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ABSTRACT
Sum-ordered Partial Semirings
February 1985
Martha E. Steenstrup
Ph.D., University of Massachusetts
Directed by: Professor Ernest G. Manes

If we endow the set of partial functions from a data set to itself with an ad-
dition (disjoint-domain sums) and a multiplication (functional composition), then
any iterative algorithm may be described formally as the solution to a matrix equa-
tion, where the matrix entries are partial functions which describe the parts of the
algorithm. This suggests that algorithms may be transformed by manipulation of
matrices of partial functions. Hence, it becomes necessary to understand how such
matrices behave. The partial functions under disjoint-domain sums and functional
composition do not form a field, and thus conventional linear algebra is not applica-
ble. However, they can be regarded as a sum-ordered partial semiring or “so-ring®,
an algebraic structure possessing a natural partial ordering, an infinitary partial
addition, and a binary multiplication, subject to a set of axioms. The majority
of this dissertation is devoted to a detailed study of the properties and interesting
substructures of so-rings themselves; preliminary results illustrating the behavior of
matrices over so-rings are also presented. We hope that this study in part provides
a basis for a matrix theory of algorithm transformation.
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CHAPTER 1

INTRODUCTION

A partial semiring is an algebraic structure consisting of a set together with an
additive operation and a multiplicative operation. The additive structure is that
of a partial monoid, meaning that the additive operation is an infinitary partial
addition subject to a set of axioms. These axioms imply, among other things, that
the addition is associative and commutative, that an additive zero exists, but that
additive inverses cannot exist. The multiplicative structure is that of a monoid,
and multiplication distributes over addition on both sides. The sum-ordering is a
binary relation defined by z <y if there exists an A with z+hA = y. If this binary
relation is a partial order, then the partial semiring is called a sum-ordered partial
semiring or so-ring, for short.

Why study such structures? Our answer is two-fold. Our motivation comes in
part from the work done in partially-additive semantics by Arbib and Manes (1980,
1982] and [Manes and Arbib, 1985]. They note that the set of partial functions
from a set to itself is a so-ring, with the addition of two partial functions fand g
defined if their domains are disjoint, in which case

zf, if z € dom(f);
z(f+g)={ =g, if z € dom(g);
undefined, otherwise;

and with multiplication of two partial funciions defined as the usual functional



composition. !

Matrices over the so-ring of partial functions have arisen in connection with
the semantics of iterative algorithms. McCarthy [1960] demonstrated that any
iterative flowscheme can be transformed into a set of recursive equations, one for
each cutpoint in the flowscheme. Manes and Arbib recast these equations in terms
of the so-ring of partial functions and consolidated them into one matrix equation

2=A240.

Here 2 is the vector containing the cutpoints, each of which is associated with a
set of iterative loops in the flowscheme; A is a square matrix, each row of which
corresponds to a cutpoint and contains a set of coefficients, one for each loop path
passing through a cutpoint in the flowssheme (recursive portion); & is the vector
containing the coefficients for each loop path passing through no cutpoints in the
flowscheme (non-recursive portion). The least solution of this recursive matrix
equation as dictated by operational semantics is the vector

2= ZA"S
n20

whose first component is the partial function describing the iterative algorithm in
question.

This suggests that program transformations could be accomplished by manipu-
lation of matrices over partial functions, thus requiring the development of a matrix
algebra for matrices over so-rings. Matrices over semirings have been previously
introduced as algebraic structures applied to problems of interest to computer aci-
entists. In particular, they have been used to determine the relationships between
formal power series and automata and formal language theory. Among the peo-
ple who have studied these applications of formal power series are Schiitzenberger

1 We bave chosen to apply functions on the right.
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[1960,1961,1962], Nivat [1968], Fliess [1972], Eilenberg [1074], and Salomaa and
Soittola [1978]. Matrices over semirings have also been used in solving combina-
torial optimisation problems, such as finding the shortest path through a graph
[Gondran, 1975], (Gondran and Minoux, 1978), [Cuninghame-Green, 1979], [Zim-
merman, 1981]. Hence, there is a small but expanding literature concerning the
algebra of matrices over semirings. However, this literature does not address the
more general case of matrices over partial semirings or over so-rings.

If we are going to develop a matrix theory of so-rings, we must begin by in-
vestigating so-rings themselves. This brings us to the second reason for studying
so-rings. From a mathematical standpoint, we want to discover what properties
so-rings possess. Of particular interest is the effect of an infinite partial addition
on the nature of these properties. In chapter II, we introduce partial monoids
and partial semirings and give many examples of each. Then, in chapter III, we
present the basic properties and substructures of so-rings, and we describe their
interrelationships.

The following three concepts, introduced in the third chapter, are fundamental
to our understanding of the structure of so-rings. The first is the center, a Boolean
substructure which is a subset of all so-ring elements from 0 to 1. The next are
domain and range which are generalisations of these concepts as they apply to
functions. Most but not all so-rings are such that each element has a domain and
a range. The last is the property of “inversibility® which is a generalisation of the
usual notion of invertibility with respect to multiplication. An arbitrary element of
a so-ring need not have an *inverse®.

For motivation, we here note what these three concepts mean in the context of
the so-ring of partial functions from a set D to D. The center corresponds to the
set of guards, where a guard of a subset D’ of D is a partial function which is the
identity on D' and undefined elsewhere. The domain of a partial function is the
least guard g such that gf = f; the range is the least guard g such that foa=1f1.



A partial function is “inversible® if and only if it is injective.

Chapter IV is devoted to matrices over so-rings. Several of the results from clas-
sical linear algebra carry over to matrices overso-rings. This is somewhat surprising,
because in the classical case the matrix entries are over a field which implies that
all non-sero elements have both an additive and a multiplicative inverse, whereas
in the context of so-rings the entries are not guaranteed to have a multiplicative
inverse and there are no additive inverses. Specifically, we define what we mean by
a matrix over a so-ring, and we give a characterisation of matrix invertibility. We
then show that for a large class of so-rings, an n X n matrix X overa so-ring R is
invertible if and only if the columns of X form a basis for the space of n-vectors
over R. In addition, we demonstrate that the cardinality of bases for the space of
n -vectors over a so-ring depends upon the so-ring, and we show that any eigenvalue
for an invertible matrix must be inversible.

In the fifth chapter, we extend some resuits in semigroup theory to so-rings.
The first subject that we explore is so-ring representation, in which we generalise
results on the representation of semigroups to so-rings. We show tkat any so-
ring R may be embedded in the so-ring of additive maps from R to R, and we
give a partial characterisation of the so-rings which may be embedded in a so-ring
of partial fanctions. The remainder of the chapter is concerned with alternative
partial orderings on so-rings, and their relationship to the sum-ordering. Again, we
generalize results from semigroups to so-rings.

Chapter VI contains an investigation of the relationships of partial monoids
to other algebras with infinitary partial additions. Upon searching the literature,
we discovered that few people have looked at such algebras; the earliest reference
appears o be the work of Tarski on cardinal algebras [1949] which we studied at
the suggestion of D. 8. Scott.

The last chapter is a summary of the main results and a discussion of their
relevance to issues in theoretical computer science.
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In this dissertation, we explore in detail the structure of so-rings, and we provide

examples from the domain of computer science in order to illustrate the properties

that we have discovered. It is our hope that this mathematical treatment in part

provides the foundations on which a matrix theory of program transformation can
be built, although such a theory is beyond the scope of this thesis.



CHAPTER II

PARTIAL MONOIDS AND SO-RINGS

Partially-defined infinitary operations appear in contexts ranging from integra-
tion theory to programming language semantics. In this chapter, we describe two
related algebraic structures - partial monoids and partial semirings - each of which
posﬁeeses a partially-defined infinitary additive operation. First, however, we make
some definitions which will provide us with a framework in which to discuss these
structures.

Let M be a non-empty set, and let I be a (possibly empty, possibly nondenu-
merable) set. An I-indexed family in M is a function z:I — M. Such a family
is denoted by (z;:4 € I), where z; = iz for each § in I. The cardinality of the
family (z;:¢ € I) is the cardinality of its index set J. Two families (z;:5 € I) and
(ya:k € K) in M are isomorphic if there is a bijection o: I — K with y;, = z; for
each ¢ in J. A subfamily of (2;:¢ € I) is a family (z,;:5 € J) such that J C I.
The empty family in M is the unique such family indexed by @.

Now let us consider an infinitary operation ) which takes families in M to
elements of M, but which may not be defined for all families in A . By “infinitary®,
we mean that ) may be applied to a family (z;:s€I) in M, for which the
cardinality of the index set I is infinite. This does not preclude applying ) to
finite families in M. Since ) (z;:4 € I) need not be defined for an arbitrary
family (z;:s€I) in M, ) is said to be partially-defined. We wish to view the
operation ), as a generalised addition (hence, the choice of symbol) and will often
refer to it as a partial addition. A family (z;:s € I) in M is said to be summable



if 3 (z;:6€ 1) is defined and is in M.!

We have investigated four different partially-defined infinitary operations and
their associated algebraic structures described in the existing literature, devoting
most of our attention to partial monoids (and partial semirings). The other three
structures - generalised cardinal algebras, ) -structures, and infinite sums in com-
mutative topological groups — are described in chapter VI and are used as points of
comparison with partial monoids.

Partial Monoids

Arbib and Manes [1980] introduced partial monoids as an algebraic tool in
connection with describing the semantics of sequential programming languages. A
motivating example of the partial monoid structure is the set of partial functions
from a set A to a set B, equipped with a suitable partial addition. 2

2.1 DEFINITION. A partial monoid is a pair (M,Y]) where M is a non-empty
set and 3 is a partial addition defined on some, but not necessarily all families
(zi:s€I) in M subject to the following two axioms:

(1) Unary Sum Axiom. If (z;:5 € I) is a one-element family in M and I = {7},
then - (z:¢ € I) is defined and equals z;.

(2) Partition-Associativity Axiom. If (z;:5 € I) is a family in M and (Ii:5€d)
is a partition of I (by which we mean that Uje syhi=1,that InL =0
for j,kin J, 5 # k, and that I; = @ is allowed for any number of 7), then
(zi:4 € I) is summable if and only if (z::8 € I}) is summable for every 7 in J

1 We use the notations ¥ (2:i €7), Yicr%,and ¥, z; interchangeably.

3 Many of the basic definitions and theorems pertaining to partial monoids and partial semirings
can be found in the forthcoming Manes and Arbib book Algebraic Approaches to Program
Semantice and in the Manes and Benson [1985] paper “The inverse semigroup of a sum-ordered
semiring.”



and (3 (z;:6 € I):j € J) is summable, and then
Z(z.-:iel)=E(Z(z;:iel,-):je.l).

Before we proceed with a description of examples, we note several immediate

consequences of the partition-associativity axiom.

(1) ¥ is an associative and a commutative operation.

(2) Any two isomorphic families have the same sum.

(3) Every subfamily of a summable family is itself summable.

(4) In particular, the empty family is summable, and its sum acts as an additive
gero.

(5) There do not exist any nontrivial additive inverses.

We prove (2), (4), and (5).

2.2 OBSERVATION. If (z;:$ € I}, (ys:k € K) are two summable isomorphic fami-
lies in a partial monoid (M,Y]), then Y (zi:s €)= (w2 k € K).

PROOF. Let o0:I — K be a bijection such that y;, = z; forall 5. Let J =1, and
let I; = {jo} for each j in J. Then

Y ke K) =Y (T (ymmeL):jed)
=Y (worieD
=Z:(z;:i€f).

2.3 OBSERVATION. In a partial monoid (M, ), the empty family is summable.
Its sum, denoted by 0, is such that the sum of an arbitrary number of 0s is itself
equal to 0. Furthermore, 0 acts as an additive seroin M.



PROOF. Let z, e M, I={n}, J=(1,2}, 1 =1,and I =0. Then

Ty = z(z;:i EI)
=2(Z(z;:i€ Ij) iJ€ J)
=) (z:i€eh)+ ) (zi€ I
= z,+2:(z.-:i60)

which implies both that Y (z;:¢ € @) exists and that it acts as an additive zero for
binary sums.

Now,let I=0. Then ¥ (zi:s €)=Y (z;:4€0) =0. Let J be any set and
let I; =0 foreach § in J. Then (I;:5 € J) is a partition of I. Hence,

0=Z(z;:iel)=Z(2(z,-:iel,-):je.7) =Z(0:jeJ).

Thus, the sum of an arbitrary number of 0s equals 0.
To show that 0 is the additive sero for arbitrary sums, let (z;:i€I) be a
summable family, and let K be any set disjoint from I. For 5 in JU K, define

{i}, fjel;
I= o s
9, ifjekK.
Thus, (I:j € U K) is a partition of I. Hence, 3" (T (z::i€ I):j € TUK)
exists and equals ) (z;:§ € I), and for each 5 in JUK,

z;, Hjel;
i€l ={ 7
E(z" ’) 0, otherwise.

Therefore, 0 acts as an additive sero for arbitrary sums.

We define the support of a family (z;:i€l) in M to be the subfamily
(zs:5 € J) where J = {i € I: z; # 0}.

2.4 OBSERVATION. For a partial monoid (M,Y"), if 3" (z;:i € I) is defined and
equals O, then z; =0 forall ¢ in I.
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PROOF. Let (z;:¢ € I) be a family in M such that Y (z;:§€1) =0. Let § be
an element of I and let y = Y (z;:¢ # 5). Then

O==z;+y
=(zj+y)+(z;+y) +...
=z;+y+z;+y+...
=z;+(y+z;)+(y+z5) +...

=2z,

This implies that additive inverses must be absent from partial monoids. There-
fore, any ring fails to be a partial monoid for any )  extending the usual addition.
Nonetheless, there are many examples of partial monoids, some of which we describe

below.

2.5 EXAMPLE. The set of non-negative real numbers is a partial monoid with
summability characterized as series convergence. That is, a family is summable
if it has countable support and if the sequence of finite sums over the support of
the family converges to a non-negative real number, in which case the sum is that
number.

2.6 EXAMPLE. Any bounded upper (lower) semilattice is a partial monoid with )°
defined as supremum (infimum) over families of finite support. Note that for an
arbitrary family, the supremum (infimum) may not be defined.

Throughout this and subsequent chapters we will make repeated reference to
three different examples of partial monoids useful in theoretical computer science -
partial functions, multifunctions, and multisets — each of which is described below
in detail.

2.7 EXAMPLES. Let D, E be sets and let the set of partial functions from D to
E be denoted by Pfn(D,E). Then (Pfn(D,E),}") is a partial monoid if J is
defined such that a family (z;:¢ € I) is summable if and only if for ¢,5 in I and
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j # 3§, dom(z;) Ndom(z;) = @, where dom(f) is the domain of definition of the
partial fanction f. If (z;:¢ € I) is summable then for any d in D

dz;, if d € dom(z;) for some
d (2 z.-) = (necessarily unique) i € I;
J undefined, otherwise.

We may extend this definition to include all families whose members agree on all
domain overlaps. If we let E denote the extension of ) to overlapping families,
then (Pfn(D,E),S) is also a partial monoid. Arbib and Manes, working in
a category-theoretic setting, have chosen the disjoint domain sum as the partial
addition over the partial functions because this sum is the only sum for which the
category of partial functions is a partially-additive category. The reader is referred
to Manes and Arbib [1985, 3.2] for the details. For our purposes, both 3" and f
are acceptable, but for definiteness we have selected } as the partial addition for

Pfn(D,E).

2.8 EXAMPLE. Again, let D, E be sets. A multifunction z: D — E maps each
element in D to an arbitrary subset of E. Such multifunctions correspond bijec-
tively to relations r C D x E, where (d,e) € r if and only if e € dz. The set of
multifunctions from D to E, denoted by Mfn(D, E), together with 3~ defined
such that for d in D, d(}; %) = U;(d=;), is a partial monoid in which every
family is summable. )

2.9 EXAMPLE. Let E be a set. A finite multiset on E is a function m: E — N
(where N represents the natural numbers) such that {e € E:em # 0} is finite.
In other words, a finite multiset on E is a finite-support family in N indexed
by E. Intuitively, a finite multiset is a set in which a member may occur with
arbitrary finite multiplicity. For instance, consider the multiset {a,b,¢,¢,a, a}.
Here am =3, bm = 1, ¢cm = 2, while 2m = 0 for z different from a, b, and
c. Let D be aset. Let Maset(D,E) represent the set of total functions from the
set D to the set of finite multisets on E. A family (z;:5€ I) in Mset(D,E) is
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summable if for each din D, {s:¢(dz;) # 0 for at least one e € E} is finite. In
this case, for d in D and ¢ in E, ¢(d(3; 2;)) = 3_; e(dz;), where the second sum
is the usual addition over N. For this choice of }, (Maset(D, E),Y") is a partial
monoid. Zeiger [1969] appears to be the first to use multisets, which he refers to as
rings of transformations, as a way to describe programs.

Other Partial Monoids

By appending other axioms to the basic axioms for a partial monoid, we obtain
various special forms of partial monoid. A partial monoid in which a family is
summable only if it has countable support is called an w-monoid. An w-monoid
which satisfies the following axiom is called a partially-additive monoid.

Countable Limit Axiom. If (z;:8 € I) is a family in M of countable support

and if for every finite F' C I the subfamily (z;:s € F) is summable, then

(z::¢ € I) is summable.

Our definition of partially-additive monoid differs from that of Manes and Arbib
(1985, 3.1.2] in that we do not require summable families to be countable. Instead,
we only require summable families to have countable support. In a partial monoid,
noting that the sum of an arbitrary number of 0s is equal to 0 (observation 2.3), we
know that the summability of the family (z;:s € I), where I is countable, implies
the summability of the family (z;:$ € TUJ), where J has arbitrary cardinality
and z; =0 for all § in J. Thus, our definition of partially-additive monoid is
equivalent to that of Arbib and Manes in the following sense.

2.10 DEFINITION. Two partial monoids (M, ") and (M’,Y"’) aresaid to be equiv-

alent if

1) M=M.

(2) For each summable family (z;:4€I) in (M,)), its support (z;:s€J) is a
summable family in (M?,33') and T/ (zizi€ J) = 3 (zizi € 1).

(3) For each summable family (z;:i€ I) in (M',Y'), its support (z;:i€ J) is a
summable family in (M,3") and Y (zi:s€J) =Y (z:8 € I).
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A partial monoid satisfying the following axiom is called a generalised partially-
additive monoid.

Limit Axiom. If (z;:4 € I) is an arbitrary family in M and if for every finite

F C I the subfamily (z;:1 € F) is summable, then (z;:¢ € I) is summable.

2.11 EXAMPLE. The set of natural numbers, N, is an w-monoid if } is defined
only for families (z;:¢ € I) of finite support, in which case ) is the usual addition.

2.12 EXAMPLE. By extending the previous example to N = Nu {00}, we obtain
a partially-additive monoid, provided we extend the definition of ) to families of
countable support as follows:

od - usual sum, if {s:z; # 0} is finite and no z; = oo;
Z(z‘.‘ €n= {°°s otherwise.

2.13 EXAMPLE. Any complete upper (lower) semilattice with }_ defined as supre-
mum (infimum) over arbitrary families is a generaliged partially-additive monoid.

There is one more variant of the partial monoid, the sum-ordered monoid, which
we will discuss in some detail, since most of the material in subsequent chapters is
based on this particular structure.

Sum-ordered Monoids. There is a natural relation < on the elements of a

partial monoid.

2.14 DEFINITION. Let (M,)]) be a partial monoid. Then the sum-ordering on
(M,3") is the binary relation < such that if £, y arein M, then z < y if and
only if there exists A in M such that y=z +A.

2.15 OBSERVATION. For any partial monoid M, the sum-ordering is a quasi-order.
PROOF. Forany z€ M, z=z+0, and 80 z < z, implying that < is reflexive.
Let z, y, 2 bein M suchthat 2 <y and y < 2. Then thereexist A, k in M
such that y=z+A and =y + k. Hence, s=(z+Ah)+k=z+(h+%),and s0
z < z, implying that < is transitive. Therefore, < is a quasi-order.
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Manes and Benson {1985 have investigated partial monoids (and partial semir-
ings) for which the sum-ordering is a partial order.

In all of the examples of partial monoids thus far introduced, the sum-ordering
is a partial order. Such partial monoids are called sum-ordered partial monoids or
so-monoids, for short. However, in general, the sum-ordering need not be antisym-

metric.

2.16 EXAMPLE. (Manes and Arbib, 1985, 8.3.2) Let X = {0,1,2,00} and define
Y as follows:

( 0o, if some z; = oo or z; # O infinitely often;

0, ifz;=0forallsel;

. 1, ifno x; = oo, {8: z; # O} is finite and nonempty, and
Z(zm €h=1 the number of s with z; = 2 is even;

2, ifno z; =00, {§:2; # 0} is finite and nonempty, and

{ the number of s with z; = 2 is odd.

Then (X, ") is a partial monoid. Now 142 =2 and 242 =1 so that 1 <2 and
2 <1, but 1# 2. Hence, we see that < fails to be antisymmetric in this instance.

The following observation is true in any partial monoid.

2.17 OBSERVATION. If (z;:s€J) and (y;:$ € ) are two families in a partial
monoid M such that z; < y; forall 4 in J and if ) (y;: € I) is defined, then
Yo (zi:s € 1) is defined and Y (z:is€ )<Y (y:s€l).

PROOF. Forall ¢ in I, since z; < y;, thereexists A; in M such that y; = z;+h;.
Then, by the partition-associativity axiom, we have that Y- (y:s€ I) = Y (2 +
hiesel)=Y (ziis€e)+ Y (h:sel).

Partial Sub-monoids and Additive Maps

2.18 DEFINITION. Let (M,Y") be a partial monoid. Then (M’,Y"') is a partial
sub-monoid of (M, }]) if
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(1) M is a subset of M;

(2) (M',Y]) is a partial monoid; and

(3) (zs:8 €1) is a summable family in M’ implies that (z;:4 € I) is a summable
family in M whose sum is in M, in which case ¥ iz; =¥, z;.

