DYNAMIC CONTROL OF MODULE

INTERCONNECTIONS

COINS Technical Report #84-35

Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts, 01003

David Stemple
Stephen Vinter
Krithivasan Ramamritham

DYNAMIC CONTROL OF MODULE INTERCONNECTIONS

David Stemple

Stephen Vinter
Krithivasan Ramamritham

University of Massachusetts
Ambherst, Massachusetts
July 1984 |

ABSTRACT

Large software systems require various levels of conmtrol in order to operate
correctly and predictably. The levels range from control over the scope and types
of variables to control over modules” connections to other modules. In this paper
we examine the Gutenberg system, an operating system kemel designed to provide
module interconnection control as one of its fundamental services. In the Gutenberg
system, modules are processes that are comnected to each other by communication
channels called ports. Each port is associated with an abstract data type operation
and can be created by a process only if the process has the capability to execute the
operation on the type. Thus a port represents the privilege of one module, the port
user, to request a service (an abstract data type operation) provided by another
module (the type manager). Capabilities to create ports for requesting operations are
contained in a capability directory, which is traversed by processes to gain these

In the Gutenberg system, the ability of one module to conmect to another can
change dynamically through the traversal of the capability directory, through the
gharing of subdirectories in the capability directory, and through the transfer of
capabilities along ports. Controlling dynamic module interconnections requires
controlling these actions. We present an example in which different access control
policies are implemented using the module interconnection control facility provided
by Gutenberg. This example demonstrates that an operating system kernel using a
capability scheme for controlling module interconnections in terms of abstract dafa
types is useful for exercising a robust range of control; more importantly, it shows
that such control can be achieved without the high cost of a uniform capability-based
approach to protection.

This material is based upon work supported in part by the National Science
Foundation under grant MCS 82-02586.

L INTRODUCTION

Large software systems require various levels of control in order to operate
correctly and predictably. The levels range from control over the scope and types
of variables to control over modules” connections to other modules. In this paper
we examine the Gutenberg system, an operating system kernel designed to provide
module interconnection control as one of its fundamental services [Ramamritham et al.
83a).

In general, a module is a program unit, for example, a procedure, a package
[Dod 80], or a process. Typically, one module communicates with another to provide
some service or to obtain some service. Services include controlling resources,
managing abstract data types, providing and delivering data, storing data for future
delivery, and providing access to other modules. Module interconnection refers to the
communication relationships existing between modules. Module interconnection control
refers to the specification and management of module interconnections.

Programming language facilities for interconnection control generally focus on
thestaticproperﬁesofmodubsandhreappmpxia:efortheconuolofaccesswithin
a process. These connections can involve access to variables, constants, data
structures and entry points. Control over these accesses, both in terms of allowing
them and ensuring their consistency, is most often exercised at compile-time, e. ;.,
via strong typing and module nesting, as in Pascal.

On the other hand, the system described in this paper is designed to handle
module interconnection problems beyond those manageable by compile-time or

link-time checking mechanisms; namely, dynamic control of process interconnections.

2

In the Gutenberg system, modules are processes that are connected with each other
through communication channels called porss. Each port is associated with an abstract
data type operation and can be created by a process only if the process has the
capability [Dennis and Van Horn 66] to execute the operation on the type. Thus a
port represents the privilege of one module, the port user, to request a service (an
abstract data type operation) provided by another module (the type manager).
Capabilities to create ports for requesting operations are contained in a capability
directory, which is navigated by processes to gain these capabilities. Ports in
Gutenberg represent the only method of process interconnection and all direct
communication between processes is by means of port operations.

In the Gutenberg system, the ability of one module to connect to another can
chnngedynamicanythmughthemcmloithecapabﬂitydixectory,thmughthe
sharing of subdirectories in the capability directory, and through the transfer of
capabilities along ports. Controlling dynamic module interconnections requires
controlling these actions.

An important aspect of module interconnection control is ensuring that a
pmceascanonlybeoonnectedtothmepmcewwhouaeﬁiwsthep:mis
capable of obtaining. In this sense, controlling process interconnections implicitly
controls the services available to a process. When a service manifests itself as an
operation on a resource, it is the access to the resource that is controlled. /lf
multiple processes are allowed access to the resource, control of access also controls
the sharing of the resource. Thus, control of process interconnections, control of
access to resources, and profection of resources [Saltrer and Schroeder 75] deal with

the same issue, and therefore are provided by a single mechanism in Gutenberg.

3

The emphasis of this paper is on the processes that access shared resources and
those that manage these resources. In Gutenberg, a resource is an instance of an
abstract data type (termed an object), and hence can be accessed only through the
specific operations defined by the object’s type. When a process requests service, it
requests access to an object via an operation defined on the object; the service is
provided (ie., the operation is performed) by the process managing the object.

The rest of this paper is organized as follows. Section 2 briefly surveys
previous approaches to module interconnection control. In section 3 we introduce
ports and the capability directory, and discuss how shared objects are managed in the
Gutenberg system. Section 4 discusses those features of Gutenberg which provide for
the sharing and protection of objects. Section 5 is devoted to an application
requiring dynamic control for achieving different access control policies. We consider
the bibliography application first presented in [Wull et al. 74] to demonstrate how
Gutenberg achieves resource protection while providing flexible sharing. We show
how the bibliography abstract data type is created, and how the creator of the type
shares with other subjects the capability to create and access instances of the type

under different access control policies.

