A FORTRAN MUTATION TESTING SYSTEM *

Antonio C. Silvestri

Debra J. Richardson

COINS Technical Note TN-49

Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

* As modified for the Computer and Information Science Scientific
Testing Project at the University of Massachusetts from Dr.
Timothy A. Budd's system.

This research was funded in part by the National Science
Foundation under grant NSFDCR-84-04217.

ABSTRACT

This document describes the FORTRAN Mutation Testing Systenm
(FNTS), which evaluates a test data set for a program. The
system was developed by Dr. Timothy Budd and implements the
Mutation Analysis technique on programs written in a subset - of
FORTRAN 1IV. The procedure to use the FMTS at the University of
Massachusetts is described and the system’s output is discussed.

The Appendices contain documentation of the FNTS’s major
components. A description of the system’s limitations and the
bugs known to exist in the aystem are also provided.

TABLE OF CONTENTS

Section Page No.
1. Introduction © e e o e o s 6 = s s e s s a & e 4
2. The Mutation Syatem ¢« . ¢« ¢ ¢« ¢ o ¢ o & S
3. Test Program Construction « +. « ¢« « & o & 6
4. The Mutation Procedure s o s s e s s s 8 e s s 7
4.1 The PARSE Subsystem . . . ¢« . ¢« ¢ ¢« ¢« ¢ « & 7
4.2 The MAKMUT Subsystem . . « ¢« ¢« & ¢« &« ¢ & « & 8
4.3 The REPORT Subsystem . . ¢« &+ &« ¢« & &« & ¢ o & 8

4.4 The RDTEST Subaystem« ¢« =« ¢« « & « & 10
4.5 The MUTATE Subsystem . . ¢« « ¢« « &« ¢« « & « & 12
5. Analyzing the Live Mutations e e & a4 s s a4 4 s @ 15

6. Using the FMTS e & o a o 8 a e o 4 8 s s & s 8 19

Appendices
A. PARSE - FORTRAN mutant parser #« « « &« 20
B. MAKMUT - FORTRAN mutant maker # s s e o s o o 21
C. RDTEST - FORTRAN mutant teat case reader % . . 22
D. MUTATE - FORTRAN mutant executer # 23
E. REPORT - FORTRAN mutant astatus reporter # . e 24

F. Known Limitations to the FNMTS e e o o & s o & 25

G. Bugs Known to Exist in the FMTS e o o o o o o 26

Appendices A through E have been extracted from the
documentation supplied with the copy of Budd’s FMTS that was sent
to the University of Massacusetts. Only nminor revisions of this
documentation were mnade to reflect any changes made to the
original systen.

1. INTRODUCTION

The FORTRAN MNutation Teating System (FMTS) is an analysis
tool developed by Dr. Timothy Budd of the Univeraity of Arizona.
The syatem measurea the reliability of a given test data set for
a prograr in terms of its ability to distinguish the program from
other similar programs. In mnutation analysias, a aet of
ayntactically correct programs are generated by making small
changea to the program being analyzed. Theae programa are called
nutanta and differ from the original program by exactly one of
the modificationa established by Budd. These nutants are
executed with each element in the original program’s test data
gset. If a mutant produces the same output as the orignal program
for each teat caase, the nutant lives, otherwise 1t dies.
Analysia of the live mutants for a given set of teast data exposes
parts of the program that have not been sufficiently tested and
thereby assiats the tester in the selection of additional test
data.

A nore extensive theoretical discusaion on Mutation Testing
can be found in Tim Budd’as 1981 paper entitled "Mutation
Analysis: Ideas, Examples, Problems, and Prospects”. That paper
definega the program modificationa which constitute a mutation.

2. THE MUTATION SYSTEN

The FORTRAN Mutation Teating Syatem, written by members of
the Computer Science Department of the Univeraity of Arizona,
implements nutation analysis. The saystenm is currently
operational in the Department of Computer and Information Science
at the University of Massachusetts and can be acceased on VAX! in
directory [SDL.MUTATION].

The mutation ayatem was originally developed under the UNIX
operating syastem. Due to some incompatibilities between standard
UNIX and EUNICE (the UNIX simulator run at UMASS), the syastem waas
nodified to operate under the DEC VMS operating sysaten.