2.19 EXAMPLE. Let (M, ) ) be a partial monoid, and let M’ be a subset of M
and let 3°' be the restriction of 3° to M'. If M’ is closed under 3_', then it is
easily verified that (M",Y"') is a partial monoid, and furthermore, that it satisfies
the conditions of definition 2.18. Therefore, (M’,Y’) is a partial sub-monoid of

(M,30).

2.20 OBSERVATION. Any partial sub-monoid M’ of a so-monoid M is itself a so-
monoid.

PROOF. Let <' denote the sum-ordering on M’. Suppose that z, y are two
elements of M’ such that £ <'y and y <' z. Then there exist h, k¥ in M’ such -
that y=z+'Ah=z+h and z=y+'k=y+k. Thus, <y and y < z, which by
the antisymmetry of < implies that z = y. Therefore, <’ is antisymmetric and

so M’ is a so-monoid.
In this case, M is said to be a sub-so-monoid of M.

2.21 DEFIMITION. Let (M,Y), (M,3) be partial monoids. An additive map
6:(M,>) — (ﬂ,f) is a function 6:M — M such that whenever (z;:s€ 1) is
a summable family in M, then (z;6:5 € I) is a summable family in M and
(Tiz)0 = Smif .

Clearly, the identity map on a partial monoid is an additive map. We also note
that the composition of additive maps is again an additive map.

2.22 OBSERVATION. If M; and M; are partial monoids and if 9: M; — M; is an
additive map, then 00 =0.

PROOF. Recall that in a partial monoid, 0 = }_ (z;:4 € 0). Using the additivity
of 4, we have that 09 = (3 (z;:4 € 0))0 = 3 (x;0:5 € 0) = 0.
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i M), and M; are partial monoids and if 6: M; — M; is an additive map,

then it need not be the case that M;# is closed under the additive operation of

M. Hence, M0 equipped with the additive operation of M3 is not necessarily a
partial sub-monoid of Mj;.

2.23 COUNTEREXAMPLE. Let M, be the partial monoid {0,1} with
0, ifz; =0foralls €I;
Y (m:ien=41, if 35 € I such that z; = 1 and z; = 0 for § # j;
undefined, otherwise.
Let M; be the so-ring of natural numbers with the usual addition over families of
finite support. Define an additive map 6: M; — M;. By observation 2.22, it must
be the case that 00 =0. Let 10 =1. In M;, the sum 1+ 1 is not defined, and
go in M0, the image (1 + 1) does not exist. However,in M;0, the sum 18 + 16
does exist, but 10 +10 =1+ 1= 2 is not an element of M;0. Thus, M;0 is not
closed under the additive operation of Mj;.

However, if in M0 we restrict the additive operation on M; in a particular
way, then M0 becomes a partial sub-monoid of M;.

2.24 OBSERVATION. Let M; and M; be partial monoids, and let 6: M; — M; be
an additive map. Then an additive operation can be defined on M;# such that
M;0 is a partial sub-monoid of M;.

PROOF. I (z;:4 € I) is a summable family in M, then since 4 is an additive -
map, (), %:)0 = Y, %0 is an element of M;0. However, as was demonstrated in
counterexample 2.23, M9 may not be closed under the additive operation of Mj3.
Nevertheless, M8 becomes a partial sub-monoid of M;, if we define the additive
operation ¥’ on M)# such that 3! z;0 is defined only if (z;:§ € I) is a summable
family in M, in which case 3} 2,0 = 3, 2,0 = (3; z;)0 . Hence, M;0 inherits its
partial monoid structure directly from M;. Since M;0 satisfies the conditions of
definition 2.18, (M6, ') is a partial sub-monoid of M;.

We say that (M;0,Y") is a relative partial sub-monoid of Ma, following the
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terminology of universal algebra [Gritser, 1968, 2.13].

2.25 OBSERVATION. Let M)} and M3 be partial monoids, and let 6: M; — M; be
an additive map. If z, y are elements of M; such that z <y, then z0 < yf.
PROOF. Let =, y be elements of M) such that z < y. Then there exists A in
M, such that z+ h = y. Since 8 is additive, y0 = (z + h)0 = z0 + h8. Thus,
z6 < yh.

Hence, the sum-ordering is preserved by additive maps.

There are two different types of embeddings of partial monoids. One is the
embedding of a partial monoid in a partial monoid, and the other is the embedding
of a partial monoid in an abelian monoid. For the most part, we are concerned with
the former type of embedding, but an important example of the latter type arises
in connection with the partial functions, as we will see in example 2.46.

2.26 DEFINITIONS. An embedding of partial monoids is an injective additive map.
An embedding of a partial monoid (M,) ) in an abelian monoid (A4,+) is an
injective function 6: M — A such that whenever the finite family (z;:1 <5< n)
in M is summable, (3, %;)0 =210+ --- + za0.

2.27 OBSERVATION. Let M) be a partial monoid on which is defined a quasi-order
<, and let M; be a so-monoid. i 6:M; — M; is an additive map such that
z0 < yf if and only if z Xy, then # is an embedding if and only if < is a partial
order.
PROOF. Suppose that # is an embedding. Let z, y be elements of M; such that
£ <yand y <z. Then z Xy implies that z0 < yf, and y < z implies that
y6 < z6. By the antisymmetry of <, zf = yf. This in turn implies that z =y,
gsince 4 is injective. Thus, < is antisymmetric, and therefore a partial order.
Now, suppoee that < is a partial order. Let z, y be elements of M; such that
z0 = y0. Then 20 < yf implies that z <y, and yf# < z0 implies that y < =z.

Hence, z = y, since < is antisymmetric. Therefore, # is injective, and so # is an
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embedding.

Constructions of Partial Monoids

Thus far, we have supplied a variety of specific examples of partial monoids. We
now show how to construct new partial monoids from given ones. The objects con-
structed are the usual ones from category theory; the category under consideration
is Pmon with partial monoids as objects and with additive maps as morphisms.
In each case, we give the construction of the new partial monoid, but we leave it to
the reader as a routine exercise to verify that the constructed object possesses the
given universal property for that construction in Pmon.

Products. Let ((M*,Y¥):s € I) be a family of partial monoids. Their
product is the partial monoid ([]; M*,Y) together with the projection maps
pre:([I; M, X)) — (M*,3), defined as follows. The set [I, M* is the carte-
sian product of the M*s. Let (z;:5 €J) be a family in ;M. Then each
z; = (z;:3 € I), where z; is in M*. The family (z;:j € J) is summable in
[1; M® if for each § in I, (z,*:j € J) is summable in M*, in which case

z(z,-:j €l)= Z ((z,‘:ie I:je J) = (Z‘(z,-":j eJ)ie I) .

Each of the projections maps

pre([[ 6, 20) - (0, Yz o &

is easily seen to be additive.

Coproducts. Let ((M*,3'):s € I) be a family of partial monoids. Their
coproduct is the partial monoid ([]; M*,Y) together with the injections maps
in;: (M°, ) — ([I; M, Y), defined as follows. The set

[ M = {0} u|J{(=.9): = € M’ — {0°}}.
H et
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Let (z;:5 € J) be afamily in JI; M. Then foreach j in J, z; =0 or z; = (y,1)
where y isin M®. Let J' be the support index set of (z;:5 €J). H J' =0, then
(z;:5 € J) is summable and

E(z,-:j €J)=0.

If J'#0,then (z;:5 €J) is summable if (z;:5 € J') = ((y5,8): 5 € J') for some
iin J andif (y;:j € J') is summable in M", in which case

Y (zri€d) =) ((viried) = (Z' (vi:i€J’) ,i) .

Each of the injection maps
in: (0, 3°)  ([[ M, 1):0 - 0,5~ (5,3)

is easily seen to be additive.
The category Pmon has a sero object, namely M = {0} .
Quotients. We define quotients in Pmon modulo a congruence.

2.28 DEFINITION. Let M be a partial monoid, and let E be an equivalence relation
on the elements of M. Then E is a partial monoid congruenceon M if E is closed
under the additive operation of the product partial monoid M x M.

Let (M,3) be a partial monoid, and let E be a partial monoid congruence on
M. Their quotient is the partial monoid (M/E,Y') together with the canonical
surjection map p:(M,Y") — (M/E,Y'), defined as follows. The set M/E =
{2:z € M}, where for each z in M, 2 is the equivalence class of z modulo E.
The family (2;:5 € J) is summable in M/E if (z;:j € J) is summable in M, in
which case

Y Epied)=Y (z1:i€ ).




The reader may easily verify that this sum is well-defined, since E is closed under
the additive operation of M x M. The surjection map

!
p:(M, )~ (M/E,} ).z 2
is readily seen to be additive.

Limits and Colimits. Let M;, M; be two partial monoids, and let
£, 9: My — M3 be two additive maps. Then the equaliser of f and g is the subset
M = {z € Mj:zf = zg} of M together with the set inclusion map h: M — M,.
The reader may easily show that M is closed under the additive operation of M,

and is thus a partial sub-monoid of M, implying that A is an additive map. We
observe that Pmon has all limits, since it has all products and all equaligers.

Let M), M: be partial monoids, and let f, g: M — M2 be two additive maps.
Then the coequaliger of f and g is the partial monoid Mz/E’, where E' is the
intersection of all partial monoid congruences on M; which contain {(zf,zg):z €
M)}, together with the canonical surjection h: Mz — M2/E'. We observe that
Pmon has all colimits, since it has all coproducts and all coequalisers.

Free Partial Monoids. Let X be any set. Then the free partial monoid
generated by X is the set M = XU {0} with the additive operation defined as
follows. Let (z;:j € J) be a family in M with support index set J'. Then,

0, ifJ' =0
2(’5’jEJ)= Ziy if 33 € J such that J' = {s};
undefined, otherwise.

The additive operation thus defined is called the frivial addition.

Partial Semirings

By marrying a multiplicative structure with the existing additive structure of a
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partial monoid, we form a partial semiring. More formally,

2.29 DEFINITION. A partial semiring is a quadruple (R,),o,1), where (R,Y)
is a partial monoid, (R,o,1) is an ordinary monoid with multiplicative operation
o and unit 1, and the additive and multiplicative structures obey the following
distributive laws.3 If 3° (2;:4 € I) is defined in R, then forall y in R, Y ;yox;
and Y;z; 0y are defined and

7 (5e) oo
() -

2.30 EXAMPLE. The set of nonnegative real numberswith ) defined as in example
2.5 and with o defined as the usual product is a partial semiring.

2.31 EXAMPLE. Any bounded distributive lattice L is a partial semiring, with )
defined as supremum over families of finite support and with o defined as the meet
of two elements. (Such a lattice is also a partial semiring with )_ defined as infimum
over families of finite support, and with o defined as the join of two elements.) The
distributive laws in the sense of lattice theory guarantee that join distributes over
meet (and that meet distributes over join), and hence that o distributes over ).

2.32 DEFINITION. The oppasite or dual of a partial semiring (R, ), o, 1) is a partial
semiring (R,) ,e,1), in whichfor z, y in R, zey = yoz. Henceforth, we denote
the opposite of a partial semiring R by R°?.

Just as there are variant partial monoids, there are variant partial semirings.
In each case, the name describing the type of partial semiring refers to the type of
partial monoid which forms its additive structure.

3 We use the notations z oy and zy interchangeably, often dropping the o and denmoting
maultiplication by adjacency only.
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In the examples below, each of the partial monoid variants given in examples
2.11 - 2.13 is supplied with a multiplicative structure which turns it into a partial

semiring.

2.33 EXAMPLE. We can easily extend the w-monoid (N,Y]) of example 2.11 to
an w-semiring by defining o as the usual product with unit 1.

2.34 EXAMPLE. To extend the partially-additive monoid (N,Y) of example 2.12
to a partially-additive semiring, we define o as follows. For z,y e N,
usual product, if z # 0o and y # oo;
zoy=(0, fz=00rify=0;
00, fz=00,y5#00rif z#0, y = co.

2.35 EXAMPLES.

(1) If we parallel example 2.13, we would expect that any complete distributive
lattice is a generalised partially-additive semiring, with ) defined as supremum
(infimum) over arbitrary families and with o defined as the meet (join) of two
elements. In order to be a generalized partially-additive semiring, such a lattice
must satisfy the following infinite distibutive laws

2 (y)-yns
7o () A

but as is demonstrated by Birkhoff [1967, V.5, not all complete distributive lattices
satisfy these laws. However, any complete Boolean lattice satisfies both infinite
distributive laws, and thus is a generalized partially-additive semiring with ) equal
to supremum (or infimum) and with o equal to meet (or join).

(2) By contrast, a complete lattice is Brouwerian if and only if

ADRES
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Thus, the Brouwerian condition guarantees infinite distributivity of meet over join,
and so any complete Brouwerian lattice is a generalised partially-additive semiring
with J equal to supremum and with o equal to meet.

In a partial semiring, we refer to the lack of nontrivial additive inverses as
pogitivity because the most familiar examples are the positive integers and the
positive real numbers. We say that a partial semiring is complete if all families
are summable. Note that the previous three examples depict complete partial
semirings. Eilenberg [1974, pp.122-126] also introduces the terms positive and
complete in relation to aemmngs His complete semirings are the same as our
complete partial semirings, but his use of *positive® also requires that if zy =0,
then 2 =0 or y = 0. We do not impose this restriction, both because we want
the term positive to refer only to the additive structure of a partial semiring and
because the fundamental example 2.38 (below) as well as many other examples do

not satisfy this property.

We now come to sum-ordered partial semirings, the objects on which we shall
concentrate in subsequent chapters.

2.36 DEFINITION. A sum-ordered partial semiring or so-ring for short, is a partial
semiring in which the additive structure is a so-monoid.

2.37 OBSERVATION. The sum-ordering on a so-ring R is a compatible partial order.
PROOF. (Recall that a relation . < is compatible if z < y implies that 2z < sy
and zz X yz for any 2.) Compatibility is a direct consequence of distributivity.
Let z, y be elements of R such that £ < y. Then there exists A in R such that
y=2z+h. Let 2 be any element of R. Then 2y = 2(z + A) = 2z + 2h, which
implies that 2z < zy, and hence that < is left compatible. Right compatibility
can be proved similarly. Therefore, < is a compatible partial order on any so-ring.

Each of the computer science examples discussed earlier (examples 2.7 - 2.2) can
be extended to a so-ring. Both partial functions and multifunctions admit natural
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extensions to so-rings. This is also true of multisets, although here it is convenient
to choose an alternative representation in order to adjoin a multiplicative structure.

2.38 EXAMPLE. The so-monoid (Pfn(D,D),}) becomes a so-ring, with o de-
fined as the usual functional composition and with unit defined as the identity
function on D. From the rules of functional composition, it is immediate that
(Pfn(D,D),o,1) is a monoid. However, we need to show that the distributive
laws for a partial semiring are satisfied by (P fn(D,D),Y,0,1).

We demonstrate distributivity on the left; distributivity on the right is left to
the reader. Let (z;:s € I) be a summable family in Pfn(D, D). Then for j # i,
dom(z;) N dom(z;) = 0. Let y be any partial function. First, we show that
(z:y:1 € I) is a summable family. Foreach i in I, the set dom(z;y) = {d € D:de
dom(z;) and dz; € dom(y)} C dom(z;). Thus, for j # i, dom(z;y) N dom(z;y) =
@, and 8o (z;y:3 € I) is a summable family. Now,

dom ((Z z,-)y) ={deD:de dom(z z;) and de.- € dom(y)}
. ={deD:de dom(z;-) for some j .e I and dz; € dom(y)}

=m(z‘:z.-y).

Hence, for d in D, if d g dom((3_; z:)y), then d & dom(3; z;y) and so neither
d(X; 2;)y nor d(¥; z;y) are defined. However, if d € dom((3>;z:)y), then d €
dom(}_; z;) which implies that there exists a single 5 in I such that d € dom(z;).
In this case, d(3°; z;)y = dz;y = d(3°; z;y) . Thus, distributivity on the left holds.

2.39 EXAMPLE. To convert the so-monoid (M fn(D, D),)) to a so-ring, we define
o as the usual relational composition. That is, for each d in D and for z, y in
M{fn(D,D), d(zoy) = J(ey:¢ € dz), and d1 = {d}. From the study of relations,
it is immediate that (M fn(D,D),o,1) is a monoid. What remains to be shown is
that the distributive laws for a partial semiring hold.

We leave distributivity on the right to the reader, but demonstrate distributivity
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on the left. Let (z;:3 € I) be any family in M fa(D, D), and let y be any element
of Mfn(D,D). Forany d in D,

A3 z)y = J(ey:e ed 2 %)
=ley:e €| Jd=)

Hence, the left distributive law holds.

2.40 EXAMPLE. Extending (Maset(D,D),).) to a so-ring requires a little more
work. First, we must represent each z in Maset(D,D) as a matrix with each
matrix entry z;; set equal to j(¢z). This new characterization of Maet(D, D)
yields a bijection between the members of Mset(D, D) and the nonnegative integer
matrices with at most finitely many nonsero entries in each row. We then define )
as matrix addition and o as matrix multiplication with unit equal to the identity
matrix. In this representation of Mset(D, D), a family (z;:k € K) is summable
if for each § in D, {k: the §** entry of z; is nonsero for at least one j € D} is
finite. )
We now show that the multiplicative structure is indeed a monoid. Let A, B be
two matrices in Mset(D, D). Certainly the product of A and B is a nonnegative
integer matrix. Column j of row s of AB is the result of multiplying row ¢ of 4
by column 5 of B. Suppose that row § of AB contains infinitely many nongero
entries. Then it must be the case that there are an infinite numberof j such that the
inner product of row § of A with column 5 of B is nongero. Since 4 is a member
of Mset(D,D), row § of A must contain at most finitely many nonzero entries.
Thus, for at least one of the nonsero entries in row ¢ of A, say the eatry in column

k, it must be the case that its product with an entry in row & of B must be nonzero




infinitely often. However, this implies that row k of B has infinitely many nongero
entries and thus that B is not in Mset(D, D), a contradiction. Therefore, AB isa
member of Mset(D, D). Associativity under o and proper behavior of the unit are
a consequence of the laws of matrix multiplication. Hence, (Mset(D, D),o,1) is a
monoid. The partial semiring distributive laws hold as an immediate consequence
of the distributive laws for matrix addition and multiplication.

2.41 DEFINITION. A family (z;:4 € I) in a partial semiring R is said to be super-
summable if for any family (y;:s € I) in R, Y (z;y;:4 € I) is defined.

Hence, all families in a complete partial semiring are supersummable. Clearly,
any supersummable family is summable. Although the converse is not true in every
partial semiring, we do have that

2.42 OBSERVATION. In Pfn(D,D), Mfn(D,D), and Maset(D,D) all summable
families are also supersummable.
PROOF. This is immediate in Mfn(D, D), since Mfn(D, D) is a complete eo-
ring. We supply the proof for both Pfn(D,D) and Mset(D,D). Let (z;:5 € I)
be a summable family in Pfn(D,D). Then for j # ¢, dom(z;) Ndom(z;) = 0.
Let (yi:i € I) be any family in Pfn(D, D). Foreach ¢ in I,
dom(z;y;) = {d € D:d € dom(z;) and dz; € dom(y;)}

C {d € D:d € dom(=;)}

= dom(z;).
Hence, for j # ¢, dom(z;y;) N dom(z;y;) = O. Therefore, (z;y:s € I) is a
summable family in Pfn(D, D).

Now, let (z;:4 € I) be a summable family in Maset(D, D). Then for each j,
the set S; = {i: the jk'* entry of z; is nonsero for at least one k} is finite.
Hence, for 2ll § not in S;, row j of z; consists entirely of serces. Let (y;:s € 1)
be any family in Maset(D, D). Then each z;y; is in Maset(D, D), and so each row
of z;¥; contains finitely many nonsero entries. Note that if row j of z; contains
all geroes, then so does row j of z;¥;. Therefore, for each 5, {s: the FktR entry
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of z;y; is nonsero for at least one k} C S, and so is finite. Hence, (z;y;:s € I) is
a summable family in Mset(D, D).

Partial Sub-semirings and Homomorphisms

2.43 DEFINITIONS. Let (R, ,0,1) be a partial semiring. Then (R',3,0,1) isa
partial sub-semiring of R if

(1) R’ is asubsetof R;

(2) (R',Y) is a partial sub-monoid of (R,Y]);

(3) (R',0,1) is a sub-monoid of (R,o,1); and

(4) the left and right distributive laws hold in (R',Y,0,1).

If (R',Y)) is a relative partial sub-monoid of (R,Y), then (R',Y,o,1) is a
relative partial sub-semiring of R. f R' = R, then (R',Y,0,1) is called a full
partial sub-semiring of R.

By observation 2.20, we immediately have that a partial sub-semiring of a so-
ring is itself a so-ring.
2.44 DEFINITION. A homomorphism of partial semirings is an additive map which
is also a monoid homomorphism of the multiplicative structures.

2.45 DEFINITIONS. An embedding of partial semirings is a partial semiring homo-
morphism which is an embedding of the partial monoid structures. An embedding
of a partial semiring in a ring is an injective monoid homomorphism of the multi-
plicative structures which is an embedding of the additive structures in the sense
of embedding a partial monoid in an abelian monoid.

2.46 EXAMPLES. The so-ring Pfn(D, D) embeds in both the so-ring M fn(D, D)
and the so-ring Maet(D, D). In the first case, the embedding is the set inclusion
map of the partial functions in the multifunctions, whereas in the second case the



embedding 8: Pfn(D, D) — Maset(D, D) is defined by

1, if of is defined and df = ¢;
0, otherwise.

