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I. INTRODUCTION

Among the many classes of tasks that have been formalized by theorists interested
in learning are 1) the 6ptimization probl:ms under uncertainty focussed upon by those
studying learning automata, and 2) the supervised learning pattern-classification tasks
which have been studied extensively since the early 1960s. In this article we describe a
class of learning tasks that combines these two standard types of problems, and we present
an algorithm for which we prove a form of optimal performance in these hybrid tasks
by extending Lakshmivarahan’s (1}, (2], proof for time-varying stochastic automata. We
call this algorithm the associative reward-penalty, or Ap_p, algorithm. Under one set
of restrictions, it specializes to a stochastic learning automaton algorithm, in particular,
to a nonlinear reward-penalty algorithm of the non-absorbing type as characterized by
Lakshmivarahan {2]. Under another set of restrictions, it specializes to the well-known
perceptron algorithm of Rosenblatt (3] and, with a minor modification, to a supervised
learning pattern-classification method based on the Robbins-Monro stochastic approxima-
tion procedure [4]. Our interest, however, is in the case in which both of these aspects
of the algorithm operate simultaneously—yielding a pattern-classifying stochastic learning

automaton.

This algorithm is the product of an effort to provide a formal basis for earlier results
obtained by computer simulation [5}-[9]. Our interest in this algorithm is a result our
simulation experiments with networks of adaptive components implementing similar algo-
rithms, and we discuss the implications of this approach below. Such adaptive elements
constitute “self-interested” network components, the study of which was suggested to us
by the theory of memory, learning, and intelligence developed by Klopf [10], [11], in which
is proposed a class of algorithms similar to that studied here. To the best of our knowl-
edge, the closest approximation to the particular algorithm presented here is the %selective
bootstrap adaptation algorithm of Widrow, Gupta, and Maitra | 12}, and we discuss this
algorithm below. Also related is the much earlier stochastic pattern-classifying adaptive
element of Farley and Clark [13]. As we discuss below (and as extensively discussed in refs.
[5] and [8]), later pattern-classification algorithms were designed for tasks that differ in an

essential way from the task considered here. The Ag_p algorithm also has parallels with
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aspects of the “stimulus sampling theory” of mathematical psychology [14]-[17), although
that research did not make contact with pattern-classification techniques. One study that
combines stochastic automaton and pattern-classification algorithms is that of Jarvis [18],

but the resulting algorithm is different from our own.

Before we define the learning tasks in which we are interested, which we call associative
reinforcement learning tasks,! we briefly describe the most common learning automaton
task, a commonly studied supervised learning pattern-classification task, and certain types
of algorithms that have been applied to each.

II. LEARNING AUTOMATA

The theory of learning automata originated with the work of Tsetlin [19] and the
independent research of mathematical psychologists [14)-{17], and has been extensively
developed since then. Good reviews are provided by refs. [20] and [21]. Also relevant is
the independently developed line of research concerning the “two-armed bandit problem”
(e.g., refs. [22] and [23]). The framework in which learning automata have been most
widely studied consists of an automaton and an environment connected in a feedback loop.
The environment receives each action emitted by the automaton and produces a signal,
which acts as input to the automaton, that evaluates the suitability of that action. The
evaluative feedback, which usually indicates succesa or faslure, is probabalistic—there can
be a nonzero probability of either evaluation from the environment in response to any action
of the automaton. It is assumed that nothing is known a priors about the probabilities
with which the environment determines success and failure feedback. An automaton that
tends to increase its expectation of success is said to be a learning automaton. Ideally,
one wishes the automaton eventually to emit only the action corresponding to the largest

probability of success.

More formally, at each time step &, the automaton selects an action, ag, from a finite

action set, 4 = {aV),...,a()}. The environment receives a; as input and sends to the

! In earlier publications by Barto and colleagues [5]-[0], these tasks were called associative search tasks,
but we use the ptesent terminology to avoid confusion with the unrelated usage of the same term in
the fleld of information retrieval.



automaton an evaluation b € B = {1,-1}, where 1 and —1 respectively indicate success
and faslure. The environment is characterised by its input set A, output set B, and a
set of success probabilities, {d(!),...,d(")}, where d() = Pr{b, = 1| ag = al)}. If these
success probatilities remain constant over time, the environment is said to be stationary;
otherwise, it is said to be nonstationary. The success probabilities are unknown from the

start.

The class of learning automata relevant to this article consists of variable-structure
stochastic (VSS) learning ;\utomata, which can be described as methods for updating action
probabilities. At each time step k, the automaton selects an action from A according
to a probability vector pp = (;3}:),.. ('))T, where p“ = Pr{a; = a)} and the T
indicates transpose. These automata implement a common-sense notion of reinforcement
learning: If action a!") is chosen and the environment’s feedback indicates success, then
pl) is increased and the probabilities of the other actions are decreased; whereas if the
feedback indicates failure, then p(*) is decreased and the probabilities of the other actions
are increased. Many methods that have been studied are similar to the following linear

reward-penalty ( Lp_p ) method:

If a; = a®) and the resultant evaluation is success (i.e., by = 1), then

pidy =pf) + a1 - pf)

(1)
i =(1-a)pf), j#i.
If a; =a®) and b = —1 (failure), then
pit, =(1-B)pf
(2)

o =Lt -, 2,

where 0 < a,f < 1. When a = g, the algorithm is the symmetric Lg_p algorithm, and
when 8 = 0, it is called the linear reward-sinaction ( Lg-1) algorithm.

The behavior of learning automata is studied with respect to several measures of

asymptotic performance [1], (20], [21). The expected probability of success at step &
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is

M, =Y dtpf). (3)

i=1
Letting M° = 137, d® and d' = max;{d")}, a learning automaton is ezpedient if
limg—oo B{M} > M°; optimal if limy_E{M;} = d'; e-optimal if for every € > 0,
algorithm parameters exist such that limg_. E{M,} > d' —¢; and absolutely ezpedient if
E{Mys1 — My | p&} > 0 for all k and all p{" € (0,1).

A considerable body of theory exists for VSS automata in stationary environments. Itis
known, for example, that any Lp_p algorithm is expedient for any stationary environment
and that the Lg_; algorithm is e-optimal. Necessary and sufficient conditions for the e-
optimality of a large class of algorithms have been developed, and many algorithms satisfy
these conditions. However, no algorithm has been correctly shown to be optimal. We refer

the reader to refs. [20] and [21] for reviews of existing results.

For our purposes in this article, it is important to note that the only input received
by a learning automaton from its environment is the success/failure signal. While this
restriction serves well to focus attention on a pure form of decision under uncertainty, most
practical problems permit the possiblity of using information other than the evaluation
signal for improving performance. For example, in, 3 nonétationary environment, a learning
automaton of the type described above wlll contmuously adjust its action probabilities
as it tracks the time-varying optimal actlon This is seen most clearly in “switched”
and periodic environments in which the success probabilities are piecewise constant or
periodic functions of time [19]. Whenithe environmental probabilities change, a learning
automaton’s performance often decreases as it selects actions according to a probabiliiy
vector that was formed under the influence of environmental success probabilities that are
no longer present. On the other hand, if an automaton receives some indication of the
environment’s state, it can use this information to access action probabilities appropriate

for acting when the environment is in that state.