2. APPROACHES TO MODULE INTERCONNECTION CONTROL

Ve

As menﬁonéd in the introduction, module interconnection control in most

programming languages is based on the static properties of processes and deals only
with control of access to entities within a process. The work reported in [Kieburts
and Silberschatz 78, McGraw and Andrews 79, and Ancilotti et al. 83] incorporates

capabilities into programming languages in an attempt to provide the flexibility of

4
controlling dynamic access to shared objects. Although this is an important extension
ofprogramminghnguaps,thepoliciesenforcedbyanylanguagecanbe
compromised in a number of ways. For example, the user could modify object code
on secondary storage or develop programs in a different language. We feel this is
an inherent limitation of the use of programming languages to provide protection,
hence we have developed a programming language independent facility for controlling
process interconnections. This facility is a part of the operating system kernel and
thus is neither dependent on compilers nor, as we will see in subsequent sections, on
the integrity of user-managed files.

There are other reasons to separate module interconnection control from
programming language facilities. While we take a different approach to module
interconnection control than that of DeRemer and Kron [DeRemer and Kroa 76], we
agree with their contention that “structuring a large collection of modules to form a
system is an essentially distinct and different intellectual activity from that of
constructing the individual modules.” Therefore, we believe that the separation of
Gutenberg module interconnection control from programming language facilities is
justified on two counts. First, it is “natural” to use a distinct and different tool (the
Gutenberg system) for a distinct and different activity (dynamically controlling the
interconnections among a large collection of modules). Second, it provides for secure
but dynamic control of interconnections in a manner that programming langua;e

methods do not.

5

Facilities for the control of module interconnection independent of particular
programming languages have been proposed in [DeRemer and Kron 76, Tichy 79,
Clarke et al. 83). These facilities are declarative in nature and, like programming
language facilities, focus on the static nature of interconnections rather than on
dynamic control. Therefore, these facilities are inadequate for providing module
interconnection control while supporting dynamic access to shared objects.

Capability-based operating systems, e. g., Plessey 250 [England 74], Hydra
[Coben and Jefferson 76], and iMAX [Kahn et al. 81], provide for dynamic control
through the use of transferable, unforgeable capabilities for accessing modules.
Capabilities are means for providing the control implicit in the abstract data type
paradigm, ie., the limiting of object access to a set of operations defined by the
type. To date, however, capabilitics have been expensive to implement either in
software or hardware, and need further development before they can demonstrate
their cost-effectiveness. The main problem seems to be their use for controlling
accesses both to entities external to a module and to local data and procedures.
The Gutenberg system represents an attempt to avoid this problem by using a
capability scheme for controlling process interactions, but not for local procedure
calls and other access within a process. We call this approach a nmonuniform object
model of protection: Data local to a process are not protected by the kemel;
resources shared by multiple processes are structured as objects and are protected b/y
the kernel. This approach, along with the avoidance of user-defined capabilities as
discussed in the next section, distinguishes Gutenberg from other capability-based

systems.

3. CONTROL OF PROCESS INTERCONNECTIONS IN GUTENBERG

In this section we first introduce the Gutenberg kemel objects, and then show
how the control of access to kemel objects i8 used to control module
interconnections providing access to user-defined objects.

Gutenberg’s nonuniform object model of protection is based on a few basic
kernel objects and the use of these system objects for expressing the protection
requirements of user-defined objects. To help distinguish between kemnel and
user-defined objects we say that processes execute kernel primitives to manipulate

kernel objects and request operations to manipulate remote user-defined objects, i. e,

objects managed by other processes. The objects recognized by the .kemel are:

' ® processes: the subjects which share access to objects;

® ports: used to request access to shared objects;

® the capability directory: a unified structure, organized similar to a
UNIX file directory [Ritchie and Thompson 74], containing capabilities.
It is a stable structure in that it existence does not depend on the
existence of any process. It contains four kinds of stable capabilities:

— operation capability: represents the privilege to create a port for
use in requesting a mamed operation on a given user-defined
object type; it is linked to a manager definition capability
corresponding to the object type.

~ manager definition capability: represents the privilege to create
new operation capabilities linked to this capability, and to
redefine operations’ implementations; it points to the executable
imageofthcpmcessthatmmgestheob'pctonwhichthe
operation i8 defined; corresponds to a type capability in Hydra.

~ cooperation class capability: represents the privilege to participate
in a cooperative activity identified by a unique identifier, the
cooperation class identifier. An example of a cooperative activity
is communicating with the process that manages a shared
instance of an object type.

~ subdirectory capability: represents the privilege to obtain a group

of capabilities, a subdirectory, in a restricted way. The
capabilities contained in a subdirectory are said to be registered
in that subdirectory. '

® transient capabilities: these capabilities are port capabilities and copies

of stable capabilities from the capability directory; a process’s
transient capabilities are stored in its capability list (c-list), and only
exist for the duration of the process’s existence.