Deapite the conversion between UNIX and VMS, the UNIX
conventiona of standard input and output redirection and command
line argument passage to a program have been retained. Thia was
done by writing a pseudo-UNIX shell subroutine in VMS. All UNIX
shell command 1line features have been written into the psaeudo-
UNIX shell with the exception of pipelining.

The system consists of five main subsystems. They are:

1. PARSE -- a8 program that translateas your FORTRAN program into
an internal representation;

2. MAKMUT -- a program that mutates the internal representation;

3. RDTEST -- a program that requests teat cases and produces a
file of all input data test cases;

4. MUTATE -- a program that interprets the different mutants
of the user’s program under all the desired test

caaes;

5. REPORT -- a program that displays those mutants that remain
alive after interpretation.

3. TEST PROGRAM CONSTRUCTION

The ayatem can MUTATE any standard FORTRAN IV program unit
with the exceptions noted in Appendix F. These units include
programs, subroutines, and functions. The sgystem is not
applicable to FORTRAN 77 program units.

Since the system determines whether a mutant lives or dies
on the input-output characteriatica of a program, you muat inform
the system which variables are input and which are output. You
do this by uaing INPUT and OUTPUT pseudo-instructiona. These
instructions are not part of the FORTRAN language: they are
needed by the mutation aystem to determine a variable’s I1/0 mode.
The 1list of variables that follow the pseudo-instruction INPUT
indicate the variables that provide input values to the progran
unit; the variable 1liast that followa the OUTPUT paeudo-
instruction indicates the variables that contain the output
values after exiting the program unit. In the case of a
subroutine or a function, parameter variables that are not found
in a pseudo-inatruction list are assumed to be both input and
output variables.

Another paeudo-inatruction, READONLY, ias used by the ayatenm
to indicate that the variables in the liast that follows the
instruction cannot be assigned values within the program wunit.
As the instruction implies, the variables can only be read and
are strictly INPUT variablea. The READONLY attribute is uased on
subroutine or function parameters that are passed constants by a
calling unit.

The INPUT, OUTPUT, and READONLY definitions of program
variables have no effect on how the system generates a set of
program nutations; the same set of mutants will be produced
whether a variable is defined to be INPUT, OUTPUT or READONLY.
However, these instructiona do affect the mortality of a mutant.
For example, a nmutant that contains an assignment to a READONLY
variable dies for any test case that forces execution of that
assignment statement.

4. THE MUTATION PROCEDURE

To illuastrate the nutation analysis procedure, consider the
FORTRAN subroutine below. Note the use of INPUT and OUTPUT
inatructiona. This routine takes the input variables ’a’ and ’b’
and outputs the smaller of the two through variable ic.

subroutine sample(a,b,ic)
integer a,b
INPUT a,b
OUTPUT ic
if (a .gt. b) goto 10
ic = a
goto 20
10 continue
ic=0b
20 continue
return
end

Assuming this subroutine is in file SAMPLE.FOR, a sequence
of commands are isasued to ultimately obtain a report of the
progran nutants. These commands invoke FMTS subaystenms. The
order of subsystem presentation implies the usual order of
execution. The discussiona that follow provide the FMTS user
with each subsystem’s input requirements and an explanation of
each subaystem’s output. ‘

Detailed subaysten information is provided in the
Appendices. This information includes the general command 1line
syntax as well as explanations of subsystem command 1line
awitches.

4.1 The PARSE Subsystem

Before any mutation analysis can be done, you must create an
internal representation of a program. This internal
representation is used by the FORTRAN interpreters in other
subsyatensa. Type the following command to generate the internal
form of program SAMPLE.FOR:

% PARSE SAMPLE.FOR

PARSE outputs warnings when variables are not specifically type
declared. The output for program SAMPLE.FOR ias:

PARSE output data for program: SAMPLE.FOR

Warning, variable ic given type integer

4.2 The MAKMUT Subsysten

This subsystem creates a file of the nutants of the internal
representation. To invoke this aubaystem, type:

$ MAKMUT SAMPLE.FOR

MAKMUT outputs a report of the number and type of nutants it
generated. The MAKMUT output ia:

Newly created mutation statistics for program: SAHMPLE.FOR
Mutant maker statistics:

38 new mutants were made.
38 total nutants now exist.

5 level 1 mutants made.
11 level 2 mutants made.
10 level 3 mutants made.
12 level 4 nutants made.

New types made:

3 continue replacements

1 logical replacements

20 absolute value and zpush insertions

2 left, right, true and false replacements

12 scalar replacements
0ld types:
None.

