjoined
to the existing PC of the calling routine. If this conjunction is consistent, then the
corresponding path through the called routine could be executed, and this conjunction is the
new PC. In addition, the symbolic values of the output parameters, which are represented
in the PV of the called routine, are returned to the calling routine. With global symbolic
evaluation, the global representation of the called routine is substituted into the global
representation of the calling routine. Each subcase of the called routine must be evaluated
in the context of each subcase of the calling routine at the point of invocation. For each
such combination, this evaluation is similar to subroutine substitution during path—dependent
symbolic evaluation.

20

Using subroutine substitution involves expensive reformulation and simplification of the
symbolic representations. Unfortunately, it may not always be more efficient than
reevaluation of the path(s) [WOODE0]. When arguments are functions or large arrays,
these problems are further aggravated. Moreover, for path—dependent symbolic evaluation
several evaluations of the called routine must be saved to make this a viable approach. For
either path—dependent symbolic evaluation or global symbolic evaluation this approach
assumes a bottom-—up testing environment, where called routines must be tested before the
calling routine.

A variation of subroutine substitution allows the specification of a called routine to
be supplied in place of the source code of that routine. Such a specification would
describe the function of the routine by providing the intended path domains and their
associated path computations. There are a number of specification techniques that could be
used, as described in Section 4.6. The evaluated specification could then be substituted as
described for subroutine substitution. Such an approach has some of the drawbacks of
subroutine substitution but allows for top—down testing and incremental development of
software.

34. Input/Output

So far in this paper, we have only described symbolic evaluation for routines whose
input and output are done only via parameters. Only minor modifications are necessary to
bandle input and output at arbitrary points in a routine. To handle input along a path,
symbolic names representing the input values are assigned to the input variables whenever
an input statement is encountered. The convention previously described for representing
input values must be modified slightly, however, since input may occur more than once for
a variable. One approach that maintains the association between input values and variables
is to suffix each symbolic names with an index notation when necessary. For example, if a
variable, say AMOUNT, is assigned input twice along a path, the first input value might
be represented by amount.l and the second by amount2. To handle output along a path,
the symbolic values of the output variables are provided whenever an output statement is
encountered. With these extensions, the variables assigned input values, the variables whose
values are output, as well as the number of inputs and outputs, may vary from path to
path because different input and output statements may be encountered on different paths.
Moreover, for global symbolic evaluation, the number of inputs and outputs may depend on
the final loop iteration counts for the routine. Although input and output along a path
requires no substantial changes to the interpretive techniques originally described, the
functional conceptualization of a routine must allow for an arbitrary, and perhaps varying,
number of inputs and outputs.

4. APPLICATIONS

Most notably symbolic evaluation has been the foundation for much of the research
in program testing. Much of this work is concerned with the problem of selecting the
paths that should be tested and the problem of selecting test data for those paths. The
symbolic representations of the path domains and path computations have proven useful in
both these aspects. In addition to testing, symbolic evaluation methods have been readily
applied to other research areas of software engineering, including verification and
certification, debugging, optimization, and early software development. This section discusses
the application of symbolic evaluation for each of these areas.

21
4.1. Verification and Certification

Formal verification methods use symbolic evaluation techniques to assist in forming
the verification conditions. Typically, input, output, and loop invariant assertions are
supplied. Verification conditions are then created by symbolically evaluating the code
between two adjacent assertions. These verification conditions must then be shown to be
true based on the semanitics of the programming language and any required
application—dependent axioms. This process [FLOY67, HANT76, HOAR71, LOND?75] and a
number of related approaches to verification have been frequently described in the literature
and will not be discussed here. Instead, this section discusses some less comprehensive
verification techniques that are used to detect or certify the absence of particular program

properties.

The symbolic representations that are generated by symbolic evaluation can quite
naturally be used for certification. The path computation often provides a concise
functional representation of the output for the entire path domain. Normal execution, on
the other hand, only provides particular output values for particular input values.
Examination of the path computation as well as the path condition is often useful in
uncovering program errors. In RECTANGLE, for example, examination of C[P3] would
most likely reveal the erroneous use of multiplication rather than exponentiation in
statement 5. This method of certification is referred to as gymbolic testing [HOWD78b).
Symbolic testing is a particularly beneficial feature for scientific applications, where it is
often extremely difficult to manually compute the intended result accurately due to both
the complexity of the computation and the required number of significant digits.

Symbolic evaluation can also be applied in certifying the absence of specific types of
program errors. At appropriate points in a routine, expressions describing error conditions
can be interpreted and checked for conmsistency with the PC just as branch predicates are
interpreted and checked. Consistency implies the existence of input values in the path
domain that would cause the described error. Inconsistency implies that the error condition
could not occur for any element in the path domain. While normal execution of a path
may not uncover a potential run—time error, symbolic evaluation of a path can detect the
presence or certify the absence of some errors for all possible inputs to the path.

The ATTEST system, for example, automatically generates expressions for predefined
error conditions whenever it encounters certain program constructs. For instance, whenever
a nonconstant divisor is encountered, a relational expression comparing the symbolic value
of the divisor to zero is created. This expression is then temporarily conjoined to the PC.
If the resulting PC is consistent, then input values exist that would cause a division by zero
error and an error report is issued. If the resulting PC is inconsistent, then this potential
run—time error could not occur on this path. After checking for consistency, the
expression for the error condition is removed from the PC before symbolic evaluation
continues. The error conditions that can be checked by symbolic evaluation are language
dependent. In FORTRAN, for example, error conditions can be created for division by
zero, invalid DO loop parameters, invalid variable dimensions, and out—of—bound subscript
values, among others.

