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Abstract

Matching successive frames of a dynamic image sequence using area correlation has been
studied for many years by researchers in machine vision. Most of these efforts have gone
into improving the speed and the accuracy of correlation matching algorithms. Yet, the
displacement fields produced by these algorithms are often incorrect in homogeneous ar-
eas of the image and in areas which are visible in one frame, but are occluded in the
succeeding frames. Further, these displacement ficlds are often incorrect even at non-
occluded areas that border occlusion boundaries. In this paper, we present a confidence
measure which indicates the reliability of each displacement vector computed by a specific
type of correlation matching algorithm. We also provide an improved matching algorithm
which performs particularly well near occlusion boundaries. We demonstrate these with

experiments performed on real image sequences taken in our robotics labaratory.

* The report is sponsored by Allen R. Hanson and Edward M. Riseman.



1. INTRODUCTION

One of the powerful techniques that have been studied by researchers in image processing
and computer vision for the purpose of match:ng images is area correlation [Agga8la,
Bard80, Hann74, Mora81, Genn80, Burt83, Glag83, Wong78, Lawt84]. Much of this
work has addressed issues in choosing a useful match measure, increasing the accuracy
of the match, and in reducing the computational complexity of the matching algorithms.
However, most of the current techniques produce false matches when applied to scenes
containing occlusion, i.e., where a certain area of the image which is visible in one frame

is hidden by other moving areas in the succeeding frames.

Researchers have also attempted to match other image features, such as tokens rep-
resenting prominent image points [P;'ag79, Yach81], edges and other intensity contours
[Agga8lb, Tsuj80, Hayn81), regions [Nage77, Radisl, Roac79), and structural descriptions
of edges and regions [Jaco80]. These techniques often provide more accuarate results than
correlation matching techniques on scenes containing occlusion. However, the selection
of such image features is itself a complex problem. In addition these only provide sparse
displacement fields, which makes it difficult to use them for techniques which apply dif-
ferentiation operators to the flow fields for the computation of motion parameters of the

camera and the objects in the scene [Thom83, Praz80).

Our aim in this study is to isolate the situations where correlation matching algorithms
fail and to find methods to overcome these failures. We first make a list of the Imajor sources

of difficulties for the correlation matching techniques.

o The amount of search required can be large. If the image displacements are n pixels,
then the simple zorrelation technique needs to sear:h over an nxn area. However, many
researchers have developed techniques that significantly reduce the amount of search
[Glas83, Mora81, Wong78, Burt83]. These techniques use hierarchical search strategies
which usually consists of generating sparse approximate displacement estimates and

refining them to produce a dense, precise displacement field.

o The spatial resolution of the displacement field produced by correlation matching be-



comes poorer as the size of the sample window increases (Genn80]. Here, resolution
refers to the ability to faithfully represent sharp discontinuities in the actual displace-
ment field. This loss of resolution occurs because the sample window corresponding
to neighbouring pixels overlap each other. As the window size increases, the fraction
of the overlapped area also increases. Although this may be overcome to some extent
by symbolic feature matching, the problem still remains because, when the displace-
ments are large, the use of features based on small local image phenomena can lead
to false matches. Therefore, in this case, the symbolic features employed have to be
based on large image phenomena, which also leads to loss of resolution in the resulting

displacement field.

o Correlation matching tends to produce false matches in areas of the image where
the variation is low. Although this problem has been significantly reduced through
matching band-pass filtered images [Burt83, Glag83], false matches are still produced
in large homogeneous areas. Further, when applied along a long straight line, these
algorithms often provide incorrect estimates of the component of the displacement
vector that is parallel to the line.

e Correlation matching fails most miserably at occlusion points. Points that are present
in one image and are occluded in the next should have no match; but correlation
matching techniques usually do not have any way of recognizing this. In the case of
symbolic matching techniques, static segmentation and boundary extraction processes

usually attempt to recognize potential occlusion points.

e Correlation matching also has problems matching non-occluded areas that border oc-
cluded areas. The image structure in the windows centered around such points changes
between the images, thus making it difficult to match them. This can be frustrating
for later processes that specifically require reliable matches at occlusion boundaries in
order to segment the image into moving areas, etc. Symbolic feature matching may

work well at these points.

As we have noted above, some of the hierarchical search strategies are useful in reduc-

ing the amount of search required. However, the problems in processing scenes containing
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occlusion still remain. In this study, we use the hierarchical matching algorithm of Glager,
Reynolds, and Anandan [Glaz83] as our basis. We isolate the situations where this match-
ing algorithm fails by computing a confidence measure which estimates the reliability of
each displacement vector that is computed by the matching algorithm. We then modify the
search strategy to improve the results, especially near occlusion boundaries. The result is
a computationally efficient matching algorithm which provides a dense displacement field

with estimates of reliability of each displacement vector.

Section 2 of this paper describes the various types of correlation techniques that have
been investigated by researchers. Section 3 describes some of the work done by other
researchers for finding a confidence measure, and describes the measure chosen for this
work. Section 4 describes our modifications to the search strategy. Section 5 describes

some applications and the possible future directions of this research.