4.3 The REPORT Subsysten

To obtain a report of the mutants that are currently in the
internal representation mutant file, you must invoke the REPORT
subsystem. To do this, you might type:

$ REPORT SAMPLE.FOR -1 100 -h SAMPLE.FOR: ALL GENERATED MUTANTS

Thia command illustrates the use of switches to modify
REPORT’s output. The -1 awitch tells the REPORT Subaystem to
output a maximum of 100 mutations for each statement. The -h
switch tells REPORT to use the remaining command line as a title
for the output.

Note that since no test data has yet been provided, all
mutants are still live. REPORT applied at this point will list
all mutants generated from the progranm.

Output for the above command is shown below:
SAMPLE.FOR: ALL GENERATED MUTANTS
| subroutine sanmple(a,b,ic)

| integer a,b,ic
| output ic

| input a,b
11 if (a.gt.b)

The live mutants of statement 1 are:

if (.true.)

if (.false.)

if (inc(a).gt.b)
if (dec(a).gt.b)
if (aba(a).gt.b)
if (-aba(a).gt.b)
if (zpush(a).gt.b)
if (a.gt.inc(b))
if (a.gt.dec(b))
if (a.gt.aba(b))
if (a.gt.-aba(b))
if (a.gt.zpush(b))
if (a.ge.b)

if (b.gt.b)

if (ic.gt.b)

if (a.gt.a)

if (a.gt.ic)

vV VvVVVVVVVVVvVVVVVVVYyY

2] Sgoto 10
31 ic=a

The live mutants of statement 3 are:

continue

ic inc(a)
dec(a)
aba(a)
-aba(a)
zpush (a)

[N
n
nnn

vV VvVVvVVVVVVVY
-
N

4] goto 20
The live mutants of statement 4 are:
> | continue

Si 10 continue
6l ic =b>b

The live mutants of statement 6 are:

i continue

| ic inc(b)
{ ic dec(b)
l iec abs(b)
| ic -abs(b)

nunnu

v VvVVviVYy

> | ic = zpush(b)
> l a=>b
> | b=b>b
> | ic = a
> | ic = ic
71 20 continue
8i return
9l end

The RDTEST aubayatem establishea a program’s teat data aet.
Type the following to interactively create a teat data set:

S8 RDTEST SAMPLE.FOR

RDTEST repeatedly prompts you for test data, one value for
each input variable. Simply supply a value being requested to
each pronpt. Following the prompta for input values, RDTEST
diaplaya the output values produced by the original program for
those input valuea, asks if these are the correct results, and
asks if there are any more test cases. Both of these questions
require yes or no responses indicated by typing a single letter
’y’ or ‘n’. Suppose that for SAMPLE.FOR only two test cases are
input. The output from RDTEST is the echo of the responses:

Teat Data Set construction for program: SAMPLE.FOR

Enter initial values for test case number 1.
Enter the value for a :

4

Enter the value for b :

2

ic = 2

Are theae the correct results?

Y

Any more test cases?

Y

Enter initial values for test case number 2.
Enter the value for a :

S

Enter the value for b :

2

iec = 2

Are these the correct results?

Y

Any more teat cases?

n

10

Teat data may be read from a file as an alternative to
interactive input. The test data can be arranged with any number
of data items per line. The data, however, must be placed in the
exact order that it would be entered interactively. To read from
a file, simply redirect the standard input device by using the
UNIX <" character.

A logical data entry approach is to arrange each teat case’s
data on a single line in the datafile, along with responses to
the questions that follow the prompts for input values. For
exarple, you might create a file named SAMPLE.DAT that contains:

4 2yvyy
S2yn
Data items in a file must be separated by one or nore apaces

and/or carriage returns. DO NOT use a tab to separate data; the
ayatem doea not recognize it as a delimiter.

If you want RDTEST to read from this file; type the following:
8 RDTEST SAMPLE.FOR <SAMPLE.DAT

It nust be emphasized that when reading from a file, the
data MUST be placed in the exact logical order that you would
enter it interactively. This means when the syastem is expecting
to read a number, a number must be the next item to read. If the
system 1is expecting a single letter yes or no response, then a
single letter ’y’ or ’‘n’ must be the next itenm. If there is an
error 1in the data file, an ’END OF FILE’ error will ultimately
occur. The saystem will then delete the test case file. Your
only option then is to edit the datafile and rerun RDTEST.