A capability in other systems consists of: an object identifier, the object’s type,
and the subset of the operations defined by the type that are permitted by the
capability. Since object types can be user-defined, the definition of operations in
some capabilities are determined by the user.

| Capabilities in Gutenberg are somewhat different, consisting of: a specific
kernel primitive, a list of kernel-object identifiers constituting legal parameters for
the primitive, and a list of primitives that can be used to manipulate the capability
itself (called capcaps, for capabilities on a capability). Capcaps include the privilege
to transfer, register (make stable), hold (make transient), and modify the capability.
A capability permits a process with that capability to exercise the kernel primitive in
the capability. For example, with an operation capability a process can perform the
kernel primitive CREATEPORT with the name of the operation being a parameter
to CREATEPORT.

The purpose of the capability directory is to restrict the acquisition of
capabilities by processes in a consistent and orderly way. At anytimeaproceesh/as
a single subdirectory of the capability directory designated as its active directory. A
process can change its active directory to any subdirectory registered in its current
active directory. (Figure 1 presents the structure of the subdirectory used for a

bibliography application [Wulf et al. 74)) A process may only use stable capabilities

8
that are registered in its active directory. Each active directory has rights associated
with it (independent of the capabilities registered in the subdirectory) that further
restrict the primitives a process may use to manipulate and exercise the capabilities
registered in the directory. These rights are determined by the particular subdirectory

capability a process uses to make the subdirectory its active directory.

I

Qlass-id Dir I BiblioDir Manager.Dir

Rectangles denote subdirectory capabilities, circles denote operation capabilities,
parallelograms denote manager definition capabilities and diamonds denote cooperation
class identifier capabilities.

BibManager manages an instance of a bibliography abstract data type. Create,
Update, Print, Pwoa (Print without Annotations) and Frase are operations on the
bibliography object. To request these operations, a process creates a port using one
oftheopemﬁoncapabﬂiﬁesmdthenaecumam(k)forautemda
SELECTRECEIVE (SR) for all other operations. BIB1 is a cooperation class
capability and identifies a particular bibliography. .

Figure 1: The bibllography sabdirectory.

9

In addition to the capabilities in a process’s active directory, a process may
exercise the capabilities in its capability list (c-list). Capabilities in a process” c-list,
unlike those registered in the capability directory, are owned by the process. Such
capabilities are called transient because they exist only for the lifetime of the owning
process. A transient capability comes into existence when a process holds a
capability in its active directory (i. e., copies it into its c-list), receives the capability
from another process via a port, or creates a port. In the last instance, the capability
to access the created port is placed on the c-list. A process holds a capability in its
active directory in order mot to lose the capability when it changes its active
directory to another subdirectory. Transient capabilities contribute to the flexible use
of capabilities in Gutenberg without compromising the security of the system because
the c-list may only be manipulated through kemnel primitives.

The kemel maintains a list of port capabilities as part of a process” c-list,
called the process’s p-lis. The p-list is part of the capability list because a port
capability is a transient capability that gives a process the ability to execute a
particular kernel primitive on the port. The possible kernel primitives on ports
include SEND, RECEIVE, and SELECTRECEIVE (SELECTRECEIVE is intended
for bidirectional communication).

Note that capabilities, ports and the capability directory are kernel objects and
hence can themselves be manipulated only through the kernel primitives defined ;n
them. For instance, the capability directory is traversed and its contents modified by
processes through kemnel primitives, e. g, CHANGE-DIRECTORY, REGISTER, and
DELETE-MANAGER. When a process requests the execution of a kernel primitive

the kernel uses the c-list and the active directory of the process to check whether it

10
has a legitimate privilege for executing the primitive.

We now move from kernel objects to user-defined objects and examine how
user-defined objects are shared and protected. By user-defined objects we mean
those objects managed by one process but accessible by other processes via operations
requested using ports. We are mot concerned here with objects purely local to a
process since the Gutenberg kemnel i8 not involved in their protection beyond the
ordinary aspects of memory management.

Each user-defined object is managed by a manager process associated with the
object’s type. The creation of a user-defined type involves creating a manager
definition capability (a kernel object) for the type, using the manager definition
capability to create operation capabilities (kernel objects) corresponding to operations
defined on the object type, and registering them in a subdirectory (a kernel object).
The set of possible operations that may be performed on an object are determined
by the operation capabilities linked to the object’s manager definition capability.

In order for a process to request an operation on a shared object the process
must create a port using one of the operation capabilities that is linked to the
object’s manager and then use the port to request the particular operation on the
object. The operation capability must reside in the process’ active directory or c-list
when the port is created. In this way, operation capabilities are capabilities to create
ports to access sharable objects. For example, in Figure 1 the only operations that
can be performed on a bibliography are those for which operation capabilities (such
as Create) are linked to the BibManager manager definition capability. A process
may request a bibliography operation only if it obtains one of the operation

capabilities in BiblioDir (e. g, by making BiblioDir its active directory), creates a

11

port using the operation capability, and then uses the port to request the operation.

In Gutenberg, the only way a process can request an operation on a
user-defined object is to execute a kernel primitive on a port, either SEND,
RECEIVE, or SELECTRECEIVE. Ports are very restrictive in how they allow access
to objects: First, the kernel associates the name of the operation in an operation
capability with a port that is created using the capability. This association is not
changeable and the operation is not included as a parameter to port primitives after
port creation. Thus, a process may only use the port to request the operation for
which the port was created. Second, each port capability entitles the owning process
to execute only a single type of port primitive for sending and receiving, namely,
SEND, RECEIVE, or SELECTRECEIVE.