Path verification of assertions is another method of certifying the absence of errors.
Instead of predefining the error conditions, user—created assertions define conditions that
should be true at designated points in the routine. An error exists if an assertion is not
true for all elements of the path domain. When an assertion is encountered during

22

symbolic evaluation, the complement of the assertion is interpreted and conjoined to the
PC. Inconsistency of the resulting PC implies that the assertion is valid for the path, while
consistency implies that the assertion is invalid for the routine.

Checking error conditions during dynamic symbolic evaluation and path—dependent
symbolic evaluation provides conclusions about the occurence of that error on a specific
path. When similar capabilities are provided by global symbolic evaluation certification is
done for all (classes of) paths and conclusions can be drawn about the entire routine.
Thus, if a routine is annotated with assertions that specify the intended function of the
routine and these are shown to be valid for all paths, the correctness of the routine has
been verified. Methods for doing this total verification are discussed furhter in Section 4.6.

42. Test Path Selection

It is usually impractical to test every path in a routine and thus it is imperative to
have a method for selecting a meaningful subset of paths to be exercised. Support of the
path selection process is a natural application of symbolic evaluation. Several criteria for
path selection that utilize symbolic evaluation techniques are outline below.

Three criteria for selecting paths that have typically been used for program testing
are statement, branch, and path coverage. Statement coverage requires that each statement
in the program occurs at least once on one of the selected paths. Likewise, branch
coverage requires that each branch predicate occurs at least once on one of the selected
paths and path coverage requires that all paths be selected. Branch coverage implies
statement coverage, while path coverage implies branch coverage. Thus, these three
measures provide an ascending scale of confidence in testing. Given a reliable method of
test data selection, path testing would constitute a proof of correctness. Since path coverage
implies the selection of all feasible paths through the routine, however, attaining path
coverage is usually impractical, if not impossible.

It is generally agreed that branch coverage should be a minimum criteria for path
selection. Achieving even this level of coverage is not always straightforward. Statically
generating a list of paths that satisfy this criterion usually results in a number of infeasible
paths being selected. Data flow techniques that attempt to generate only feasible paths by
excluding inconsistent pairs of branch predicates have been shown to be NP complete
[(GABO76). Symbolic evaluation is a useful technique, however, for aiding in the selection
of executable paths. The ATTEST system, for example, uses a dynamic, goal—oriented
approach for automated path selection whereby each statement on a path is selected based
on its potential for a selected coverage criterion. When an infeasible path is encountered,
ATTEST chooses one of the alternative statements. When there is more than one consistent
alternative, the choice is based on the selected coverage criterion [WOODS0).

Unfortunately, branch coverage is easily shown to be inadequate; no matter what test
data is selected for these paths, many simple, common errors will go undetected. Several
stronger criteria have been proposed for selecting paths that fall between the two levels of
reliability and expense associated with branch coverage and path coverage. Some alternative
criteria simply limit loop iterations. The EFFIGY system [KING76] generates all paths with
a bound specified on the number of loop iterations. The ATTEST system strives for
statement, branch, or path coverage but attempts to select paths that traverse each loop a
minimum and maximum number of times.

23

Howden has proposed the boundary—interior method for classifying paths [HOWD?75).
With this method, two paths that differ other than in loop iterations are in different

classes. In addition, two paths that differ only in the way they traverse loops are in

different classes if

1. one is a boundary and the other an interior test of a loop;

2. they enter or leave a loop along different loop entrance or loop exit branches;

3. they are boundary tests of a loop and follow different paths through the loop;

4. they are interior tests of a loop and follow different paths through the loop on their
first iteration of the loop.

A boundary test is one which enters the loop but leaves it before carrying out a complete

traversal and an interior test carries out at least one complete traversal of the loop. A set

of test data is considered to cover all classes if at least one path from each class is

exercised by the test data. Again, symbolic evaluation is useful for determining a set of

feasible paths that satisfy the loop criterion. Moreover, when loop analysis is successful in

creating a closed form representation of the loop, then this representation provides a

snapshot of the paths that satisfy the selected loop criterion.

An alternative to the use of control flow as the determining factor in path selection
is the use of data flow information. Pata flow techniques [LASK79, LASKS83, NTAFS8],
RAPP82] require the selection of subpath(s) based on particular sequences of definitions and
references to the variables in the program. Rapps and Weyuker [RAPP82] have described
a partial ordering on a family of data flow techniques for path selection. Figure 9 shows
part of this partial ordering as well as its relation to statement, branch, and path coverage.
As an example of the application of these techniques, consider the flow chart in Figure 10.
Def coverage requires the selection of subpaths containing each definition of a variable; the
following paths satisfy def coverage: (1,2,3,5,6,8) and (1,23,5,78). Note that this set of
paths does not satisfy either statement or branch coverage since statement 4 is not
executed. Use coverage requires the selection of some subpath from each definition of a
variable to each use of that variable; the following paths satisfy use coverage: (1,2,3,5.6,8),
(1,24,5,78). Du-path coverage, on the other hand, requires the selection of all
minimum—loop subpaths from each definition of a variable to each use of that variable.
In addition to the two paths for use coverage, the path (1,2,3,57.8) must be selected
because it includes a subpath from the definition of Y at node 3 to its use at node 8.
Note that there is one more path, (1,2,4,56,7), that would need to be selected to satisfy
path coverage but no additional flows of data are to be gained by testing that path.
Although the data flow path selection techniques can be applied independently of symbolic
evaluation, a number of infeasible paths will be generated unless data flow analysis and
symbolic evaluation techniques are paired together.

path => du—path = use def

coverage coverage coverage coverage
branch statement
coverage coverage

Figure 9: Data Flow Testing Criteria.