When reading from a file, you will atill aee RDTEST’s
prompts unleaa you redirect the atandard output device. To
redirect the standard output device, use the UNIX ">" character.
You must redirect the output to the null device to eliminate the
prompta. Type the following to read from the file SAMPLE.DAT and
eliminate prompting:

8 RDTEST SAMPLE.FOR < SAMPLE.DAT > NL:

Note that NL: is the VMS name for the null device.

11

Once nutations are made and teat data ia initialized, the
next step is to run each mutation with the teast data. To do this

type:
8 MUTATE SAMPLE.FOR -8 -t 1

The -8 switch tells MUTATE to output mutation mortality
atatiastics to the atandard output device. The -t awitch
inatructas the MUTATE subsystem to output mnutant survival
information after each mutant execution. Output from MUTATE is:

Mutation Survival Output for program: SAMPLE.FOR
Mutant number 1

if (.true.)
survived all teat cases

Mutant number 2

if (.false.)
killed on test case 1 cause:
Error number -1 - results differ
Mutant number 3

if (inc(a).gt.b)
survived all teat cases
Mutant number 4

if (dec(a).gt.b)
survived all test cases
Mutant number 5

if (abs(a).gt.b)
survived all test cases

Mutant number 6

if (-aba(a).gt.b)
killed on test case 1 cause:
Error number -1 - resultas differ
Mutant number 7

if (zpush(a).gt.b)
survived all test cases
Mutant number 8

if (a.gt.inc(b))
survived all test cases
Mutant number 9

if (a.gt.dec(b))
survived all test cases
Mutant number 10

if (a.gt.aba(b))
survived all teat cases
Mutant number 11

if (a.gt.-abs(b))
survived all test cases
Mutant number 12

if (a.gt.zpush(b))
survived all test cases
Mutant number 13

if (a.ge.b)

12

survived all test cases
Mutant number 14
if (b.gt.b)

killed on test case 1 cause:
Error number -1 - results differ
Mutant number 15

if (ic.gt.b)
killed on test case 1 cause:

Error number 9 - Undefined variable used
Mutant number 16
if (a.gt.a)

killed on teat case 1 cause:
Error number -1 - results differ
Mutant number 17

if (a.gt.ie)
killed on teat case 1 cause:

Error number 9 - Undefined variable used
Mutant number 18

continue
survived all test cases
Mutant number 19

ic = inc(a)
survived all test cases
Mutant number 20

ic = dec(a)
survived all test cases
Mutant number 21

ic = abs(a)
survived all teat cases
Mutant number 22

ic = -abs(a)
survived all teat cases
Mutant number 23

ic = zpush(a)
survived all teat caaes
Hutant number 24

a=a
survived all teat cases
Mutant number 25

b=a
survived all teat cases
Mutant number 26

ic=b
survived all test cases
Mutant number 27

ic = ic

survived all test cases
Mutant number 28
continue
survived all test cases
Mutant number 29
continue
killed on test case 1 cause:
Error number -1 - results differ
Mutant number 30

13

ic = inc(b)

killed on teat caae 1 cauae:
Error number -1 - results differ
Mutant number 31
ic = dec(b)
killed on teat case 1 causae:

Error number -1 - results differ
Mutant number 32

ic = absa(b)
survived all test cases
Mutant number 33

ic = -abs(b)
killed on test case 1 cause:
Error number -1 - resulta differ
Mutant number 34

ie = zpuah(b)
survived all teat cases
Mutant number 35

a=>b
killed on teat case 1 cauase:
Error number -1 - results differ
Mutant number 36

b=>
killed on test case 1 cause:
Error number -1 - results differ
Mutant number 37

ic=a
killed on test case 1 cause:
Error number -1 - results differ
Mutant number 38
ic = ic
killed on test case 1 cause:

Error number 9 - Undefined variable used
Mutant Survival Statistics:

14 died. 24 lived. For a mortality rate of 36.8%
Individual statistics on mutants:

Results differed on 11
Undefined variable uaed 3

14

S. ANALYZING THE LIVE MUTATIONS

Assume that the commands diascussed in the MUTATION PROCEDURE
section were executed in the order presented. To obtain a report
of the remaining 1live mnutationa after running the MUTATE
subsystenr, type:

S REPORT SAMPLE.FOR -1 100 -h SAMPLE.FOR: THE SURVIVING MUTANTS
Output for this command would look like the following:

SAMPLE.FOR: THE SURVIVING MUTANTS

| subroutine sample(a,b,ic)
| integer a,b,ic

| output ic

| input a,b

11 if (a.gt.b)

The live mutants of statement 1 are:

if (.true.)

if (inc(a).gt.b)
if (dec(a).gt.b)
if (aba(a).gt.b)
if (zpush(a).gt.b)
if (a.gt.inc(b))
if (a.gt.dec(b))
if (a.gt.abs(b))
if (a.gt.-aba(b))
if (a.gt.zpush(b))
if (a.ge.b)

vVVVVVvVVVVVYVY

21 sgoto 10
31 ic = a

The live mutants of astatement 3 are:

continue

ic inc(a)
dec(a)
aba(a)
-aba(a)
zpush(a)

vVVvVVVVVVVVY
-
n
nnuwuan

41 goto 20
The live mutants of statement 4 are:

> | continue

15

Si 10 continue

6l ie=5b
The live autants of atatement 6 are:
> | ic = abs(b)
> | iec = zpusah(b)

71 20 continue

81 return

91 end

With the two teat casea input to the ayatem, it is clear
that the statements,

ic = a
goto 20

never execute. This fact is alluded to in the report of the live
rutanta. Apparently, you can nutate the atatement ’ic = a’ to
any of the mutantas shown and atill obtain the aame output. This
is a definite indication that we must add to the teast data and
kill these mutants.

To make additions to the teat cases already established,
simply invoke RDTEST again. Type:

8 RDTEST SAMPLE.FOR

Output from RDTEST follows. You will notice that the aystem 1is
prorpting for the third test case.

Enter initial values for test case number 3.
Enter the value for a :

2

Enter the value for b H

q

ic = 2

Are these the correct results? y
Any more test cases? n

This third test case will test the statements that were neglected
earlier.

16

We muat run each mutation again with the new test data.

do this type:

S MUTATE SAMPLE.FOR -s

Output from MUTATE is:

Mutation Survival Output for program: SAMPLE.FOR

Mutant Survival Statistics:

11 died. 13 lived. For a mortality rate of 45.8%

Individual atatistics on mutanta:
Reaulta differed on 10
Undefined variable uaed 1

Now by typing:
% REPORT SAMPLE.FOR
the following output ia provided:

SAMPLE.FOR

| subroutine sample(a,b,ic)
i integer a,b,ic

| output ic

| input a,b

1 if (a.gt.b)

The live mutants of statement 1 are:

if (inc(a).gt.b)
if (dec(a).gt.b)
if (abs(a).gt.b)
if (zpush(a).gt.b)
if (a.gt.inc(b))
if (a.gt.dec(b))
if (a.gt.aba(b))
if (a.gt.zpush(b))
if (a.ge.b)

vV VVV VVVY

21 Sgoto 10
31 ic = a

The live mutants of statement 3 are:

aba(a)
zpush(a)

> (ic
> | ic

41 goto 20
Si 10 continue

17

To

61 ic=b

The live mutants of astatement € are:
> | ic = aba(b)
> [ic = zpush(b)

71 20 continue
81 return
9l end

Analysis of this report reveals that many of the nutants
that survived the first test data set are dead following the
augmentation of that teat data set. The presence of the absa()
mutant in the 1live mutant set impliea that further teating
requires teat cases with negative numbers.

You must continue to analyze the remaining live mutants and
derive additional teat data to kill non-equivalent mutants. A
mutant program that is equivalent to the original program will
produce identical output on any input, and hence cannot be killed
by additional teat data. Augmenting the teat data aet should
continue until you reach a point where additional test data dces
not eliminate remaining mutants. At this point, your test data
aset can be conaidered a reliable set in terms of the mutation
analysis nmeaaure. There is also greater confidence that the
final remaining mutants are equivalent to the original progran.

18

USING THE FMTS
To use the system, type the following command:
S @[SDL.MUTATIONIDEFMUTE

This executes a command file, DEFMUTE.COM, that defines the
following five logical symbols:

1. PARSE :== "&_DRAl:(SDL.MUTATION]IPAR3E.EXE"
2. MAKMUT :== "&_DRAl: (SDL.MUTATION]IMAKMUT.EXE"
3. RDTEST :== "g_DRA1l:(SDL.MUTATIONIRDTEST.EXE"
4. MUTATE :== "S_DRAl:(SDL.MUTATIONIMUTATE.EXE"
S. REPORT :== "$_DRA1l:(SDL.MUTATION]REPORT.EXE"

These 1logicals define the pathnames to the five main executable
filea that constitute the mutation systen.