In turn, we may embed Maset(D, D) in the ring Mat(D, D) of Dx D complex ma-
trices. The embedding of Maset(D, D) in Mat(D, D) is defined by (£6);; = j(sf).
By composing the embedding of P fn(D, D) in Mset(D, D) with the embedding of
Maet(D, D) in Mat(D, D), weobtain an embedding of Pfn(D, D) in Mat(D, D).

eta(so = {

This particular embedding of Pfn(D, D) in the ring Mat(D, D) gives a char-
acterization of partial functions as D x D 0-1 matrices with at most one 1 per row.
We make use of this representation of Pfn(D, D) in later chapters.

It is not possible, however, to embed M fn(D, D) in the ring Mat(D, D) be-
cause a partial monoid which is embeddable in an abelian group must satisfy the
following cancellability property: if £+ f and k+ g are defined and are equal then
f = g. This criterion is not satisfied by Mfn(D, D) because f+ f = f+0 even
when f#0.

Constructions of Partial Semirings

We can extend each of the constructions in the category Pmon to the category
Prng of partial semirings and their homomorphisms. We note that each of the
constructions in Prng also applies directly to the category Srng of so-rings and
their homomorphisms. ‘

Producta. Let (B,YY,o,1°) be a family of partial semirings. Their prod-
uct is the partial semiring ([]; R*,3,0,1) together with the projection maps
pri:([L B, Xy 0,1) — (R, X%, 0%, 1°) defined as follows. The product ([]; R*,T)
is the partial monoid product of the partial monoids (R, Y¥). The product of two
elements z, y in [[; R’ is defined as

zoy=(z' o’ yP:i € ),



and
1=(1:iel).
Each of the projection maps

p'i:(I.]R‘:Zo"tl) - R‘gzigd., l‘):zH z

is easily seen to be a monoid homomorphism, and thus a partial eemmng homo-
morphism.

Coproducts. At this writing, we do not have a general construction for the
coproduct of an arbitrary family of partial semirings. Besides the usual coproduct of
the empty family and of a one-element family, we do have the following construction.
Let (R,Y,¢%,1%) be a family of partial semirings such that either 1° + I¢ is
undefined or 1° + 1° = 1°. Their coproduct is the partial semiring ([]; %, ,0,1)
together with the injection maps in;: (RY, Y%, 0%, 1) — (II; B*, 3 ,0,1) defined as
follows. First, define the set

X =|J{(z,9):z € B - {0, ¥'}.
sel
Then form the set X, the set of reduced strings in X*.¢ By reduced strings
we mean that if (z,5)(y,s) is a string in X*, then the one-element string (w of
2,4) replaces the two-element string (z,8)(y,5). We are now ready to define the

coproduct set as
[I® = {0} uX.

Let (z;:5 € J) be a family in [[; R*. Then foreach j in J, z; =0, z; =1,
or z; = (y,§) where y isin R'. I the support of (z;:5 € J) is empty, then
(z,:§ € J) is summable and

Y (z:i€Jd) =0.

¢ We use the notation X* to refer to the set of all finite strings of elements of X together with
the empty string 1.




If the family contains one non-sero member, then the family is summable and the
sum s that member. If the support contains more than one member, then let K
be the index set of the elements that are different from 1 and let L be the index set
of all 1s. The family (z;:5 € J) is summable if (z;:5 € K) = ((y;,8):5 € K) for
some § in I and if (y;:5 € K), (1%:j € L), and 3° (y;:5 € K) + T°(1%:5 € L)
are summable in RY, in which case

D (ziied)=) (wrikieK)+Y (1:5€L)
= (Z’ (viieK)+ Y (1 € L),i) :

Otherwise, the family is not summable. The product of two elements z, y in
II; R is defined as

[ z, fy=1;
Y fz=1
zoy=<0, ifz=0o0rif y=0;

(wo'z,4), if z=(w,i)and y=(3,3);

. TY, otherwise.

Hence, the product of z and y is string concatenation in most cases. Each of the

injection maps
‘.“c’:(R‘sz:‘on 1‘) - (HR‘iE:"o l):O'. —0,1° — Ly~ (y,9)

is easily seen to be a monoid homomorphism which is additive, and therefore, a
partial semiring homomorphism.

The previous construction also works in the case in which there is one j such
that 19 + 17 is defined and not equal to 17, and such that 1° + 1¢ is undefined for
i # 5. However, in the cases where there exists at least one such j§ and at least
one k such that 1¥ 4 1¥ is defined, the coproduct construction is unknown at this

time.
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The category Prng has an initial object, namely the partial semiring R = {0,1}
with 141 undefined. The terminal object of Prng is the partial semiring R = {0}.

Quotients.
2.47 DEFINITION. Let R be a partial monoid, and let E be an equivalence relation
on the elements of R. Then E is a partial semiring congruenceon R if EF is a
partial monoid congruence on R, E is closed under the multiplicative operation
of the product partial semiring R x R, and E contains the multiplicative identity
of RxR.

Let (R,),0,1) be a partial semiring, and let E be a partial semiring congru-
ence on R. Their quotient is the partial semiring (R/E,Y', o', 1') together with
the canonical surjection p:(R,Y.,0,1) = (R/E,Y.',0',1') defined as follows. The
quotient (R/E,Y’) is the partial monoid quotient. The product of two elements
2, § in R/E is defined as

2o' §=%Foy,
and
=1

The reader may easily verify that o' is well-defined, since E' is closed under the
multiplicative operation of R x R. The surjection map

r: (R, 23 o,1) = (R/E, 2,: o, l'i: z—2

is readily seen to be a monoid homomorphism, and thus a partial semiring homo-
morphism.

Limits and Colimits. Let R;, R; be two partial semirings, and let f,g:
R, — B3 be two partial semiring homomorphisms. Then the equaliger of f and g
is the partial monoid equaliser R together with the inclusion map A: R — R;. The
reader may also easily show that R is closed under the multiplicative operation of
Ry and that 1 isin R, since f, g are monoid homomorphisms. Hence, R is a




partial sub-semiring of R;, implying that A is a partial semiring homomorphism.
We observe that Prng has all limits, since it has all products and all equalizers.

Let Ry, R; be two partial semirings, and let f,g: Ry — R; be two partial
semiring homomorphisms. Then the coequaliser of f and g is the partial semiring
Ry /E’ , where E' is the intersection of all partial semiring congruenceson R; which
contain {(zf,zg):z € R}, together with the canonical surjection A: R — R;/E'.
Although Prng has coequalisers of all pairs of morphisms, it is unclear at this
point whether Prng has all colimits, since the general coproduct construction is
unknown.

Free Partial Semirings. Let X be any set. Then the free partial semiring
generated by X is the set B = X* U {0} with the trivial addition and with the
multiplicative operation defined as follows. Let z, y be two elementsin R. Then,
(z, fy=1;

v ifz=1;
0, ifz=00rify=0;

| 2y, otherwise.

Toy = {

Hence, the multiplication is string concatenation. Thus, we see that the additive
structure is that of a free partial monoid on the set X* and that the multiplicative
structure is that of a free monoid on the set X.

Now, let (W,o',1) be any monoid. Then the free partial semiring over the
monoid W is the set R =W U {0}, with the trivial addition and with the multi-
plicative operation defined as follows. Let z, y be elements of R. Then,

{0, fz=0o0rify=0;
zoyYy=
zo'y, otherwise.

Hence, any monoid can be extended to a partial semiring by appending one ..
element. Similarly, any partial monoid can be extended to a partial semiring by
appending one element, as we now demonstrate.



2.48 OBSERVATION. Any partial monoid (R’,Y.’) can be extended to a partial

semiring (R,3,0,1).
PROOF. Let R= R'U{1}, and let (z;:5 € J) be a family in R. Then,

Y'(z0j€Jd), HzER foralliel;
Y (zpied) =41, i 3i € J such that z; = 1 and z; = 0 for j # §;
undefined, otherwise. ”
Let z, y bein R. Then,
z Hy=1;
zoy=<(y, ifz=1;
0, otherwise.

The reader may easily verify that (R, ), o,1) is a partial semiring. The multiplica-
tive operation thus defined is called the trivial multiplication.

We leave the discussion of the more technical results relating to so-rings until
the following chapter.



CHAPTER III

PROPERTIES OF SO-RINGS

In this chapter, we present the basic properties and substructures of so-rings.
These results provide the background for the subsequent two chapters. For a more
detailed study of some of the various properties of so-rings, consult Manes and
Benson [1985].

First, we describe the “center”; it is a generalization of the notion of center in
a distributive lattice, which is the Boolean algebra of its complemented elements.
Next, we define “domain® and “range” which are generalizations of the concepts
of domain and range as they apply to partial functions. Finally, we define the
concept of “inversibility”, that is, whether or not an element of a so-ring possesses
a multiplicative “inverse®. This notion of inverse is closely related to the notion
of inverse in semigroup theory. We conclude with a discussion of an alternative

ordering on the elements of a so-ring.

The Center

The concept of center occurs in the literature in reference to different algebraic
structures. Perhaps the two types of center most generally known are the center
of a semigroup and the center of a poset. The center of a semigroup S consists of
all z in § such that zy = yz for each y in S. The center of a poset P with
least element 0 and greatest element 1 [Birkhoff, 1967, IT1.8] is the set of all z in
P for which there exist posets (T',0p,17), (U,0p,1py) and an order isomorphism
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¢:P — T x U such that z¢ = (17,0p). We define yet another notion of center
which is a Boolean algebra formed by the complemented elements of a so-ring, and
we show how the three different types of center are related. !

3.1 DEFINITION. A complement of an element r in a so-ring R is an element ¢
of R suchthat r+ ¢ =1 and v =0=rr.

3.2 OBSERVATION. Complements, when they exist, are unique.

PROOF. The well-known argument for distributive lattices works equally well for
so-rings. For suppose v’ exists and suppose there also exists s such that r+s=1
and re=0=asr. Then ¥ =r(r+s8)=rr+rs=rs=rs+rs=(r+r)s =3s.

We hence write r' for the complement of r, when it exists. The uniqueness of
complements implies that when ¢ exists, " exists and ¢’ = r.

3.3 DEFINITION. The center C of a so-ring R is {r € R: ¢ exists} .

3.4 EXAMPLES. The centers of Pfn(D,D), Mfn(D,D), and Maset(D,D) are
each isomorphic to the Boolean algebra of subsets of D. The isomorphism is such
that each subset D of D corresponds to
(1) f in Pfn(D, D) such that
df = { d, if d e D;
undefined, otherwise.

(2) g in Mfn(D, D) such that

lig= { {d}, lfdeb;
0, otherwise.

(3) A in Maset(D, D) such that

a(dh) = {1, ifdéeDandd=¢
0, otherwise.

! See the “Boolean semirings” of Elgot [1979] and the “guard modules” of Manes (1985] for
applications to the flow of control in programs.
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In the following pages, we demonstrate the extent to which the centers of so-
rings, posets, and semigroups are related.

3.5 DEFINITION. Let (P, <) be a poset, and let a < b. The interval with endpoints
a,bis

[a,0) = {z€P:a<zand z < }}.
In any poset with 0 and 1, [0,1] is called the unit interval.

The center of a so-ring is contained within its unit interval. In Pfn(D, D),
Mfn(D, D), and Maset(D, D), the center coincides with the unit interval. How-
ever, this is not always the case.

3.6 COUNTEREXAMPLE. Let R be the complete distributive lattice consisting of
all real numbers from 0 to 1, with supremum as the additive operation and with
meet as the multiplicative operation. Then R is a so-ring which is its own unit
interval. The center of R, however, consists only of 0 and 1.

3.7 LEMMA. Let R be aso-ring. For n > 2,let ry,...,r, bein [0,1], and suppose
rir; =0 for j #¢. Then ry + .-+ ry exists and is in [0,1].
PROOF. We show the result by induction, Let £k = 2. Since r; <1 and <1,
then there exist Ay, Az such that ri+h; =1=1r2+hs. Hence, r; = ri(r2+h3) =
rirz+rihy = rihz, and kg = (r1+A1)h; = riha+h1hz = ri+Ayk, . By substitution,
1=r+hy=r+(n1+Ah2)=(r1+r)+hhs. Thus, r;+r; existsand is <1.
Assume that forall k <n, r1+---+r, exists and is in [0,1]. Consider the two
summands ry+-:-+r, and rayp. Since (ry+- - +P)Pay1 = Pifps1+- -+ PPyl =
0, (ri+ - -+Fa)+ray1=r1+ -+ rey exists and isin [0,1].

The following theorem implies that if we consider the multiplicative structure
of a so-ring as a semigroup, then the center of this semigroup contains the center
of the so-ring.

3.8 THEOREM. Let R be a so-ring with center C, and let @ be in C. Then the
following hold:
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(1) f z<a,then az=z=2za and a'z=0=1zd.
(2) a is idempotent.
(3) Forall z in [0,1], az = za.
PROOF. (1): Observe that z = z(a + a') = za + za’. Since z < a, there exists A
guch that @ = z + h. Hence, 0 = ad’ = (z + h)a’' = za' + ha', which implies that
za' = 0. Therefore, z = za. Similarly, a’z =0 and z =az.

(2): i z=a, then by (1), a = a? and thus is idempotent.

(3): Let z < 1. Since < is compatible, za < a and az < a. Hence, by (1),

za = a(za) = (az)a = az.

We now turn our attention to the relationship between the poset center and the

so-ring center.

3.9 THEOREM. (Manes and Benson, 1985, 3.7) Let R be a so-ring. Then the center

of R coincides with the poset center of [0,1].

3.10 THEOREM. (Birkhoff, 1967, I11.8.10) Let P be a poset with 0 and 1. Then
the center of P is a Boolean lattice in which join and meet represent respectively
least upper bound and greatest lower bound in P.

We thus observe that the center of a so-ring is a Boolean lattice, since it is
identical to the center of the poset ([0, 1], <) and since the center of any poset is a
Boolean lattice. Furthermore, the center of a so-ring is a sublattice of ([0,1),<).
Next, we show how the lattice operations relate to the so-ring operations in the
center of a so-ring.

3.11 THEOREM. For a so-ring R with center C, the Boolean operations on C are:

rAs=rs

rvs=ra+rs+ri=r+rs.

PROOF. Let r, s be elements of C. As rA8s < r and rAs < 8, we use

theorem 3.8(1) to get s(rAs) =rAs=r(rAs)=r(s(rAs)) =rs(rAs). Hence,
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rs =rs((rAs)+(rAs)) =rs(rAs)+rs(rAs) =(rAs)+rs(rAs), which implies
that rAs<rs. Now, r<1 and s <1 imply that rs < r and rs < s, since <
is compatible, and so rs < rA s. Therefore, rs =rA s, since < is antisymmetric.

Define an operator U such that rus = ra+r's+rs. First, we show that U
is indeed well-defined and yields a result in C'. We then show that U = v. Now,
1= (r+r')(s+4') = rs+r's+re'+r's = (ra+r's+rs')+r's' = ris+r's, so that rus
is defined and is < 1. In addition, rs+r's+rs' = (rs+rs')+r's=r(s+4')+rs=
r+r's, 80 that r+ s =ruUs. Since r+ s <1 and r's' € C, theorem 3.8(3)
gives (r + r'a)r's’ = r's!(r 4 r's) = P's'r + r's'v's = &'(r'r) + ¥P(s's) = 0. Hence,
r's' = (r+7's)’ and thus r+v's isin C. Note that for 4, v in C, u < v if and only
if uAv = u, which implies by the fact uAv = uv, that u < v if and only if uv = u.
Now, r(rus) =r(r+r's)=r2+(rr')s=r,and s0 r < rus. Similarly, s <rus.
Therefore, rvs < rus. Let ¢ be any element of C such that r < ¢ and s < ¢.
Then rt =r and st = s. Hence, (rUs)t=(r+r's)t=rt+r'(st) =r+rs=rus.
Thus, rus <t and in particular, rils < rV s. Therefore, by the antisymmetry
of <, rds=rVs.

3.12 OBSERVATION. Let R be a so-ring with center C. Let r, s be elements of C
such that r < s. Then there exists A in C suchthat s=r+ A and rh=0= hr.
PROOF. Since r < s, thereis a k in R such that s = r+ k. Thus, 0 = s¢' =
(r+k)s' =rs'+ks',and 8o ro’ =0 =ks'. Now, s =(r+r)s =rs+rs =
rs+rs+rs'=rva=r+r's. Clearly, rs isin C, siiice ¥ and s are. Moreover,
r(r's) =0 and (r's)r = s(r’r) = 0. Therefore, define h to equal ¥'s.

3.13 THEOREM. Let R be a so-ring with center C. For n > 2, let ry,...,r, be
in R and suppose that r;r; =0 for j # . Then the following two statements are
equivalent: :
(1) r; isin C for each ;

(2) ri+---+r, existsand isin C.

When either of these conditions hold, ri + - -+ ra =1V ---Vr,.

PROOF. (1) implies (2): r; is in C implies that r; is in [0,1] and that r;’ exists.
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By lemma 3.7, r; +---+ 1, exists and is in [0,1] for n > 2. A modification of the
proof of lemma 3.7 can be used to show that r{ +---+r, isin C as follows. For
k =2, obtain 1 = (r;+r2)+A1h; asin lemma 3.7. In particular, wecan let A = ry’ .
and hz = ry'. Then, ri'm/(r1 +1r2) = ri'ra'ry + ry'ra'ra = (rir)r2’ + r1'(r'r2) = 0.
Therefore, (r; + r2)’ exists and equals ri'ry', and so r; + r2 is in C. By De
Morgan'’s law, r, Vr2 = (ri' An') = (ri'rs’)’ = r; + r2. Proceeding inductively, we
havethat ri+:--+ra =rV---Vr,. Then ri+:- -+ rap1=(r1+- -+r)+ra1 =
(mMV---VrR)Vraa=nV. . - Vrgs.

(2) implies (1): Since ri+---4+r, i8in C, 8= (r; +---+ ry)' exists. Thus,
(rm+---+r)+s=1,and O=(r1+---+ry)8 =r18+--- + rys, which implies
that r;e =0 for all 4. Similarly, sr; =0 for all 5. Let ¢; = ) (r;:5 #5). Then
foreach ¢, r;+(t;+8)=1 and r(t; +8) =rt; +ria=0=¢t;r; + 8r; = (t; + 8)r;.
Hence, ¢; + s = r;’ 8o that r; must bein C.

In the center of a so-ring, an element and its complement form a 2-partition in
the sense of the following:

3.14 DEFINITIONS. An n-partition of a so-ring R is an n-tuple (ry,...,r,) of
elements in R such that r;r; = 0 for j # ¢ and such that Y} !, r; exists and
equals 1. Such a set of elements ry,...,r, is said to partition R. A set ry,...,7r,
in R is said to cover R, if 3 7, r; =1, whether or not r;r; =0 for j #1.

If (r1,...,7a) i8 an n-partition in R, then sincery+---+r, =1 isin C,
each r; is in C by theorem 3.13. This in turn implies that } 7., r; =V, n =1
and that r;ry;=r;Ar; =0 for j #1.

We will return to n-partitions when we discuss matrices over so-rings.

Domains and Ranges

Although the concepts of domain and range are usually associated with func-
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tions, they can be generalized to be applied to elements of any so-ring. The mo-
tivation stems from P fn(D, D), where, for a partial function f, the domain is
{d € D: df is defined} , and the range is {df:d € D and df is defined}. In example
3.4, it was shown that each subset of D corresponds to an element of the center
C of Pfn(D, D). Hence, the domain and the range of a partial function can each
be identified with an element of €. For the domain, the element is the least r in
C such that rf = f, while for the range, it is the least r in C such that fr=f.
Alternatively, the domain is the least r in C with £f =0, and the range is the
least r in C with fr' = 0. These formulations are equivalent, as we now show.
K risin C with rf = f, then ¥f = ¢¥(rf) = 0. If on the other hand, r is
in C with ¥f=0,then f=(r+¢)f =rf+f=rf. We arbitrarily opt for
the first formulation in our formal definitions, but make use of both formulations
in this chapter and in those that follow.

3.15 DEFINITIONS. In a so-ring R with center C, the domain of any z in R,
denoted by ‘Z , is the least element (if it exists) of {r € C:rz = z}. The range of
z, denoted by 7T, is the least element (if it exists) of {r€ C:zr =z}.

Although in most so-rings each element has a domain and a range, it is possible
to construct a so-ring in which not every element has a domain and a range. For
instance,

3.16 COUNTEREXAMPLE. Let B be a non-atomic Boolean algebra. Let P be a
non-principal prime filter in B. Let B’ = BU {oo0}. Let (z;:5 € I) be any family
in B', and define ) as follows:

Z J 00, if 35 € I such that z; = 0o and
z; =

el if Vi # 5 either z; = 0o or z; = 0;

. undefined, otherwise.
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Let z, y be elements of B’, and define o as follows:

zAy, ifz,y€B;
zoy={ oo, if y = oo and either z € P or z = o0;

0, otherwise.

With these definitions of ) and o, (B',),0,1) i8 a partial semiring. The veri-
fication of this fact is straightforward but somewhat lengthy, and so is left to the
reader. We show that oo does not have a domain, proceeding as follows. First,
we note that for r in B, r€ P f and only if ¥ € B~ P. We also note that
B—-P={r € B:roo =0}. Hence, P = {r € B:roo = 0}. Thus, o is the
least element of P, if it exists. But P is not principal and so has no least element.
Therefore, co has no domain.

3.17 DEFINITION. A so-ring R has domains and ranges if both ‘Z and 7 exist

foreach z in R.

The following definitions apply to those so-rings which do possess domains and

ranges for each of their elements.

3.18 DEFINITION. In a so-ring R with domains and ranges sums are disjoint if the
summability of a family (z;:4 € I) in R implies that Z;z; =0 for j #1.