In summary, a module interconnection manifests itself as a port between a
process requesting an operation on a user-defined object and a process managing the
object. Ports represent all module interconnections in Gutenberg. Establishing an
inter-module connection, ie., a port, involves checking for an operation capability in
the active directory (a subdirectory in the capability directory) or c-list of the
requesting process. Thereafter the kernel performs access authorization for a
user-defined operation simply by checking that the requesting process has the
privilege to access a particular port. Thus, creating and accessing user-defined objects
involves using system-defined capabilities to authorize access to system-defined object;,
and does not involve checking user-defined capabilities as in other capability-based
systems. Support for user-defined types is thereby achieved efficiently through the

efficient implementation of kernel primitives.

4. SHARING AND PROTECTING OBJECTS IN THE GUTENBERG SYSTEM

In general, at a given instant, a process has the ability to access a sharable
object if either of the following hold:

® The process has a port attached to the manager of the object.

® Operation capabilities in its active subdirectory or c-list permit the
process to create a port to access the object.

The ability of process to access shared objects can change dynamically due to
the following Gutenberg features:
® The dynamic initiation of and connection to manager processes of
shared objects; the manager initiation protocols provide the needed

flexibility to control the sharing of the objects managed by these
processes.

e The transfer of capabilities on ports; by transferring its capability for
an operation on an object, a process endows the recipient process
with that capability, and this results in the sharing of access to the
object between the two processes.
® The traversal of the capability directory; moving from one active
directory to another provides a process with a different set of
capabilities, and hence a different set of objects become accessible to
it. Also, since a particular subdirectory may be reachable by two
different processes, a process may implicitly share a privilege with
another by placing it in such a subdirectory.
This section is devoted to a discussion of how dynamic sharing can be accomplished
in Gutenberg. We examine how the protocols for imitiating manager processes affect
gharing in the Gutenberg system, introduce the Gutenberg capability transfer
mechanisms, and discuss how capability directory traversal can be controlled. We
conclude this section with a formal characterization of resource sharing in Gutenberg.
Recall that to perform an operation on a sharable object, a process must
create a port to the object’s manager. In order to create the port, the process must

have a transient or stable operation capability, linked to the manager definition for

13

the object’s manager, and must specify the operation name when the port is created.
Based on the manager definitions, the kemel makes the determination of which
protocol to use when it receives the first operation on a newly created port.

In the first protocol, a manager process is initiated from the manager definition
only if there is no manager process currently in the system which was created using
this manager definition. If a process initiated from the manager definition already
exists, the port being created is attached to this process. Otherwise, a new process is
created. This protocol provides a means to produce a manager process that manages
all instances of an object type, and to automatically connmect port-creating processes
to this manager.

A second protocol allows new processes to be initiated selectively based on a
parameter supplied at port creation time. This parameter, which is used to form
groups of cooperating processes, is called a cooperation class identifier (classid). A
portcanbeassociatedwithaclam—idbyspecifyingtheclass—idasapammetertothe
portcreaﬁonrequest.lnthiscase,oneoftwoactionsoccumwhenthcportisﬁm
used to access the object. If there is no current process associated with the class-id
that was initiated from the definition, one is created and the port is attached to it.
If such a process exists, the port is attached to it. Thus, each manager process
created using this protocol is associated with a distinct class-id, can be designed to
manage one instance of an object type, and may serve multiple ports. As a resu]t,
the processes with access to ports connected to such a manager process share access
to the object instance managed by that process. (A complete discussion of how
classids can be used to facilitate other forms of cooperative interaction among

procesescanbefoundinlswmpledal.m.)

14

Objects can also be shared between processes via the transfer of processes’
capabilities. Since the kernel is the manager of the capability directory and ports, it
controls processes” capabilities and monitors the transfer of capabilities between
processes. There are three ways in which one process can tﬁnsfer some of its
capabilities to another; in all cases capabilities are transferred over a port connecting
the sending and receiving processes.

The first method of capability transfer is the transfer of a port capability. The
gsending process loses the port capability, and therefore the privilege to execute the
object operation associated with the transferred port; the receiving process obtains
this privilege.

The second method of capability transfer is the transfer of an operation
capability (which can be associated with a cooperation class) that can be used to
create a port to access an object (identified by the cooperation class). In fact, the
receiving process may use the operation capability to create many ports.

The third method of capability transfer is by the transfer of a subdirectory
capability. The receiving process can use the subdirectory capability to make the
subdirectory its active directory, thereby allowing it to use the capabilities in the
subdirectory.

The two issues of concern when transferring capabilities are the sharability and
stability of the transferred capabilitics. Obviously a capability is sharable by th;
receiving process if the receiver can further transfer it to another process. A
capability that can be registered in a subdirectory is also sharable since the

subdirectory may be reachable by other processes.

15

A transferred capability (which is initially transient by virtue of being in the
recipient’s c-list) can be made stable by the receiving process registering the
capability in its active directory. Capability registration allows a user' to create data
types during one “run” and use them during a later “run”. Otherwise, the capability
does not exist beyond the life of the receiving process.