1: read X
T F
3: Y:=0 4: print X
|
T F
6: Z =1 7. Z =3
I J
8: pr‘}ntY,Z

Figore 10: Data Flow Testing Example.

In addition to using control or data flow information, path selection techniques have
been developed that relate directly to the elimination of potential errors in program
statements. Perturbation testing [HALES82, ZEIL83] attempts to compute the set of
potential errors in arithmetic expressions that cannot possibly be detected by testing only the
current set of selected test paths, regardless of the test data selection techniques employed
for those paths. Perturbation testing derives a set of characteristic expressions that describe
the undetectable perturbations (errors). This information can be used to select additional
paths that must be tested in order to detect these possible perturbations. As an example,
consider the flow chart in Figure 11. Along path (..,7,9,..) the value of Z is the same as
the value of 2#*X at node 9. Any error in the predicate at node 9 that can be
represented by k * (Z — 2#X), where k is a constant, could not be detected along path
(...,7.9,...). For instance, if the branch predicate at node 9 should have been Z — X > Y,
the error would not be detected. Along path (..,89,..), however, this equality does not
hold and thus the error could be detected. In general, another proposed path will be a
useful test if, and only if, it eliminates one or more expressions describing undetectable
perturbations. In effect, perturbation testing systematically captures the interesting error
detection capabilities of mutation testing [BUDD81], a method that sequentially introduces a
large number of small errors (mutants) into a program and then determines which of these
errors were not detected by the selected test data. The perturbations of a statement can
be represented by using modified symbolic evaluation techniques. Perturbation testing is
currently being implemented as an extension to the ATTEST symbolic evaluation system.

43. Test Data Selection

Symbolic evaluation, like most other methods of program analysis, does not actually
execute a routine in its natural environment. Evaluation of the path computation for
particular input values returns numeric results, but because the environment has been
changed, these results may not always agree with those from normal execution. Errors in

25

7 Z = 2X 8: Z = 2»Y

S —

Figore 11: Petorbation Testing Example.

the hardware, operating system, compiler, or symbolic evaluation system itself may cause an
erroneous result. It is thus important to test the routine on actual data. In addition,
testing a routine demonstrates its run—time performance characteristics.

The symbolic representation of a path can be used as the basis on which to select
test data for that path. The most straightforward technique simply examines the PC to
determine a solution — that is, one arbitrary test datum to execute the path. As noted
previously, SELECT [BOYE75] and ATTEST are two path—dependent symbolic evaluation
systems that generate such test data by using an algebraic technique for determining PC
consistency.

More rigorous techniques have been proposed that attempt to capture the ideas
underlying several error—sensitive heuristics [MYER79, FOST80, WEYUS1, REDW83]. The
error—sensitive techniques attempt to characterize potential errors in terms of their effects
on a path. For these techniques, errors are classified into two types, computation errors
and domain_errors, according to whether the effect is an incorrect path computation or an
incorrect path domain. A domain error may be either a missing path error, which occurs
when a special case requires a unique sequence of actions but the program does not
contain a corresponding path, or a path selection error, which occurs when a program
recognizes the need for a path but incorrectly determines the conditions under which a
path is executed. A number of test data selection techniques focus on the detection of
either domain or computation errors. These techniques analyze the symbolic representations
created by symbolic evaluation and select data for which the path computation and path
domain appear sensitive to errors. A difficult problem, which must be addressed by these
techniques, is the possibility that an error on an executed path may not produce erroneous
results; this is referred to as coincidental correctness. For an example, note that the second
multiplication operator in statement 5 of RECTANGLE should be an exponentiation
operator. If this statement is only executed when A=00 or A=10, then the actual resulting
value and the intended value agree. Although this is a contrived example, coincidental
correctness is a common phenomenon of testing. One goal, therefore, is to minimize the
occurrence of coincidentally correct results by astutely selecting test data aimed at exposing,
not masking, errors.

In RECTANGLE there are five errors, one computation error, three missing path
errors, and a path selection error. As noted above, the first error is caused by an
erroneous computation at statement 5; statement 5 should be AREA := F[0] + F[1}»X +
F[2]+X++2. The second and third errors are caused by an erroneous check for a valid
input value for h when a > b (the input check is only correct if a < b). If a > b, then
h must be negative (error two) and its absolute value must be less than a — b (error
three). Both errors two and three are missing path errors. Moreover, h cannot be zero,
regardless of the relationship between a and b or an infinite loop results; this is the fourth

26

error, which is also a missing path error. A correct check for valid input follows:

if (A>Band H = 00) or (A <B and H = 00) then ERROR := true;

else if (abs (H) > abs (B — A)) then ERROR := true;
Another situation, which might be considered a fifth error, occurs when a + int(-a/h +
b/h) * h < b, since the area under the quadratic is computed beyond the point specified
by b. A more accurate algorithm would add in the area of a smaller rectangle on the
last iteration of the loop (or subtract the excess upon exit). In the ensuing discussion it is
shown how four of these five errors are detected by test data selection techniques based on
symbolic evaluation.