2. TYPES OF CORRELATION MEASURES AND ALGORITHMS

A variety of correlation measures and associated search strategies have been studied by
researchers in the field of image-matching. In this section we briefly review some of these
measures and some of these search strategies. The particular choice of the measure and
the search strategy is not always independent of each other. In our discussion below, we

point out such dependencies where they occur.
2.1 Types of Correlation

Some of the typical correlation match measures that are used by researchers are de-
scribed in [Hann74]. These include (i) direct correlation, in which the image intensity val-
ues in the matched windows are multiplied pointwise and summed, (ii) mean normaliged
correlation, in which the mean of each window is subtracted from the value at each pixel
before the multiplication and summing, (iii) variance normalized correlation, in which the
correlation sum is divided by the product of the variances of the two images, (iv) sum-of-
squared-differences (SSD), in which the sum of square of differences hetween corresponding
pixels is used as the match measure, and (v) sum of magnitude of the differences, which is

gimilar to SSD, but the absolute values of the differences are used instead of their squares.

A comparative study of some of these match measures can be found in [Burt82]. In his
study Burt also suggests the use of Laplacian-filtered images for mztching. Although this
filtering process can be used in combination with any of the abov: match measures, his
study includes only the Laplacian-filtered direct correlation. The ot 1er measures included
in this study are direct, mean-normaliged, and variance-normaliged :orrelations computed
using the unfiltered image. Burt shows that the most reliable results are consistently
obtained by choosing correlation with both mean and variance nor: nalisations. However,
this process (especially, variance normaligation) is computationally expensive. Therefore,
he recommends the computationally efficient Laplacian-filtered direct correlation which
appears relatively insensitive to both mean and constrast changes between the imagss,

although this measure performs poorly in the presence of high frequency noise.

The reason for the success of Laplacian-filtered correlation process is that the mean



value of a laplacian-filtered image tends toward gero as the sample window sige increases.
Thus the filtering process has the effect of mean-normaliging the correlation values. How-
ever, we found that when the window sizes are smaller than 8 x 8, the mean of a sample
window, though small, was not nearly gero. In such cases using Laplacian-filtered SSD
provides more accurate results than Laplacian-filtered correlation. This is because the SSD
measure is sensitive to the difference of the means of the two areas that are compared. For
smaller windows, although the means are not gero their differences tend to be small. Our
own experiments suggest (see Table 1) that for a fixed size of the matching window, the
performance of Laplacian-filtered-SSD exceeds that of the Laplacian-filtered correlation

using the same sized window.

WINDOW SIZE
3x3 5x5 8x8
noise % corr ssd corr ssd corr ssd
0 36.93 66.67 64.07 78.26 79.38 82.03
5 30.53 51.80 60.30 74.10 78.86 81.61
10 21.19 30.44 51.73 60.33 75.21 76.67

Tablel : Comparing correlation and SSD

The tests were conducted using the Mandrill images described in [Glas83).
The second frame was produced by shifting the first frame by 3 rows down and 5
columns to the right and adding Gaussian noise of standard deviation 0, 5,and 10
% of the intensity range of the images. Square correlation windows of width 3,5,
and 8 pixels were used. The table entries show the % of pixels with the correct

displacement estimate.

Hannah [Hann74] points out that the performance of SSD degrades in the presence of
me:zn and contrast changes between the images. Although the filtering process may elim-
inate problems due to mean differences, contrast changes can still be a problem. Another
restriction inherent in using the Laplacian-filtered correlation is the fact that the search
area must be small in order to ensure accurate matches. This is so because the high pass fil-

tering process removes image variations below a certain frequency, thus causing the image
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structures to repeat beyond a distance corresponding to the filter cut-off wavelength. As
we note in the following section, the search strategy used can also be helpful in alleviating
some of these difficulties.

2.2 Search Strategies

There are only a limited number of search strategies that have been employed by various
researchers. The most obvious strategy is to search the whole area within the expected
maximum displacement. Hannah [Hann74] and Gennery [Genn80] use this technique,
although Gennery mentions a number of ways to cut down the computational cost of
the search, and mentions the possibility of using global techniques to get approximate
estimates which can then be improved using local searches. Lawton [Lawt84] uses a search
technique that is most suitable for the case of pure translational motion of the camera.
In this case a global search is performed for the focus of expansion (FOE), which is the
intersection of the translational axis and the image plane. Specific values of the FOE are
evaluated and for each, the local searches for optimal feature matches are constrained to

lie along radial lines emanating from the assumed FOE.

Wong and Ha'l [Wong78|, Glager et. al. [Glaz83], Burt et. al. [Burt83], and Moravec
[Mora8l1] all use z. multi-resolution coarse-fine strategy, but there are important differ-
ences among them. Among these differences, we are interested in the fact that Wong and
Hall and Moravec used low-pass filtered images, whereas Glager et. al., and Burt et. al.
used band-pass filtered images. Burt et. al. used a “flow-through” strategy where the
searches at the different levels of resolution operate independently of each other. This re-
sults in low-frequency coarse resolution searches detecting large displacements and higher-
frequency finer resolution searches detecting smaller displacements in the image. Glager
et. al. [Glaz83] use a strategy which utilizes the approximate estimate given by the low-
frequency, coarse resolution searches as a starting value to define the search in the higher

frequency images, thereby resulting in a more precise displacement estimate.