3.19 DEFINITION. A so-ring R with domains and ranges is adequate if zy = 0
implies that Z'%y' =0 for z, y in R.

3.20 EXAMPLE. The so-ring Pfn(D, D) possesses the three properties described
in definitions 3.17, 3.18, and 3.19. At the beginning of this section, we established
the fact that Pfn(D, D) has domains and ranges. Hence, using this fact and
example 2.7, we can deduce that in Pfn(D, D) sums are disjoint. Now, let z, y
be elements of Pfn(D, D) such that zy=0. If Z' ‘g # 0, then there exists d in
D such that d € Z* and d € 'y’ . This in turn implies that there exists d; in D
such that d;z =d and d; in D such that dy = d3. Thus, djzy = dy = d;, and
80 zy # 0, which is a contradiction. Therefore, ="'y = 0, and so Pfn(D, D) is



adequate.

We now prove some basic properties of domains and ranges. In many instances,
we supply only the proof for the domain, since the proof for the range is identical
to the proof for the domain in the opposite so-ring (definition 2.32). The following
observations generalize some familiar properties of partial functions.

3.21 OBSERVATION. Let R be a so-ring, and let z be an element of R. Then
(1) if ‘T exists, then ‘Tz =z and ‘T'z=0;

(2) if Z exists, then 22 =z and zZ =0.

PROOF. (1): Let C be the center of R. Since ‘T isin C, ‘T exists. Thus,
z=(F +% )z="Cz+'T z. Since ‘T is the least element of {r & C:r'z =0},

[}
‘T z£=0. Hence, Tz=12.

3.22 OBSERVATION. Let R be a so-ring. Let z, y bein R, and let z+ y be
defined. Then

(1) if ‘T, ‘7 exist, then T+ y exists and equals

(2) if 7 exist, then z+y exists and equals T VY.

PROOF. (1): Let C be the centerof R. Let X ={re€C:r'z=0},let Y = {re
C:r'y=0},andlet Z={reC:r(z+y)=0}. Since 0 =r(z+y) =rz+ry
implies that ¥z =0=r'y, wecan rewrite Z as {r€ C:Pz=0=ry} =XnNY.
By assumption, the least element of X is ‘T, and the least element of Y is ‘y .
Since both ‘Z and ‘g arein C, T vV 'y is the least element ¢ of C such that
both T <t and ‘g <t. Toseethat T vy isin Z, observe that (?v‘i)’:
T A =2y. Now, Zy(z +y) = ¥z + 2'¢'y = (£'z)y + 2(y'y) = 0. Hence,

‘TVv'y mustbein Z,andso z+y=7FT VY.

TVY;

v
» Y

3.23 OBSERVATION. Let R be a so-ring, and let (z;:s € I) be a summable family

in R.

(1) I % existaforall § in I, then 5 z; existsif and only if \/; % exists, and
in either case E;:V,-‘:‘:.‘-.

(2) I T} existaforall i in I,then 3,z exists if and only if \/; % exists, and



in either case E,z. V:Z .
PROOF. (1): Let C be the center of B. Suppose that %; exists for all 4 in I.
The least element ¢ of C such that Z; <t is \/; % , if it exists. The least element
u of the following set

X={reC:r'Zz.-=0}

={re C:Zr'z.- =0}

={reC:rYz;=0forallie I}
= n{rEC:r'z,-=0}

= n{r € C:rz; = z;}

is g;;, if it exists. Now, %; is the least element r of C such that rz; = z;.
Hence, for each ¢ in I, %; < u, if u exists. Thus, u is the least element of C
which is greater than or equal to %Z; for each § in I. But this means that u =¢.

Therefore, if either \/; % or ﬁ exists, then so does the other, in which case

Ez.—v z; .

3.24 OBSERVATION. Let R be a so-ring in which sums a.re disjoint. If z;,...,2,
are elements of R such that } 7, z; exists, then 2, 1% =i T -

PROOF. Let C be the center of R. Since sums are disjoint in R, %; %Z; =0 for
j#4. Each %; isin C, and so by theorem 3.13, 3>, % exists. Furthermore,

z“::-: = \7 %;, by theorem 3.13

i=1 =1

——
= ) i=1 %;, by observation 3.23(1).

3.25 OBSERVATION. Let R be a so-ring, and let z, y be elements of R such that
z<y. Then
(1) if T and ‘¥ exist, then T < 7 ;



(2) if T and Y exist,then T <.

PROOF. (1): Let C be the centerof R. Let X = {r € C:¥z = 0}, and let
Y = {re C:ry =0}. Since z < y, there exists h such that y = £ + A. Thus,
Y={reCir(z+h)=0}={reC:¥z+rh=0}=(reC:rf'z=0=rh}.

Hence, Y C X, and eo ‘y isin X. Thus, since ‘z

TLY

>y

is the least element of X,

3.26 OBSERVATION. Let R be a so-ring, and let z, y bein R. Then

(1) if T and %y exist, then Ty < T';

(2) if ¥ and ZY exist, then Ty < .

PROOF. (1): Let C be the centerof R. Let Z = {r € C:rzy = zy}. By
observation 3.21(1), T zy = zy, so that ‘T is an element of Z. However, 7y is
the least element of Z. Hence, 5y < 7 .

3.27 COROLLARY. Let R be a so-ring with commutative multiplicative operation.
Let z, y bein R. Then |

(1) if Z, ‘v, and Ty exist, then Ty < Ty ;

(2) if 77, ¥, and Zy exist, then 2y < 7'y
PROOF. (1): We immediately have that

£y = fyty, by theorem 3.8(3)
= ¥y¥z, since o is commutative

< ‘T'y, by observation 3.26(1).

3.28 OBSERVATION. Let R be an adequate so-ring. Then for z, y in R

(1) % == ;
(2) W: ?y.

PROOF. (1): First, we note that

PP I—
£y = z'y'y by observation 3.21(1)
P

< z'y by observation 3.26(1).
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[ T—

Let C be the centerof R. Let Z = {r € C:¥z'y = 0}. Then z'y is the least
element of Z. We show that %Zy is in Z. By observation 3.21(1), ’:E'zy = 0.
Thus,
"
0= %y z'y, since R is adequate
P
=ZyzEyz'y
= !:T;’z'i, by observation 3.21(2).
—
Hence, 7y isin Z, and 80 z'y < %y . Therefore, by the antisymmetry of <,
—
Ty =z'y .
3.20 OBSERVATION. Let R be a so-ring with center C. If z is an element of C,
then T =z=7.
PROOF. Let X = {r € C:rz = 0}. Let r be any element in X. Then z =
(r+r)z=rz+ vz =rz =rAz, by theorem 3.11. Thus, z < r for all r in
X. Note that z is in X, and so is the least element of X. Therefore, z = ‘T .
Similarly, it can be shown that z = 7.

3.30 OBSERVATION. Let R be a so-ring, and let z be in [0,1]. If F and 7
exist, then ‘7 = 7.

PROOF. Let C be the center of R. Since z is in [0,1] and Z and T are
in C, we may apply theorem 3.8(3) and observation 3.21(1) toget 2T =7z =

z = 2% = Tz. Then, by applying observations 3.26 and 3.29, we have that

— — —_—_ RN
T =Tz< T =7andthat T = 2% < T = ‘T. Therefore, by the
—

antisymmetry of <, 7 = 7.

3.31 OBSERVATION. Let R be an adequate so-ring with center C. I r is in C,
then

(1) vz =r7;

(2) z#=T7r.

PROOF. (1): The conditions on R are the same as those in observation 3.28, and
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—
so we may draw the conclusions of observation 3.28(1), namely that ¥z = r'z .

Furthermore, since r and ‘z arein C, then their product r‘z is also in C. This
—

implies, by observation 3.29, that r'z =r'z . Hence, ¥z =r'z .

Inverses

3.32 DEFINITION. An element z of a monoid M with unit 1 is said to be invertible
if there exists a (necessarily unique) element z~! in M suchthat zz-1 =1=z"1z,
In this case, z~! is called the inverseof z.

3.33 DEFINITIONS. An element z of a semigroup S is called regular if there exists
y in S such that zyz = z. An element z~! in S is an inverseof z,if zz" 'z ==
and z-lzz~! = z-!. If § has a multiplicative unit 1 and if zz-! = 1 = z-1z,
then z is said to be invertible.

In a semigroup S, if z is invertible, then clearly z~! is the unique inverse of
z . Furthermore, any element with an inverse is regular. Conversely, every regular
element has an inverse, for if zyz = z, then define z~! = yzy. However, an inverse

of an element in S need not be unique.

3.34 COUNTEREXAMPLE. Consider the semigroup of partial functions from D to
D under functional composition. Let d;, d3 be elements of D. Define two partial
functions £ and y such that for d in D

{dl, ifd=d; ord=dy;
- undefined, otherwise;
and

dy, fd=d;

dy = {

undefined, otherwise.
Observe that zzz = z and so z is an inverse to itself. Also, observe that zyz =z
and that yzy = y. Hence, y is an inverse of z as well.
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We now introduce the concept of multiplicative inverse in a so-ring which (see
observation 3.36 below) lies between the concepts of inverse in a monoid and inverse

in a semigroup in its generality.

3.35 DEFINITIONS. An inverse of an element z of a so-ring R with center C is
an element z~! of R for which there exist r, s in C such that the following

equations are satisfied:

zz l4r=1=z"tz+3s

1 @-1)

1

zT'r=rz=0=2z3=38z2"".

If such z~!, r, and s exist, then z is inversible.

The motivation for defining inversibility in this way comes from considering ma-
trix invertibility, as follows. For clarity we consider 2x 2 matrices over a so-ring R.
Let A, B be twosuch matrices, where in addition, AB = I (the identity matrix) =
BA. These two matrix multiplications result in the following equations (where a;;
is the entry in row s and column j of A).

anbu +azby = 1= byjay + bizaz
anbiz + aznbyn = 1= byia)3 + bnax
anby + axbyy = 0= anbiz + ay2bn
b21811 + bx2agy = 0= byya12 + b!zm-
These equations imply that
anbn + aizbay = 1 = bpyay + bizag
bi1(a12b21) = (@12b21)811 = 0 = ayy(br2a21) = (b12a21 )by,

go that &;; is an inverse of a;;. In general, b;; is an inverse of a;; for nxn
square matrices 4, B over R where AB=1I= BA.

3.36 OBSERVATION. Let R be a so-ring, and let z be an element of R. Then the
following hold:

(1) If z is invertible, then z is inversible.



(2) Iif z is inversible, then z is regular.
(3) When they exist, z~!, r, and s are unique in equations (3-1).
(4) If z is inversible, then z has a domain and a range; indeed, T = zz~! and

7 =z"1z.

PROOF. (1): If z is invertible, then zz~! = 1 = z~1z. To satisfy equations (3-1),
let r=0=3s.

(2): Since z is inversible, zz"!+r =1 =z"1z+ s and zs = 0 = z~!r.
Thus, z = z(z7'z+8) = zz7'z+ 28 = zz7'z, and z7! = 7} (zz7) +7) =
z-lzz~1 + 271y = z~1z271,

(3): Suppose there exist 2, ¥, & such that z2+f=1=2z+3 and #F=zi =
0 = fz = §2. Then

2= (z"'z+s)2
=z 122 4 52
=17 'z2(zz7! + 1) + a2
=z (z2z)z7! + 7122 + o2
=z 12271 + z71z2r + o2

=gz 4+ z7122r + 82,

Hence, z~! < 2. By a similar argument, 2 < z~!. Therefore, 2 = z~!. Since r
is the complement of zz~! and s is the complement of z=!z, both r and s are
also unique.

(4): Let C be the centerof R. Let X = {g € é’:q"z = 0}. Since r is the
complement of zz~!, (zz~1)’z = r£ = 0, and thus zz~! isin X. Let ¢ be any
element of X. Then 'z =0, and 80 z = (¢ + #!)z = tz + t'z = tz. This implies
that ¢ A zz~! = (tz)z~! = zz~!, which in turn implies that zz~! < ¢t. Hence,
zz~! = 7. Dually, z-lz=7Z.

3.37 EXAMPLES. In Pfn(D,D), Mfn(D,D), and Mset(D, D), the inversible el-
ements correspond to the injective partial functions. The inverse of such an element
in Pfn(D,D) orin Mfn(D,D) is the usual functional inverse. In Mset(D, D),
the inversible elements are the 0-1 matrices which correspond to the injective par-
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tial functions, namely those 0-1 matrices with at most one 1 per row and per
column. Hence, by example 2.46, we have that inversible elements of Pfn(D, D),
Mfn(D, D), and Mset(D,D) can be represented by D x D 0-1 matrices with at
most one 1 per row and per column. .

3.38 OBSERVATION. If z and y are inversible elements in a so-ring R, then zy is
inversible and (zy)~! = y~1z-1.
PROOF. Let C be the center of R. Since z and y are inversible, the following

equations hold for some r, s, v, v in C:

zz '+ r=1=z"1z+3 wltu=1=yly4v
rlr=28=0=rz =gz} ylu=yv=0=uy=uvy!.
Then
1=z(yy ! +u)z ' +r=zyy 'z~ + (zuz~! + )
and

1=y Yz 'z +8)y+v=y 'z7lzy + (y~lsy + v).

We must prove that
(zuz™! + r)zy = y~lz7(zuz™) +7) =0 = (ylay + v)y 1z = zy(y~lay + v).

However, we only show that (zuz~!+r)zy = 0 = zy(y—!sy+v), since the other two
equations can be gotten by symmetry. Now, (zuz~! + r)zy = zuz~lzy + (rz)y =
z(uz~1zy). Since 0 = uy = u(z~'z + 8)y = uz~'zy + usy, uz~lzy = 0. Hence,
zuz~'zy = 0. Also, zy(y~'sy + v) = zyy~lsy + z(yv) = (zyy~'s)y. Since
0 = zs = z(yy~! + u)s = zyy~'s + zus, zyy~'s = 0. Hence, zyy~'sy = 0.
Therefore, the inversibility equations for zy are satisfied, and (zy)™! = y~1z-!.

3.39 DEFINITION. An inverse semiring is a so-ring in which every element is in-

versible.

3.40 EXAMPLE. The so-ring of nonnegative real numbers, as defined in example
2.30, is an inverse semiring.



Inverse Semigroups

There exist certain relationships between inverse semigroups and the set of
inversible elements of a so-ring. We describe some of these below, beginning with

3.41 DEFINITION. (Howie, 1976, V.1) An inverse semigroup S is a semigroup in
which for every z in S there exists a unique z~! such that zz~!z = z and

z-lzz-l =21,

Whereas the set of partial functions from a set to itself is an important example
of a so-ring, a motivating example for the study of inverse semigroups has been
the set of injective partial functions from a set to itself. In this case, the inverse
semigroup arises as the set of inversible elements of the so-ring. More generally, we )

have

3.42 THEOREM. The set of inversible elements of a so-ring R is an inverse semi-
group, and the two notions of inverse coincide.
PROOF. From observation 3.38, we conclude that the set of inversible elements of
a so-ring R is a submonoid of the monoid (R,o,1), and so it is a semigroup. Let
z, y be two inversible elements of R such that zyz =z and yzy = y. We must
show that such a y is unique. Let z~!, y~! be the so-ring inverses of z and y.
Then '
zy = zz"'zy, by observation 3.36(2)

= z(zyz)~'zy

= zz~ly~1z~1zy, by observation 3.38

= (zz7!)(zy)~!(zy), by observation 3.38

< (zy)~!(zy), since < is compatible

<1l

Hence, by observation 3.8(3),

zz~! = zyzz~! = 237 1zy = zy.
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Similarly, yz = yy~!. Thus, by the compatibility of <, we have that
y=yzy=yzz ' =yy~lz~1 < 27,

and

-1 1 1

=z"lzz7 = z71zy < y.

z
Therefore, by the antisymmetry of <, y=z~! and so is unique.

In the study of inverse semigroups, the structure of the semilattice of idem-
potents of an inverse semigroup is used in classifying the structure of the inverse
semigroup itself. The next theorem shows that the center of a so-ring plays a role
analogous to the semilattice of idempotents of an inverse semigroup.

3.43 THEOREM. The center C of a so-ring R is the set of its idempotent inversible
elements.

PROOF. Let u bein C. By theorem 3.8(2), u is idempotent. The inversibility
equations (3-1) can be satisfied by letting z =u=z"! and r = v’ = 5. Thus, u
is inversible and u = u™!,

Let u=u?, and let u be inversible. By observation 3.38, u~lu~! = (u?)~! =
u~!, and so u~! is idempotent. Hence, (uu~1)(u~'u) = u(u~!)’u = uu—lu = u.
By the compatibility of <, (uu!)(uv~'u) < us~!. Thus, u < uu~!. Again,
using compatibility, we get uu=! = wlu~! = u(uu~!) < u. Therefore, by the
antisymmetry of <, u =uu~!, and is thusin C.

3.44 COROLLARY. The set of inversible elements in the unit interval of a so-ring
R is a Clifford semigroup, that is, a semigroup in which all idempotents commute
with all elements of the semigroup.

PROOF. Clearly, the unit interval [0,1] of R is a subsemigroup of the semigroup
(R,0). Likewise, the set of inversible elements in [0,1], callit I,isa subsemigroup
of ([0,1],0). Let e be an idempotent in I. Since e is an inversible idempotent,
it is in the center of R, by theorem 3.43. Let z be any element of J. Then by
theorem 3.8(3), ez = ze. Therefore, I is a Clifford semigroup.
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We conclude this section with a pair of results on the conditions for inversibility.

3.45 OBSERVATION. Let R be a so-ring. Then for any z in R, the following two
statements are equivalent:
(1) z is inversible and z=z"!;
(2) T, T existand T =22="7.
PROOF. (1) implies (2): By observation 3.36(4), we have that z = zz~! = z? =
- lz=7.

(2) implies (1): Let C be the center of R. Since T =22 = 7", 22 is in
C. Hence, u = (z3)' exists. Thus, z2 + u = 1, and z?u = 0 = uz?. However,
to satisfy the inversibility equa.tions, we need to show that zu = 0 = uz. Now,

zu = z(z?) = 27T P =0=%z= (z2)'z = uz. Therefore, z is inversible and

z-l =1z,

3.46 OBSERVATION. Let R be a so-ring. Let z, y be inversible elements of R
such that z=z"!, y=y~!, T'y =0, and z+y exists. Then z+y is inversible
and (z+y) '=z+y.

PROOF. (Note that ‘T and ‘y must exist by observation 3.36(4).) Let C be
the centerof R. First, 7 = 2z? = 7 and ‘g = y2 = ", by observation 3.45.
Then, by observation 3.22, z+y =FVy =ZVYy

0=%5 =27, 24y =FTVy =F+9=F+F=CVi=z+y
by theorem 3.13. Furthermore, 0 = =

Similarly, yz = 0. Thus,

(z+y)z+y)=2+yz+zy+y°

=z +Yy
G——
=z4y.

Hence, (z+y)? isin C, with (:o:+y)z =Z+y. Thus, (z+y)® + z+y' =1,

T+y (z+y) =0, and (z +y)2z+y = 0. In order to satisfy the inversibility
equations, we must show that T+y (z +y)=0=(z+y)z+y y The first
equality is immediate; the second follows from the fact that T+ y=2z+ y . Thus,
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the inversibility equations for £+ y have been satisfied, and (z+y)" ! =z +y.

The Multiplicative Ordering

Up until this point, we have only considered the sum-ordering on the elements of
a so-ring. There are, however, other orderings which we may impose on the elements
of a go-ring, one of which we describe below. This ordering is a generalization to
so-rings of the natural ordering on the elements of an inverse semigroup [Howie,
1976, V.2].

3.47 DEFINITION. The multiplicative ordering on a so-ring R with center C is the
binary relation C such that if z, y are in R, then z C y if and only if there

exists ¢ in C such that z=-ecy.

3.48 OBSERVATION. In a so-ring R, the multiplicative ordering C is a right com-
patible partial order.

PROOF. Right compatibility is proved as follows. Let C be the center of R. Let
z, y be elements of R such that z C y. Then there exists ¢ in C such that
z=ecy. Forany z in R, 23 = eyz and 80 zz C yz. It is also easily shown that
the multiplicative ordering is a partial order. Clearly, for any z in R, z = 1z and
8o L is reflexive. Antisymmetry and transitivity are a direct consequence of these
properties of the natural ordering in an inverse semiéroup (Howie, 1976, V.2.1],
since neither property depends upon the existence of inverses.

We note that in an inverse semiring the multiplicative ordering is left compatible
as well as right compatible. This follows directly from the compatibility of C in
an inverse semigroup [Howie, 1976, V.2.4]. However, in general, the multiplicative
ordering need not be left compatible.

3.49 EXAMPLES. In Mfn(D,D) and in Maet(D,D), the multiplicative ordering
fails to be left compatible. Let d;, d2, and dj be three elements of D , and define



z, y in Mfn(D, D) such that

ds = {di}, ifd=4dy;
0, otherwise;

and
{dl}, if d = dl;

dy={ {da}, if d=dy;
9, otherwise.
Recall (example 3.4(2)) that the center of M fn(D, D) is isomorphic to the set of
subsets of D. Hence, both z and y are in the center, and furthermore, z = zy
which implies that zC y. Define 2 in M fn(D, D) such that

dz = {dhd2}: if d = d;
0, otherwise.

Thus,

dzz = {dl}s if d = ds;
9, otherwise;

and d ifd=d
dzy= {{ l)d2}1 = a3,

0, otherwise.
However, we see that there is no e in the center such that zz = ezy. Therefore,
C is not left compatible in Mfn(D, D). A similar example can be constructed for
Maset(D, D).

The next few observations in part answer the question of how the multiplicative
ordering i8 related to the sum-ordering. In Pfn(D,D), 2 <y and z C y are
each equivalent to saying that z is obtained from y by restricting the domain of
y to that of z. Hence, the multiplicative ordering and the sum-ordering coincide
in Pfn(D,D). In Mfn(D,D) and in Mset(D,D), the multiplicative ordering
is not left compatible (example 3.49) whereas the sum-ordering is left compatible
(observation 2.37). Thus, the two orderings are not identical in M fn(D, D) and
in Mset(D, D).