The usual way to construct a learning automaton that can discriminate between en-
vironmental states is to have it maintain a separate action probability vector for each

environmental state, and then use one of the algorithms described above to update the
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probability vector corresponding to the current state of the environment. This approach
amounts to the use of a “lookup-table” for acquiring and accessing appropriate action prob-
abilities. The table has an entry for each environmental state that can be discriminated.
This approach has been used in problems with periodic environments [21]; in the control
of Markov processes (1], [24]; and in the control of other types of systems, e.g., ref. [25].
Although it permits immediate extension of existing results about learning automata to
allow dependency on environmental state, this lookup-table approach shares the problems
inherent in any lookup-table method of storing a mapping: It can be costly in terms of
memory since each state requires a separate probability vector, and, more importantly, it
offers no possibility for generalizing among states in order to reduce storage requirements
and increase learning rate. The algorithm we present here is based instead on parame-
terizing the action probability vector and constructing a mapping from vectors of input
features representing environmental states to this parameter. In this regard, it is related

to certain pattern-classification algorithms which we discuss next.

III. SUPERVISED LEARNING PATTERN CLASSIFICATION

4_.;‘._ 3
In supervised learning pattern classification, as we shall use the term, the learning sys-

tem’s environment presents it with a sequ;‘ﬁé?’_df vectors, thought of as patterns, together
with a class label for each vector that indicates how that vector should be classified. A
sequence of patterns paired with the class labels is a “training sequence,” and the environ-
ment is often called a “teacher” or “supervisor.” 'Ehe learning system adjusts its decision
rule in order to match the given class label for each ﬁnember of the training sequence, or
more generally, to minimize the probability of misclassification. Since the resulting deci-
sion rule also applies to patterns not in the training sequence, the system performs a type
of generalization. It is this capacity for generalization that makes these methods useful for
storing information more compactly than would be possible with table-lookup methods (if

the form of generalization is appropriate for the problam at hand).

Supervised learning pattern classification has been studied intensely, and a good overview
is provided in ref. [26]. Hinton and Anderson [27] discuss the use of these and related

methods for associative information storage. Artificial Intelligence researchers study ver-



sions of this same type of problem as “learning from examples,” “concept formation,” or
sinductive inference® [26]. Here we are interested in pattern-classification algorithms based
on stochastic approximation methods. We follow the presentation given in refs. [4] and

[26] and consider only the case of two pattern classes.

Suppose that the pattern-classification syatem.’s environment determines a training
sequence by first selecting at each step a class w;, s = 1,2, according to the a prion
probability Pr{w;}, and then selecting a pattern vector according to the class-conditional
probability Pr{z|w;}. For each z let z be its class label, with z = 1 if class w; was
gelected and z = —1 if class wy was selected. The training sequence is therefore an
infinite sequence of independent pairs (z1,21), (£2,22), - - -, (Zks 28), - - . . The decision rule
that minimizes the probability of misclassification can be expressed in terms of the Bayesian
a postertori probabilities:

z€w, i Pr{w|z}- Pr{w]z}>0;
r€wy, if Pr{w|z}- Pr{ws]z}<0.
Since the Pr{w|z} are not known, one can attempt to find a parameter vector § € "

such that 8Tz best approximates Pr{wjz} — Pr{w;|z}, where 6Tz is the inner product

of 6§ and z, and then use the decision rule

zew, if 0Tz>0;

z € wy, it 6Tz<o.

It can be shown (e.g., ref [26]) that the mean-square approximation error is minimized

by finding the 6 that minimiges the functional
J(8) = E{(67z - 2)*}.

The functional J(8) is not known explicitly, but each step k in the training procedure
provides the opportunity to observe a sample error (0;{::,, ~ z:)2. The derivative of this
sample error with respect to 8; can be regarded as a noisy measure of the gradient of
J(0) with respect to 8:

y(6k) = 2(6F 22 — 2x]zs,
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for which it is true that
E{y(8)16} = VoJ(6).

In this case, V4J(0) has a unique gero at some value § = 6°. The problem is
therefore one of finding the zero of the unknown function r(8) = V,J(#) by using the
noisy measurements y(f) . The Robbins-Monro algorithm can therefore be applied. This
i8 a gradient-descent procedure that uses the random variable y(6) in place of the actual,

but unobservable, values of the gradient r(4):

Ok+1 = Ok — pry(6k). (4)

The following assumptions, from [4], are sufficient for the convergence result stated
below:?2

(A1): r(6) = E{y(0)|0} has a unique gero at § = 6°.

(A2): The sequence p; has the following properties:
Pk 20, Zpk = 00, z:pz < oo.
k k
(A3): r(8) behaves like a linear function for values of @ near 6°. That is

. _po T
‘<“a:g.{"<(_l [((0—6°)r(8)] >0, Ve>o0.
(A4):

E{liy(0)II?} < h(1 + (10 - 6°|?), h>o0.

If assumptions (A1)-(A4) are satisfied, then the algorithm (4) converges to the unique
value §° in the sense that
lim E{|j6, - 6°|?} = 0
k—o0
and
Pr{lim 6, =6°} =1.
k—oo

3 Results for a variety of less restrictive conditions have also been proven. See, for example, the review
[4]. However, our proof refers to the conditions stated here.
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Applied to the pattern classification problem, the Robbins-Monro algorithm takes the

form

Ops1 =0k — Pk[o;fzk - Z)zp. (5)

This algorithm can be related to the pseudoinverse of a linear operator and to regression
analysis [29]. A similar algorithm was presented by Widrow and Hoff (30] in the form of a
neuron-like adaptive element which they called an adaline (for adaptive linear element).

We now define an associative reinforcement learning task, in which each class label
of a supervised learning pattern-classification task is replaced by a success/failure signal
that depends probabilistically upon the action of the learning system and the pattern
vector. Then we discuss the distinction between this success/failure information and the

information provided by class labels.

IV. ASSOCIATIVE REINFORCEMENT LEARNING

In an associative reinforcement learning task, as we define it here, the learning system
and its environment interact in a closed loop. At time step k the environment provides the
learning system with a random pattern vector, zj, selected independently from a finite
set X = {zW,...,z(m}, z() € R ; the learning system emits an action, a, chosen from
a finite set A = {a('),. ..,a{"}; the environment receives a; as input and sends to the
learning system a success/failure signal b € B = {1,—1} that evaluates the action ag.
The environment determines the evaluation according to a map d: X x A — [0,1], where
d(z,a) = Pr{bi =1 | 2 = z,0: = a}. Ideally, one wants the learning system eventually
to respond to each input pattern z € X with the action a* with probability 1, where a*

is such that d(z,a%) = maxses{d(z,0)}-

Clearly, in the case of a single input pattern (1X] = 1), this task reduces to the
learning automaton task described above. On the other hand, in the case of two actions
(]A| = 2) the task reduces to the supervised learning pattern-classification task described
in Section III if for each z € X, d(z,aV)+d(z, a(?) = 1. Specifically, encode the actions
as al) = 1, a(® = -1, and define the class label to be 2z = byai, thus yielding the

class label 1 when action a; = 1 yields success (b = 1) or when action a; = -1 yields



failure (4% = —1). Similarly, the class label is —1 when action a; = 1 yields failure or
when action a; = —1 yields success. In other words, upon success, assume that the class
label provided by the teacher equals the action actually taken; upon failure, assume that
the class label equals the action not taken (this is what Widrow et al. mean by gelective

bootstrap adaptation®).

Then
Pr{zy =1z =z} = Pr{bp = l,a; = llik =z} + Pr{by = -1,a, = 1|z} = z}

= d(z,1)Pr{a; = l|zx = z} + [1 — d(z, -1))Pr{a = —1|z} = 1},
(6a)

and similarly

Pr{z; = 1|z = 2} = d(z, ~1)Pr{a; = —1|z; = z} + [1 — d{z, 1)|Pr{ay = 1|z, = z}.
(65)
In the supervised learning pattern-classification task, the probabilities given by (6a) and
(6b), which respectively equal Pr{wi|z} and Pr{ws|z}, are independent of the learning
system actions. This only occurs if for each z € X, d(z,a(")) + d(z,a(®) = 1, in which

case Pr{z; = 1z, = z} = d(z,1),

Pr{z; = ~1|z; = 2} = d(z, -1).
Under these conditions, a solution to the associative reinforcement learning task is a solu-

tion to the corresponding supervised learning pattern-classification task.