For large displacements, the use of band-pass filtered images and the coarse-fine strat-
egy for matching is a natural generalization of the Laplacian-filiered matching technique.
In this approach, at any given level of resolution the band-pass filtered image corresponds
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to Lapalcian-filtering the low-pass filtered image that is faithfully representable (according
to Nyquist criterion) at that resolution. The 3x3 search area used both by Burt et. al. and
Glager et. al. effectively limits the search to less than half-the wavelength of the highest
frequency information available at each level. This restriction also helps reduce the effect

of false matches that may arise due to contrast variation between the images.

"The band-pass filtered, coarse-fine search strategy tends to introduces some problems
of its own. At occlusion boundaries, where there is a discontinuity in the displacement
field. the coarse-resolution processing, errors usually occur due to sample windows which
overlap across the boundaries and due to effects of the low-pass filtering process which
smooths the image across the boundaries. Since each pixel at a coarse level tends to cover
a large area at the finest levels, these coarse-level errors tend to cause incorrect initial
estimates to be used at the fine-level pixels, thus leading to a search in areas which do not
include the correct match. Typically this creates a large area near the occlusion boundary
with incorrect displacement field. Since these errors are primarily due to the hierarchical
search strategy, it may be possible to eliminate some of these by using a single level search
strategy. However, we believe a better approach would be to maintain the coarse-fine
search strategy, but try to recognise such errors as they happen. Our confidence measure

is, in fact, an attempt to do precisely that.



3. A CONFIDENCE MEASURE

As noted in the previous sections most correlation matching algorithms generate false
matches in homogeneous areas, i.e., where there is a lack of any significant image structure,
and around occlusion regions. In particular, there has been a noticeable lack of success in
dealing with occlusion areas. Most of the small number of researchers who have directly..
attacked this problem have usually relied on being able to first detect object boundaries (or
edges and junctions of edges that may potentially constitute object boundaries) in some
manner [Roac79, Thom80]. A slightly more robust approach is to attempt to enhance a

static segmentation process with dynamic information [Radi8 1].

Previous work that has attempted to provide smoothly varying dense displacement
fields (Horn80, Glaz61, Nage83, Hild83) usually propagates displacement information from
image areas with significant intensity variations to homogeneous areas. Whe:a occlusion
is also present, it is usually the case that there are significant intensity variations (due to
 discontinuities in texture) at occlusion boundaries. However, these boundary estimates

are often incorrect and using them for initial estimates tends to confsund the errors.

The problem of homogeneous areas and occlusion boundaries would not be 8o serious
if there were methods to recognize such errors and suppress the displacement estimates at
such points. However, most algorithms simply produce false matches at these points with
no way of recogniging them. The primary focus of this study is to provide a confidence

measure, which would help in recognising such false matches.

There have been earlier efforts by Hannah [Hann74], Gennery {Genn80] and Burt
[Burt83] to understand this problem. Hannah observes that both the sharpness of the
correlation surface at the point of best match and the similarity between the shape of
the auto-correlation and the cross-correlation surfaces can be used to decide about the
reliablility of the match. However, she does not provide any concrete technique for using
this information. Gennery’s measure requires a model of the camera noise and scaling
effects between the images to be matched. This requires calibration of the camera set-up.
Although this appears to be a robust measure, it is often the case that such calibration

is difficult due to changes in illumination, surface reflectance, etc. We believe that it is
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possible to provide a confidence measure which does not depend on an a-priori model of
the camera and the image noise. Burt provides a confidence measure, which in many ways
is similar to our own. We describe Burt’s measure in greater detail in section 3.4 and

compare it with ours.
3.1 Properties of the SSD surface

We define an SSD surface as the surface formed by considering the Laplacian-filtered
SSD values corresponding to different candidate displacements as the elevation at that
displacement. This surface appears to contain a wealth of information about the nature of"
the image structures at the point being matched. Intuitively, it is clear that where there are
significant intensity variations in the image, the match is likely to be reliable and unique,
whereas at points in a homogeneous area, this is not so. This fact is noticeable in the shape
of the SSD surface corresponding to such points. Usually, the SSD surface corresponding
to a point with distinct image structure tends to have a sharp valley centered at the best

match value, whereas at a homogeneous point the SSD surface is rather flat.

We conducted an empirical study of the behaviour of the SSD surface. For this study,
We created a pair of synthetic images by digitally “cutting and pasting® pieces from two
images photographed in our robotics lab [Elli84]. Gaussian noise of standard deviation of
10 (20 percent of the standard deviation of the intensity values in image2) was added to
the second image. These images are displayed in Figures 3.1 and 3.2. The Folgers coffee
can in the center part of the image has been displaced by 14 pixels to the right and 4 pixels
down. The boundaries of the displaced segment in the two images are shown in Figure
3.3. The occluded area is shown cross-hatched.

A few points in image 3.1 were chosen to illustrate the behaviour of the SSD surface.
These points are highlighted in Fig 3.1. Figures 3.4 through 3.8 display the SSD surface
at these points. Each of these consists of two surface displays: One of these, referred to as
the auto-SSD surface, is generated when a § x 5 sample window centered at the point of
interest in the first image was matched with similar windows in the same image centered
at all points in an 8 x 8 area around the point of interest. The other, referred to as the

cross-SSD surface, is generated when the 5 x 5 sample window centered at the point of
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Pigure 8.1 The first frame of the synthetic imag: pair used to illustrate the behaviour of
the SSD surfaces.
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Pigure 8.2 The second frame of the synthet



Figure 3.8 The boundaries of the displacement segment in the two Figs. 3.1 and 3.2.



interest is matched with similar windows centered at all points in an 8 X 8 area around
the correct-match point in the secord image. In both cases the match measure was the
Laplacian-filtered SSD performed at the same level of resolution as the image. Note that
for occlusion regions, there is no true match point in the second image; however, we have
used the true displacement estimate of the background surface of which they are a part

(in our case this is gero displacement, since the hackground is stationary).