Through the use of capcaps the sending process has control over whether a
capability can be registered or further transferred. In order to prevent a receiving
process, say p2, that executes on behalf of a user U2, from further transferring a
capability, a sender, say pl, executing on behalf of user Ul, should set the capcaps
of the transferred capability such that it cannot be further transferred. Sending
process pl can prevent p2 from further sharing the transferred capability by setting
the capability’s capcap so that neither its transfer mor its registration is possible by
p2. Allowing a receiving process to register a capability also implicitly allows the
process to share the capability because the subdirectory in which the capability is
registered may be sharable. Thus, in general, registration implies sharability.

Though most registration of capabilities produces defacto sharing, one
Gutenberg feature, the private subdirectory, allows registration of a capability while
restricting its sharability. The capabilities registered in a user’s private subdirectory
may only be exercised by that user’s processes; other users” processes may register
capabilities in this subdirectory but may not exercise the capabilities. If capablhn;s
are registered without the register and transfer capcaps set, the user’s processes have
no way of sharing the capabilities. The control over private subdirectories is provided

‘Thetemuscrrcfentoanyenﬁtyonwhmebchnltmesmcute. A concrete cxample of a
user is a person who can log into the system.

16
through the rights associated with subdirectories. Instead of user Ul's process pl
transferring a capability to user U2’s process p2, pl registers the capability in U2’s
private subdirectory and sets the capcaps of the capability 0 as not to allow any of
U2s processes to transfer or (re)register the capability. Thus, since a private
subdirectory is only reachable by U2 processes, and U2 processes can neither transfer
the capability to any other process nor register these capabilitics in any other
subdirectories, such capabilities are not sharable. This feature has two benefits. First,
it allows a user to give another user permanent capabilities without allowing further
distribution of the capabilities. Second, it allows a user to provide capabilities to

?mer users without requiring that the recipients have an active process, while

&voiding the use of access lists.
In order to precisely define the capabilities possessed by a process, we
introduce some formalism.

Active_directory(p) stands for the active directory of process p. We will use
active_directory(p) to refer to both the subdirectory capability for the
active directory of p and the subdirectory itself. We will mean the
former for d1 and the latter for d2 when we state that subdirectory dl is

registered in d2.

Capeaps(c) is the set of capabilities (privileges) to manipulate the capability ¢ itself
via kemel primitives. For example, if (register € capcaps(c)) and ¢ is a
transient capability, then c can be registered in any active directory, and
thereby be made stable.

Rights(d) for a subdirectory capability d, denotes the set of rights for manipulating
the capabilities registered in d possessed by a process making d its active
directory through some traversal of the capability directory. For instance,
if process p is to register a capability in a subdirectory d, then
(@ = active_directory(p)) A (register € rights(d)).

17

Let D = Set of subdirectory capabilities in the capability directory,
M = Set of manager definition capabilities in the capability directory,
O = Set of operation capabilities in the capability directory, and
C = Set of cooperation class identifier capabilities in the capability directory.
Based on the following relations among capabilities in a capability directory,
DR C D X D, where (d2 DR dl) if directory d2 is registered in dl,
MR C M X D, where (m1 MR dl) if manager mi is registered in dl,
OR C O X D, where (o1 OR dl) if operation ol is registered in d1, and
CR C C X D, where (cc1 CR dl) if class identifier ccl is registered in dl,
the capability directory can be viewed as representing the relation R where
R =DR UMR UOR U CR.

Thus, we can say that capability cl is registered in directory di,
or more formally that the predicate registered(cLdl) is true, if

cl R di

Directory d2 is reachable from subdirectory d1, or more formally,
the predicate reachable(d2,d1) is true, if

d2 DR* dl.

In general, capability cl is obtainable from subdirectory di,
or more formally, the predicate obtainable(c1,dl) is true, if

j 42, reachable(d2,d1) A registered(c1,d2)

For example, for the capability directory in Figure 1, obtainable(CREATE,UserA Dir)
is true. |

Note that the predicate obtainable only relates to the capabilities that are
obtainable through the traversal of the capability directory; it does mot include the
capabilities obtained by a process via the holding of a capability registered in a
different active directory. As mentioned earlier, a process with proper privilege may
hold a capability that is in its active directory, causing a transient copy of it to be
created and placed in the process’s c-list, and then change its active directory. For

a process p to make capability c registered in directory d transient, it is necessary

18

that:
(d = active_directory(p)) A registered(c,d) A (hold € rights(d)) A (hold € capcaps(c))
We now turn our attention to the set of capabilities possessed by a process. To
do so, we define some predicates: dircap?(c) is true if ¢ denotes a subdirectory
capability, false otherwise. Similarly, one can 'define opcap?(c), mancap?(c), and
classcap?(c). Let us define cdist(p) as the list of transient capabilities possessed by
process p. Similarly, p-ist(p) is the set of port capabilities possessed by process p.
Additionally, we define capabilities(p) to be the set of capabilities process p has in
its c-list as well as those obtainable from the current capabilities. Thus,

¢ € capabilities(p) IFF

- ¢ € clist(p) V
¢ = active_directory(p) V
[(d = active_directory(p)) A obtainable(c,d)] Vv
[d € cAlist(p) A dircap?(d) A obtainable(c,d)]

In the following summary of the effects of capability sharing mechanisms in
Gutenberg, (i) refers to the effect on the process that initiates the sharing, (ii) refers

to the effect on the recipient, and (iii) refers to the effect of the recipient’s use of
the transferred capability on other processes (including pl).