You can automate the mutation procedure by using batch
proceasing. To create a full report of a typical FMTS aeasion, a
typical batch file might contain the following commands:

(SDL.MUTATIONIDEFMUTE

COPY SAMPLE.FOR SAMPLE.RPT

PARSE SAMPLE.FOR >>SAMPLE.RPT

MAKMUT SAMPLE.FOR >>SAMPLE.RPT

REPORT SAMPLE.FOR -1 1000 >>SAMPLE.RPT -h ALL MUTANTS

RDTEST SAMPLE.FOR < SAMPLE.DAT >>SAMPLE.RPT

MUTATE SAMPLE.FOR -8 -t 1 >>SAMPLE.RPT

REPORT SAMPLE.FOR -c -1 1000 >>SAMPLE.RPT -h SURVIVING MUTANTS

BT d

The result of executing this batch procedure file is a report
file called SAMPLE.RPT that contains the outputs of all the
subsystens. To create one long report, the UNIX ‘>>’ token was
uased. This token not only redirecta the Standard Output File,
but appends its output to a file that may already exist.

Assuming these commands are found in file MUTSAMPLE.BAT, you can
initialize batch processing by typing the command:

£ SUBMIT MUTSAMPLE.BAT

19

APPENDIX A
PARSE - FORTRAN nutant parser
SYNOPSIS
PARSE (-n expnamel] file [-e entrypt] [-z] [-dl-dil-dcl
DESCRIPTION

PARSE is the parser for the FORTRAN Mutation Testing Sysaten.
It produces a file containing the internal representation of
the users progranm, including the code table, the symbol table
and other information. This file is used by the other programsas
of the ayatem. The parser accepts a subset of FORTRAN IV.

The FORTRAN program to be parsed is contained in file. The
name of the experiment is called expnanme; if thia option ia
missing, file defaults to be the experiment name. The
subprogram or program that begins execution is specified by
entrypt, the default is the module that is physically first in
file.

The -z option lets a do-loop execute zero times (the new
F77 standard). The default is the old FORTRAN convention where
loopa execute at least once, regardless of limit values.

The -d sawitches are for debugging. The -di switch prints
out information about variables, such as input, output,
paraneter, etc. The -dec sawitch prints out the code as it
is being generated. The ~d awitch does both -di and -dc.

FILES ACCESSED

file -— the file with the FORTRAN program
expname.ifm -- the internal form file

BUGS

Data statements do not work.

Equivalence statements are untested.

Do loopa muast have integer limits.

No double precision real or complex types.
Parameter type checking is done at run-time.

20

APPENDIX B
MAKMUT - FORTRAN amutant maker
SYNOPSIS
MAKMUT expname [procname levell#
DESCRIPTION

MAKMUT makes mutants as part of the FORTRAN Mutation
Testing System uaing the internal form file produced by PARSE.
MAKMUT in turn nakes a file of mutant directives to be used by
MUTATE and REPORT.

The name of the experiment is given by expnanme. Mutants
may be created for specific modules within the FORTRAN program
by using the options, where procname is the name of a module and
level is a number from 1 through 4 which specifies the highest
level of nutanta to be created for the given module. The
default ia to create mutanta through level ¢ for the entry
point module only. Note that the order of arguments is
important.

FILES ACCESSED

expnane.ifm -- the internal form file
expname.rut -- the file of nmutants -

21

APPENDIX C
RDTEST - FORTRAN mutant test case reader
SYNOPSIS
RDTEST expname [-cl [-f numl
DESCRIPTION

RDTEST mnakes a teat case file as part of <the FORTRAN
Mutation Testing Systen, using the internal form file
produced by PARSE. The <-c option causes a count of the number
of timeas each atatement wasa executed to be printed
following each sucesasful teat case.

The -f option asets the time limit factor. This 1is a
mutiplying factor giving the amount of tdme a mutant will be
allowed to execute as a factor of the amount of time the
original program required on the teat data. The default is 10.