In order to enhance visibility, the surfaces are shown inverted, i.e., the minimum SSD
values are shown as peaks rather than as valleys. In each surface display, we have marked
the true-match point with an “X® and the point of minimum SSD value with an “O®. Also
marked are the minimum and maximum SSD values on each of the surfaces, as well as the
view-angle (rotation and elevation). All the surface displays are generated by a perspective

projection of the surfaces.

Corner point Fig 3.4a and Fig 3.4b displays the values of the auto- and cross- SSD surfaces
at an intensity corner. These correspond to the point a in Fig 3.1. Note the sharp peak
in both the auto- and cross- SSD surfaces (in actuality a sharp valley since these displays
have been turned upside-down) centered at the true displacement value. This indicates
that the match is reliable in all directions. Further, note that the shape of the surface is
well preserved even ‘hough the cross-SSD surface was generated using images containing

significant amount o{ noise.

Along a Strasght Edge Figures 3.5a and 3.5b illustrate the two surfaces at a point along a
straight edge in the image (point b in Fig 3.1). A ridge like structure along the direction
of the edge is clearly visible in both the surfaces. However, note that the peak of the cross-
SSD surface is shifted away from the correct match-point (i.e., the center of the surface)
along the ridge. This indicates that the match estimate is reliable only in the direction
perpendicular to the ridge (or the edge) and that we have no reliable information parallel
to the ridge.

Homogeneous point Figures 3.6a and 3.6b illustrate the SSD surfaces at a homogeneous
point (point ¢ in Fig. 3.1). In this case the SSD surface is rather flat, especially around the
center, i.e., the point of best match. Again, the peak of the cross-SSD surfrace does not
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min = 0, max = 2216
elevation = rotation = 0

Pigure 3.4a The auto-SSD surface at a corner point (point
a in the first frame).

min = 72, max = 2520 \J
elevation = rotation = 0

FPigure 3.4b The cross-SSD surface at point a.



min = 0, max = 472
elevation = 0, rotation = 20

Pigure 3.6a The auto-SSD :urface at a point along a ver-
tical edge. (point b in the first frame).

min = §2.6, max = 560
elevation = 0, rotation = 20

Pigure 35b The cross-SSD surface at point 5.



min = 0, max = 278.3
elevation = rotation = 0

Figure 8.6a The auto-SSD surface at a point i a homo-
geneous area. (point ¢ in the first frame).

min = 24, max = 320
elevation = rotation = 0

Figure 3.8b The cross-SSD surface at point ¢.
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Pigure 8.7a The auto-SSD surface at an occluded corner
point. (point d in the first frame).
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Figure 3.7b The cross-SSD surface at point d.
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Figure 3.8a The auto-SSD surface at an occluded homo-
geneous point. (point e in the first frame).

. min = 260.1, max = 072
elevation = rotation = 0’

Pigure 3.8b The cross-SSD surface at point e.



coincide with the correct match-point. This indicates that the match estimate is unreliable
in all directions. Note that in this case the values on the cross-SSD surface is much lower
than in the case of the sharp corner described above (Fig 3.4a). This behaviour is typical at
homogeneous areas of the image in the fine-resolution, higher-frequency bandpass filtered
representations, since at such areas most of the image-energy is contained at the lowest

spatial frequencies.

An Occluded Corner Point Figures 3.7a and 3.7b illustrate the SSD surfaces at an intensity
corner which is in the occluded region (point d in Fig. 3.1). In this case, the auto-
SSD surface display shows a distinct peak, similar to that in Fig. 3.4a. Since the area
surrounding the corner point is occluded in the second image, there is no window that
properly matches the samplw window surrounding the corner point. Therefore, the cross-

SSD surface has a somewhat erratic shape.

An Occluded Homogeneous Point Figures 3.8a and 3.8b illustrate the SSD surfaces at
a point in a homogeneous area in the occluded region (point e). Again, the cross-SSD
surface shows unpredicatable and erratic behaviour. Note in particular the minimum
and maximum values of the cross-SSD surface are considerably higher than those of the
auto-SSD surface.

3.2 The Confidence Measure

The above demonstrations were intended to show how the SSD surface usually captures
much of the information about the image structures as well as occlusion effects needed while
matching. Although these illustrations capture the behaviour of the SSD surface only at
the finest level of resolution, such behaviour is typical also of other levels of resolution.
Where a proper match exists (i.e., the non-occluded regions), the SSD value at the point
of best match generally seems to be low. At occlusion areas this value seems higher. The
curvature of the SSD surface along different directions reflects the degree of variation in
the image along those directions, and hence the uniqueness of the match estimate along
that direction. This suggests that the confidence in the correctness of the displacement
component in any direction should be directly propotional to the curvature of the SSD

surface along that direction, and inversely propotional to the SSD value at the point of
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best match.