This reduction of associative reinforcement learning to supervised learning pattern-
classification requires the restriction to two actions since it must be possible to estimate,
on the basis of the action taken and the success/failure feedback, what the action should
have been (i.e., to estimate the class label of the input pattern). In the case of three or
more actions, a success/failure signal is clearly not as informative as a signal providing a
class label since evaluative feedback only provides information about the action actually
taken and not about any of the other actions. This remains true in the case of two actions
because an associative reinforcement learning task involving actions a(!) and a(® does
not require that d(z,a(!)) + d(z,a(®) = 1 for all z € X. It may be the case that for

some patterns the optimal action yields failure most of the time, or that the nonoptimal
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action yields success most of the time. The frequency of success produced by one action
provides no information about about the frequency of success produced by the other action.
Appendix I contains additional observations regarding this distinction and its implications

for algorithms.

Thus, even in the case of two actions, there is a deep distinction between associative
reinforcement learning and supervised learning pattern-classification. Supervised learning
pattern classification is more of a arote” form of learning than is associative reinforcement
learning. In the former task, the system need not discover which actions are optimal
by testing all actions and settling on the one that yields the highest evaluation, as a
learning automaton must do in the nonassociative case, and as is required in associative
reinforcement learning. Various extensions of the task defined here are of obvious interest
but are not discussed in the present article: Infinite pattern sets, statistical dependence
among the input patterns, dependency of input patterns on previous actions of the learning
system, delayed evaluation, etc. Extensions that allow control of pattern input as well
as evaluative input make contact with Markovian decision theory [31], [32] and studies
of learning automata for controlling Markov processes [1], [24]. In these latter studies,
however, the pattern-classification aspects of our problem are not considered. Simulation
studies of associative reinforcement learning involving pattern classification, control, and

delayed evaluation are reported by Sutton [33].

V. THE Agr-p ALGORITHM

The algorithm we have studied is a combination of a stochastic learning automaton
algorithm and the pattern-classification algorithm based on stochastic approximation (5).
It is restricted to the case of two actions, and like the stochastic approximation algorithm,
its decision rule is parameterizged at step k& by a vector 6, € R . Unlike that algorithm,

however, its decision is not a deterministic function of the input pattern:

if 8 0;
ak:{l, i Ezk+1lk> (7)

—1, otherwise;
where the n; are independent, identically distributed random variables, each having distri-
bution function ¥. The parameter vector is updated according to the following equation:
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—-p,,[E{aklo,,,z,,} —brag)zy, ifb=1 (success);

Okyr — O = { (8)

—Api[E{ax|0k, 22} — brag|ze, if by = —1 (failure);

where 0 < A <1 and p > 0. If A # 0, we call this the associative reward-penalty
(Agr-p) algorithm, and if A = 0, we call it the associative reward-inaction (Ap-71)
algorithm. Since the distribution ¥ is a part of the algorithm rather than a part of the
environment, it is assumed to be known. Consequently the expected value in (8) can be
determined as a known function of 6; and z;, and thus does not have to be estimated
(see below for a special case). We have retained the product bia; in (8) rather than

substituting the values for b; in order to emphasize its similarity to (5).

According to this algorithm, the action probabilities are conditional on the input pat-
tern in a manner determined by the parameter vector 8. If E{n} = 0, then when
0'{:,, = 0 the probability that each action is emitted, given input pattern =, is .5; when
02‘::,, is positive, action ap = 1 is the more likely action; and when OEz,, i8 negative, action
g = —1 is the more likely. As 6 changes according to (8), the mapping that determines
the action probabilities as a function of the input pattern changes. According to (8), 6
changes so as to reduce the discrepancy between the action expectation, E{ax|6),2:} , for

input pattern z;, and the estimated correct action, bia;, corresponding to z;.

Just as the associative reinforcement learning task reduces to examples of both the
learning automaton task and the supervised learning pattern-classification task under dif-
ferents sets of restrictions, this algorithm reduces to corresponding algorithms under cer-
tain sets of restrictions. We carry out this reduction in some detail since it makes the
nature of the algorithm and its relationship to existing algorithms clear. We first show

how it reduces to the two-action Lg_p algorithm.

Let each random variable 5; be uniform in the interval [—1,1] so that

0, ifr<-1;
¥(r)=Prim<r}={ (1+7r)/2, if-1<r< 1; (9)
1, ifr>1.
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Then
p{"Y = Pr{ay = ~1} = Pr{f] =i + n < 0}

= W(-0F z1),
and

pg"l) = Pr{ay=+1}=1- \I’(—OEZ;,).

We can write the expected value used in (8) as follows:

E{aglﬂk,zk} =-1- pi—l) +1. pr”)
=]1- 2‘1’(—0?:&)
= T(BEZk),
where
-1, fr<-1;
(r)=<{r, if-1<r<]
1, ifr21

Further, suppose that the input vector remains constant (and nonsero) over time, i.e.,

z,=2£#0, k> 1. Then (8) can be written

—pk[‘r(OEi) ~brai]2, ifbe=1 (success);
Oksr — Ok = T . .
I uCA z) - bra)2, if b= -1 (fzulure).

Assume 672 € [—1,1] and consider the case in which ax =1 and b = 1. Thea

P;::-lx) = W(-8412)
= w((~0x + pulr(672) ~ 112)72)

= w(-072 + pull2IPl6F2 - 11). (10)

If we assume that p, is chosen so that pel|2|? € [0,1], then the argument of ¥ in (10) is
2 convex combination of —1 and —6F2 and thus is in the interval [-1, -7z € [-1,1].
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Consequently, according to (9) we have that
Piay = (1 — 072 + pell2I(67 2 — 1))/2
= (1 - peI2I?)(2 - 65 2)/2
= (1 - pelI2I?)¥(-0F 2)
= (1 pli2IP)pl "

Thus, assuming that 672 € [-1,1], we can choose pp = p small enough to make
olIZ||* € [0,1] so that in the case of success, the algorithm reduces to the two-action
Lp_p algorithm with a = p||2]|* (Eq. 1). A similar argument shows that in the case
of failure, if 9{5: € [-1,1], the algorithm reduces to the two-action Lgp_p scheme with
B = Ap||Zl]* (Eq. 2). In case 672 ¢ [—1,1], it can happen that the algorithm is not
equivalent to the Lp_p algorithm. However, if we require that at the initial step k=1,
8}'& € [~1,1], then it is clear that 02‘% € [-1,1] for all k > 1. Summarising, the Ag_p
algorithm reduces to the two-action (nonassociative) Lp_p algorithm if 1) each n; is
uniform in the interval [—1,1]; 2) the input pattern is constant and nonsero over {ime
(= £); and 3) 672 € [-1,1]. Obviously, the Ap_; algorithm reduces to the two-action
(nonassociative) Lp_; algorithm under the same restrictions. If the random variables n;
are not uniform, then the Ap_p algorithm similarly reduces to what Lakshmivarahan (2]
calls a nonlinear reward-penalty algorithm of the non-absorbing type, of which the Lp_p

algorithm is a special case.