Computation testing techniques select test data aimed at revealing computation errors.
One approach analyzes the symbolic representations of the path computation. This
approach is based on the assumption that the way an input value is used within the path
computation is indicative of a class of potential computation errors. Analysis of the
symbolic representation of the path computation reveals the manipulations of the input
values that have been performed to compute the output values. In general, a path
computation may contain arithmetic manipulations or data manipulations, which are
inherently sensitive to different classes of computation errors. Guidelines have been
proposed for selecting test data aimed at revealing computation errors that are considered
likely to occur for both types of path computations [CLARS3a]. One of these guidelines
states that each symbolic name corresponding to a multiplier in the path computation
should take on the special values zero, one, and negative one, as well as nonextremal and
extremal values. Note that such a selection of values for A in RECTANGLE would
reveal the first error.

Theoretical results have shown that more rigorous computation testing techniques can
guarantee the absence of certain types of computation errors when the path computations
fall into well-behaved functional classes. For example, there are a few techniques that can
be applied if the symbolic value for an output parameter is a polynomial. For a univariate
polynomial with integer coefficients whose magnitudes do not exceed a known bound, a
single test point can be found to demonstrate the correctness of that polynomial [ROWLS1].
Alternately, for a univariate polynomial of degree N, N+1 test points are sufficient
[HOWD78a]. Probabilistic arguments have been made for reducing this number without
sacrificing must confidence [DEMI78). Similar results have been provided for multivariate
polynomials.

In a similar way, when the path computations fall into other specialized categories,
the computation testing guidelines can be tuned to guide in the selection of a more
comprehensive set of test data. For example, if a path computation involves logic functions
[FOST84] or trigonometric functions, then guidelines dependent upon their properties should
be exploited. In RECTANGLE, an example for which an extended set of guidelines are
required is the Int function that appears in the computation of AREA. Data should be
selected so that the dropped remainder that results from applying the Int function takes on
the value zero and both positive and negative values. Data satisfying this extension would
alert the tester to the poor termination condition (the fifth error).

Domain_testing techniques [CLARS2, WHITS80] concentrate on the detection of
domain errors by analyzing the path domains and selecting test data “on” and slightly “off”
the closed borders of each path domain. If the correct results are produced for each of
the on and off test points, the border must be “close” to the correct border. An
undetected border shift can only occur if the on test points and the off test points lie on

27

opposite sides of the correct border. The undetectable border shifts are kept “small” by
choosing the off test points as close to the border being tested as possible. In fact, with
the proper selection of on and off test points, a quantified error bound measuring the set
of elements placed in the wrong domain by an undetected border shift can be provided.
Figure 12 illustrates a border shift, where G is the given border, C is the correct border,
and the set of elements in the wrong domain is shaded. The border shift is revealed by
testing the on points P and Q and the off points U and V, since V is in the wrong
domain. For a border in higher dimensions, 2#v (where v is the number of vertices of the
border) test data points must be selected for best results. A thorough description of the
domain testing technique and its effectiveness is provided in [CLARS2]. Figure 13 shows
the test data selected for the paths in RECTANGLE to satisfy the domain testing
technique. The only closed border is (a — b + h = 00). If extremal values of 1000 and
—1000 are assumed for the inputs A and B, this border has six vertices. The figure
indicates whether each datum is an on point or an off point (on or above the border).
Four of the five errors in RECTANGLE are revealed by domain testing. Error one is
detected by execution of any of the on points. Error two is detected by either of the two
off points (a = 1000 and b = 9999 and h = 001) or (a = -9999 and b = -1000 and
h = 001). Error four is detected by either of the two on points (a = 1000 and b =
1000 and h = 00) or (a = -1000 and b = —1000 and h = 00). The inaccurate
termination condition (error five) is revealed by testing either of the off points (a = 100.0
and b = 9899 and h = -10) or (a = —9899 and b = —1000 and h = -1.0). The third
error is a missing path error that will not be detected by domain testing. This error
occurs when (a >b) and (h <00) and (absth) > a — b), which implies that
a — b + h <00; this describes points in the domain but not on the closed border and
thus will not be selected by domain testing.

Figure 12: Domain Testing Strategy.

28

Conditions for on points for (a — b + h < 0.0)
1000 and b = 990 and h = —-10
990 and b = 1000 and h = 10
1000 and b = 1000 and h = 00
—1000 and b = —990 and h = 10
—1000 and b = -1000 and h = 00
-99.0 and b = -1000 and h = -10

1 | | N O |

B RPN

Conditions for off points for (a — b + h < 00)
1000 and b = 9899 and h =
99.01 and b = 1000 and h = 10
1000 and b =

-1000 and b = =
—9999 and b = —1000 and h = 001
-9899 and b = =

nunnwnu

PR PR

Figure 13: Conditions for Satisfying Domain Testing Strategy for RECTANGLE.