Consider the normalized second derivatives of the SSD surface centered at the point of
best match in the four directions 0, 45, 90 and 135 degrees. Each of these can be computed
numerically using a 1 x 3 second-derivative operator oriented in the appropriate direction.
These values are normalized in order to maintain the measure between 0 and 1. Such a
normaligation can be achieved by dividing the curvature measures by a weighted average
of the three SSD values used to measure the curvature. This normalization also makes the
confidence measure inversely propotional to the SSD value at the point of best match, as

observed above.

In the formulae given below, the SSD surface is considered centered at the point of
best match. The indexing is relative to that displacement, i.e., the index (0,0) refers to

the displacement corresponding to the best match. The figure below explains the indexing

scheme. S(-1,-1) S(-1,0) S(-1,1)

s(0,-1) S(0,0) S(0,1)
s(1,-1)  S§(1,00 S(1,1)

We compute the four normalized directional second derivatives of the SSD surface as

follows:
Co = S(0,—-1) — 2+ 5(0,0) + S(0,1)
5(0,~1) +2+5(0,0) + 5(0,1)
C45 = S(l,—l) —2x S(0,0) + S(_l: l)
~ 5(1,-1)+2+5(0,0)+ 5(-1,1)
_5(-1,0)—-2+x 5(0,0) + 5(1,0)
C%0 = $(=7,0) 7 2+ 5(0,0) + 5(1,0)
C135 = S(—l:—l) =2 S(an) + S(l! l)

S(—l)'_l) + 2+ S(an) + S(lt l)
where S(i,7) denotes the SSD value at position (3, j) relative to the point of best match.

At this point various possibilities arise. Since each of these four measures provide
information specific to the corresponding direction they could all be separately maintained.

Alternatively, a conservative measure will be to choose the minimum of these four measures.
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We have adopted this latter approach for our study. Hence our confidence measure is,

MIN(Co0,C45,C90,C135)

3.3 The Confidence Measure of Burt, Yen and Xu

Burt, Yen and Xu [Burt83] describe a confidence measure which is very similar in form
to the one described here. Their measure uses the Laplacian-filtered correlation surface
and takes the four directional second derivatives in a manner similar to ours. Their
normalisation technique is also similar to ours. However, the two measures differ in some

significant ways.

First, our measure is based on the SSD surface, whereas their measure is based on
the correlation surface. While the SSD function remains strictly positive, the correlation
function can also have negative values. The presence of negative values can cause the
normaliged values to go below 0 as well as above 1. Although large negative values around
the point of best match indicates a strong peak, in such situations, their confidence measure

is below gero.

Second, in the strategy used by Burt, et al. confines the search at each level to a
3 x 3 area centered around sero displacement. This means that the curvature measures
are taken at a point within this window, even though the actual displacement may be
large. In band-pass filtered images, the structures can repeat themselves beyond a certain
distance, thus causing false matches with high confidence (i.e., a unique match within the

search window) to occur.

Finally, Burt’s second derivative operators are centered at (0,0), even when the best
match point occurs elsewhere within the 3 x 3 window. The 1 x 3 operator is too small

to be a good approximation of the curvature at any point away from where it is centered.
Therefore, if the displacement is not (0,0), Burt’s measure may not be a good indication_
of the directional curvatures at the true match point,

3.4 A Demonstration
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Having defined our confidence measure, we now proceed to demonstrate its utility
with an example. For this purpose, we chose a pair of real images, called Folgers images.
The images are shown in figures 3.9 and 3.10 and constitute a stereo pair. There are
two prominent surfaces at different depths, vis., the Folgers coffee can and the textured
background with the plant. Occlusion at the left side of the can is clearly visible. This
area in the first image has no matches in the second image. Figure 3.11a displays the
displacement field, and Figure 3.11b displays the confidence measure. The brightness of
the confidence measure is proportional to the degree of confidence. The displacement field

has been sub-sampled for convenience of display.

These figures reveal some important facts regarding the confidence measure. First, in
large homogeneous areas of the image the confidence measure is low and the displacement
estimates are often incorrect. For illustration purposes, one such area is marked *A® in
Figures 3.9, 3.11a, and 3.11b. Second, the confidence measure is also low along straight
edges, although the component of the displacement vectors normal to the edge often seems
to correct. One such area is marked “B” in the three figures. Third, the confidence measure
is low in occluded areas and around occlusion boundary. One such area is marked “C® in
the three images. Finally, although the confidence measure is low both in homogeneous

areas and occluded areas, it does not discriminate between the two.

In order to further illustrate the correlation between the confidence measure and the
accuracy of the displacement estimates, figure 3.12 displays only those displacement values

which have a confidence of 0.3 or more.
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Fi 3.9 The fol i - first frame.
gure ¢ folgers image - Lrs Figure 3.10 The folgers image - second frame.

Figure 3.11a The displacement vectors for the folgers
image pair.



Pigure 3.11b The confidence measure for the folgers
displacement field.

Pigure 3.12 The displacement vectors for the folgers pair
which have a confidence of at least 0.3.



4. A MODIFIED SEARCH STRATEGY

The confidence measure which we described in the previous chapter is useful in isolating
the areas in an image where the displacement estimates are unreliable, and often incorrect.
In this chapter we describe two modifications to the search strategy of Glager, Reynolds
and Anandan which significantly reduce the errors in the displacement field, particularly

near occlusion boundaries.