3.50 OBSERVATION. For z, y in a so-ring R, zC y implies that z < y.
PROOF. Let C be the center of R. Since z C y, there exists ¢ in C such that
z =ey. Thus, y = (e + )y = ey + 'y = z + €'y, which implies that z < y.

However, the converse need not hold. Although it does hold in Pfn(D, D),
it does not hold in Mfn(D, D) nor in Mset(D, D). Referring again to example
3.49, we note that zz < sy, but that 2z [Z zy. The following result makes precise
how the sum-ordering needs to be strengthened so as to imply the multiplicative
ordering.

3.51 OBSERVATION. Let R be a so-ring with center C. Let z, y be two elements

of R. Then the following two conditions are equivalent:

(1) zCy;

(2) there exist A in R and e in C suchthat y=z+h and eh =0 =¢z.

PROOF. (1) implies (2): If z C y, then in the proof of observation 3.50, let A = dy.
(2) implies (1): Suppose there exists h in R and ¢ in C with y=z+ A and

eh=0=¢z. Then y=(c+e)y=(e+e)z+h)=ez+eh+ez+eh=cz+eh.

Now, ey = e(ez + ¢h) = ez + ech = ex. But ez = ez + €'z = (e+€)z==x.

Hence, z=e¢y andso z C y.

3.52 THEOREM. Let R be an inverse semiring. Then the following three conditions

are equivalent:

(1) The multiplicative and sum-orderings coincide.

(2) Forall z, y,and h in R with y=z+ A, z-! + h-! is defined and equals
(z+h)-1.

(3) Forall z, y in R, z <y implies z~! < y~!.

PROOF. (1) implies (2): Suppose y =z +h. Then z < y and A <y, and so by .

assumption zC y and A C y. Thus, from [Howie, 1976, V.2.2], we have that

ylz=z"1z gy la=h"!p

oy~ =zz! hy~! = hh™1,



Hence,
y~l =y lyy!

=y (= +h)y™!

= y~lzy~l 4 y~lpy~!
=z lzy~ + A 1hy!
=z"12z71 4 h~1p41
=zl 4+ A7L

(2) implies (3): This is obvious.

(3) implies (1): Let y = z+ h. Then by assumption, there exists k in R such
that y~! = z=1+k. It suffices to show, by [Howie, 1976, V.2.2], that there exists an
idempotent e in R such that z = ye. By the inversibility of y, there exists 2 in R
such that yy~! +2=1 and zy =0=y~!z. Then z = (yy~! + 2)z = yy~'z + 2.
But as 2z < 2y =0, 2z =0. Thus, z = ye with ¢ = y~!z. We must show that

e is idempotent, that is, e = e. Now,
e=y lz
=y Yy +2)z
=y N (z+h)y~! + 2)z
=y lzy~lz + (y " hy 'z + y~22)
2y lzylz
=é.

Conversely,
=y lzylz

=y lz(z7! + k)z

=y lzz 1z + y~lzkz
>y lzz 1z

=e.

Therefore, by the antisymmetry of <, ¢ = ¢, and 80 e idempotent.
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We conclude this section with conditions for inversibility in a so-ring based upon
the given ordering. More specifically,

3.53 OBSERVATION. If z, y are elements of a so-ring R, z C y, and y is in-
versible, then z is inversible.

PROOF. Let C be the center of R. Since z C y, there exists e in C such that
z = ey. By theorem 3.43, ¢ is inversible, and by observation 3.38, ey is inversible.

Hence, z is inversible.
The identical statement with C replaced by < is not true. For instance,

3.54 COUNTEREXAMPLE. Let R be the so-ring of real numbers from 0 to 1 as
defined in counterexample 3.6. Then, although 0.5 < 1 and 1 is inversible, it is
clear that 0.5 is not inversible.

However, we do have the following result:

3.55 OBSERVATION. Let R be so-ring. Let z, y, and A be elements of R such

that y = z + h is inversible and such that ‘Z exists with ZA = 0. Then z is

inversible and z~! = y~1'7 .

PROOF. Let C be the centerof R. First, Ty = T(z+h)=Fz+ Th = z.

Since ‘T isin C, T~ =T . Thus, by observation 3.38, ‘T'y is inversible, since
-—
z

both
yiIT

and y are inversible. Therefore, z is inversible, and z-! = ('?y)—l =

=y-17.

1



CHAPTER IV

MATRICES OVER SO-RINGS

In this chapter, we investigate the extent to which some of the basic concepts
from linear algebra can be generalised or reformulated so as to apply to matrices
over partial semirings and, in particular, o matrices over so-rings.

We begin by defining exactly what we mean by a matrix over a partial semiring
R.

4.1 DEFINITION. Let R be a partial semiring. An Ix J matrix over R is a family
(zij:8 € I,j € J) in R such that (z;;:5 € J) is supersummable (definition 2.41)

for every ¢ in I.}

Following the usual conventions, we think of a matrix as a planar array for
which I indexes rows and J indexes columns. Supersummability of the rows is
added to ensure that the product of two matrices exists and is itself a matrix. Let
X bean IxJ matrix over R, and let Y be a J x K matrix over R. Multiplying
any row § of X by any column k of Y gives }-.c; %yt = %, which exists
gsince each row of X is a supersummable family. Thus, the matrix product of
X and Y is Z, an I x K array of elements in R. We now show that Z is a
matrix. Let ({x:k € K) be a K -indexed family in R. Since eachrow of Y is
supersummable, 3, r y;ats exists for each j in J, and thus, since each row of

! When I, J are of finite cardinality, we often write mxn for I xJ, where m is the cardinality
of I and n is the cardinality of J.
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X is supersummable, Eje 7 Zif(U ek Yjrte) exists for each i in I. Hence,

Doz yats) = D (3 zijyats)
i€l keK

J€J kek

=3O zi;uiats)

keK jeJ

=3 mivalt

keK jeJ
= Z Zits
keK

for each ¢ in I. Therefore, each row of Z is supersummable, and so Z is a matrix.

Supersummability of the rows of a matrix is not the only way to ensure that
the product of two matrices is well-defined. For example, by altering the definition
of supersummability so that in a so-ring R, a family (z;:¢ € I) is supersummable
if for any family (y;:s€ 1) in R, ¥, yiz; exists, we obtain an alternate definition
of matrix. In this case, a matrix over a so-ring R is an I x J array of elements
over R such that the elements in each column of the array form supersummable
families.

Although both definitions of matrix guarantee that the product of two matrices
is well-defined, we have chosen definition 4.1 for the following reasons. Recall from
the introductory section that any iterative flowscheme can be written in terms of a
recursive equation of arrays of partial functions, namely, 2 = A2 + 5. In addition,
remember that each row of A contains the coefficients for all loop paths from a given
cutpoint in the flowscheme; each coefficient in a row corresponds to the loop path
passing through a given cutpoint. These loop paths are disjoint and so as partial
functions they are summable, and hence supersummable. Thus, A is an array of
partial functions, each of whose rows is supersummable. Because of this important
example, we have chosen to make supersummability of rows a property of matrices
over so-rings in general. There is a secondary reason for selecting definition 4.1, and

that has to do with partially-additive categories, which are an important universe
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for program semantics [Manes and Arbib, 1985]. Arbib and Manes [1980, 7.8)
showed that if R is a partially-additive semiring and if a matrix is a rectangular
array with supersummable rows, then the set of matrices over R is a partially-
additive category, and hence potentially useful for doing program semantics from a
category-theoretic perspective.

Note that the transpose of a matrix over a so-ring is not necessarily a matrix,

since the columns of a matrix need not be supersummable, as we see in the following:

4.2 COUNTEREXAMPLE. Let f, g be two non-zero elements of P fn(D, D) whose
domains are disjoint. Then (f,g) is a supersummable family. Thus,

(7 2)

is a matrix over Pfn(D, D), whose transpose
(o)
9 9

Returning to the product of two matrices over a partial semiring R, we observe
that if we let I = J = K, then we have already shown that the set of square
matrices over R is closed under matrix multiplication. By introducing the appro-

is not a matrix.

priate additive operation, we can make this set of matrices a partial semiring itself

as follows.

4.3 EXAMPLE. The set Matg p of D x D matrices over R is a partial semiring
in which the multiplicative operation is the usual matrix multiplication, the multi-
plicative unit is the identity matrix, and the additive operation is defined as follows.
A family (zF:k € K) of matrices is summable if for all families (y;:j € D) in R
and for all s in D, the family (z*.-jy_,-:j € D,k € K) is summable in R. In this
case, we define the matrix 3, z* by (3, z*)ij = Y(z*:;:k € K). H, in addition,
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R is a so-ring, then Matp p must also be a so-ring. To verify that Matpp isa
partial semiring, and in particular a so-ring, is a straightforward exercise left to the

reader.

We now turn our attention to R™, the set of n-vectors of elements over a
partial semiring R, where 0 < n < co. Each vector is denoted by 2;, where
2 = [21;-- - Zaj]. A set of such n-vectors is a kind of module as we show below.

4.4 DEFINITIONS. Let (R,)",0,1) be a partial semiring. A (right) partial semi-
module over R is a partial monoid (M, f) together with a function

MxR— M:(z,y)—zxy

which satisfies the following axioms for z, (z;:s € I) in M and Y, 2, (y,-: jeld)
in R: '

(1) if iz. exists, (f.-z.-) *y= i,-z.- *Y;

(2) if ;5 exists, z% (T, ;) = 5z % y;;

(8) zx(yoz)=(zxy)xz;

(4) zx0=0;

(5) zx1==z.

A map ¢: M — M; between two (right) partial semimodules over a so-ring R is
called an R-map if for any z in M; and any y in R, (zxy)p =zdxy. A
homomorphism of two (right) partial semimodules over a so-ring R is an additive
map which is also an R-map.

' 4.5 EXAMPLES.

(1) Let (R, 3, 0,1) be a partial semiring. Then (R,Y") is a partial semimodule
over R, with x=o.

(2) Let R be the so-ring {0,1} with trivial addition and trivial multiplication.
Any partial monoid (M, f) is uniquely a partial semimodule over R, with
defined such that z+x1 =2z and 240 =0.

(3) i (R,Y,0,1) is a partial semiring, then for 0 < n < o0, (R",’i) is a
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partial semimodule over R with  and § defined as follows. Let (2;:j € J) be
a set of n-tuples in R*. Then f)jz,- exists and equals [3-;Z;- - 37, Za;] exactly
when }°.z;; existsforall 1 <i<n. Let y bein R. Define [z;;---z,j] %y to
equal [z);0y---Z450Y].

For the remainder of the chapter we will be dealing with so-rings, except where
noted to the contrary. Having provided the basic definitions, we move on to matrix
invertibility.

Invertibility

When is a matrix over a so-ring invertible? Is the inverse of a matrix over
a so-ring a matrix itsef? How are its entries characterized? Before we turn our
attention to matrices, however, we first investigate invertibility for arbitrary square

arrays over a so-ring.

4.6 THEOREM. (Manes and Benson, 1985, 6.2) Let R be a so-ring and let A be

an nXxn array of elements of R. Then the following two conditions are equivalent.

(1) There exists an n x n array B of elements of R such that the products AB
and BA aredefined and AB = I = BA, where I is the n x n identity matrix.
Such a B is referred to as the inverseof A.

(2) Each a;; in A is inversible, and row domains and column ranges partition -
that is, for each §, (a;18;17},...,8ia8in"!) i8 an n-partition of R, and for
each j, (a1;7'ay;,...,04;7'an;) is an n-partition of R.

PROOF. First, we observe that (1) is equivalent to the equations

Y auby =1=) buyas
& k

for each s and
Za;kbk,' =0= Zb;kakj (4-1)
k k



for all s # 5, the second of which is equivalent to
a5ibe; = 0 = bpay; (4-2)

for all & and for all € # j by positivity.

(1) implies (2): To show that each a;; is inversible, we must show that the
equations for inversibility in a so-ring are satisfied. This follows directly from the
equivalent characterisation of (1): |

Gijbii +zi5=1, if 75 =) _ aubu

k#j
bigij+yi;=1, f yij =) _bjxar;
ki
bjizi; = ij,-a.-kbk.- =0
k#s
aij%; = ) _ aijbjar; =0
ki
Zijai; = ) Gikbiiai; =0
k5

Yisb;i = Zbﬂ,ak_,-b,-,- =0.
ks

Hence, a;;~! exists and equals b;;. Thus, 4;; and @;; exist for each § and j.
For each t,if j# k
Gij Gk = 0.',‘4.-}‘0.'»4,-',,' = a.-,-(b,'.-a,-,,‘)b,,,- =0,
and
Z‘E.'; = Za.-,-a‘.‘j‘ = Zc,-,-b,-.- =1
Hence, row domains pa.:tition, am; similarly wc: can show that column ranges par-

tition.
(2) implies (1): Since row domains and column ranges form n -partitions,

Doaasp ' =1=) alay;
P %
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for each &, j. If we define b;; = a;;~! and substitute into the above equations, we

obtain, for each ¢, j,
Zmb}u’ =1= z:bjkakj-
k k

Thus, we have half of the equations (4-1). Using the fact that row domains partition,
we have that a;;0;;7'a;1a;,~! = 0 for all i and for k # j. This implies that '

0 = 6;;8;; 'aga;~"

= a;; 7! (a8, akou™t) ay,

= (ai; " ag5a5;7") (dindin ™ 1)

= ¢:‘j-l¢:‘k-
Substituting b;; for a;;~! yields b;a;x = 0. Similarly, using the fact that column
ranges partition, we have that

0= a.',-akj" = a;5b,i.

Thus, we have equations (4-2). Therefore, the equivalent characterization of (1) is
satisfied.

Theorem 4.6 characterizes invertibility for n x n arrays over a so-ring R, but
does not conclude whether or not A and B are matrices given that they are invert-
ible arrays. In fact, it is not true in general that invertible arrays are necessarily
matrices (refer to counterexample 4.9 below), but we can provide a set of conditions
under which this conclusion may be drawn. First, we make the following

4.7 OBSERVATION. Let R be a so-ring, and let (z;:s € I) be a family in R. Then

(1) if 'Z; existsforeach ¢ in I and if (%;:§ € I) is supersummable, then (z;:4 € I)
is also supersummable.

Furthermore, if each z; is inversible, then

(2) if (7 :5 € I) is supersummable, then (z;~!: € I) is also supersummable;

(3) if (zi:5 € I) is supersummable, then (%:5 € I) is also supersummable;

(4) if (z;~1:4 € I) is supersummable, then (Z7:i € I) is also supersummable.



PROOF. Let (y;:5 € I) be any family in R.
(1): The supersummability of (%;:4 € I) implies the existence of

z{: % (ziys) = Z‘: ('f.'z.) = 2': 2,9,

and so (z;:4 € I) is supersummable.
(2): The supersummability of (Z;:1 € I) implies the existence of

DBRn =) nlma =Y 5y,
'y s s

and so (z;~!:1 € I) is supersummable.
(3): The supersummability of (z;:i € I) implies the existence of

2 zi(='w) = > (zz™) v = PR A

and so (Z;:1 € I) is supersummable.
P
(4): Note that z7 = z;~!z; = z;7!. Hence, the result follows from (3),

interchanging z; and z;~1.

Observation 4.7 implies that for so-rings in which all n -partitions are super-
summable, an invertible n x n array A and its inverse B are both matrices. To
see this, recall from theorem 4.6 that since A is invertible, the domains in each row
form an n-partition, which by assumption is supersummable. Then by observation
4.7(1), each row must form a supersummable family. Thus A is a matrix and,
symmetrically, B is a matrix. (For the converse, see theorem 4.10 below.)

It i8 not true, however, that in all so-rings each n -partition is supersummable.
To demonstrate this, we first make the following

4.8 OBSERVATION. In the so-ring Pfn(D, D), the only supersummable families
are those with at most one nonsero member.

PROOF. Clearly, all families in Pfn(D, D)’® containing at most one nongero mem-
ber are supersummable. To prove the converse, let (z;:s€ ) be a family in
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Pfn(D,D}® containing at least two nongero members z; and z;. Thus, there
exist d; aad dp in D such that d) € dom(z;) and d; € dom(z;). Let (y;:s € I)
be the family in Pfn(D, D) such that y; =0 for s different from j and k&, and

that {
such that for d€ D a, if d = dy;
dyj= {

undefined, otherwise;

d
a da, if d = dy;
we{

undefined, otherwise.
Then dom(z; e y;) = dom(y; o z;) = {d1} = dom(yx o 2x) = dom(z; e y;).2
Therefore, (z; ® y;:§ € I) is not a summable family, and so (z;:s € I) is not

supersummable.

One immediate consequence of this observation is that the only matrices over
Pfn(D,D)® are those arrays in which each row contains at most one nongero -
member. Another consequence is that not all n-partitions in Pfn(D, D) are
supersummable. In particular, if (z;:1 < s < n) is an n-partition which contains
at least two nongero members, then (z;:1 < s < n) is not supersummable.

Using the so-ring P fn(D, D)°?, we can construct an invertible array such that
neither itself nor its inverse is a matrix.

4.9 COUNTEREXAMPLE. Let D;, D3 be a partition of D suchthat Dy # 0 £ D,.
Then (fi, fz) where f; = f; and f; = D; is a 2-partition of Pfn(D,D)” which
is not supersummable by observation 4.8, since f} # 0 # f3. Therefore, the array

(f 1 fz)
2 N
is not a matrix, but it is invertible and its inverse is itself.

In the next theorem, we show several equivalent conditions on a so-ring under

which invertible arrays are necessarily matrices.

3 Asin definition 2.32, we represent the multiplicative operationin R by o and the multiplicative
operation in R°° by o.
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4.10 THEOREM. For any so-ring R, the following three conditions are equivalent:

(1) If A, B are n x n arrays of elements over R such that AB and BA exist
and AB=1I=BA, then A and B are matrices.

(2) Every n-partition is supersummable.

(3) I (r1,..-,7a) is an n-partition and (y1,...,ya) is any family in R, then there
exists y in R with r;y =r;y; forall 4.

Furthermore, if every element in R has a domain, then the above three conditions

are equivalent to

(4) Every finite family with pairwise disjoint domains is summable.

PROOF. (1) implies (2): Let (ry,...,r,) be an n-partition. If we define

('l 2 ... a2 fp-] 'u\
2 13 ... fa.] Tn ri

A=]r3 rg ... 1y r r, | =B,

krn 1. ... Fp3 T2 ru-—l)

then AB = I= BA, and so by assumption, A4 is a matrix. Thus, each of its rows
is supersummable, and in particular, (ry,...,r,) is supersummable.

(2) implies (1): We have shown this previously.

(2) implies (3): Let (ry,...,rs) be an n-partition, and let (v1y---,¥s) be a
family in R. By assumption, (ry,...,rs) is supersummable. Hence, 2TV =Y
exists. Since r;r; =0 for j #14, riy= (25 ri95) = i niriy; = vy = riy; .

(3) implies (2): Again, let (ry,...,rs) be an n-partition, and let (v1y---1Yn)
be a family in R. By assumption, there exists y with r;y = r;y;. Since z;ri=1,
y=(2;rily= 2y = 2, 7iy; - Hence, (ry,...,r,) is supersummable.

Now suppose that ‘Z exists for each z in R.

(2) implies (4): Let (zj,...,2) be a family in R satisfying % %; =0 for
J # 4. By theorem 3.13, Ty +---+ %, exists and equals %7 V---V%, =¢. Hence,
(%1,...,%5,¢) is an n + 1-partition, which is by assumption supersummable.
Therefore, Z1z; + -+ %o za + 1 = 2, + -+ 4 2, + ¢ exists, and by partition-



associativity the subsum z; + --- + z, also exists.

(4) implies (2): Let (ry,...,rs) be an n-partition, and let (y;,...,ys) be a
family in R. Each r; is in C, implying by observation 3.29 that ¥; = r; for all
i. By observation 3.26(1), ¥igi < ¥;'. Hence, ¥ig; ¥;y; < V¥, = rir; = 0, for .
j # §. Therefore, the family (r,y,...,7:¥s) has pairwise disjoint domains, and is
by assumption summable.

Consider the following modification of condition (1) of theorem 4.10.
(1'): If A, B are nxn arrays of elements over R such that AB and BA exist
and AB=I=BA and if A is a matrix, then B is a matrix.
Thus far, we have not been able to construct any so-ring for which condition (1)
fails to be true. Even the so-ring Pfn(D,D)®, one of the few which does not
satisfy the conditions of theorem 4.10, does satisfy condition (1°’) as we show below.

4.11 EXAMPLE. We know from counterexample 4.9 that theorem 4.10 does not ap-
ply to the so-ring P fn(D, D). Recall from observation 4.8 that the only matrices
over Pfn(D,D)®? are those whose rows each contain at most one nongero mem-
ber. Hence, all n x n invertible matrices over P fn(D, D) are composed of rows
containing all geroes save a totally-defined bijection from D to D. Furthermore,
since the column ranges of an invertible matrix must form n-partitions, each col-
umn must have at least one nonzero member. But since there are n rows and n
columns, there must be exactly one nonzero member per column. Is the inverse B
of such a matrix A also a matrix? The answer is “yes® because of the fact that
bj = a;;~!. This implies that each row and each column of B contains exactly
one nonsero entry, and that this entry is a totally-defined bijection from D to D.

In the next theorem, we supply another criterion which if satisfied by an invert-
ible matrix over a so-ring implies that the inverse of this matrix is also a matrix.
First, however, we need the following definitions and observation.

4.12 DEFINITIONS. We say that a family (z;:s€I) in a partial semimodule
(M, f) over a so-ring R spans M if for each z in M there exists a family
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(vi:¢€I) in R such that z = f.-z.-y,-. In this case, (z;:1 € I) is a spanning set
for M.