1) Transfer of a port capability by process pl to p2
(a) without the transfer capcap
i. deletes the port capability from pls p-list.
ii. adds the port capability to p2s p-list.
iii. cannot affect the p-list of any other process p3.
(since p2 cannot transfer the port to any other process). -

(b) with the transfer capcap
i. deletes the port capability from pl’s p-list.
ii. adds the port capability to p2’s p-list.
iii. any process can potentially use the port
(since p2 can transfer the port to any process).

2) Transfer of a non-port capability ¢ by process pl to p2
(a) without the register capcap and without the transfer capcap
i. does not affect c-list(p1).

19

ii. adds ¢ to c-list(p2).

iii. does not affect the c-list of any other process p3. May affect
capabilities(p3) if, with c, process p2 can modify subdirectories
accessible to p3.

(b) without the register capcap but with the transfer capcap
i. does not affect c-list(pl).
ii. adds ¢ to c-list(p2).
ili. may affect the c-list of process p3 if p2 transfers ¢ to p3.
May affect capabilities(p3) if, with ¢, p2 can modify subdirectories
accessible to p3.

(c) with the register capcap
i. does not affect c-list(pl).
ii. adds ¢ to c-list(p2); also, ¢ can be registered if there is a capability
d where: (d € capabilities(p2)) A dircap?(d) A (register € rights(d)).
ifi. ¢ is available to any process p3 if (c € capabilities(p3))
after it is registered by p2. May affect capabilities(p3) if, with c,
p2 can modify subdirectories accessible to p3.

3) Register of capability ¢ in a subdirectory by process pl
(a) by registering ¢ in a private directory accessible to p2
i. does not affect c-list(pl).
ii. adds ¢ to capabilities(p2).
iii. may affect capabilities(p3) if, witt c,
p2 can modify subdirectories accesible to p3.

(b) by registering c in a directory d, where (d € capabilities(p2))
i. does not affect c-list(pl).
ii. adds ¢ to capabilities(p2).
iii. may add to process p3's capabilities, if (d € capabilities(p3)).
Also, if ¢ is transferable, p2 may transfer it to p3.
May affect capabilities(p3) if, with ¢, p2 can modify subdirectories
accessible to p3.

Inwmmuy,menmthatémnxfenedcapabiﬁtyismﬂablemmprocessother
than the one it is transferred to, the transferring process should: s

1. exclude both transfer and register capcaps, in which case the transferred
capability will exist only as long as the receiving process exists, or

2. register the capability (without the register or transfer capcaps set) in the
recipient’s private directory, in which case the transferred capability will
remain stable but unsharable.

The complete effect of transferring a capability with the transfer capcap or the

20
register capcap can be specified only if the behavior of each process in the system is
specified. Given a dynamic system, this problem is undecidable [Harrison and Ruzzo
76)3

As the example in the mext section illustrates, the capability directory traversal
and the capability transfer mechanisms discussed above can be used to obtain

differing degrees of access control in the dynamic sharing of objects.

5. CONTROLLED SHARING OF A BIBLIOGRAPHY SYSTEM

We have adapted the bibliography abstract data type example that was
presented in [Wulf et al. 74]. After revicwing the example, we show how the
bibliography data type is created, and investigate ways in which the type’s creator
may share access to bibliographies and the bibliography program.

The bibliography system allows users to store, manage, and display annotated
references. A bibliography is managed by an abstract data type manager, which
recognizes a legal set of operations on the bibliography data type. These operations
are Create, to create a new bibliography; Update, to modify bibiographic entries;
Print, to display entries; Primt without annotations (PWOA); and Erase, to erase a

bibliography.

2 It sometimes becomes necessary to revoke capabilities transferred to a process. Capability revocation
is beyond the scope of this paper. However, details regarding capability revocation in Gutenberg
may be found in [Ramamritham et al 83b].

21

User A creates the bibliography data type by registering a manager capability,
BibManager, in subdirectory ManagerDir, and operations on the type in a
subdirectory BiblioDir in the capability directory (see Figure 1). We would like to
have each bibliography managed by an independent process, and allow bibliographies
to be shared. Hence processes should be initiated from BibManager using the second
manager initiation protocol discussed in the previous section; each port will be
associated with a cooperation class-id which identifies the bibliography accessed via
the port. BiblioDir, as shown in Figure 1, contains one operation capability for
each operation defined on the type, each of which is linked to Bib.Manager.

Suppose user A, the bibliography data type creator, desires to create a
bibliography. To do so, User A (1) obtains a cooperation class-id, BIB1, (2) invokes
the kernel primitive to create a port P, specifying the CREATE operation and the
class-id, and (3) executes 8 RECEIVE operation on P, cauzing the kernel to initiate
a new manager process. The new manager creates a new, empty bibliography and
sends an acknowledgement to user A on port P. The manager process and the
newly created bibliography are now associated with classid BIB1. This means all
ports created using class-id BIB1 and the operation capabilities in BiblioDir will be
attached to this manager process. To perform an operation on the bibliography user
A creates a port specifying the operation and the classid and executes a
SELECTRECEIVE sending request details to the manager via the port; the manage;

performs the operations and sends the results to the requester via the same port.