We describe briefly the search strategy of Glager, et. al. in order to familiarige the
reader with the terminology involved. The search begins at an appropriately coarse level
so that all image displacements are less than one pixel distance at that level. For each pixel
in the first frame at the coarse level (say level /), matches are found within a 3 x 3 window
centered around the corresponding pixel in the second frame. Each of these estimates are
then projected to the four pixels at level I+ 1 of the pyramid that are directly covered by
each pixel at level I. The displacement estimates have to be multiplied by 2 in order to
take into account the reduction in the pixel-width between levels I and I+ 1. For each
pixel at level I+ 1, the search is conducted in a 3 X 3 area around these estimates. This
process of projection and search is continued downto the finest level of the image pyramid.
Figure 1.1 illustrates the projection of a displacement vector and the local 3 x 3 search at
the finer level.

Both our modifications concern the projection of the displacement estimates from a
coarse level to the next finer level. First, we restrict the projection of coarse estimates to
only those with high confidence. Second, we allow the coarse level estimate at each pixel
to be projected in an area larger than the 2 x 2 area directly covered by that pixel. Both

these modifications are explained in greater detail in the following sections
4.1 Restricting Projection to High Confidence Estimates

The restriction of projection to only high confidence estimates is suggested in Glager, et.
al. [Glag83]. The motivation for this idea stems from the fact that when incorrect coarse-
level estimates are projected down, the 3 x 3 searches at the finer levels are conducted in

areas of the second frame that do not include the true-match point. This causes incorrect
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matches in all the subsequent levels. If on the other hand, these incorrect coarse-level
estimates are altogether rejected, the finer-level searches can be conducted over larger

area than the usual 3 x 3 windows, and the true-match can perhaps be recovered.

At any level ! of the pyramid, the displacement updates at pixels where the confidence
measure is low can be suppressed (this can be achieved by a simple threshold on the confi-
dence measure). Wherever such updates are suppressed, we simply pass the displacement
estimates from the parent pixel at level /—1 to the chsildren pixels at level [+ 1. Assume
that at such a pixel at level I, we are searching over a window of radius r (at level 1),
centered about the displacement estimate from level I — 1. This corresponds to a window
of radius 2 x r at the next finer level. Hence the lack of update at level ! would require
that we search over a window of radius 2 x r at the chsldren pixels at level I+ 1. If there
is still no update at this level the search window radius should be doubled at the next level
below, and so on. This is illustrated in Figure 4.2.

4.2 Modified Projection of Coarse Estirnates

Our second modification to the search stravegy involves the manner in which the coarse
level displacement estimates are propagated to the fine level. The strategy of Glasger, et. al.
projects the displacement value of a parent pixel as the estimate for all of its four children
at the next finer level. At areas which are near discontinuities in the displacement field
(e.g., occlusion boundaries), this approach can cause incorrect estimates to be projected
from a coarse-level pixel to the finer level pixels. This occurs because, at a coarse-level of
resolution the boundary of discontinuity can be placed only within a coarse accuracy. For
fine-level pixels along one side of the boundary, it is then possible that the coarse estimates
from the other side of the boundary are projected down. This causes the search at the
subsequent levels to find incorrect matches.

We propose a slightly different method of projecting the coarse level displacement
estimates to the next finer level. This idea is based on the “overlapping® pyramid idea
of Burt, et. al. [Burt80] Each pixel at the finer level { + 1 is considered to have four
Potential parents at the coarser level ! (see Figure 4.3) We consider all the four estimates

a8 possible initial estimates for the search at level ! and conduct searches around each
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of these estimates. The displacement corresponding to the best match in this exapanded
gearch area js then chosen as the updated displacement estimate for that pixel at level I+1.
In this way the pixels along the boundaries of displacement discontinuities are not bound
to an incorrect coarse estimate. This allows for more precise placement of the boundaries

of displacement discontinuities at the finer level.

It is obvious that we can combine both the modifications into a uniform algorithm.
This would involve choosing the appropriate search radius for each of the estimates of the

parent pixels according to their confidence value and their search r .dius at level {.
4.3 A Den onstration

In this section, we describe an experiment to demonstrate the e fects of applying both
our modificaiions to the search strategy. Fig 4.4 and 4.5 are two im 1ges from the sequence
called poster images. The displacement estimates based on the cld search strategy are
shown in Fig 4.6. As in the case of our figures in Section 3, the displacemcnt estimates
have been subsampled to enhance visibility. The shaded areas have estimates with confi-
dence below 0.3 and the white areas have estimates with confiden.:e above 0.3. Note the’
predominance of the low confidence values around the occlusion houndary. Fig 4.7 dis-
plays the displacement estimates generated by a search strategy which incorporates only
the first of the two modifications, vis., suppressing low confidence estimates. Again, the
shade areas are areas of low confidence (below 0.3). We make the following observations
about Figures 4.6 and 4.7. First, the low-confidence areas are rectangular in shape. This
is due to the strict 1 to 4 projection used in these search strategies. In both cases if
an error is made at a coarse level that is not suppressed, it is possible that the search
areas at the finer levels for all the children pixels may no longer include the true match
points. Since no information is used from the correct neighbours, these go uncorrected.
Second, the restriction of projection of coarse estimates (Fig. 4.7) seems to improve the
displacement estimates in some areas (of the background), whereas introduces more errors
at others (near the occlusion boundary). This is because some of the low-confidence coarse
estimates are actually correct. Eliminating these and expanding the search area can lead