Existing domain testing techniques are aimed at the detection of path selection errors.
As illustrated in the example, missing path errors may not be detected by such techniques.
A missing path error is particularly difficult to detect since it is possible that only one
point in a path domain should be in the missing path domain; the error will not be
detected unless that point happens to be selected for testing. When a missing path error
corresponds to a missing path domain that is near a boundary of an existing path domain,
then the error may be caught by domain testing techniques, as occurred in RECTANGLE
for errors two and four. Missing path errors cannot be found systematically, however,
unless a specification is employed by the test data selection method, as is discussed in
Section 4.6.

In sum, the symbolic representations created by symbolic evaluation appear to be
quite useful in determining what test data should be selected in order to have confidence
in a path’s reliability. This is a promising, yet relatively new, research area that should be
explored further.

44. Debugging

It is not surprising that symbolic evaluation, which is useful for guiding testing, can
also be used to help discover the cause of an error — that is, for program debugging.
When an error is revealed on a path that has been symbolically evaluated, then the
symbolic representations of the path computation and path domain can be examined to
obtain information about the cause of a known error. Once an error is known to exist,
the programmer knows at least one algebraic expression that is in error and can focus on
that expression in search of clues to the actual cause of the error. In addition to the
symbolic representations of the erroneous statments, symbolic evaluation systems could
provide a list of the executed statements that affected the algebraic expression in error;
only those statements need be examined to determine the cause of the error. This is similar
to program slicing [WEIS81], a technique that provides a modified listing of the source
program containing only the statements that could affect selected statements.

29

To assist in debugging, dynamic testing systems often provide a capability for
examining the computation trees for the symbolic representations while they are being
constructed statement—by—statement. = Some of these systems allow the user to stop
execution at any statement and “unexecute”. In other words, the user can direct the
system to undo part of the preceding execution. This “unexecution” would show the reverse
evolution of the computation trees. Observing both the evolution and reverse evolution of
the trees can help the user isolate an error. Experiments with the dynamic testing system
ISMS [FAIR75] have shown that both of these features are beneficial for debugging.
Similiar capabilities are possible with interactive path—dependent symbolic evaluation systems.

Testing strategies that rely on symbolic evalutation information can also use that
information to provide valuable assistance to the debugging process [CLARS3b). For
example, if a test case that was selected with the goal of exposing a particular type of
error indeed resulted in an error, then the goal and the information used to find a test
case satisfying that goal would be useful during debugging. We suspect that, like the way
optimization techniques have been modified to provide interesting data flow validation
techniques [OSTES1], testing techniques can also be redirected to be useful debugging tools.

45. Program Optimization

Symbolic evaluation also has applications in program optimization [TOWN76]. The-
internal representation of the path values [COCK70], can be used for common subexpression
elimination and conmstant folding. In addition, several types of loop optimizations may
sometimes be performed when the loop expressions are obtainable by global symbolic
evaluation. Loop-—invariant computations may be easily detected since they are independent
of the iteration count of the loop; these may thus be moved outside of the loop. Loop
fusion can sometimes be performed when the number of iterations performed by two loops
can be determined to be the same and variables referenced in the second loop are not
defined in a later iteration of the first loop. When variables modified within the loop
have values that form arithmetic progressions — that is, they are incremented by the same
amount each time through the loop — these computations can sometimes be moved out of
the loop and replaced by expressions in terms of the final loop iteration count.
Optimizations that perform in-line substitution of a routine may also benefit from global
symbolic evaluation, since the closed form representation of the routine may enable better
determination of when such substitution is useful.

The REDFUN system [BECK76, EMANS0] uses symbolic evaluation to enhance the
performance of LISP programs. In addition, Osterweil [OSTES81] describes a method in
which data flow analysis and symbolic evaluation can be used jointly to optimize code,
particularly the instrumented code created by dynamic testing systems.

4.6. Software Development

In this paper we have focused on the analysis of the code. Software validation,
however, should be concerned with all stages of program development. As work progresses
in the areas of requirements, specifications, and design, symbolic evaluation methods are
proving to be useful for these earlier stages of software development as well [CHEA79b,
RICHS8]a).

30

Symbolic evaluation of a formal specification has been proposed as an alternative to
early prototype development. Symbolic evaluation systems have has been built for the
GIST [COHES2] and INAJO [KEMMB84] specification languages. In these systems, symbolic
evaluation is used in an attempt to characterize the behaviors that satisfy a given
specification. Logic errors in the specification that are uncovered are pointed out as
unintended or missing behaviors. As was similarly noted for programs, symbolic evaluation
of a specification tests a range of possible inputs as opposed to the concrete execution of a
prototype, which for each test case only tests a single path for a unique set of inputs.

Using a specification of the intended function of a program to help with testing, as
opposed to only considering the code itself, has often been suggested {[GOOD?75, RICH78b,
WEYUS80]. The partition analysis method [RICHS8la] attempts to accomplish this by
applying global symbolic evaluation to a routine, as well as to its specification, thus creating
global representations of both. By comparing these two representations, a partition of the
domain is determined. This partition is then utilized in verifying the routine’s consistency
with the specification. Information derived from this verification process along with
error—sensitive testing strategies are applied to guide in the selection of test data. Test
data selection is thus based on the specification and not only the implementation, as such
partition analysis is one of the few testing techniques to address missing path errors. A
preliminary study of this method showed it to be quite effective at discovering errors
[RICHS82]. Partition analysis has been applied to several different kinds of specification
languages including predicate calculus [GOURS1), state transitions, and both high—level and
low-level procedural languages [RICHS81b). Thus, the basic ideas of applying symbolic
evaluation to pre—implementation descriptions and comparing two representations at different
levels of detail seems to be generally applicable to a wide range of languages and at
various stages in the lifecycle; it can be applied to compare software specifications to
designs, high—level to low—level designs, VLSI specs to VLSI designs, and so on.