On the other hand, the Ar_p algorithm transforms to the two-category supervised
learning pattern-classification algorithm (5) as follows. Let ¥ be the step function
0, ifr<O0;
wy={"
1, fr>0;
meaning that g, = 0 for all & > 1. Then according to (7) each action a; is com-
puted from 67z; by comparison with a deterministic threshold of gero. Let us regard
a; as the “external” action that is evaluated by the environment, but let us regard the
scalar 67z, as an “internal® action that is used to determine the expected value in (8).
Then E{ay|0x,zx} = 6 zx, and if one additionally lets A = 1 and 2z, = bgaj, (8) be-
comes identical to (5). This latter computation, which permits the algorithm to accept
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success/failure feedback, b, rather than direct input of class labels, 2z, is usually not
included in supervised learning pattern-classification algorithms, but it is a simple yet
important modification proposed by Widrow et al. [12] to form the “selective bootstrap
adaptation” algorithm, as they call this deterministic algorithm. Since the ®internal” and
axternal® actions are different, this algorithm is not an exact specialization of the Agp_p
algorithm, and our convergence theorem does not apply to it. Simulation results (see

Section VII) suggest that it does not perform well in all associative reinforcement learning

tasks.

The Ap_p algorithm does, however, exactly specialize to the perceptron learning
algorithm (3], [26], by letting ¥ be the same step function as above and letting both the
aipternal” and %external” actions be a; as computed by (7) with the resulting deterministic
threshold. Then

E{oulfe, s} = o = { 1, if6fz >0
—1, otherwise,
which when substituted into (8) with A =1 and bgas replaced by tbe externally supplied
class label z;, yields the percepiron algorithm. Note that in this case the parameter vector,
0; , is updated only in the case of failure. Hence, the perceptron algorithm (extended to
accept success/failure signals) can be viewed as an extension to the associative case of a
deterministic inaction-penalty learning automaton algorithm, a type of algorithm that has
gevere difficulty in any stochastic environment. Our convergence result does not apply

to this specialigation of the Ag_p algorithm since this ¥ is not continuous and strictly

monotonic.

Finally, note that if the set X of input patterns consists of standard-unit-basis vectors
z() = (0,...,1,...,0)T, then the Ap_p algorithm reduces to the lookup-table method of
making learning automata sensitive to environmental state. Each input vector addresses
a separate parameter that determines the action probabilities for that case, and no gener-
alization occurs. Barto et al. (8] used an algorithm similar to the Ag_p algorithm under

this restriction in a control problem.

V1. CONVERGENCE THEOREM

14



The following theorem is an extension of a strong convergence result proven by Laksh-
mivarahan (Theorem 4.1 in ref. [1], p. 112) for a class of time-varying learning automaton
algorithms, and we use notation similar to his. (These algorithms are called time-varying
because the parameter sequence p; is not constant.) We extend this result to the Ap_p
algorithm applied to associative reinforcement learning tasks in which the set X of input
patterns is a linearly independent set. The extension of the result to the case of arbitrary

sets X is currently under examination.

We delineate the following conditions on the associative reinforcement learning task

and on the Ap_p algorithm:
(C1): The set of input vectors X = {z(}),z(3),...,z(m)} i a linearly independent set.
(C2): For each z) € X and k> 1, Pr{zy =z} = ¢ > 0.

(C3): Each of the independent, identically distributed random variables #; in (7) bave a

continuous and strictly monotonic distribution function ¥.

(C4): The sequence p; in (8) satisfies (A2) of Section III; that is

P20, Y pe=00, Y pt<oo.
k k

We can prove the following theorem:

Theorem. Under conditions (C1)-(C4), for each X € (0, 1), there exists a 63 € R" such
that the random process {0p}x>1 generated by the Ap_p algorithm in an associative
reinforcement learning task converges to 63 with probability 1 (that is, Pr{lims_o. 0; =
83} =1), where forall z€ X,
Pr{a = 1/63,2z} > .5, if d(z,1)> d(z,-1);
<.5, if d(z,1)<d(z,-1).
In addition, for all z € X,
1, ifd(z,1)> d(z,—-1);
lim Pr{a=1/63,z} = { ' (=,1) > dl=z, ~1);
A=0 0, ifd(z,1)<d(z,-1).
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According to the usual performance criteria for learning automata defined above, this
result implies that for each z € X, the Ap_p algorithm is e-optimal. In fact, it implies
a strong form of €-optimality for each z € X in which individual runs of the algorithm
will (almost surely) converge so as to produce the optimal action for each pattern vector
with a probability that can be made as close to one as desired by adjusting the parameter

A. See Appendix II for a proof.

Remarks

1) We present this strong convergence theorem because we found Lakshmivarahan’s {1
proof for the nonassociative time-varying case the easiest to extend. A variety of results
with less-restrictive conditions are undoubtedly possible, and a variety of proof techniques
are applicable. For example, simulations suggest that the usual form of e-optimality
(Section IT) may hold for each z € X for the Ag_p algorithm with the parameter sequence
px held constant over k. An extension of Lakshmivarahan’s proof (refs. [1] and [2],
Chapter 2) based on the work of Norman [34], [35], would apply to this case, but we have
not worked it out. We have also not explored the application of weak convergence methods.
Finally, it is likely that condition (C1), which requires linear independence of pattern
vectors, can be removed and a result can be proved concerning the best-least-squares
approximation to optimal performance analogous to the stochastic approximation result
described in Section ITI. However, we do not yet understand how the Ag_p algorithm

behaves when the pattern vectors are dependent and are continuing to examine this case.

2) Note that since this theorem only applies to cases in which the distribution finction
¥ is strictly monotonic, it does not apply to the case in which the random variables n;
are uniform in the interval [—1,1]. Thus, it does not apply to the version of the Ap_p
algorithm that specializes to the nonassociative Lr_p algorithm in the manner described
in Section V. A modified version of the proof, however, does apply to the case in which

the #; are uniform random variables.

3) Also since the theorem requires the distribution function ¥ to be strictly monotonic,
it does not apply to the case in which the Ap_p algorithm reduces to the perceptron
algorithm, that is, the case in which ¥ is the step function. The result is in fact false in
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this case since when its pattern input is held constant, the perceptron algorithm (modified
to accept success/failure signals) becomes the two-state Tsetlin automaton, an algorithm
which performs poorly in all stochastic environments (19, [36].

4) Simulation experiments suggest that the theorem is not true for A = 0; that is, the
Ap_; algorithm does not converge to the correct actions for all linearly independent sets of
input patterns. It appears that the parameter vector § must be adjusted in cases of failure
in order to discriminate arbitrary linearly independent input vectors. This is suggested
by the form of conventional pattern-classification algorithms of the error-correcting type

which, going to the other extreme, update the parameter vector only upon error.

5) It is not immediately obvious how algorithms, like the Ap_ p algorithm, that determine
their actions via a noisy threshold can be generaliged to the case of more than two actions.
The most promising avenue for extension may parallel that used in extending algorithms
for supervised learning pattern classification to the n-class case. In this scheme, the
classification system consists of a bank of n devices, each receiving identical input patterns.
For each pattern, each device determines the value of a discriminant function based on
its current parameter values. The decision js made by determining which discriminant
function has the maximum value [26]. An n-action extension of the AR_p algorithm
is obtained if each device in this organigation implements the Ap-p algorithm, with
E{ay|0k,z;} playing the role of discriminant function. We have not yet studied this type
of system in depth.

VII. SIMULATION RESULTS

We simulated the Ag_p algorithm and the selective bootstrap adaptation algorithm
of Widrow et al. [12] in two simple associative reinforcement learning tasks. Our goal
was to illustrate the convergence theorem, rate of convergence, and the limitations of the
bootstrap algorithm as a representative of the class of conventional pattern-classification
algorithms. Unlike the nonassociative tasks jn which learning automata are studied, as-
sociative tasks can be very easy or very difficult to solve depending on the dimensijonality
of the input patterns, their number, and the geometry of the required classification. As-

sociative reinforcement learning has the additional degree of variation provided by the
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possibilities for selecting the success probabilities for each input pattern. Here we have
chosen tasks that are as simple as possible while still making apparent the important dis-
tinctions between various classes of algorithms. Obviously questions arise, especially about

convergence rate, that are not answered by these minimal simulations.