2

Since, in general, bibliographies are permanent entities, it is necessary to
register BIBl in a subdirectory that A has access to so that subsequent processes,
created on behalf of A, have access to bibliography BIBl. Hence A registers BIB1
in Class-idDir.

User A can share his bibliographies and the bibliography system using the
capability transfer mechanism in three ways:

® by transferring to other processes the capability for a subdirectory

containing operation capabilities for the object type (such as the
capability for BiblioDir in Figure 1);

® by transferring capabilities to create a port (which are transient
capabilities created from the operation capabilities); or

® by transferring ports comnected to the manager of a specific
bibliography.

We begin by examining the transferring of subdirectory capabilities.

Assume user A wishes to share the bibliography system, but not his
bibliographies, with user B. That is, A wants to let user B create and use B's own
bibliographies. A can accomplish such sharing by transferring B a subdirectory
capability for the BiblioDir subdirectory. B can request class-id’s from the kemel,
use them to create mew bibliographies, and perform the full set of operations on the
bibliographies. However, because B has not been given the class-id’s identifying A’s
bibliographies, and classid’s are unforgeable, B is incapable of obtaining capabilitics
for A’s bibliographies. ’

Suppose user A wants to ensure that user B will not destroy BiblioDir nor
delete any operation capabilities in it. A can protect his capabilitics yet ghare them
by not including the register or delete rights in the subdirectory capability he
transfers to B. B can then make the subdirectory his active directory, but will not

23

I

be able change its contents in any way. Another approach is for A to create a new
subdirectory, register in it the capabilities for operations that A desires to let B use,
and transfer to B a full capability (eg, including the register and delete rights) for
this subdirectory.

Assume user A wishes to share bibliography BIB1 with user C. However, A
desires to transfer to user C only the capabilities to the Print and PWOA operations
on BIBl. A accomplishes this by transferring a subdirectory capability for a
subdirectory containing the Print and PWOA operation capabilities that have BIB1
merged with them. This merging has two meanings. First, C may only use the
operations with this particular class-id. Second, the class-id may not be separated
from the operation capabilities, and so C cannot use the class-id with an Erase or
Update operation capability that it may have received from another user.

As we saw in section 4, when transferring a capability to another process, user
A has complete control over whether the transferred capability includes the transfer
and register capcaps. By not allowing the recipient process to register the received
subdirectory capability or to transfer it to a third process, A can be confident that
the transferred capabilities are not shared with other processes. As also discussed in
section 4, transferring a capability without the transfer capcap does not by itself
guarantee that the transferred capability will not be shared. For example, assume user
Atransfemacapabﬂitytoause;Dprocesswithoutthetransfercapcapbutwithth;
register capcap. This allows D to register the capability in one of its subdirectories,
and thus permanently store it. If this subdirectory is shared, the transferred capability
can also be shared. As we saw ecarlier, via the use of private subdirectories,

Gutenberg permits a recipient to make a shared capability stable while preventing its

%

further sharing. Thus, instead of transferring a capability to user D, user A registers
the subdirectory capability without the transfer and register capcaps in D’ private
subdirectory, and then only user D processes may use that capability.

So far we have discussed the controlled sharing of capabilities via the transfer
of subdirectory capabilities. The second way A can give other processes capabilities
is by transferring capabilities that directly allow a process to create ports to the
manager of a bibliography. As was the case with the operation capabilities that user
C received from user A, the capabilities may be merged with class-ids that restrict
their use to particular bibliography instances, and may or may not allow their
transfer and registration.
| Passing individual capabilities to create ports instead of registering them in a
subdirectory and transferring the subdirectory capability does not provide additional
functionality, but does provide finer granularity and additional flexibility that may
prove to be more convenient without reducing access control. By transferring
capabilities to create ports, A does not have to go to the trouble of creating a
subdirectory, registering capabilities in it, and managing it after transferring a
capability for it.

The third way to share access to bibliographies is for a process to create ports
to a bibliography manager and transfer them to another process. In this case each
port is already associated with a specific operation on a specific bibliography. Por;s
are shared differently than operation capabilities from which they were created in
that exactly one process is connected to each end of the port. Thus, sharing is at a
finer granularity since ports constitute a single access path to a gingle object. Last,

ports are inherently temporary, and are destroyed when their owning processes

terminate.

We have discussed the sharing of capabilities and explored how the register and
transfer capcaps affect sharing. User A, as creator of the bibliography data type, was
able to share his bibliography system and specific bibliographies, and choose different
degrees of access control to meet his requirements. In general, by restricting the
processes that have access to a set of operations, class-id’s (identifying instances of
abstract data types), class-id/operation combinations, and subdirectories, the creator of
an abstract data type has complete control over all capabilities that are shared with
respect to instances of the type. The creator also has control over the transfer and
registration of transferred capabilities. We illustrated the use of the Gutenberg
approach to dynamic sharing of resources via the bibliography example.