Our decision to adopt the convention of multiplying by coefficients on the right
instead of on the left was motivated by the form of the flowscheme matrix equation
discussed in the introduction, namely, 2 = A%2+5. Here, each column of A contains
the coefficients of the loop paths passing through a given cutpoint of the flowscheme.
Hence, the recursive portion of a flowscheme is described by a *“linear® combination
of the columns of A, written A2. The convention on the order of coefficient
multiplication in Pfn(D, D)® in this example thus determined the convention on
the order of coefficient multiplication in partial semimodules in general.

Recall from example 4.5(1) that any so-ring is a partial semimodule over itself.
For this reason, we often apply the term “spanning” to so-rings directly.

4.13 OBSERVATION. Let R be a so-ring, and let (z;:1 € I) be a family in R. Then
(1) if (z;:¢ € I) is an n-partition, it spans R.

Furthermore, if z;~! exists for each § in I, then

(2) (zi:i€T) spans R if and only if (%;:5 € I) spans R;

(3) (zi~':s€I) spans R if and only if (Z?:5 € I) spans R.

PROOF. (1): Since (z;:4 € I) is an n-partition, 3 ;2; = 1. Let z be any element
of R. Then 2= (3, z;)2= 3", z;z. Thus, (z;:i € I) spans R.

(2): Suppose (z;:5 € I) spans R. Then for any zin R there exists (vi:i € I)
in R suchthat z = ¥, z;y;. Thus, since z;~! exists for each $, 2=),5;y; =
Limizln)y = Lozizi")ziyi = ;%7 (zi%:). Hence, %; spans R. Now
suppose Z; spans R. Then given 2 in R, there exists (y;:s € I) in R such that
z =73, % y;. Again, using the inversibility of z;, z = STy = iz )y =
>; Zi(z:"'y;) . Hence, (z:: € I) spans R.

(3): This is a consequence of interchanging z; and z;~! in (2).

4.14 THEOREM. Let R be a so-ring. If A is an invertible n x n matrix over R
and B isan nxn array over R such that AB=I = BA , then the following two
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conditions are equivalent:

(1) a;; =a;;7! for each a;; in A;

(2) B = AT and B is a matrix.

PROOF. Theorem 4.6 shows that since AB = I = BA, b;; = a;~! for each s, j
suchthat 1<s<nand 1<j<n.

(1) implies (2): First, observe that B = AT, since b;; = a;~! = a;; = a7;;.
Hence, by showing that each column of A is supersummable, we can show that B
is a matrix. Let (a;;:1 <§ < n) becolumn j of A, and let (y;:1<i<n) bea
family in R. First, we show that a,;y + a.;y, exists for u # v. By observation
345, G; = G;;, since a;; = a;;7!. Hence, &,;5,; = q,}3,; = 0, since the
ranges in the columns of A partition. By observation 4.13(1) and (2), each row of
A spans R, since the domains in each row form an n-partition and since a;;~!
exists for each i, j. Thus, for row v, there exists a family (2;:1<k<n) in R
such that ayjye = Y ; G0k 2k = 345 Gok2k , because .5 @; = 0. Each row of the
matrix A is supersummable, and 80 3>, GokZk+GosY0 = GyjYs+aosYo exists. Now
we must show that the whole of column j is supersummable. Suppose Y2, a;;u;
exists for some m < n. Substituting )", a;;y; for a,;ys and m+1 for v, wecan
show by the method above that 374! a;;y; exists. First, we find (wg:1 < k < n)
in R such that 302, aijti = o) Gme sk = T ps; Oma16We , 8inCe Gprp; 37 =0

for ¢ # m + 1. The supersummability of row m + 1 of A gives the existence

of T4t Om+1kWE + Gma1¥m+t = Lim) Gij¥i + Gma1j¥me1 = Lot Gijy; for any

m < n. Therefore, ) 7, a;;y; exists, and so each column of A is supersummable.
(2) implies (1): Immediately, a;;7! = b; = aT; = o;;.

Independence

4.15 DEFINITION. A family (z;:s € I) in a partial semimodule (M,Y) over a so-
ring R is said to be independent if for any two families (;:s€ 1), (c;:s€I) in R
such that ﬁ,-z.-b.- = ﬁ;z.-c.- y O =c; foreach s in I.
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Our formulation of the definition of independence for partial semimodules not
only is reminiscent of the usual definition of linear independence in linear algebra,
but also is a special case of the definition of independence for universal algebras
[Gratzer, 1968, Theorem 5.31.3).

4.16 DEFINITIONS. A basis for a partial semimodule (M,Y) is a family in M -
which is an independent spanning set. The standard basis for the partial semimod-
ule R* over the so-ring R consists of the n-vectors (:1 < < n), where & is
the n-vector whose #*® component is 1 and whose other components are seroes.

We note that to be consistent with the universal-algebraic treatment of bages,
it is necessary for coefficients to act on the same side for both spanning sets and
independent sets.

The next two theorems give some conditions on independent gets and on span-
ning sets over the partial semimodule R®.

4.17 THEOREM. Let R be a so-ring in which Z' exists for each z in B. K
(2j:5 € J) is a family of independent column vectors over R", then Via1 %5 =1
for each j in J.

PROOF. Foreach j in J,let a; = A%, % . Foreach k, 1 < k < n, and for
each j, AL, z_;,?' < z_l,,-". Hence, zija; = zi; A2, ':E,-" < z,,,-z_,,,-" = 0. This
implies that }°:2;a; = 0. If b; = 0 for each j in J, then 2;2b; =0 as
well. Hence, a; = b;, because the vectors (25:5€7 ) are independent. Therefore,
0=AL, 5 = (Vi Z7), which implies that V3, Z7 = 1.

4.18 THEOREM. Let R be a so-ring in which ‘T exists for each z in R. If
(2;:1 €J) is a family of column vectors spanning R*, then Vies % =1 for
each § suchthat 1<i<n.

PROOF. Let & denote the s*b standard basis vectorin R*. Since (2:7 €J) span
R*, there exists a family (a;:5 € J) in R such that 3, 2;8; = &. This implies
that 3°.z,;a; exists and equals 1. Thus, m exists and equals 1. Hence,
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by observation 3.23(1), V,es Z:;;8; exists and equals E fj z;ja; . By observation
3.26(1), %;ja; < ¥%;j foreach j in J. Therefore, 1 =V,¢; %58 < Vs %7 <1,
8o that V,e; 55 = 1.

Bases and Matrix Invertibility

Recall from linear algebra that if F is a field and 4 is an nxn matrix over F,
then A is invertible if and only if the columns of A form a basis for F'* . We show
that under certain constraints, an analogous result holds for matrices over so-rings.
One direction of the proof closely follows the classical proof in linear algebra.

4.19 THEOREM. Let R be a so-ring in which the inverse of any invertible matrix
is itself a matrix. If X is an n X n invertible matrix over R, then the columns of
X form a basis for R®.

PROOF. Let b= [b;:--b,] bea vectorin R?. To show that the columns of X are
a basis for R®, it suffices to show that there exists a unique vector @ = [a; - - - a,]
in R® such that Ej z;j8; = b; for each ¢. Writing this as a matrix equation,
we obtain Xa@ = §. By assumption, X~! is an n x n matrix. Hence, X~}
exists. Now, X(X~!8) = (XX~1)b = Ib = b, and so X~!} is a solution to the
equation Xa = b. Furthermore, if Z is any solution to the equation Xa = 5, then
X h=XYXe)=(X"X)e=Iz=2. Themfore, X-1} is the unique solution
to the equation Xa =1}.

However, if (2;:1 < j < n) is a basis for R*®, it is not necessarily the case that
the 2;8 form the columns of an invertible matrix.

4.20 COUNTEREXAMPLE. Let R be the so-ring Pfn(D, D)°? where D =N. For
d in D, define f;, f2 as follows:

0, ifd=0; 1, ifd=0;
an={ ¢ = :
d -1, otherwise; undefined, otherwise.
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Now construct the following vectors in R2:

»=(3) = (2)

It is somewhat tedious but not difficult to show that the vectors 2; and 2, are an
independent spanning set, and hence a basis for R2. (The details are left to the
reader.) Consider the 2 x 2 array formed by 2, and 2,:

X< (fx fz) ‘
2 N
Since f is not injective, it is not an invertible element of Pfn(D, D)°?. Thus, X
is not an invertible array. Since neither f; nor f; is equal to 0, the family (f;, f2)
is not supersummable by observation 4.8. Thus, X is not a matrix. Therefore,

we have constructed a basis for R? which when viewed as a2 2 x 2 array over
Pfn(D, D), is neither invertible nor a matrix.

However, if we impose the constraints that R is adequate and that n -partitions
in R are supersummable, then the converse of theorem 4.19 can be proved to be
true. Most so-rings satisfy both of these constraints, the major exceptions be-
ing certain distributive lattices which fail to be adequate and Pfn(D, D)°® which
fails to have supersummability of n-partitions for D containing more than one
element. Among the so-rings which do satisfy these constraints are P fn(D, D),
Mfn(D,D), and Maet(D,D). (We have demonstrated this fact for Pf n(D, D) in
example 3.20 and in observation 2.42; the proofs that M fn(D, D) and M set(D, D)
also satisfy these constraints are similar and so are not given.)

4.21 THEOREM. Let R be an adequate so-ring such that every n-partition in R
is supersummable. If X is an n X n array over R whose columns form a basis for
R®, then X is an invertible matrix whose inverse A is a matrix as well.

PROOF. Let Z; = [z;;---z,;] be the ** column of X. For each standard basis
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vector & in R", there exist 3; = [a;;---a,5] in R such that
Z Ija5 =¥ (4-3)
J

since the 2;8 span R". Define A to be the matrix with row s equal to 3;. To
show that X is invertible, we show that XA = I = AX; to show that X and A
are matrices, we use the fact that all n-partitions are supersummable.

From equation (4-3), we have that

Y zmjei=1 (4-4)
J
for all ¢+ and that

Tija5 =0 (4-5)

for all § and for k#¢. Hence, XA=1I.
As (2;:1 <j < n) is an independent set, \/; 7;;/ = 1 for each j, by theorem

4.17. Thus,
&5 = (V #)e5
k

(\/ 2&) A&, by theorem 3.11
k

V& A &)

k

V/(&}85), by theorem 3.11.
V.

(4-6)

For k # ¢, zija;; = 0 by equation (4-5). This implies that Z;;G; = 0, since R
is adequate. Hence,

Thus, for k#1
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Therefore, (@j1,...,855,(V;65)) is an n + 1-partition in R for each j, and
8o is supersummable by assumption. Thus, (‘&;: 1 £ 1 < n) is a supersummable
family, and so by observation 4.7(1), (a;:1 < < n) is a supersummable family as
well. Therefore, A is a matrix, since each of its rows is supersummable.

In particular, this means that }°;a;z; exists for each j and each k. Thus,
for each &,

= Z(Z 2;a,;)Z:k, by equation (4-3)

§ g
= Z i‘:‘(z: a5 %ik).
J ]

But since the 2,8 are independent, this means that

Z“"‘z"‘ =1
]

for all k and that
. 8%y =0 4-7

for all s and for 5 # k. Hence, AX=1.

So far, we have shown that XA = I = AX, and thus that X and A are
invertible n X n arrays over R. We have also shown that A4 is a matrix. Since
each n-partition is supersummable and since XA =.1 = AX, the fact that X
is a matrix is a direct consequence of the equivalence of conditions (1) and (2) of
theorem 4.10. Thus, we have demonstrated that for an adequate so-ring R with
supersummable n-partitions, any n x n array X over R whose columns form a
basis for R* is an invertible matrix over R whose inverse is also a matrix.

In particular, we have shown that if R is one of Pfn(D, D), Mfn(D,D), or
Mzet(D, D), then an n X n matrix over R is invertible if and only if its columns
form a basis for R®.

In theorem 4.21, we made the assumption that the so-ring R was adequate.
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However, this assumption is not necessary in order to show that any basis for R*

must form the columns of an invertible matrix. For instance,

4.22 EXAMPLE. The distributive lattice

0

is a so-ring R which is not adequate, since aAb=0but @’ =1= ‘? and so
2 AT =1. The reader may easily show that the only basis vectors for R® are

the standard basis vectors, which clearly form the columns of an invertible matrix.

Below we will examine so-rings R such that for finite n, R® has bases of
different cardinalities. We will also consider the case in which n is infinite. Note
that in theorem 4.21, although we obtained results for a basis of R™ of cardinality
n only, we can easily generalise some of the results to bases of arbitrary cardinality.
In particular, equations (4-3) through (4-7) in theorem 4.21 do not require X to
have only n columns. However, we note that equations (4-6) involve one of the
lattice distributive laws, which always holds in the finite case but which may fail
to hold in the infinite case. Thus, if we wish to consider bases of R* of infinite
cardinality, we must make sure that R is a so-ring in which its center C satisfies
the infinite distributive law in question. The simplest way to ensure that the law
holds is to require that C be a complete Boolean lattice.

4.23 COROLLARY. Let R be an adequate so-ring with supersummable n -partitions
and with center C. Let (2;:5 € J) be a basis for R*. If

(1) J is finite, or

(2) J is countably infinite and C is a complete Boolean lattice,

then (%%;;:j € J) partitions R for each .



7

PROOF. Since the 2,8 span R*, V,%;; = 1 for each s, as a consequence of
theorem 4.18. We must also show that ;7% =0 for k # j. First, we have from
theorem 4.21 equation (4-7) that a;z;; = 0. (Note that equation (4-7) depends .
upon equations (4-6). This is why we require C to be a complete Boolean lattice,
if we are to consider infinite bases.) Thus, since R is adequate,

@ =0 (4-8)
for all § and for 5 # k. Then,
£ = (z: z;78;;)%;; by equation (4-4)
)
=m0k
)

= Z %;785:3;:%; by observation 3.21(2)
J
= ZikGidk ek DY equation (4-8)

= Z;rag T by observation 3.21(2)
= E;3 %04 by theorem 3.8(3)
= Z;;a8;; by observation 3.21(1).
Hence,
Tiy Tik = Bij0iTik0k = Tij0y Gy Tih TikGhs = 0
by equation (4-8). Thus, from theorem 3.23(1) we have that it =V;%5=1.
Therefore, (%%;;:j € J) partitions R for each 1.

Similarly, we have

4.24 COROLLARY. Let R be a an adequate so-ring with supersummable n-
partitions. If (2,:j € J) is a basis for R®, then (Z:]:1 <1< n) isan n-partition
for each 5 in J.
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Cardinality of Bases

In what ways does the structure of the so-ring R affect the cardinality of the
bases for R*, where 0 < n < o00?

4.25 OBSERVATION. Let R be an adequate so-ring in which all n-partitions are
supersummable. In addition, assume that R has countable cardinality > 2, and
that its center is a complete Boolean lattice. If the continuum hypothesis holds,
then

(1) Every basis of R* has countably infinite cardinality.

(2) If 0 < n < o0, then every basis of R* has finite cardinality.

(3) f 0<n<oo and R is finite, then every basis of R® has cardinality n.
PROOF. Let the cardinality of R be denoted by &k, and assume that 0 < n < o©.
The cardinality of R® is thus k™. Clearly, there exists a basis for R® of cardinality
n, namely the standard basis (&:1 < i < n). Suppose (2;:5 € J) is a basis for
R* of cardinality m. By corollary 4.22, for each ¢, (%;:j € J) is an m-
partition of R, which by assumption is supersummable. This in turn implies, by
observation 4.7(1), that for each #, (z;:5 € J) is supersummable. Thus, for any
family (y;:j €J) in R, (2;y;:5 € J) is summable in R*. The independence of
the 2,8 implies that for two different families (b;:5 € J) and (c;:j€J) in R,
2., 2ibj # 35 2jc; . Furthermore, since the 2,8 span R*, the cardinality of R is -
also equal to k™. ]

(1): The cardinality of R™ is k®e. As k is countable and > 2 and as the
continuum hypothesis is assumed, k¥* = R,. If m is finite, then k™ is countable,
gince k is countable. If m > Rg, then &™ > R, , since k> 2. Thus, m=NR,.

(2): The cardinality of R* is k*. As k is countable and n is finite, &* is
countable. If m > Rg, then k™ > R;, since k£ > 2. Thus, m is finite.

(3): As k is finiteand 22, m=n.

Hence, for finite D and for 0 < n < oo, all bases of Pfn(D,D)",
Mfn(D,D)"*, and Maset(D,D)" have cardinality n. However, if D has infi-
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nite cardinality, the results are quite different. For example, let n = 2, and let
D = N. Clearly, Pfn(D,D)? has a basis of cardinality 2, namely the standard
basis. But Pfn(D,D)? also has a basis of cardinality 1. This basis is the vector
with components f; and fz, where for all d in D, df; = 2d and dfo=2d+1.
More generally, we have the following:

4.26 THEOREM. Let D be a set of cardinality Ng. Let R be any one of
Pfn(D,D), Mfn(D,D), Mset(D,D), and let 0 < n < 00. Then for each
0 <m < oo there exists a basis for R* of cardinality m.
PROOF. We begin with the proof for Pfn(D,D). For m < n, we construct a
basis (2;:1 < j < m) as follows. For 1< j < m,let 2; = &;, the j** standard
basis vector for Pfn(D, D)*. To define %,, requires more work. For 1 <i<m,
let z;, = 0. Since the 2;8 are to form a basis, they satisfy corollaries 4.22 and
4.23. In particular, this implies for m <i < n, that %, =1, Viem Tim =1, and
Tim Zim =0 for | # ¢. Hence, we must find a way of defining z,,, through z,,,
such that each is a totally-defined injective partial function, the ranges of any two of
these functions are disjoint, and the union of the ranges is D. To make explicit the
method of doing this, we use the characterizatibn of partial functions by D x D 0-1
matrices. For m <{ < n, we define z;, such that for 1 < k <00, row k of the
0-1 matrix representing z;,, contains a 1 in column ($+1-m)+(k-1)-(n+1-m).
For m > n, we construct a basis (2:1 < j < m) as follows. For 1 < j<n,
let 2; = &;. Defining 2; for n < § < m requires more work. For 1 <i1<n,
let z;; = 0. Again, corollaries 4.22 and 4.23 are satisfied by the 2;s, implying for
n<j<m,that Z.f =1, VL %7 =1, and Za; Zal =0 for I # j. Hence, we
must define z,, through z,, such that eachis a partially-defined bijection from
D to D, the domains of any two are disjoint, and the union of the domains is D.
Again, we return to the D x D 0-1 matrix characterigation of partial functions,
using an algorithm similar to the one used to define 2,, for m <n.Forn<j<m,
we define z,; such that for 1 < k < 00, row k of the 0-1 matrix representing z,;
is nonsero if k= (5 + 1 — n) mod(m + 1 — n). In this case, row k contains a 1 in



column ((k—(j +1-n))/(m+1-n))+1.

The proofs for Mfn(D,D) and Maset(D, D) are identical to the proof for
Pfn(D,D) for the following reason. In the proof for Pfn(D,D), each of the
components of the Z;s is an injective partial function and therefore inversible. From
examples 3.37, we know that the inversible elements for Pfn(D, D), Mfn(D, D),
and Maet(D, D) coincide. Hence, we can define the 2;s in the same way for both
Mfn(D,D) and Mset{D,D) as we did for Pfn(D,D).

Thus we see that the cardinality of D influences the cardinality of the bases of
Pfn(D,D)*, Mfn(D,D)",and Mset(D,D)".

Eigenvalues and Eigenvectors

In this section, we present a preliminary result on eigenvalues in the context
of matrices over so-rings. We hope that a future detailed study of eigenvalues and
eigenvectors will provide some insight into transformations and canonical forms of

matrices over so-rings.

4.27 DEFINITIONS. Let A be an n x n matrix overa so-ring R. Then an element
A of R is an eigenvalue of A if and only if there exists a vector 2 in R® such
that:

(1) Az=2),and

(2) the vector Z is a column of some n x n invertible matrix.

A vector 2 gatisfying both (1) and (2) is called an eigenvector for the eigenvalue
A.

In classical linear algebra, condition (2) is replaced by the condition that % # 0,
which in turn implies that 2 is a column of some invertible matrix. However, in the
context of matrices over so-rings, the fact that a vector is nonsero is not sufficient '
to guarantee that it is a column of some invertible matrix. Hence, it is necessary
to explicitly state condition (2) (or a set of equivalent conditions).
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Eigenvalues and eigenvectors as they relate to matrix similarity appear to have
applications in algorithm transformation. In particular, considering the matrix
equation of an algorithm, Z = A%+ §, it may be possible to perform a similarity
transform on the matrix A so that the solution }°,.q 4™ of the equation is put
into a form which is easier to compute. Refer to chapter VII and to [Manes, to
appear]| for details. Knowing something about the nature of the eigenvalues and
eigenvectors of the matrix 4 may give us information about how to construct the
similarity transform needed. Below, we show that invertibility of a matrix implies
inversibility of its eigenvalues.

4.28 THEOREM. Let R be a so-ring such that 0 # 1 and such that the inverse of
any invertible matrix over R is also a matrix over R. If A is an n x n invertible
matrix over R, then any eigenvalue of A is inversible and nongero.

PROOF. Let A be an eigenvalueof A, and let 2 = [z;...z,] be an eigenvector for
A. Suppose that A =0. Then

which implies that z; = 0 for each i. Since Z is an eigenvector, it is a column
of some invertible matrix. Hence, each z; is inversible, and (z,~1z,,...,2,"z,)
is an n-partition, which implies that 3, z;~!z; = 1. This in turn implies, since
0+#1 in R, that for some i, z; # 0. Hence, we have arrived at a contradiction.
Therefore, A #0.