We measure performance by computing at each step, k, the expected probability of
guccess taken over the two actions and all of the input patterns. Letting pl = Pr{a; =

1|zx = s} and pp¥ = Pr{sx = —1|z = z()} = 1-pl’, this is

My =3 E1Prib = 1]z, = =)

=1
=Y £d(=), )p) + d(z9, -1)p ).
=1

This measure is the generalization to the associative case of the measure defined by (3) for
the nonassociative case. It is maximized when the optimal action for each input pattern

occurs with probability 1, in which case it is

Mane = 3 Emaxid(z), 1), (=, - D).

=1

The distribution function ¥ that we use in each simulation is the logistic distribution

given by
1

l + e—r/T’
where T is a parameter. This function is easily computed, as is its inverse, and it satisfies

¥(r) =

condition (C3) of the theorem.? We set T = .5 in all simulations so that the slope of

E{a|0k, 2} as a function of 8Tz, is 1 for 87z =0.

Each task requires a discrimination to be made between two input vectors: z(!) =
(1,1)T and z0? = (1,0)T, which are linearly independent but not orthogonal. These
vectors are equally likely to occur at each time step (£} = €2 = .5). We set the initial

3 This distribution arises in stochastic relaxation methods that involve flipping binary states in models
having having their origin in statistical thermodynamics. It is used by Hinton and colleagues [37].[38],
and Smolensky [39] who apply these methods to problems in Artificial Intelligence. The parameter
T corresponds to the temperature of a thermodynamic system.
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parameter vector, 8;, equal to the zero vector for each run, which makes the actions ini-
tially equiprobable for all input patterns. We did not systematically search the parameter
space for optimum values of p; and A for the tasks presented, but we discuss the effect of

parameter choice on the comparisons we make between algorithms where it is important.

A. Task 1

For Task 1 the map d: X x A~ [0,1] giving the success probabilities for each action
and each input pattern is:
d(zV,-1)= .8
d(z",+1) = .1
d(z®,-1) =2
d(z®, +1) = 9.

Thus it is optimal for the learning system to respond to z(!) and z(?) with the actions —1
and +1 respectively. In this case My, = .85. The initial expected success probability
is .5. Even though this task is not reducible to a supervised learning pattern-classification
task since d(z(),1) + d(z(),-1) # 1, i = 1,2, it is relatively easy since the success
probabilities for each input pattern are widely separated and are not both greater than,

or both less than, .5 (case i of Appendix I).

Fig. 1a shows results of simulating the Agp_p algorithm for three values of A, the
selective bootstrap algorithm of Widrow et al. [12], and the nonassociative Lgr_p algo-
rithm. Plotted for each time step k, 1 < k < 1,000, is the average of M; over 100 runs
for each algorithm and parameter setting. We held the parameter p; at the value .5 for
all k in the Ap_p algorithm, so the strong convergence result is not illustrated by the
data in Fig. 1a. The fastest rising curve is that produced by the bootstrap algorithm
(pr = .1 for all k, A = 1.0) showing its effectiveness when success probabilities for each
input pattern are placed on either side of .5 (Task 2 makes evident the advantage of the
Ap_p algorithm over the selective bootstrap algorithm for more difficult problems). The
curve at the bottom that. identically equals .5 is the performance of the nonassociative
Lp_p algorithm, and in fact, would be the performance of any nonassociative learning

automaton algorithm with any parameter setting. Since these algorithms cannot detect
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the input vectors, and therefore cannot discriminate between them, M = .5 for all action

probabilities.

The remaining three curves show the performance of the Agp_p algorithm. The dashed
lines show the theoretical asymptotic values for M; of .8485, .8152, and .7868 for A
respectively .01, .25, and .5. These data show that the average over the 100 runs of the
expected success probability comes to remain fairly close to these theoretical values.* Note
that as in the case of nonassociative algorithms, the learning rate slows as A decreases

(and the asymptote correspondingly increases).

Fig. 1b is a plot of M, 1 < k < 10,000, for a single run of the Ag_p algorithm
with A =.25 and pg = 1/k35. This p-sequence satisfies condition (C4) of the theorem.
The expected success probability after 10,000 steps is .8163, which closely approximates
the theoretical asymptotic value .8152. The parameter vector 0; after 10,000 steps is
(1.648,-3.018)T, which is close to the theoretical asymptotic value (1.671,-3.002)T.
This realization of the stochastic process therefore appears to to act as it should according

to the strong convergence theorem. Not surprisingly, decreasing p; considerably slows the

learning process.

B. Task 2

For Task 2 the map d: X x A (0,1} giving the success probabilities for each action

and each input pattern is:
d(z(M,-1) = .2

d(zV,+1) = 4
d(z?,-1)= 9
d(z®,+1) = 6.
Here it is optimal for the algorithm to respond to z(!) and z(®) with the actions +1 and

—1 respectively. In this case Mpax = .65, and the initial expected success probability,

4 These theoretical values can be computed by referring to the proof in Appendix II. Each value §5 ,
1 <i<min (13) is determined by solving for p'‘(8) in the equation wi(0,1) = 0, which is
quadratic in p'%(6) . These values are used to compute the vector A, via the inverse of ¥. From
this can be determined 63 and the asymptotic value of M.
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Figure 1

Simulation results for Task 1. (a) Curves showing the averages of M; over 100 runs of
the selective bootstrap algorithm (the fastest risin curve) and the Ap_p algorithm
for three values of A. The sequence p; is constant in all cases, slb) Curve showing M;
for a single run of the Ap_p algorithm with pi. decreasing with increasing k.

M, , is .525. Since the success probabilities are both less than .5 for pattern z(!) (case iii
of Appendix I) and both greater than .5 for pattern z(?) (case ii of Appendix I), this task
is considerably more difficult than Task 1. An algorithm that responds correctly to pattern
z{!) but incorrectly to pattern z{? will have an expected success probability of .5 rather
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than the optimal value .65. On the other hand, an algorithm that responds correctly to

pattern z(2) but incorrectly to pattern z(1) will have an expected success probability of

.55.

Fig. 2a shows results of simulating the Ag_p algorithm with A = .05 and p = .5
for all k, and the selective bootstrap algorithm of Widrow et al. [12] with A = 1.0 and
p = .1 for all k (the same parameter values as in Task 1). Plotted for each time step, k,
1 < k < 5,000, is the average of M, over 100 runs for each algorithm. The dashed lin2
shows the theoretical asymptotic value for Mj of .6348 for the Ap_p algorithm, but here
pi is constant so the conditions for strong convergence are not in force. The curve closer
to this asymptote is due to the Ap_p algorithm; the other curve is due to the selective
bootstrap algorithm. Fig. 2b shows results obtained under conditions identical to those
that produced Fig. 2a except that p; for the Ag_p algorithm is .1 forall k instead of .5.
Here, the average of M approaches the asymptote more closely. This would be in accord
with an extension of the result of Lakshmivarahan (1), {2], for the nonassociative case with
pr held constant over each run, in which the limp—.oo E{My} is shown to approach the

asymptote more closely for smaller constant values of p; .5 We have not yet extended this

result to the associative case.