In general, this approach is applicable to any situation where access to modules
providing services to other modules needs to be shared. The creator of a module
may implement any access control policy he desires with respect to the services the
module provides. For example, if the creator of a data type wants an instance of
the type created only if the requestor possesses the proper password, then the
creating process can retain the create capability, perform the password authorization
itself, and distribute the appropriate capabilities to the authorized requesting process.
This is a reference monitor approach [Ames et al. 83] to access authorization that is
implemented at the process level where capability management is implemente/d

efficiently at the kernel level.

6. SUMMARY

We have presented a module interconnection specification and control facility
which is independent of programming language features and is provided by an
operating system kernel. We have argued that such a facility is needed to provide
dynamic control of object sharing to simplify the construction of correct and
predictable software systems. We also presented a bibliography system in order to
illustrate how this facility could be used to control sharing when different kinds of
access control were required. This example demonstrated that an operating system
kernel using a capability scheme for controlling module interconnections in terms of
abstract data types is useful for implementing a variety of access control policies.

We have also shown that a capability-based kernel need not exercise control
over local data access, as for example in Hydra [Woll et al. 74}, in order to
elegantly control the sharing of non-local data. This nonuniform use of capabilities
provides, we believe, a feasible method of providing dynamic control of access where
needed without mcumng the crippling inefficiencies of uniform capability-based

gystems.

7. REFERENCES

[Ames et al. 83) Ames, S., Gasser, M, Schell, R., “Security Kemnel Design and
Implementation: An Introduction,” Computer, vol. 16, no. 7, July 1983.

[Ancilotti et al. 83] Ancilotti, P.,, Boari, M., Lijtmaer, N., “Language Features for
Access Contro),” IEEE Transactions on Software Engineering, vol. SE9, no. 1, Jan.
1983.

[Clarke et al. 83] Clarke, L., Wileden, J, Wolf, A., “Precise Interface Control:
System Structure, Language Constructs, and Support Environment,” University of
Massachusetts, COINS Technical Report #83-26, Aug. 1983.

[Coben and Jefferson 76] Cohen, E., Jefferson, D, “Protection in the Hydra
Operating System.”ProceedingsoftheSthSymposiumonOperaﬁngSystem
Principles, vol. 9, no. 5, 1976.

[Dennis and Van Horn 66] Dennis, J., Van Horn, E., “Programming Semantics for
Multiprogrammed Computations,” Communications of the ACM, vol. 9, no. 3, March
1966.

[DeRemer and Kron 76] DeRemer, F., Kron, H, “Programming-in-the-Large Versus
ing-in-the-Small,” IEEE Transactions on Software Engineering, vol. SE-2, no.
2, June 1976. ‘

[Dod 80] “Reference Manual for the Ada Programming Language”, US. Department
of Defense, July 1980.

[England 74] England, D, “Capability Concept Mechanism and Structure in System
250,” Proceedings, Internation Workshop on Protection in Operating Systems, Aug.
1974.

[Harrison and Ruzzo 76] Harrison, MAA. and Ruzzo, WL., “Protection in Operating
Systems,” Communications of the ACM, Vol 19, No 8, Aug 1976, 461-470.

[Kahn et al. 81) Kahn, K. Corwin, W. Dennis, T., D’Hooge, H., Hubka, D,
Hutchins, L., Montague, J., Pollack, F, “iIMAX: A Multiprocessor Operating System
for an Object-Based Computer,” Proceedings, 8th ACM Symposium on Operating
System Principles, Dec. 1981.

[Kieburtzs and Silberschats 78] Kieburtz, B., Silberschatz, A., “Capability Managers,”
IEEE Transactions on Software Engineering, vol. SE-4, no. 6, Nov. 1978.

[McGraw and Andrews 79] McGraw, J, and Andrews, G., “Access Control in
Parallel Programs,” IEEE Transactions on Software Engineering, vol. SE-5, no. 1, Jan.
1976.

28

[Ramamritham et al. 83a] Ramamritham, K., Vinter, S. and Stemple, D., “Primitives
for accessing protected objects,” Proc. Third Symposium on Reliability in Distributed
Software and Database Systems, Oct. 1983.

[Ramamritham et al. §3b] Ramamritham, K., Briggs, D., Vinter, S. and Stemple,
D., “Privilege Transfer and Revocation in a Port-based System,” submitted for journal
publication, Oct. 1983.

[Ritchie and Thompson 74] Ritchie, D. and Thompson, K., “The UNIX Time-Sharing
System,” Communications of the ACM, vol. 17, no. 7, July 1974,

[Saltzser and Schroeder 75] Saltzer, JH. and Schroeder, MD., “The Protection of
Information in Computer Systems,” Proceedings of the IEEE, vol. 63, no. 9, Sept.
1975, 1278-1308.

[Stemple et al. 83] Stemple, D., Vinter, S. and Ramamritham, K., “Interprocess
Communication without Process Identifiers,” submitted for journal publication, Oct.
1983.

[Tichy 79] Tichy, W. “Software Development Control Based on Module
Interconnection,” Proceedings, Fourth International Conference on Software

Engineering, Sept. 1979.

[Wulf et al. 74] Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson,
C., Pollack, F., “HYDRA: The Kemel of a Multiprocessor Operating System,”
Communications of the ACM, vol. 17, no. 6, June 1974