Symbolic evaluation has also been used to support program construction. Tinker
[LIEB80], Pygmalion [SMIT75], and Curry [CURR78] are experimental systems that allow
the user to express program requirements in terms of symbolic representations and then an
attempt is made to construct the program automatically based on the examples provided.
Similarly, Waters [WATE79] uses symbolic evaluation, in conjunction with a library of
common program patterns, to synthesize programs.

S. SUMMARY

Symbolic evaluation is of interest because it is the foundation for a number of
software engineering techniques. This paper describes three methods of symbolic evaluation.
Although the symbolic representations provided by each of the three methods are similiar,
they differ enough to substantially affect the cost as well as the types of subsequent
program analysis that can be performed. If dynamic symbolic evaluation maintains only the
information required to develop the final symbolic representations, its applications are
usually restricted to program debugging. Path—dependent symbolic evaluation maintains
more general information about a path and thus has a more extensive range of
applications, including test path selection, test data generation, and certification. Global
symbolic evaluation analyzes all paths and maintains a global representation of a routine
and thereby has applications to program optimization and verification in addition to the
applications of path—dependent symbolic evaluation. While all three methods of symbolic
evaluation have been implemented in experimental systems, efficient, more useful
implementations pose several problems.

31

Initially, symbolic evaluation was employed by formal verification techniques to
formulate the verification conditions that must be proven. As discussed in this paper, there
are several less comprehensive ways in which verification can be done in the context of
symbolic evaluation. Another alternative is the partition analysis method, which integrates
testing and verification.

For the path selection aspects of testing, symbolic evaluation is useful in determining
path feasibility for the control and data flow criteria. It is also being used in the analysis
employed by perturbation testing. It is interesting to note that path selection and symbolic
evaluation have a symbiotic relationship. Symbolic evaluation is used to guide the selection
of paths, which are then symbolically evaluated. Thus, adaptive systems, where path
selection and symbolic evaluation dynamically interact, should be considered. Several test
data selection techniques are being developed that select data based on an examination of
the symbolic representations created by symbolic evaluation. Both computation and domain
testing techniques have been proposed which use this approach. While the initial work in
this area is quite promising, better, as well as more integrated, techniques must be
developed.

For the most part, current research is addressing the issues of verification, path
selection, test data selection, debugging, optimization, and development as independent
topics. It is clear, however, that these topics are closely related and eventually should be
integrated into a software development environment.

REFERENCES

BALZ69 RM. Balzer, “EXDAMS—Extendable Debugging and Monitoring System”, 1969
Spring Joint Computer Conference, AFIPS Conference Proceedings, 34, AFIPS
Press, Montvale, New Jersey, 576—580.

BECK76 L. Beckman, A. Haraldson, O. Oskarsson, E. Sandewall, “A Partial Evaluator
and Its Use As A Programmong Tool”, Artificial Intelligence 7, 1976.

BOGE75 R. Bogen, “MACSYMA Reference Manual”, The Mathlab Group, Project MAC,
Massachusetts Institute of Technology, 1975.

BOYE75 RS. Boyer, B. Elspas, and KN. Levitt, “SELECT—A Formal System for
Testing and Debugging Programs by Symbolic Execution”, Proceedings of the

tional Co ce_on Reliab are, April 1975, 234-244,.

BOYE79 RS. Boyer and J.S. Moore, A_Computational Logic, Academic Press, 1979.

BROW73 WS. Brown, Altran User’s Manual, 1, Bell Telephone Laboratories, 1973.

BUDDS81 T.A. Budd, “The Portable Mutation Testing Suite”, Department of Computer
Science, University of Arizona, Technical Report 83-8, March 1983.

CHEA79a TE. Cheatham, G.H. Holloway, and J.A. Townley, “Symbohc Evaluatxon and
the Analysis of Programs”, ansacti i
4, July 1979, 402-417.

CHEA7T9 TE. Cheatham, J.A. Townley, and G.H. Holloway, “A System for Program
Refinement”, Proceedings of the 4th International Conference of Software
Engineering, September 1979, 53—62.

CLAR76 L.A. Clarke, “A System to Generate Test Data and Symbolically Execute
Programs”, IEEE Transactions on Software Engineering, SE-2, 3, September
1976, 215-222.

CLAR78 L.A. Clarke, “Automatic Test Data Selection Techniques”, Infotech State of the

Art Report on Software Testing, 2, September 1978, 43—64.
CLAR81 L.A. Clarke and DJ. Richardson, “Symbolic Evaluation Methods ~—

32

Implementations and Applications”, Computer Program Testing, North—Holland
Publishing Co., B.Chandrasekaran and S.Radicchi (eds.), 1981, 65-102.

CLAR82 L.A. Clarke, J. Hassell, and DJ. Richardson, “A Close Look at Domain
Testing”, IEEE Transactions on Software Engineering, SE-8, 4, July 1982,
380-390.