Fig. 3ais a plot of Mi, 1 < k < 1,000, for a single run of the selective bootstrap
algorithm with the parameters used to produce Fig. 2. The algorithm very quickly
produces the correct action for pattern z(®) but continues to oscillate between the correct
and incorrect actions for pattern z(!), spending slighly more time with the correct action.
This oscillation persisted as long as we observed the algorithm’s behavior, and all runs at
this parameter setting that we observed showed this behavior. Thus the average for the
gelective bootstrap algorithm shown in Fig. 2is the average of runs showing this oscillatory
behavior. Fig. 3b is a plot of a single run of the Ag_p algorithm with A = .05, p1 = 2.0,
and pg = 1/k%5. Thus the conditions of the theorem are satisfied, and this realization of

the stochastic process appears to be acting appropriately.

3 This is not to be confused with the strong convergence result extended in the present article in which
it is My, and not E(M;), that approaches the asymptote with probabilty 1 if the sequence px
decreases at an appropriate rate with increasing k.
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Simulation results for Task 2 averaged over 100 runs with constant parameter sequence
Pk - (azI Curves showing the averages of M; over 100 runs of the selective bootstrap
algorithm (the lower curve) and the Ap_p algorithm. (b) Curves produced under
conditions identical to those of (a) except the Ap_p algorithm uses a smaller constant

valueof pp.

The oscillatory behavior of the selective bootstrap algorithm in this task can be elim-
inated with another choice-for the value of A. For example, with A = .125, in some runs
the oscillation is transient and the correct solution stably forms. In other runs at this

parameter setting, however, the algorithm converges to the wrong action for pattern z(2
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Simulation results for single runs of Task 2. (a) A single run of the selective bootstrap

algorithm. (b) A single run of the Ag_p algorithm with decreasing sequence p; .
so that M; remains at .5. A value for A less than 1 compensates for the fact that both
success probabilities for pattern z(!) are less than .5. Similarly, setting A greater than 1
can compensate for success probabilities that are both greater than .5. Therefore, given
enough @ priori knowledge about the environmental success probabilities (but not neces-
sarily their actual values), it may be poasible to choose A so that the selective bootstrap

algorithm, or a similar deterministic algorithm, is fast and reliable. In problems like Task
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2, however, in which the success probabilities corresponding to different input patterns
require different values of A for successful learning, there is no way to ensure the complete
solution of an associative reinforcement learning task even if there is some knowledge of
the success probabilities. Our results show that the Ap_p algorithm does not suffer from

these difficulties, although it is considerably slower in solving the easier tasks.

VIII. DISCUSSION

Since the associative reinforcement learning task and the Ap_p algorithm are hybrids
of the tasks and algorithms of the theories of learning automata and pattern classification,
we can discuss our result from the perspective of each theory. We first suggest how our

algorithm contributes to the theory of learning automata.

A. Collective Behavior of Learning Automata

Since a learning automaton implements a global stochastic search of its action space,
it is not affected by the existence of local extrema; indeed, since the action set (as usually
formulated) is not topologized, the concept of locality is not even applicable. However,
a major factor limiting the utility of learning automaton algorithms is that the speed of
convergence decreases rapidly as the number of actions increases. Partly for this reason,
theorists have become increasingly interested in the collective behavior of learning au-
tomata in which each action of the collection is a vector whose components are the actions
of independent learning automata. The search in this structured space of collective actions
can proceed much more rapidly than can a search by a single learning automaton having
a separate action corresponding to each possible collective action. However, this structure
introduces the possibility that local optima exist, and collections of learning automata
are not guaranteed to converge to global optima. Nevertheless, their ability to improve
performance in the absence of direct communication between component automata has
suggested that such distributed “teams® of learning automata can be effective in decen-
tralized control problems such as the routing of traffic in computer and communication

systems [21].
Related to this is the behavior of learning automata as “players® in games in which
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success probabilities involve conflicts of interest. Here, it is usual to assume that the
learning automata have no knowledge of other players’ strategies or of the payoff structure
of the game. Among the results in this area is that certain learning automaton algorithms

converge to the von Neumann value of any sero-sum game {20}, (21].

Although the ability to produce effective collective behavior in the absence of direct
inter-automaton communication is an important property of learning automata, it is in-
teresting to consider the capabilities of collections of mutually communicating learning
automata. An associalive learning automaton in a collection can receive input vectors
consisting of signals produced by other automata as well as signals indicating environ-
mental state. The latter information can be used to reduce the effect of environmental
nonstationarity by allowing discrimination between environmental states, and the former
information can allow more efficient search by enforcing statistical constraints on collec-
tive actions. Communication links between automata cause their actions to be statistically
correlated. If appropriate communication Jinks form, this correlation can cause trials to
be concentrated in high-payoff regions of the search space, thus accelerating search while
possibly avoiding convergence to a local optimum.® Additionally, communication among
associative learning automata that act as game players may provide a basis for the for-
mation of solutions that are cooperative ir. the sense of game theory [42]. Al of these

possibilities deserve study.

B. Learning in Networks of Pattern-Classifying Elements

Networks of elements implementing pattern-classification algorithms have been ex-
tensively studied by many researchers—motivated both by the desire to obtain more so-
phisticated pattern-classification abilities from networks than are obtainable from single
elements, as well as by the desire to investigate formal analogs of neural networks [3], [13],
[27]. One of the reasons that such research is no longer widespread is the lack of a result

extending single-element learning theorems to networks. A single element implementing a

¢ This statement is suggested by possible parallels between this process and varieties of stochastic
relaxation methods for constraint satisfaction, e.g., Geman and Geman [40]; Kirkpatrick et ol. [41];
Hinton and Sejnowski [37); Hinton et al. [38]; Smolensky [39].
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linearly-parameteriged decision rule (such as an adaline or an element implementing the
perceptron algorithm) has well-known limitations regarding the class of discriminations it
is able to make [43]. Although any decision rule can be imlemented by a suitably designed
network of these elements, extension of the single-element gradient-descent learning pro-
cedure to the task of adjusting all the network’s parameters fails due to the inability to
determine the gradient locally and the multimodality of the error functional, 7

Although an element implementing the Ap_p algorithm is also limited to forming only
linear discriminations, networks of such elements behave very differently than networks of
supervised learning elements. Let us distinguish a network’s output elements from its
interior elements (cf. refs [37] and [38]). Output elements are those whose activity is
directly visible to the network’s environment and that are required to assume certain values
when externally-supplied input patterns are present. Interior elements are those whose
activity is not directly visible and that are somehow to provide an encoding of input signals
that will allow the output elements to respond correctly. The Achilles’ heel of supervised
learning elements as network components is that they can only learn if supplied with
individualized signals indicating (perhaps probabilistically) correct responses. Although
in many tasks it may be possible for the network’s *teacher” to provide such information to
the network’s output elements (since it is these that define the network’s visible response),
it may not be possible for this teacher to provide such signals to the interior elements
without a priory knowledge of the implementation details of the desired input/output

function.