The next step is to show that ) is an inversible element of R. Let C be the
center of R. We now present a set of observations that we will use in proving the
inversibility of A.



(1) I [v1...vs] is a column of an invertible matrix V', then [v;~!...v,"!] iz a
row of the matrix V1. Hence, (v;71,...,v,~1) is a supersummable family.
(2) ¥ (viv1~},...,vavs"Y) is an n-partition, then for j # k,

0= vjvj‘lv;-vg-l = v,-"vk.

@)Y (T;uw)X;w™') = X;vv,~! isin C, then for r in C such that
r( s wu™t) = 0 = (Z;wv~)r, we must have that (3 ;v;) = 0 =
(3;v~)r. This we can prove as follows: (3_; v;v;"1) = 0 implies that for
each ¢,

0= w.-v.-" = ryv; "y = rv;.

Hence, r(3°; %) = 0. Similarly, we can show that (3=, v;~!)r =0.
Now, for each i, we have that z;A = }°.a;;z;, since A2 = ZA. Thus,

A=1A
= (Z z,-“z.-) A
=)z} (=)

= z z,-“'l (E a;jzj)
J J

= E z;"a,-,-z,-.
0" |

To show that A is inversible, we first show that 3. {z,~a;;z;)! exists and
then that it equals A~!. Since A is an invertible matrix, a;; is inversible for each
t, 5. Hence, z;7'a;;z; is inversible for each §, 5, and

(z:~taijz) ™! = 277 1ay; 7 s,

By (1), (a1;7%,...,8s;7") is a supersummable family for each j. Thus, 3°; a;;~1z;
exists for each 5. Again, using (1), we have that (z;~!,...,z,~!) is a super-



summable family. Hence, 3°:z;7! 3>, a;;7!; exists, and thus
Y2t Y a s = Y e
J ‘ 6J
= Z(z;'lc,-jzj)‘l.
6

We now must show that }°. (z;71a;;z;)~! = A~!. We have that

A (E(zk"auz:)") = (zzi-lﬂijzj) (E(zk"auzt)")
Y] i ki

= Y (=i "aijz;) (2 aum) !
skl
= 2 (5 o2;) (e aw " z)
sakd
= (& ayjz;) (= ey %), by (2)
5
=3 (= "aiz) (2 agyz) L
)
Clearly, each (z;~'a;;z;)(z: " a;;z;)~! is a memberof C. For k # i, we have that
(=i~ aiz;)(%i " as525) " (2~ o m) (26~ angzy) !

= (% 0ij2;)(z;7 557 23) (20 oz ) (31 o )
=0, by (2)‘
Thus, by theorem 3.13, Y, 'j(z.-“a.-,-zj)(z.-’la.-,-z,-)‘l is in C. Hence, it has a
complement 2 in C such that
Y (zitaijz) (i taiiz) +2 =1
0

and such that

z (E(z;“asﬂj)(z.-“‘aejzj)") =0= (Z(z.-“asjzj)(z.-“asjzj)“) z.
0

)



This implies by (3) that
z| D)z layz; | =0= Y (zitaiz) 7 | 5
5 B

Hence, we have that

A Z(z.-"‘a.-jzj)" +z=1

5

and that

2A=0=) (z:ayz;) ") 2.

X

Thus, half of the inversibility equations needed to show that A is inversible have
been satisfied; the other half may be obtained in a similar manner. Therefore, A is
inversible, and

-1
A7l = Zz.-"la.-,-z,- = Z(z;"‘a,-,-zj)“.
§J 67



CHAPTER V

REPRESENTATIONS AND COMPATIBLE PARTIAL ORDERS

In this chapter, we provide generalizations of some results in semigroup theory.
First, we develop the rudiments of a representation theory for so-rings. Of particular
interest is representation by partial functions, since we may relate our results to
those that already exist in semigroup theory. Second, we demonstrate how to
adapt some of the orderings on semigroups to orderings on so-rings. Recall that in
chapter IV, we discussed the multiplicative ordering, which is a generalization of the
natural ordering on the elements of an inverse semigroup. Here, we introduce two
other orderings from semigroup theory, fundamentally representable orderings and
amenable orderings, and we show how these orderings may be applied to so-rings.

Representations of So-rings

5.1 DEFINITION. A representation of a so-ring R, b.y a so-ring R, is a so-ring
homomorphism §: R; — Rp . Furthermore, if  is injective, then the representation
is called faithful.

We say that a representation 6 of so-ring R reflects a property p of R if R#
has property p implies that R has property p. We demonstrate some properties of
a so-ring R which are preserved by a representation of R and which are reflected
if the representation is faithful.

5.2 OBSERVATION. The sum-ordering is reflected by a representation if and only if



the representation is faithful.
PROOF. This is a consequence of observations 2.25 and 2.27.

5.3 OBSERVATION. Let R be a so-ring with center C, and let 6 be a representation
of R. If r isin C, then rfd is in the center of the so-ring Rf.

PROOF. If r isin C, then there exista ¥ in C such that r++ =1 and r =
0 = r'r. Since 4 is additive, 18 = (r + )0 = r8 + '8, and since § is a monoid
homomorphism, 16 = 1. Again, using the fact that # is a monoid homomorphism,
(r8)(r'0) = (rr')0 = 00, and by observation 2.22, 0¢ = 0. Similarly, it can be
shown that (r'6)(r8) =0. Thus, (rf) =r'0, and so rf is in the center of RA.

5.4 OBSERVATION. Let R be a so-ring with domains and ranges and with center
C, and let @ be a representation of R.
— — -
(1) ¥ z6 exists, then z8 < T0;
(2) if 70 exists, then z0 < 0.
Furthermore, if 8 is faithful, then

(3) 20 = ‘T6;
(4) =8 = 9.
PROOF. (We prove (1) and (3) only; (2) and (4) are dual.) (1): Observation 5.3

implies that ‘z @ is in the center of RO, since ‘Z isin C. As @ is a monoid

homomorphism, (‘Z8)(z8) = (‘Tz)9 = 20. But z0, if it exists, is the least
element r in the center of R such that r(z8) = z0. Therefore, 28 < ‘T4, if 20
exists.

(3): Assume that 0 is a faithful representation. Let uf be an element in the
center of R. Then by observation 5.3, u must be in C. Suppose that u is such
that (uf)(z8) = z0. Since @ is a monoid homomorphism, z8 = (uf)(z6) = (uz)d,
and thus, since @ is injective, £ = uz. Now, ‘Z is the smallest element r in C
such that rz = z. Hence, 'T < u. By (1), ‘T0 is an element r in the center of
R such that r(zf) = z6. Furthermore, by observation 2.25, ‘T8 < uf, and so
‘T is the least element r in the center of R such that r(z8) = z6. Therefore,
0 exists and equals ‘T4.
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5.5 OBSERVATION. Let R be a so-ring with domains and ranges, and let 4 be a
representation of R. If sums are disjoint in R, then sums are disjoint in R#.
PROOF. Let (z;0:5 € I) be a summable family in R#. By observation 2.24, this
implies that (z;:4 € I) is a summable family in R. Then,

z,0z;0 < (50)(¥76), by observation 5.4(1)
= (% %;)9, since 4 is a monoid homomorphism
= 0, since sums are disjoint in R

=0, by observation 2.22.
Therefore, sums are disjoint in R§.

5.6 OBSERVATION. Let R be a so-ring, and let @ be a representation of R. H
z is an inversible element of R, then zf# is an inversible element of R4 and
(z6)~'=z"19.

PROOF. Since z is inversible in R, then there exist z—!, y in R such that
zz7'+y=1 and yz =0=z"ly. Thus,

1= 10, since § is a monoid homomorphism
= (zz7! + y)0
= (zz~1)0 + yb, since @ is additive

= (28)(z~'6) + yo, since 6 is a monoid homomorphism.

Also, using first the fact that ¢ is a monoid homomorphism and then observation
2.22, we have that (y0)(z0) = (yz)0 =08 = 0 and (z~10)(y9) = (z~'y)d =00 = 0.
This gives us half of the inversibility equations needed to show that z# is inversible.
The other half of the equations can be obtained similarly. Therefore, (28)~! exist
in R and equals z~!14.

Not all properties of a so-ring R are preserved under an arbitrary representation
8 of R. For instance, if R is an adequate so-ring, then Rf is guaranteed to be
adequate only if 8 is faithful.
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5.7 COUNTEREXAMPLE. Let R = {u,v,w,0,1} with ) defined as the trivial ad-
dition and with o defined as
(0, fy=0o0rz=0;
z, fy=lory=gz;

zoy=
y 1y, ifz=lorz=y;

| w, otherwise.

The reader may easily verify that R is a so-ring with domains and ranges. Moreover,

since zy = 0 only when one of z =0 or y = 0, it is clear that R is adequate.

Define a map 8: R — R such that w8 = 0. Endow R with an additive operation

as in observation 2.24, and a multiplicative operation such that (z6)(y8) = (zy)9.

Then RS is a so-ring, and 8 is a representation of R. Now, (uf)(v8) = (uv)fd =
—_— —

wd =0. But ufd =1= vf, and so RO is not adequate.

Later on, we will show some other properties which are not necessarily preserved

under so-ring representations.

Representation by Right Translations

We now demonstrate that any so-ring R may be faithfully represented by the
set of additive maps of R to itself, denoted by Add(R). In particular, any so-
ring R may be faithfully represented by the set T'r(R) of right translations of R.
The set Tr(R) consists of mappings 7,: R — R:z ~» zy for each y in R. First,
however, we show that Add(R) is a so-ring, and that Tr(R) is a sub-so-ring of
Add(R).

5.8 OBSERVATION. For any so-ring R the set of additive maps of R to itself,
Add(R), is a so-ring.

PROOF. Let ) denote the additive operation in R. For a family (f;:¢€ ) in
Add(R), define the additive operation f such that (f;:s € I) is summable if for
all z in R, (zfi:i € I) is summable in R, in which case z5;f; = 3;zf;. Let
(zj:5 € J) be a summable family in R. Let (f;:i € I) be a summable family in
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Add(R). Then

)X 1= (X 25
i R
= z:(z: z;f;), since each f; is additive
B
= Z(Z z;£i)
J 9
= =01
J

Hence, 3;f; is also additive, and so Add(R) is closed under the operation 5. The
unary sum axiom and the partition-associativity axiom are satisfied by Add(R),
since they are satisfied by R. Therefore, (Add(R),f) is a partial monoid.

Define the multiplicative operation G as the usual functional composition.
Hence, 3 is associative. Again, let (z;:5 € J) be a summable family in R. Let
[ g be two functions in Add(R). Then, making use of the additivity of f and
of g, we have that (3_;z;)fg = (2;2if)9= 2;%if9,and so fg is also additive.
Thus, Add(R) is closed under the operation &. Therefore, (Add(R),3,1), where
1 is the identity function on R, is a monoid.

We need only show that the distributive laws hold. Let (fi:s€ ) be a
summable family in Add(R), and let g be any function in Add(R). Let z be any
element of R. Then zg(f,-f.-) =3;29f; = zﬁﬂf; , and 80 the left distributive law
holds. Now, using the additivity of g, z(3:f:)g = (T, 2£)9 = s 2fi9 = 25 . £i9,
and so the right distributive law holds. Since we have distributivity on both sides,
Add(R) is a partial semiring.

The sum-ordering < on Add(R) is derived from the sum-ordering < on R, in
that for f, g in Add(R), f<g if there exists A in Add(R) such that zf+zh = zg
forall z in B. Thus, Add(R) is a so-ring.

To show that T'r(R) is a sub-so-ring of Add(R) we need the following lemmas.

5.9 LEMMA. For any so-ring R, Tr(R) is a subset of Add(R).
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PROOF. Let 7, be an element of T'r(R), and let (z;:§ € I) be a summable family
in B. Then (3_;2)ry = (1; %)y = 1; %y = X ; %i7y. Thus, 7, is an additive
map, and so T'(R) is contained in Add(R).

5.10 LEMMA. The family (z;:4 € I) in a so-ring R is summable if and only if the
family (7;,:¢ € I) in Tr(R) is summable in Add(R). Furthermore, T'r(R) is
closed under the additive operation of Add(R).

PROOF. Let (z;:¢ € I) be a summable in R. Then forany y in R, y3;z; =
2 YZi = ) ; Yx, , which implies that (7.,:4 € I) is summable in Add(R).

Now, let (7;,:4 € I) be summable in Add(R). Then forany y in R, yﬁ‘r,‘ =
2iYTz; = 3 ;y2%;, and in particular, for y =1. Hence, (z;:¢ € I) is summable in
R.

Thus, we have that ), z; exists in R if and only if ﬁ-f,, exists in Add(R).
Hence, for any y in R, yf,-r,, =) YT =D YT =YY % = yre,, . Therefore,
'Z\.-r,, = g, , and 80 ’i,-r,‘ is an element of Tr(R).

5.11 OBSERVATION. For any so-ring R, T'r(R) is a sub-so-ring of Add(R).
PROOF. Inlemma 5.9, we showed that T'r(R) is a subset of Add(R), and in lemma
5.10 we showed that Tr(R) is closed under the additive operation of Add(R). -
Hence, T'r(R) is a sub-so-monoid of Add(R).

Now let 1,, 7; be elements of Tr(R). Forany z in R, zry7, = zyr, = zyz =
27y . Thus, 7,7; = 7,;, and 8o 7,7, is an element of Tr(R). Furthermore, for
any z in R, zn = z1 = z, and so the identity function is a member of Tr(R).
Hence, Tr(R) is a sub-monoid of Add(R), and therefore, Tr(R) is a sub-so-ring
of Add(R).

5.12 THEOREM. Any so-ring R can be faithfully represented by T'r(R).
PROOF. Define a mapping 6: R — Tr(R):z + .. Let (z;:4 € I) be a summable
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family in R. Then
(Z )0 = 15,

= Z‘f,‘, by lemma 5.10

= Z‘z.-o.
Hence, 0 is an additive map.
Let y, 2 be elements of R. Then

(y0)(26) = 7y,

= fy:, by observation 5.11
= (yz)4.

Also, 10 = 1. Hence, 9 is a monoid homomorphism. Therefore, # is a so-ring
homomorphism, and thus a so-ring representation.

Suppose that y, z are elements of R such that yf = 26. This implies that
Ty = 7, which in turn implies that zy = zz for all z in R. In particular, for
z=1, y=1y = 1z = z. Therefore, ¢ is injective and thus a faithful representation
of R.

Representation by Partial Functions

Although every so-ring may be faithfully represented by the set of right trans-
lations of the elements of that so-ring, not all so-rings may be faithfully represented
by the set of partial functions from some set D to itself.

5.13 COUNTEREXAMPLES. Any so-ring R which contains a nonsero element z
such that z + z is defined cannot be faithfully represented by Pfn(D, D) for
any set D. Suppose that 8: R — Pfn(D, D) were a faithful representation. Let
y =z +z. Since 0 is additive, y0 = (z + z)0 = 20 + z8. Now, the only element
of Pfn(D,D) which may be added to itself is 0. Hence, z8 = 0. By observation
2.22, 00 = 0. But since # is injective, z =0, which is a contradiction. Therefore,
a faithful representation of R by Pfn(D, D) cannot exist.
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Even if we extend summability in Pfn(D, D) to families whose members agree
on domain overlaps (as defined in example 2.7), we find that not all so-rings may
be faithfully represented by this so-ring of partial functions. Adding z # y to the
above conditions on R, we make the argument that yf = (z+z)0 = 20+ 20 = z6 .
But since @ is injective, z = y which is a contradiction. Therefore, such an R may
not be faithfully represented by P fn(D, D) with or without overlap summability.

There are, however, many so-rings which do admit a faithful representation by
partial functions on some set . We give such representations a special name.

5.14 DEFINITION. Let R be a so-ring, and let 8: R — Pfn(D, D) be a represen-
tation of R by the so-ring of partial functions from a set D to itself. Then 4 is
called a D -representation of R.

Special Properties of Pfn(D,D). In attempting to determine which so-
rings admit a D -representation, we looked for characteristics of Pfn(D, D) which
would help to distinguish it from other so-rings. Four of these characteristics are
described below.

Property 1: Domains and ranges exist.

Property 2: Sums are disjoint.

Property 3: Adequacy.

Property 4: Atomicity (defined below).

These properties fail to characterize P fn(D, D); refer to counterexample 5.18 be-
low. However, in the following section, we show that a so-ring possessing these four
properties can be faithfully represented by P fn(D, D) for some set D. In fact, we

will not even require adequacy for a D -representation to be constructed.

5.15 DEFINITION. A nonsero element z of a so-ring R is called an atom if there
does not exist any element y in R such that 0 < y < z. (The set of atoms in R
is denoted by A(R).) A so-ring R is atomic if each nongero z in R is the sum of
all elements in {y € A(R):y < z}.
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The properties of being an atom of a so-ring and of being an atomic so-ring
are not necessarily preserved under a so-ring representation. If z is an atom in a
so-ring R and @ is a representation of R, then zf is an atom in Rf only if @ is
faithful.

5.16 COUNTEREXAMPLE. Let R = {u,v,w,3,0,1} with }_ defined as
z;, if z; =0fors #j;
E(z.-:iél): w, if z; =u, zx = v, and z; = 0 for & # j, k;
undefined, otherwise;
and with o defined as the trivial multiplication. The reader may easily verify that
R is a so-ring. Define a map 6: R — Rf such that for all nongero z in R, z0 #0,
and such that 20 = wd. Endow R with an additive operation as in observation
2.24, and a multiplicative operation such that (z8)(y8) = (zy)d. Then RO is a
so-ring, and @ is a representation of R. Now, z is clearly an atom of R. But

20 = wh = (4 + v)d = uf + vf, and so 20 is not an atom of RY.
Moreover, if R is atomic, then R@ is atomic only if ¢ is faithful.

5.17 COUNTEREXAMPLE. Let R = {a,b,¢,¢, f,9,0,1} with }_ defined as

[ zj, if z; =0 for & # j;
c fz;=a,z;=0b,and z; =0 for s # 7, k;
Z(z.-:iel)=ﬁ ’ . ) ' Tk = 0, ‘7"'] ’
g, fz;=e z;=f,and z; =0 fors # j, k;
. undefined, otherwise;

and with o defined as the trivial multiplication. The reader may easily verify that
R is an atomic so-ring. Define a map 6: R — R such that for all nongero z in
R, z6 # 0, and such that c§ = gf. Endow R with an additive operation as in
observation 2.24, and with a multiplicative operation such that (z8)(y9) = (zy)d.
Then R is a so-ring, and @ is a representation of R. Now, af, b8, e, and f0
are all atoms of Rf. Furthermore, af+b0 = (a+5)8 = cf = g8 = (e+ f)0 = ef+ f0,
and 8o af, b0, ef, and f& are all less than or equal to cf. But af + b0 + 0 + f6
is not defined and hence does not equal cf. Therefore, R is not atomic.
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It is easy to see that Pfn(D,D) is atomic, since the atoms are all partial

functions with domains of cardinality 1. However, properties 1 through 4 are not
sufficient in order to characterize Pfn(D, D).

5.18 COUNTEREXAMPLE. Let R = {u,v,0,1} with }_ defined as

1, ifz; =u, zp = v, and z; =0 for i # j, k;
z(z.-:iel)= z5, if z; =0for s #5;
undefined, otherwise;

and with o defined as
z, fy=1lory=ugz;
zoy=4{y, fz=lorz=y;

0, otherwise.

The reader may easily verify that R is a so-ring. Clearly, for all z in R, 7 =
z = 7. Hence, R has domains and ranges. Thus, from the definitions of ¥
and o we immediately have that sums are disjoint in R and that R is adequate.
Furthermore, ¥ and v are atoms R and 1 = u + v. Hence, R is atomic. But
there does not exist any set D such that R = Pfn(D,D). (However, R is a
sub-go-ring of Pfn(D, D) for many sets D.)

Furthermore, properties 1 through 4 need not all hold in an arbitrary sub-so-ring
of Pfn(D,D).

5.19 COUNTEREXAMPLE. Let D = {0,1,2} and consider the subset R =
{z,y,4,v,2,1,0} of elements of Pfn(D, D) defined below:

0, ifd=0ord=1; 0, ifd=2;
dz={ dy={

undefined, otherwise; undefined, otherwise;

4 {0, if d=0; p {0, fd=1lord=2;
U = Y=
undefined, otherwise; undefined, otherwise;
dz=0, foralld € D;
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together with the identity function on D and the nowhere-defined function. It is
easy to show that these seven partial functions form a monoid under the multiplica-
tive operation, since each element of R is idempotent and since the product of any
two elements f and g of R must be one of f, g, or 0. Hence, R is a sub-monoid
of Pfn(D, D). If we define the additive operation such that z+y = u+v = 2 and
0+f=f+0= f forany f in R, then it is easy to show that R is a sub-so-monoid
of Pfn(D, D), since all of these sums are also defined in Pfn(D,D). Hence, R
is a sub-so-ring of Pfn(D, D).

However, S does not possess properties 2, 3, and 4. Forall f £ 0 in S,
7‘=1=7,andfor f=0, 7=0=?. Thus, S has domains and ranges.
But sums are not disjoint in S, since z+y exists and T = 1= ‘y . Neitheris S
adequate, since zy =0 and 7' =1= "y . Last of all S is not atomic, since z, y,
¢, and v are all atoms which are less than orequal to z but 2 £ z+y+ u+ v.
Thus, even though S is a sub-so-ring of P fn(D, D), it does not satisfy properties
2, 3, and 4 which are satisfied by Pfn(D, D) itself.

This counterexample shows that a so-ring possessing a D -representation need ‘
not satisfy properties 2, 3, and 4. In fact, at this writing, we know of only one .
necessary constraint on a so-ring R admitting a D -representation: there can be
no nongero z in R such that z + z is defined (see counterexample 5.13). We do
not know whether or not this constraint is sufficient. However, as we show below,
properties 1, 2, and 4 are sufficient conditions on a so-ring to allow us to construct
a D -representation.