to false matches due to repeated features.
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Fig 4.8 displays the displacement estimates superimposed on low confidence areas as
provided by a search strategy which incorporates only the second modification, vis., the
overlapped pyramid projection. Fig 4.9 displays the displacement estimates superimposed
on the shaded low confidence areas as provided by a search strategy that incorporates both
the modifications mentioned above. In Figures 4.8 and 4.9, is easy to see that a dramatic
reduction in the sige of the low-confidence areas has been achieved. Figure 4.8 shows that
the modified projection strategy provides the major contribution to the improvement in
the displacement field. This is so because, in this approach the coarse-estimates are not
altogether eliminated. Instead, information is used from neighbours who may have correct

estimates.

Later in this paper, we discuss other possible ways of utilising the confidence measure

to improve the matching results, all of which are currently under investigation.
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5. APPLICATIONS AND FUTURE WORK

Thus far in this report we have described our confidence measure, and demonstrated its
use in our modification to the search strategy. This measure can also serve as useful
piece of information for techniques that process the flow field. These techniques usually
involve using the flow field for the extraction of camera and object motion parameters
([Adiv8-1],[Rieg84],[Praz80],[Tsai84]). With some modifiations, the confidence measure can
also be used by processes that attempt to improve the accuracy of the flow field through
the use of various consistency constraints ([Nage83],(Glas81]). In the following sections, we
outline the immediate applications of the confidence measure, and describe the directions
in which this study can be extended to include the various modifications necessary for

other applications.
5.1 Use by Prameter Computation Algorithms

One of the primary uses of image displacement fields has been to re :overcamera and ob-
ject motion parameters and orientation and depth of image surfaces. "'ypically, techniques
that address these problems involve solving a system of equations ([Long81],[Tsai84)) or

minimizing an error measure ([Adiv84],[Rieg84],[Praz80}).

The techniques that involve solving a system of equations use the displacement esti-
mates as the known variables. Often these techniques tend to be highly sensitive to errors
in the displacement fields (see [Adiv84)). In such cases, eliminating the displacement es-
timates which have a low confidence measures from consideration can help in reducing

errors and enhancing the reliability of the overall results of these processes.

The techniques that minimige an error measure or compute a hough-transform, can
usc the confidence in two ways. First is the same as above, i.e., to eliminate the displace-
ment estimates with low confidence measures. Second, these techniques usually compute
a global error or transform which has contributions from each displacement vector. This
confidence can be weighted by the confidence measures. In this way inaccurate displace-
ment vectors (which typically have low confidence), do not contribute to the optimization

process, thus enhancing the reliability of that process. As an example of this latter use,
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we point to Adiv ([Adiv84]), who attempts to segment the image into regions which have
consistent displacenent fields within those regions, and compute the 3-d motion paramters
corresponding to these fields. His technique is a multi-stage one, and involves transforma-
tions from the displacement vectors to affine-transformation parameter space, as well as
least-square-error fits of 3-d transformations to the displacemert fields. He uses the con-
fidence measure as a weight associated with the contribution of each displacement vector

to the affine transformation as well as to the error measure.

5.2 Future Work

Our experiments using real images taken in our robot-lab revealed several facts re-
garding our confidence measure and our modified search strategy (see Section 3.5). Here
we focus on two of those facts. First, along straight edges the confidence measure is low,
although the displa.cement-compbnents perpendicular to the edges seeins correct. Second,
the confidence measure does not discriminate between occluded areas and homogeneous

areas of the image.

In the following sections, we describe the possible approaches to addressing these issues.

Although we intend to pursue these directions, the reader should be forewarned that what

follows is largely speculative.
Directional Information about Matching

The demonstrations of the behaviour of the SSD surface at typical areas of the image
with directional structures (e.g., edges) cle wrly showed that such directional information
was indeed noticeable in the shape of the SSD surfaces. More specifically, we noted earlier
that along edges in the images, we see a ri ige like SSD surface where the orientation of
the ridge corresponds to the orientation of the edge in the image. Hence, the directional
confidence measure along the direction of the edge is low, whereas it is high in the direction
perpendicular to it. It has also been well recognized by many researchers (to name two,
[Glag81] and [Horn80]) that a directional feature in the image (say, an edge) can provide
reliable information about the component of the displacements in the direction perpendic-

ular to that feature, whereas it can provide no information about the component of the



displacements along the direction of that feature.

There are two possible ways in which this directional confidence information can be
utilised. The first is to use it in an algorithm similar to the modified search strategy
described in section 4. In this case, the search area would not be expanded along the
direction where the SSD surface shows significant variations. Instead, we can expand the
search area in the direction along the ridge, thus obtaining a somewhat rectangular search

area.

The second method is to use these in an algorithm that propogates information between
neighbouring pixels, especially along edges and curves in the image in order to bring
together reliable information about different directions. One way of doing this is described
in [Glaz81]. Each pixel provides a linear constraint equation on the displacement vector
at that pixel. In Glager’s approach, a least square-error solution for the system of the
constraint equations from neighbouring pixels along an edge is considered to be the true
displacement vector for all pixels along the edge. Given that the SSD surface captures
the directional information, we have available to us information similar to these constraint
equations. An added benefit of using the SSD surface over the constraint equations is the
fact that the SSD surfaces also provide information about noise variations and occlusion

effects.