Since elements capable of associative reinforcement learning are able to learn under the
influence of a less informative training signal than are supervised learning elements, they
are able to learn effectively as interior elements of networks. If the network’s environment
supplies interior elements with overall assessments of the collective behavior of the net-

work’s components (based on the activity of the output elements), then the learning task

T Hinton and Sejnowski [37] propose a learning algorithm based on stochastic relaxation to overcome
these difficulties for the case of symmetrically connected networks. This is an interesting approach,
further developed by Hinton et ol (38], and we have not yet fully investigated the relationship
between their approach to learning within networks and our own.
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faced by an interior element resembles the associative reinforcement learning task. Even
if the evaluation signal is a deterministic function of the activity of the output elements,
it generally is not a deterministic function of the activity of individual interior elements.
Moreover, this uncertainty cannot be guaranteed to be of the form that renders the task
of an interior element transformable into a conventional pattern-classification task. Sim-
ulation experiments show that elements implementing algorithms similar to the Ag_p
algorithm are able to learn effectively as interior elements of networks [5], [7], [44]. Coop-
erativity of the type discussed above does indeed occur. Elements form links to one another
and consequently are more successful than they would be if they acted independently. Our
motivation for considering the Ap_p algorithm is its use as a network component, and

our research is continuing in this direction.®

IX. CONCLUSION

We have presented an algorithm that represents a synthesis of aspects of learning
automaton and supervised learning pattern-classification algorithms. Since it lies in the
intersection of important classes of algorithms, the Ap_p algorithm should help illumi-
nate the relationship between theories that have remained largely separate. We also think
that the properties combined in the algorithm complement one another in an important
way. Pattern classification capabilities allow learning automata to respond to differing
environmental contexts; learning automaton capabilities allow pattern-classification sys-
tems to learn under the influence of training information that is less informative than
required by the conventional algorithms. This combination of capabilities should permit
collections of adaptive elements to exhibit far richer forms of cooperative behavior than

is possible without inter-element communication or without robust ability to search under

uncertainty.

8 We are aware of only a few earlier studies in which this approach to learning in networks was pursued.
The simulations of Farley and Clarke [13] provide an isolated early example; Klopt's [10}, [11], theory
of the “hedonistic neuron” is falls into this class, as does the selective bootstrap adaptation algorithm
of Widrow et al. [12]. Minsky [45] describes what amounts to a stochastic learning automaton
algorithm used in a network, but it does not qualify as associative in the sense used here.
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APPENDIX I:
COMPARISON OF ASSOCIATIVE REINFORCEMENT LEARNING
AND SUPERVISED LEARNING PATTERN CLASSIFICATION

Here we discuss some implications for algorithms of associative reinforcement learning
tasks in which the success probabilities for the two actions do not sum to one for some input
pattern. Consider an associative reinforcement learning task with two actions a(!) =1
and a(® = —1. Let d" denote the success probability given input pattern z{) and
action 1; and let d=!* denote the success probability given pattern z(") and action —1.
Let p¥ = Pr{a; = 1|z; = z{}. Without loss of generality for our present purpose, let
us assume that d! > d~1, g0 that a; = 1 is the optimal action for input pattern z(*).
If the success/failure signal b; has values 1 and -1, representing success and failure
respectively, we can estimate a class label, or optimal action, z; by multiplication, i.e.,

2z = bray .

Suppose we treat this task as a supervised learning pattern-classification task whose
object it is to classify each pattern z according to the predominant value of z with which

that pattern is paired in a training sequence. Since (cf. (6a))
Pr{z; = 1|64, zp = 210} = p¥d¥ + (1 — p¥)(1 — d~¥),

the probability that z; has any particular value clearly depends on the action probabilities
in addition to the environmentally determined success probabilities. We can see that the
probability that the environment provides the optimal class label, i.e., 1, given action
ar=1,is
Pr{z = l|z; = z1),a; = 1} = d¥,
and the probability that the teacher provides the optimal class label, given action a; = -1,
is
Prizi=1z; =z ap = -1} =1 - d~¥,

There are three relevant cases:

Case i: d¥ > .5 and d~! < .5. In this case, 1 —d~¥ > 5. Thus, the probability that
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the environment provides the optimal class label is greater than .5 no matter which of the
actions is taken. In this case, the optimal class label would also be the predominant one,
and an algorithm capable of minimizing the probability of misclassification in a supervised
learning pattern-classification task could be expected to achieve a solution when suitably
modified to compute class labels by combining success/failure information and knowledge

of the actions actually taken (e.g., the selective bootstrap algorithm [12]).

Caseii: d¥* > .5 and d~¥ > .5. Here, 1- d-Y < .5. Thus, whenever the nonoptimal
action is taken, the probability that the environment will give the optimal class label is less
than .5. Consequently, if a conventional supervised learning algorithm (suitably modified
to accept success/failure information) is initially biased toward producing the incorrect

action, then this bias will tend to increase, leading to convergence to the incorrect action.

Case jii: d% < .5 and d~¥ < .5. Here, whenever the optimal action is taken, the
probability that the environment will give the optimal class label is less than .5; and
gince 1 — d~¥ > .5, whenever the nonoptimal action is taken, the probability that the
environment will give the optimal class label is greater than .5. Updzr these conditions,
a conventional supervised learning algorithm (suitably modified to accept success/failure
information) will oscillate rather than converge (cf. the behavior of the selective bootstrap

algorithm in the simulated Task 2, Fig. 2b).

From this analysis, one sees that the predominant class label corresponds to the opti-
mal one only if for each z € X, it is either true that d(z, aM) > .5 and d(z,a!?) < .5, or
d(z,a") < .5 and d(z,a®) > .5. Thisis certainly true when d(z,a() + d(z,a1?) = 1
for all z € X, but is not be true in a general associative reinforcement learning task. Con-
sequently, a conventional algorithm for supervised learning pattern-classification, modified
to accept success/failure information rather than class labels, can fail completely in these
more subtle reinforcement learning tasks. The difficulties these algorithms encounter in
cases ii and iii parallel the difficulties encountered by nonassociative learning automaton
alogithms that are deterministic or are fixed-structure stochastic (ref. [36] provides good

illustrations of these difficulties).



APPENDIX 1I:
CONVERGENCE PROOF

Here we prove the convergence theorem stated in Section V. The proof is an extension of
the strong convergence proof due to Lakshmivarahan (Theorem 4.1 in ref. [1), p. 112; also
extended are the proofs of supporting results in ref. [1}, pp. 24, 26, and ref. [2]). Another
proof provided by Lakshmivarahan (1] which can also be extended to the associative case
is based on Kushner’s method of asymptotic analysis as described in ref. [46). We first

state some properties of the algorithm.
(P1): Letting
pY(0) = Pr{a; = 1|6; = 4,z = ("))
= 1- ¥(—67z0),
we have that

E{a;|0, =6,z = z(‘)} = 2p“(0) -1

Note that since ¥ is continuous and strictly monotonic, so is p" regarded as a function
of §Tzl),

(P2): Let 66; =034y — 6. Then
E{564|0 = 0} = prw(9, 2),

where

w(d, ) = if‘w‘(ﬂ, A)z()

t=1

v'(6, A) = whi(9) + AwPi(p),

and
20,w™(0)z) = B{66,10; = 6, 2) = 21), b, = 1)

2¢\pgwp"(0)z('.) = E{6010r =0,z = z), b, = -1}.
It can be easily shown that
wi(0) = p¥(6)(1 - p¥(8))(d¥ — d~¥)
w(6) = (1 - p*(6))%c™" — (p(6))2c¥,
3|



where . . .
d¥ =d(z),1)=1-c"

d-¥ = d(z®),-1) =1-cV.

(P3): If the initial state of the Ap_p algorithm is 6, , then for k> 1,

k-1

O = 01+ ) 60;.
i=1

Since each 60 is a scalar times z;, 0 — 6, is in the linear space spanned by the set X of
input vectors; that is, letting M denote the matrix whose columns are the input patterns
and letting R(M) denote the range of M, i € R(M) +6,,for k> 1.

Lemma 1. For A =1 and for each i, 1 <i < m, there exist unique B¢ and p' €(0,1)
such that, for any 8, if p¥(8) = %, then wPi(6) = 0; and if p*(8) =, then w'(6,1) =

0; where i . .
if d¥>d¥, then ' >p'>.5

if d¥ <d™¥, then F<f<.5.
Proof: We prove this for the case d¥ > d-% ; the proof for the other case is eimilar. From

(P2) we have that

if pY(6) =0, then w™(f) =v'(4,1)= ¥ >0
if p¥(6) =1, then wFi(9) =v'(6,1)= —c¥ <0;
i pY(6)=.5, then wF(8)=1/4(c"" -c¥)>0.