CLARS83a L.A. Clarke and DJ. Richardson, “A Rigorous Approach to Error—Sensitive
Testing”, Sixteenth Hawaii International Conference on System Sciences, January
1983.

CLARS3b L.A. Clarke and DJ. Richardson, “The Application of Error—Sensitive Testing

Strategies to Debugging”, ACM SIGSOFT/SIGPL AN Symposium on High—Level
Debugging, March 1983.

COCK70 J. Cocke and J.T. Schwartz, Programming Languages and Their Compilers, New
York University, Courant Institute of Mathematical Science, April 1970.

COHES82 D. Cohen, W. Swartout, and R. Balzer, “Using Symbolic Execution To
Characterize Behavior”, ACM SIGSOFT Rapid Prototyping Workshop, Software
Engineering Notes, 7,5, December 1982, pp25-32.

CURR78 G. Curry, “Programming by Abstract Demonstration”, Ph.D. Thesis, University
of Washington at Seattle, 1978.

DAVI7Z3 M. Davis, “Hilbert’s Tenth Problem is Unsolvable”, American Math. Mon., 80,
March 1973, 233-269.

DEMI78 R.A. DeMillo and RJ. Lipton, “A Probabilistic Remark on Algebraic Program
Testing”, Information Processing Letters, 7, June 1978.

DEUT73 L.P. Deutsch, “An Interactive Program Verifier”, Ph.D. Dissertation, University
of California, Berkeley, May 1973.

DILLS1 LK. Dillon, “Constraint Management in the ATTEST System”, University of
Massachusetts, Department of Computer and Information Science, Technical
Report 81-9, May 1981,

EMANS0 P. Emanuelson, ‘Performance Enhancement in a Well-Structured Pattern
Matcher Through Partial Evaluation”, Linkoping Studies in Science and
Technology Dissertations, No.55, Linkoping University, Sweden, 1980.

FAIR7S RGE. Fairley, “An Experimental Program-Testing Facility”, JEEE Transactions
on_Software Engineering, SE—1, 4, December 1975, 350-357.

FLOY67 R.W. Floyd, “Assigning Meaning to Programs”, Proceedings of a Symposium_in
Applied Mathematics, 19, American Mathematical Society, 1967, 19-32.
Communications of the ACM, 14, 1, January 1971, 39—4S.

FOST80 K.A. Foster, “Error Sensitive Test Case Analysis (ESTCA)”, IEEE Transactions

on Software Engineering, SE—6, 3, May 1980, 258—264.
FOST84 K.A. Foster, “K.A. Foster, “Sensitive Test Data for Logical Expressions”, to

appear in ACM SIGSOFT Software Engineering Notes, Vol.9, No3, July 1984.

GABO76 HN. Gabow, SN. Maheshwari, and LJ. Osterwexl “On Two Problcms in the
Generation of Program Test Paths”, :
SE-2, 3, September 1976, 227-231.

GOOD75 JB. Goodenough and S.L. Gerhart, “Toward a Theory of Test Data Selection”,
IEEE Transactions on Software Engineering, SE-1, 2, June 1975, 156-173.

GOURS1 JS. Gourlay, “Theory of Testing Computer Programs”, Ph.D. Thesis, University
of Michigan, 1981.

HALE82 A. Haley and S. Zweben, “Development and Application of a White Box
Approach to Integration Testing”, Workshop op Effectiveness of Testing and
Proving Methods, Avalon, California, May 1982.

HANT76 S.L. Hantler and J.C. King, “An Introduction to Proving the Correctness of
Programs”, Computing Surveys, 83, September 1976, 331-353.

HOAR71
HOWD75
HOWD76
HOWDT?
HOWD78a
HOWD78b
HUANT75

KEMM84

KING69
KING76
LAND73

LASK79

LASKS3
LIEB80
LOND75

MILL75

MYERT79
NTAF81
OSTES1

PLOE7?9

RAMA76

RAPP82

33

C.AR. Hoare, “Proof of a Program: FIND”, Communications of the ACM,
14,1, January 1971, 39—45.

WE. Howden, “Methodology for the Generation of Program Test Data”, [EEE

Transactions on Computer, C—24, 5, May 1975, 554-559.

WE. Howden, “Reliability of the Path Analysis Testing Strategy”, IEEE

Transactions on_Software Engineering, SE-2, 3, September 1976, 208-215.

WE. Howden, “Symbollc Testmg and the DISSECT Symbolic Evaluation

System”, 8 Software gineering, SE-3, 4, July 1977,

266—278.

W.E. Howden, “Algebraic Program Testing”, ACTA_Informatica, 10, 1978.

WE. Howden, “An Evaluation of the Effectiveness of Symbolic Testing”,

Software: Practice and Experience, 10, July—August 1978, 381-397.

J.C. Huang, “An Approach to Program Testing”, ACM Computing Surveys, 7,

3, September 1975, 113-128.

R.A. Kemmerer, “Testing Formal Specifications to Detect Design Errors”,

University of California at Santa Barbara, Department of Computer Science,

Technical Report 84—06, March 1984, to appear in JEEE_ Transactions on

Software Engineering.

JC. King, “A Program Verifier”, Ph.D. Dissertation, Camegie—Mellon

University, Pittsburgh, PA, September, 1969.

J.C. King, “Symbolic Execution and Program Testing”, CACM, 19, 7, July 1976,

385-39%4.