RDTEST prompts the terminal for initial values for the
input variables of the entry point procedure. After receiving
these values from the terminal, it calls the interpreter to
determine the output values, and asks the user to verify the

correctneas of these values. If they are correct they are
written to a file along with the input values. The proceas is
repeated if more test cases are desired. Note: repeated

values for a single array may be entered as follows:
q4%3.1

which would mean enter 3.1 four timea. This notation can be used
for part or all of the array.

The name of the experiment is given by expname.

FILES ACCESSED

expname.ifm -- the internal form file
expnane.tst —- the file of test cases
BUGS

Arrays are read and printed in row major form (the right way).

Entrypoint aubprogramas with variable size arraya as parametera do
not work.

When RDTEST prints out the results from running the program on
the teat data, if some of the output variablea are undefined,
they will print out as large numbers (i.e. 2147483647 for
integers and 1le29 for reals)

22

APPENDIX D
MUTATE - FORTRAN mutant executer
SYNOPSIS
MUTATE expname (-t [nnnl} [-s]
DESCRIPTION

MUTATE takea filea produced by MAKMUT, RDTEST, and PARSE in
the FORTRAN Mutation Testing Syastem and tries to kill off
nutants using the test cases. MUTATE reads in a mutant from the
nutant file, makes the alternation as described by the nutant,
reads in a test caae and runa the interpreter. If the nutant
diea from either an internal error or incorrect results, it 1is
discarded and a new mutant is read after which the process atarts
over. If the mutant succeeds and there is another teat case,
then the interpreter is run with the asme mutant on the new teat
case. If a mutant succeeds all test cases, it is written to the
file <called expnanme.new. When all the nmutants have
finished, the file expname.mut is replaced by this file.

The name of the experiment is given by expname. The -t
option controla when to be notified of which nutant is being
teated. If absent, no notification is given, if preasent
without a number following, notification is given for each
nutant. If a number follows the -t, notification is given
for every n’th nutant. After analysis, the satatus of the
nutant is printed following it’s number. If the -8 option is
given, statistics on the number and kind of mutants that died are
printed.

FILES

expname.ifn -- the internal form file
expname.tst -- the file of test cases
expnamne.rut -- the old mutant file

expname.new -- the new mutant file with only live
BUGS

Entrypoint subprograms with variable size arrays as parameters do
not work.

23

APPENDIX E
REPORT - FORTRAN nmutant status reporter
SYNOPSIS
REPORT expname [-c] [-1 listmaxl [-d]l] [-h [headingll
DESCRIPTION

REPORT takes files produced by MAKMUT and PARSE in the
FORTRAN Mutation Testing System and produces a report of the
living nutants.

The name of the experiment is given by expname. If -c is
given as an option, the test cases will be printed
following the REPORT. The -1 option controle the maxinmum
number of mutants to display for each atatement. The default is
10. The -h option controls what to put in the heading of the
REPORT. The default heading is expname. If heading ia not
given, it is left blank, otherwise, heading ia printed in the
heading. The ~-d option causes debugging information to be
printed prior to each mutant.

FILES ACCESSED

expname.ifm -- the internal form file
expnamre.nmut -- the old mutant file
BUGS

If lines are too long they are truncated on the left.

24

APPENDIX F
Known Limitations to the FMTS

1. The debugging information referred to in the Appendices has
not been implemented on this systen.

2. The lexical analyzer used in the PARSE subaystem is not as
sophigticated as ones found in commercial FORTRAN compilers.
Spacea, which the FORTRAN satandard conaiders as having no
meaning, act aa token delimiters. The parser only accepts
programa typed in lower—-case lettera. Words, auch as IF, DATA,
DO, etc., are given keyword atatua. This meana you cannot uae
them as variable names.

3. Logical variables can be defined, however they cannot be used
in logical expreassiona. For inastance, the statement:

if (.not. x) goto 100

is not allowed. The only logical expressions that are allowed
are those that contain relational operators.

4. Character constantas are not allowed. Quoted strings or
Hollerith constants are therefore not part of this FORTRAN
implementation.

5. Subroutines or functions cannot declare arrays with variable

length dimensiona. Constant array lengths nmust be apecified with
each array declaration.

25

APPENDIX G
Bugs Known to Exist in the FMTS

1. The aubroutine which takea an internal form of a satatement
and convertas it to an ASCII string doeas not work on expressions

that have nested parenthesis. For instance, the statement:

X = at+b/(2*a+3#%#(a+a))

would be output by REPORT as:

X = a+t+b/2#a+3#%a+(a).

26