A more general way of using neighbour information for the improvement of the dis-
placement estimates is to use relaxation-smoothing techniques. These are similar to the
now classical Horn and Schunk smoothing technique, or perhaps closer to the constrained-
smoothing approach described by Nagel [N age83|, and the surface reconstruction approach
described by Tergopoulos [Terz84]. These are discussed in the following section.

Creation of Dense Reliable Displacement Fields

The Constrained Smoothing Approach — Nagel [Nage83] describes an approach
that performs a form of constrained smoothing of the displacement fields. His approach in-
tegrates the intensity gradient constraint of Horn and Schunk with a smoothness con itraint

on the flow field which is somewhat different from theirs. The smoothness constraint i8
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modified with weights that are inversely proportional to the intensity gradients at a given
pixel. At each pixel, the component of the displacement vector along the direction of the
intensity gradient is not allowed vary significantly, whereas the component in the normal

direction is allowed to change more freely.

The Surface Reconstruction Approach — Terzopoulos [Terz84] describes an ap-
proach for interpolating sparse data for reconstructing a surface. This approach involves
formulating the interpolation problem as a problem of minimizing the potential energy
of a thin plate, with sparse uncertain data about the location of the surface. The plate
is suspended on needles corresponding to the available sparse data. The needles have
springs attached to their ends, whose stiffness are proportional to the reliability of the
available data at the locations of the needles. The finite element method approach is used

to numerically solve the variational problem.

Comparing the Two Approaches — There are three important differences between

the approaches of Nagel and Terzopoulos.

First the variational problems are somewhat different. Nagel’s smoothness requirement
is non-isotropic, i.e., at any point in the image, the smoothness requirement is not the same
in all directions. Although there is provision in the approach of Terzopoulos for performing

non-isotropic smoothing, his precise formulation of the potential energy is isotropic.

Second, Tersopoulos includes availatle sparse data and reliability information in his
variational problem. Nagel’s approach, being a generaligation of Horn and Schunk’s work,
refers directly to the spatio-temporal intei sity variations of the image, and does not include
any initial displacement data. However, 't is possible to extend this approach to include

such data as the intial values for the iter: tive smoothing process.

Third, Nagel uses the finite-difference approach to numerically solve his variational
problem, whereas Tersopoulos uses the finite-element method. As Terzopoulos notes in
his thesis, fiaite element method has several advantages. First, it has a well established
mathematic 1l theory which is useful to understand stability and convergence issues. Sec-

ond, at loca ions of known discontinuities in the image, it is possible to fracture the surface,
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i.e., to prevent the smoothing process from functioning across discontinuity contours in the
image. Fically, it allows arbitary shaped grids on the image. The disadvantage is that the

finite-element method is a more complex formulation.

Our Problem — Our data consists of a dense displacement ﬁeld'with directional
confidence information everywhere. Our goal is to replace this by a dense field by prop-
agationg information from reliable areas to unreliable areas of the image. We would also
like to prevent the propagation across occlusion boundaries. Under these conditions it is

natural to consider an approach similar to that of Tersopoulos.

Our problem can be seen as a generalization of Terzopoulos’ surface reconstruction
problem to a vector field. We will use directional information regarding the reliability
of the available data.. It also differs from Nagel because the directional information is
based on both images rather than a single image. We will locate discontinuities in the
displacement field through attempting to ider tify occlusion (see mext section). At this
point, we can either use an isotropic (like Te:zopoulos), or a non-isotropic (like Nagel)
smoothness constraint. One of our future goals is to pursue both approaches and compare

them.
Recognition and Processing of Occlusion

Occlusion, although a source of failure and frustration for most algorithms that attempt
to produce a dense displacement fields, is very useful for the purposes of segmentation of the
image into objects at different depth or with different movements. Therefore any process
that detects occlusion very early in the processing can be useful for focus of attention,

tracking as well as more accurate computation of the various image properties.

The confidence measure discussed in this study produces low values for both homo-
geneous areas as well as occlusion areas. However, often it is possible to separate these
situations using the information in the SSD surface. In real world images, it is usually
the case that where there are occlusion boundaries, there are also discontinuities in the
image texture. This suggests that all values on the auto-SSD surface will usually be high

at occlusion boundaries, whereas they will be uniformly low at homogeneous areas. This
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observation can be useful in the identification of occlusion areas in an image.

This is not as simple as it may seem from the discussion above. For one thing, there
are questions about how to translate such real valued numbers us the confidence measure,
and the values on the SSD surface into binary decisions about occlusion. Further, it is also
possible to encounter situations where there is a compounding of occlusion situations and
homogeneous areas, which makes it difficult to identify them as being due to occlusion. The
key to these problems may lie in separating the confidence measure into two components.
One is a matchabslity measure which could be based on single image information, and would
classify points according to their degree of “matchability®. For example, an intensity corner
will be highly matchable, whereas a point in a homogeneous area of the image will be poorly
matchable. Another component is a match-ezistence measure which would identify :>oints
in occluded areas, and in areas with changing image structure. This measure cotld be
derived by comparing the shapes of the auto- and cross- SSD surfaces. These que :tions

will be the focus of our own future work in this direction.
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