Since wF¢ is a quadratic function of p'(6) and p¥(6) € [0,1) for all @, the above facts
imply that there exists a unique B € (.5,1) such that when p%(6) = g, wPi(d) =0.
Further, note that for p**(6) € (0,1), wRi(9) > 0. Hence, if p¥(6) = f*, then

w'(0,1) = whi(8) + w™(6) > wFi(6) > 0;

and there exists a unique S € (§°,1) such that when p'*(8) = B, v'(6,1)=0.
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For future reference, also observe that
if pY(8) > F°, then wPi(8)>0; 1)
if pY0) <, then wFi(9) <o.
Q.E.D.

Lemma 2. Foreach A € (0,1) and for each §, 1 < i < m, there exists a unique fi such

that . . .
if p¥(0) > B, then wi(4,)) <O;

if p!(6) =B85, then w'(4,))=0; (12)
if pY¥(0) <B}, then w'(6,A)>o0.
Further, if d¥ > d-, then

Ai>F and lmpi=1y
whereas if d'¥ < d~¥, then

fi<B and lim g§ =o.

Proof: Again we prove this for the case d* > d=1¥; the proof for the other case is similar.
By (P2) we have for each 1, 1 < < m, that
w'(6, ) = wh®i(8) + Awf(9)
= wRi(8) + wP(6) - (1 - A)wFi(9)
= w'(6,1) — (1 - A)wP(9).

Hence, from the definition of #* and (11) in Lemma 1, we have that if p¥() = 8¢, then
w'(0,)) = —(1 - A)wPi(8) > 0;

and that if p¥(8) = 1, then
w'(8,A) = -Ac¥ < 0.
Thus the effect of multiplying wP*(§) by A is to shift the sero-crossing 8 further to
the right. Consequently, there exists a unique S5 > B* such that if p!*(8) = 85, then
w'(6,A) = 0. It is clear that the other parts of (12) hold as well.
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Further, for any A' < A, it can be seen that if pli(6) = B, then
w'(8,X') = —(A - N)uTi(6) > 0.

This implies that S} increases as A decreases. Since w*(0,0) =0 when p¥(8) =1, the
Jeast upper bound of B is 1. Hence, limy—o gi=1.
Q.E.D.

Lemma 8. Under conditions (C1)-(C3), for each A € (0,1] there exists a unique 83 €
R(M) + 8y such that w(63,A) = 0; and foralli,1<i<m,

: 1, ifd¥>dy;
lim p¥(63) =13 ' !
fmp ) {o, if & < dY.

Proof: Since X is a linearly independent set and £>0,1<1<m,

w(f,r) = f: Ew'(0, A)zl) =0 <+= w'(0,A)=0, 1<i<m.

=1

From Lemma 2 we know that forall §, 1< i< m, there exists a unique 8 such that
pb(0) = B} => w'(6,2) = 0. (13)

Since p! is strictly monotonic and continuous as a function of 8Tzl it is invertible g0
that (13) implies that forall §, 1< s < m, there exists a unique 5} such that p'(6) = By
when 6Tz() = §}. Letting f» denote the vector whose components are B, this can be

written

MT6 =B, (14)

where M is the matrix whose columns are the input patterns. Since the rows of MT are
independent, there is at least one 63 that satisfies (14). Additionally, the condition that
83 € R(M) + 6, implies that (14) can be written

Mr(M', + 01) = 54\’
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for some vector 4 € 8™, Since the columns of M are independent, MTM is invertible

and 7 is the unique vector
1= (MTM)™'(§, - MT4,).

Thus, 63 = M~ +6; is the unique vector that satisfies (14), and thus is the unique vector
in R(M) + 6, for which w(63,2) =0.

Finally, combining (13) with Lemma 2, we have that and for all 1,1<¢<m,

” . 1, ifd¥>d-¥;

lim ph(63) =i =1 . ]

PR =4 {o, if d¥ < d-¥,
QED.

Lemma 4. Under conditions (C1)-(C3), (6 — 6)Tw(,)) <0 forall A € (0,1]) and for
all § € R*. Further, 63 is the unique 8 in R(M) + 6, such that (0 - 8)Tw(6,)) =o0.

Proof: From (12) in Lemma 2 and the monotonicity of p"(9), we havefor all A € (0,1)

that . ) ]
w'(6,1) <0 <= 0Tz > 65T 20 ;

w(8,1) =0 <= Tz() = o5 0, (15)

and  w'(8,)) > 0 <= 6Tzl < 93T 2(",
Additionally,

(0 63)Tu(6,2) = (0 - )73 Ewi(6, )2 ,
m (16)
=) £u'(6,N)[6T2) — 65T 20,
=1

Combining (15) and (16), we have that
(6 - 63)Tw(8,)) <0, 0e®" | (17)

From Lemma 3 we have that for any A € (0, 1), 63 is the unique vector in R(M) + 6,
such that w*(63,1) =0 forall i, 1 <i < m. Hence 63 is the unique vectorin R(M)+6,
such that equality in (17) holds.

Q.ED.




We now derive an additional property of the algorithm. Foreach ¢, 1<i<m, let
a®i(6) = pH(8)(1 - p*(O))[(2 - pH(8))d" +p¥(6)d~V);
aPi(e) = (PO + (1~ pHOe
a'(6) = a®(8) + A%aTi(0);
wd a(0) = 3o €O
=1

Then
E{66F 66,10x = 0} = pia(8);

E{66F60,|0; = 0,z = =0, b = 1} = p}1z0)|*a®(6);
and E{66F60,)6; = 0,z = 0, b = —1} = 22p}||z1)]%a"% ().
Since p¥¥(6) € [0,1] for all z¥) and 4, for any given set of z() | there exist constants L,
and L, such that o
a(6) < L1 )_ ||lz91? < L».

¢=1
Hence,
E(66F 60,|0x = 0} < L2p}. (18)

We are now able to apply a version of the convergence theorem stated in Section III
for stochastic approximation to prove that under the conditions (C1)-(C4), 6 converges
to 63 with probability 1. A proof, omitted here, can be found in refs. [1] or [27]. Here we
establish that the conditons for the theorem hold.

Lemma 6. Under conditions (C1)~(C4), the random process {6;}i>1 generated by the
Ap_p algorithm converges to 83 with probability 1.

Proof: We show that the random process {f}s>1 satisfies the conditons (A1)-(A4)
presented in the discussion of Section HI (after [27)) of supervised learning pattern clas-
sification. (The roles of y(6) and r(6) of Section Il are here played respectively by
E{66,|0x = 0} and w(6,]).)

First note that by (P3), 6 € R(M) + 6, k¥ > 1. By Lemma 3 we have for 0 €
R(M) +6; and X €(0,1], that w(9,)) = ;‘:E{&Mﬂg =60}, k > 1, has a unique gero at
03 . This is as required by property (A1) above.

36



Condition (A2) is just conditon (C4).

By Lemma 4 we have that (6 - 63)Tw(6,)) < 0, for all 6 € R(M) + 6, such that
0 # 63 . Given the definition of 6@, this implies (A3) above.

By (18), E{||66||*|0} < Lzp}. This is a stronger condition than (Ad4) above. It is the
analog of condition 4.8 of Lakshmivarahan (ref. (1], p. 112).

The remainder of the proof follows the argument given by Kasyap et al. [4] based on
that of Gladyshev [47], or Theorem 4.1 of Lakshmivarahan (ref. (1), p. 112).

Q.E.D.

Our convergence theorem follows immediately from Lemmas 1, 3 and 5.
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