AH. Land and S. Powell, FORTRAN Codes for Mathematical Programming,

John Wiley and Sons, New York, New York, 1973.

J.W. Laski, “A Hierarchical Approach to Program Testing”, Department of

Systems Design, University of Waterloo, Waterloo, Ontario, Canada, Technical

Report No.S5CFW130779.

J.W. Laski and B. Korel, “A Data Flow Oriented Program Testing Strategy”,
ansactions e_Engineering, SE-9,3, May 1983, 347-354.

H L Lleberman and C. Hewntt “A Session with Tinker: Interleaving Program

Testing with Program Design”, 1980 Lisp Conference, Stanford University, 1980.

RL. London, “A View of Program Verification”, Proceedings International

Conference op Reliable Software, April 1975, 534-545.

E.F Mlller and R.A Melton, "Automated Generation of Test Cast Data—Sets"

51-58.
GJMyers, The Art of Software Testing, John Wiley & Sons, New York, New
York, 1979,

S.C. Ntafos, “On Testing With Required Elements”, Proceedings of COMPSAC
81, November 1981, 132-139.

LJ. Osterweil, “Software Engineering”, Program Flow_Analysis: Theory and
Applications, Prentice Hall, Englewood Cliffs, New Jersey, 1981.
E Ploedereder “Pragmatlc Techmques for Program Analym and Venﬁatlon ,

September 1979, 63-72.
C.V. Ramamorthy, SF. Ho, and W.T. Chen, “On the Automated Generation of

Program Test Data”, IEEE Transactions on Software Engin eering, SE-2, 4,
December 1976, 293-300.

S. Rapps and EJ. Weyuker, “Data Flow Analysis Techniques for Test Data

Selection”, Sixth International Conference on Software Engineering, October
1982.

REDW83

RICH78a

RICH78b

RICHS1a

RICHS81b

RICHS82

ROWLS1

SMIT75
STUC?
TOWNT76

VOGES0

WATED
WEISS81

WEYUS80

WEYUSI1

WHITS0

WINT78

WOODS80
ZEIL83

34
S.T. Redwine, “An Engineering Approach to Test Data Design”, JEEE
Transactions on_Software Engineering, SE-9, 2, March 1983, 191-200.
DJ. Richardson, L.A. Clarke, and DJL. Bennett, “SYMPLR, SYmbolic
Multivariate Polynomial Linearization and Reduction”, University of
Massachusetts, Department of Computer and Information Science, Technical

Report 78-16, July 1978.
DJ. Richardson, “Theoretical Consideration in Testing Programs

Demonstratmg Consnstency with Specxficat:ons Digest of the Workshop gn

tw : entation, December 1978, 19-56.
DJ. Rlchardson, L.A. Clarke, “A Partition Analysis Method to Increase
Program Reliability”, ational Conferen i
March 1981, 244-253.
DJ. Richardson, “Specifications for Partition Analysis”, University of
Massachusetts, Department of Computer and Information Science, Technical
Report 81-34, August 1981.
DJ. Richardson and L.A. Clarke, “On the Effectiveness of the Partition
Analysis Method”, ings o i ternational Comput
Software and Applications Conference, November 1982, 529-538.
J.H. Rowland and PJ Davis “On the Use of Transcendentals for Program
Testing”, Journal s _Ass) _fo g _Machinery, 28,1, January
1981, 181-190.
D.C Smith, “Pygmalion: A Creative Programming Environment”, Stanford Ph.D.

“Automatic Generation of Self—Metric

Thesis, 1975.

L.G. Stucki, Software”, Rec. 1973
Symposium_on_Software Reliability, April 1973, 94-100.

J.A. Townley, “The Harvard Program Manipulation System®, Center for
Research in Computing Technology, Harvard University, TR-23-76, 1976.

U. Voges, L. Gmeiner, and A. Amschler von Mayrhauser, “SADAT — An
Automated Testing Tool”, JEEE Transactions on Software Engineering, SE—6, 3,
May 1980, 286-290.

R.C. Waters, “A Method for Analyzing Loop Programs”, JEEE Transactions on
Software Engineering, SE-5, 3, May 1979, 237-247.
M. Weiser, “Program Slicing”, ation:
Engineering, March 1981, 439449,

EJ. Weyuker and TJ. Ostrand, “Theories of Program Testing and the
Application of Revealing Subdomains”, JEEE _ Transactions on Software
E:M, SE_6: 3: May 19&): 236-246.

EJ. Weyuker, “An Error—Based Testing Strategy”, New York University,
Computer Science Department, New York, New York, Technical Report 027,
January 1981.

LJ. White and EI Cohen, “A Domain Strategy for Computer Program
Testing”, IEEE Transactions on Software Engineering, SE—6, 3, May 1980,
247-257.

D. Winters, N. Ogden, and L.A. Clarke, “A Definition of AID: the ATTEST
Interface Description Language”, University of Massachusetts, Department of
Computer and Information Science, Technical Report 78—15, December 1978.
J.L. Woods, “Path Selection for Symbolic Execution Systems”, Ph.D. Dissertation,
University of Massachusetts, May 1980.

SJ. Zeil, “Testing for Perturbations of Program Statements”, IEEE Transactions

on_Software Engineering, SE-9, 3, May 1983, 335-346.

Conferen Software