Constructing a D-Representation. For a so-ring R satisfying properties
1 through 4 (in fact, property 3 is not necessary), we show how to choose a set
D and how to construct partial functions from D to D, such that each partial
function corresponds to an element of R and such that the mapping from R to
Pfn(D, D) is a faithful representation. In order to prove this, however, we first
need the following two results.
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5.20 OBSERVATION. Let R be a so-ring in which sums are disjoint. Then z is an
atom of R if and only if T is an atom of R. Dually, z is an atom of R if and
only if Z* is an atom of R.

PROOF. We prove the first assertion only. Let C be the centerof R. Let z be in

A(R). Let y be any element of R such that 0 < y < ‘T . By observation 3.25(1),

05?5‘:5_=?. This in turn implies that 0 < ‘y'z < Tz = z, since < is

compatible. But since z is an atom, either ‘gz =0or gz=2. i ‘gz =0,

then ‘y = 0 since 'y < ‘T. Thus, y = 0 and we are done. If ‘g’ # 0, then
—

‘Yz = z. Since T is the smallest element r of C such that rz = z, we must

have that ‘y = ‘T. Now, y < ‘7z implies that there exists A in R such that

—

y+h = ‘T . Since sums aredisjointin R, T =7 =y+h ='37+‘IT as a result

of observation 3.24. Thus,

Hence, h=0 and 80 y = ‘Z . Therefore, T isin A(R).

Now, let Z bein A(R). Let y be any element of R such that 0 < y < z.
By observation 3.25(1), 0 < ‘y < ‘T . But since 'z is in A(R), then ‘¥ =0 or
‘W ="%.1 ‘Y =0,then y=0 and we are done. If 'y’ = ‘T, then we have more
work to do. Now, y < z implies that there exists A in R such that y+ A = z.
Since sums are disjoint in R, T = y+h = ‘§ + h , as a result of observation
3.24. But 'y = ‘T, and so h =0, which implies that A =0 and thus that y = z.

Therefore, z is in A(R).

Notice that in the above observation, the condition that sums be disjoint in R
is necessary. Refering back to counterexample 5.19, we observe that sums are not
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disjoint. Here, z is not an atom, yet ‘2 = 1 which is an atom.

5.21 OBSERVATION. Let R be a so-ring in which sums are disjoint. If z and z are
atoms of R such that zz # 0, then zz is also an atom of R.

PROOF. Let z, z be elements of A(R) such that zz # 0. Let y be an element
of R such that 0 < y < zz. Then,

0 <‘y < ¥z, by observation 3.25(1)
< 'z, by observation 3.26(1).

But by observation 5.20, 'z isin A(R), and s0o %z = ‘Z. Thus, ‘g = 0 or
‘9 =%. H 'y =0, then y =0 and we are done. I ‘g = ‘T, then we
have more work to do. Now, y < .zz implies that there exists A in R such that
y+h = zz. Since sums are disjoint in R, ‘T = %z =m=‘§'+‘x, as a
result of observation 3.24. But ‘g = ‘7 ,and so % =0, which implies that A =0

and thus that y = zz. Therefore, zz isin A(R).

Having established the preliminary results, we are now ready to construct a
D -representation of a so-ring which satisfies properties 1 through 4.

To construct the D-representation, we require that the center C of R satisfy
the following infinite distributive laws:

rA (\!z.-) =YrAz;; '
(Vz.-) Ar= v.r.-/\r.

' '
These infinite distributive laws hold in any complete Boolean lattice [Birkhoff, 1967,
V.5.16], and so we will make the assumption that C is a complete Boolean lattice.

Hence, R automatically has domains and ranges.

5.22 THEOREM. Let R be an atomic so-ring in which sums are disjoint and whose
center C is a complete Boolean lattice. Then R has a faithful D -representation.
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PROOF. Let D = {d € A(R):d # 1}, and let D' = DU {0,1}. For z in D',
define 7,: D — D:d ~+ dz. If dz =0, we say that r, is undefined at d. Hence, for
z =0, 7, is the totally undefined function. For z =1, r, is the identity function,
since 1 is the identity element of R. For z in D, 7, is well-defined as a result of
observation 5.21. For now, define 8: D' — P fn(D, D): z + 1, ; we will extend 8 to
include all of R later on. First, we prove the following lemmas.

5.23 LEMMA. The mapping @ is a monoid homomorphism from D’ to Pfn(D, D).
PROOF. For z, y in D', zy is also in D', since

[ z, fy=1;
Y, ifz=1;
=) an atom, if z, y € A(R) and zy # 0, by observation 5.21;
L 0, otherwise.

Hence, (zy)d is well-defined. We now show that (z6)(y8) = (zy)@ by the following
set of equivalences:
e € {d € D:d(z0)(yf) is defined}

if and only if
e € {d € D:d(z6) is defined} and ez € {d € D: d(yf) is defined})

if and only if
e € {d € D:d((zy)8) is defined.}

Also, @ maps 1 to the identity function from D to D. Therefore, # is a monoid
homomorphism from D’ to Pfn(D,D).

—

524 LEMMA. If z, y are elements of D' such that Ty = 0, then
{d € D:dz is defined} N {d € D:dy is defined} = 0.

PROOF. Suppose ¢ € {d € D:dz is defined}N{d € D:dy is defined}. Then ez # 0
and ey # 0. This implies that &’z # 0 and 2"y # 0. Since e, z, and y are
atoms, ¢, ‘Z,and ‘y are also atoms, by observation §.20. Then, by observation
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5.21, €7 is an atom. Thus, since 27 < ¢, €7 < 7,and 2F #0, we
must have that " = ‘. Similarly, @ = ‘g. But thisis a contradiction, since
Ty =0. Therefore, {d € D:dz is defined} N {d € D:dy is defined} = 9.

Now, for any z in R, let S; = {0} U{y € A(R):y < z}. Since R is atomic,
any z in R may be written as z =} (y:y € S.). Since sums are disjoint in R,
this implies that for any v, w in S, such that v # w, ‘% = 0. This permits us
to extend 4 to all of R as follows. For any z in R, define z0 = 3 (y:y € S;)0 =
2(y8:y € S;). This sum is well-defined in Pfn(D, D) as a result of lemma 5.24.

We now show that §: R — Pfn(D, D) is a monoid homomorphism. Let z, z
be elements of R. Since R is atomic, 2= (y:y € S;), 2= (w:w € S;), and
zz =3 (»:v € S;;). Also, z2=) (y:y € S:) T (wv:w € §;) = N(yw:y € S;,w e
S.). Hence, yw < z2z forany y in S; and any w in S,. Furthermore, since each
of y and w is either 0 or an atom of R, yw = 0 or yw is an atom of R, by
observation 5.21. Thus, (yw:y € S;,w € S,) is contained in S,,. If v isin S, ,
then by observation 3.26(1) v’ < %z, which implies that ‘v %z = ‘v . Suppose v
isnot in (yw:y € S;,w € S;). Then v # 0. Thus,

Rl

e]‘ et

E(gw Yy € S;,wES;)
=% (V(!/— w:yES;,wES )) by observation 3.23(1)

V(‘-ﬁ— w:y € Sz, w € S;), since C is complete

= 0, since sums are disjoint in R.

But this is a contradiction, since v # 0. Hence, S,; = (yw:y € S;,w € §;).
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Therefore,

(26)=9) = (Llo:y € 5.)6) (T (wrw € 5,)9)
= Z(yﬂ: y€ES;) Z(wo: w € S;)
=) ((¥8)(wh):y € S:,w € S;)
=Y ((yw)f:y € Sz, w € S;), by lemma 5.23
= Z(yw: Yy € S:,w € S,)0
= (z2)6.
We have already shown, in lemma 5.23, that 18 = 1. Therefore, 6: R — P fn(D, D)

is a monoid homomorphism.
Next, we must show that # is additive. Let (z;:5 € I) be a summable family

in R. Then 37z, =) (v:y € Sx,;;,) and ¥ ;2z; = 3 ;,(X(v:y € S:,)) as well. For

each 1 in I and for each y in S;,, y is either 0 or an atom of R, y < z;, and

thus y < 3°,z;. Hence, |Ji(y:y € S;,) is contained in Sg,,,. If v is in Sg,,,
—

then by observation 3.26(1), v < 3;z; andso ‘" = ‘v 3., z; . Suppose v is not

in UJ;(y:y € S:;). Then v #0. Thus,

>

v
"T (Z(y: y €S:,)

(V(f '(y:y € S;,) )) , by observation 3.23(1)

( V(‘y_:y € S,,))) , by observation 3.23(1)

(V( Y:YyES:, )) since C is complete

v =

eT

[
°< <<

(V('—‘_ y€E S,,)) , since C is complete
= 0, since sums are disjoint in R.

But this is a contradiction, since v # 0. Hence, Sg,;, = U;(v:y € Sz,) = (v:y €



101
U; Sz,) . Thus,

(Z.: z.-) 0= (Z(w ye L.J S:.-)) 8

=2 (v:yeJs.)
-3 (Sweves.))
= i (E(w y€ Ss,)ﬂ)
= Z z:0,

and so §: R — P fn(D, D) is an additive map.

Therefore, 6 is a D -representation of R. We now show that it is faithful. Let
Z, 2 be two elements of R such that z0 = 28. Then 7, =7,. Let §; = {0}u{y e
A(R):y <1}. Then,

z=1z

=(Ylyye 51)) =,
=) (ynye )
= Z(yz: YES)), sincer, =1,

= (Z(y: y€ Sl)) 2

=1z
=z,
Therefore, # is injective, and 8o @ is a faithful D-representation of R.

As a corollary, we exhibit a wider class of so-rings such that each one possesses
a full sub-so-ring for which a D -representation may be constructed as in theorem
5.22. Each so-ring R in this class satisfies the following two constraints.

The first constraint, as in theorem 5.22, is that the center C of R must satisfy
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the following infinite distributive laws:

" (Vz) ~Vras
(V.-..-)Am\/z.-m.

Hence, we assume that C is a complete Boolean lattice. Thus, R automatically

has domains and ranges.

The second constraint which we impose on R is that if r, s arein C and if
rs =0, then for any z in R, %r'Za = 0. This constraint is satisfied, for example,
by all so-rings in which the multiplicative operation is commutative, and by all so-
rings in which sums are disjoint. We prove the latter claim. Assume R is a so-ring
in which sums are digjoint, and let r, s be elements of C such that rs = 0. Then,
s < v, which implies that r + s exists, since r + v = 1 exists. Hence, for any z

in R, z(r+ 8) = zr + zs, and since sums are disjoint in R, %r s =0.

Thus, we see that both of these constraints are met by so-rings which satisfy
the hypotheses of theorem 5.22.

Before we can show that each so-ring satisfying the above two constraints pos-
sesses a full sub-so-ring for which a D -representation may be constructed, we need
to show that for each such so-ring R, restricting the additive operation so that
sums are disjoint yields a full sub-so-ring of R.

5.25 OBSERVATION. Let R be a so-ring such that its center C is a complete
Boolean lattice, and such that if r, s are in C and rs = 0, then for any z
in R, %728 = 0. Let J be the additive operation on R, and restrict 3 to
disjoint families, that is, define
. Y (z:s€l), if(z;:5€I)is a summable family in R
Z(z.-:iel)= and if 5;%; =0 for j #3;

undefined, otherwise.
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Then R with f as the additive operation is a so-ring.
PROOF. First, we must show that (R, f) is a partial monoid. For any z in R,
fz = )"z =z, and so the unary sum axiom is satisfied.

To show that the partition-associativity axiom holds requires more work. Sup-
pose that (z;:4€ ) is a family in R such that i,- (zi:i € I) exists. This im-
plies that 3°(z;:6 € J) exists and that 57 = 0 for j # 5. Let (I;:5€J)
be a partition of . Since partition-associativity holds in (R,Y), I (z::i € I)
exists for each j in J, 3 (T (z:i€l;):j€J) exists, and Y (z:ie€l) =
(X (z:i€l;):j€T). Now, for each j in J, (zi:$€I;) is contained in
(zi:i€I). Thus, for zx, z in (z:8€l;), we have that Ty % = 0 for
I # k. Hence, f(z;:iél,-) exists for each j in J. Thus, for k # j,-

S(ie L) Szl e k)

= V ("z".-:a' € I,-) A V (?g:l € I,,) , by observation 3.23(1)
= V (V (‘:‘:“.—:i € I,-) AT:le I.,) , since C is complete
= V (V (‘:ﬁ A%ite I,-) e I,,) , since C is complete

= V (V (‘z‘,‘z‘,t € I,-) e Ih) , by theorem 3.11
=0, since ;% =0 for ! #3. -

Therefore, f(ﬁ (z:iely):je J) exists and equals 5 (z;:i € ).

Now, suppose that for each § in J, ff (z.-:i € I_;) exists and that
’}_“: (i (zi:5€ly):5€ J) exists. This implies that for each j in J,
. (zi:i € I;) exists and that 33 (X (z:i€ 1)) :5 € J) exists, which in turn im-
Ply that 3 (z::i € I) exists and equals } (T (z:s€ 1)) :5 € J) , since partition-
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associativity holds in (R,)’). Thus,

0= "i (z.-:i € Ij)%(zg:l €l;)
= V (‘?.-:i € I,-) A V (?,:l € I;,) , by observation 3.23(1)

= V (V (":E‘,-:i € I,-) A%:le I;,.) , since C is complete
= V (V (‘z‘,’ AT E I,—) :le Ig) , since C is complete
= v (V (‘E‘ﬁt € I_,-) :le Ig) , by theorem 3.11.

Thus, for | # s, %;% = 0, which in conjunction with the existence of
Y (zi:3 € I), implies that f(z.-:s'e I) exists and equals ff(f(z.-:iel,-) 5 GJ) .
Therefore, the partition-associativity axiom is satisfied by (R, §), and so (R, i)
is a partial monoid.

Clearly, (R, E) eatisfies conditions (1), (2), and (3) of definition 2.18. Hence,
(R, 2) is a partial sub-monoid of (R,Y"), and by observation 2.20, (R, E) isa
sub-so-monoid of (R,)").

Now, we must demonstrate that the distributive laws hold in order to show that
(R, f, o, 1) is a so-ring. Suppose that E,-z.- exists. Then 3, z; exists and Z; Z; =
0 for j # i. Since the distributive laws hold in (R,3,0,1), (3 ;z:)y = 3; ziy
for any y in R. Eurthermore, (ﬁ,z.-)y exists for any y in R. By observation
3.26(1), %y < %i. Thus, %Ly Z;y < % %; = 0 for § # i. Therefore, ﬁ,-z,-y
exists and equals (Z,z.)y

The existence of E.-z. also implies that y(z,-z;) exists for any y in R, while
the existence of 3, z; implies that y(3°,; z;) = Y ;yz; for any y in R, since the
distributive laws hold in (R, ,0,1). Now,

m—

{Z; = y'T izi, by observation 3.21(1)
PR
< y¥%;, by observation 3.26(1).

——
Hence, for j #¢, Y%, VZ; < y% y%; =0,since %7, % arein C and %5 =

0. Therefore, i-yz.- exists and equals y(i,-z.-) . We have shown that the right
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and left distributive laws hold in (R,$,0,1), and therefore that (R,5>,0,1) is a
sub-so-ring of (R, ,0,1).

5.26 COROLLARY. Let R be so-ring such that its center C is a complete Boolean
lattice, and such that if r, s are in C and rs = 0, then for any z in R, "
%F %3 = 0. If the full sub-so-ring (R,5,0,1) is atomic, then it has a faithful
D -representation.

Fundamentally Representable Orderings

In the study of semigroups, orderings and representations are closely connected.
In this section, we present a simple characterization (due to Schein) of any quasi-
order on a semigroup S, for which there exists a D -representation of S preserving
and reflecting the quasi-order. (By a D -representation of a semigroup S, we mean
a semigroup homomorphism ¢:S — Pfn(D, D) for some set D. Note that this
definition is analogous to definition 5.14 for so-rings.) We then show that the
same characterigation applied to a quasi-order on a so-ring R is necessary but not
sufficient to show that there exists a D -representation of R which preserves and
reflects the quasi-order. To describe the characterisation for semigroups, we need
the following definitions. ! The terminology in the first two definitions follows that
of Vagner [1956].

5.27 DEFINITION. If S is a semigroup with a D-representation ¢, then the fun-
damental quasi-order relation for ¢ is the binary relation

Z¢=1{(z,9):2,y € S and z¢ < y¢}.

! These definitions are given in the context of semigroups but may easily be extended to the
context of so-rings simply by replacing each occurrence of “semigroup” with “so-ring” and each
occurrence of “¢" with “0" with the understanding that ¢ is a semigroup homomorphism
and 0 is a so-ring homomorphism.



108

5.28 DEFINITION. Let S be a semigroup, and let < be a quasi-order definedon S.
Then < is said to be fundamentally representable if there exists a D -representation
¢ of S such that z < y if and only if z¢ < yé. Such a semigroup is said to be
fundamentally ordered by <.

Hence, as a consequence of observation 5.2, any so-ring which possesses a faithful
D -representation is fundamentally ordered by its sum-ordering.

5.29 DEFINITION. A quasi-order < on a semigroup S is said to be weakly steady
if 2<2zv, 2<uy,and z X u imply that z < zy.

At first glance, this definition appears inscrutable. However, as we see in the
examples below, weak steadiness is a property of the sum-ordering on any lattice
and of the sum-ordering on partial functions. It was the sum-ordering on partial
functions which provided the motivation for the construction of this definition in

semigroup theory.

5.30 EXAMPLES.
(1) The sum-ordering on any lattice L is weakly steady. Let z, u, v, y, and
z be elements of L such that 2<zv, z2< uy,and z < u.

uy zv
z

Then 2zv = 2 and zu = z, since L is a lattice. The sum-ordering is of course
compatible by observation 2.37, and since 2 < uy, we have that zz < zuy =
zy. Using the facts that the multiplicative (meet) operation in a lattice is both
commutative and idempotent, we find that since 2zv = 2, 2 = z22v = 2z2v =
zzv = z. Thus, 2=z2 < zy, and so < is weakly steady in L. -



107

(2) The sum-ordering on Pfn(D, D) is weakly steady. To see this, let z, u, v,

Y, 2, k, m,and A be elements of Pfn(D, D) such that z+k = zv, z4+m = uy,
and z+hA=1u. Then 2< zv, z< uy, and z < u. Thus,

‘7 < %v, by observation 3.25(1)
< ‘z, by observation 3.26(1).

Also, by observation 3.26(1), hy < . Since sums are disjoint in Pfn(D, D)
and z+ h exists, ‘T h =0. Hence, ’i.@ < ':?‘IE <‘Th =0. Since z+m
exists, Z¥n =0. Thus, 2=Fz+ TWm=F(2+m)=Fuy="Z(z+h)y =
ZTzy+ ?Ehy = Zzy < zy. Therefore, < is a weakly steady partial order on
Pfn(D, D).

The sum-ordering on an arbitrary semigroup or so-ring need not be weakly ’
steady, however.

5.31 COUNTEREXAMPLES.
(1) In Mfn(D, D), the sum-ordering is not weakly steady. Let a,b,c,d, and
e be elements of D, and define z,u,v,y, and z in Mfn(D, D) as follows.

dz={{b}’ ifd=a; du={{b’6}’ ifd=a;

9, otherwise; 9, otherwise;

9, otherwise; 0, otherwise; 0, otherwise.
Then z<u, 2< zv,and 2 < uy. But azy = by = @, whereas az = {e}. Thus,
z £ zy, and 80 < is not weakly steady on Mfn(D, D).
(2) In Maset(D, D), the sum-ordering is not weakly steady. Define z,u, vy,
and z in Maset(D, D) as follows.

() ()
(00 () ()

dv:{{e}’ ifd:b; dy:{{c}’ ifd=c; ) dz={{¢}» ifd=a;
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Then z <4, 2 < 2zv,and z< uy. But

1 1
Y = .
y 00

Thus, z £ zy, and so < is not weakly steady on Maset(D, D).

(3) In the so-ring N, with the usual finite addition and multiplication as the
two so-ring operations, the sum-ordering is not weakly steady. Let =1, u =4,
v=6, y=3,and 3=5. Then <4, 2<zv,and 2< uy. But z £ zy, and s0
< is not weakly steady on N.

Having provided some motivation, we now state but do not prove Schein’s result.
(A complete version of the proof (in English) may be found in [Schein, 1979, pp.
136-145).)

5.32 THEOREM. (Schein, 1964, and 1979, Section 5) A quasi-order < on a semi-
group S is fundamentally representable if and only if it is compatible and weakly
steady.

An immediate consequence of this theorem is that for any so-ring R and any
compatible, weakly steady, quasi-order < defined on R, the semigroup (R,o)
composed of the elements of R under the multiplicative operation o on R is
fundamentally ordered by <. However, Schein’s theorem does not guarantee that
the so-ring (R, ) _,0,1) is fundamentally ordered by <. For instance, consider the

following:

5.33 COUNTEREXAMPLE. Let R be the so-ring {0,1} with the following additive

operation
0, fz;,=0forallsel;

Z(z‘“ €n= {,l, otherwise;
and with the trivial multiplicative operation. The reader may easily verify that
R has center C = R and domains and ranges, and that the sum-ordering < is
compatible and weakly steady. If R were to have a D -representation 6 such that
z <y if and only if z6 < y#, then § would have to be faithful by observation 5.2.
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But by counterexample 5.13, R cannot have a faithful D -representation, since 1 is
a non-gero additive idempotent in R. Therefore, R is not fundamentally ordered
by <.

However, we can show that compatibility and weak steadiness are necessary
attributes of any fundamentally representable quasi-order on a so-ring R.

5.34 OBSERVATION. Let R be a so-ring which is fundamentally ordered by <.
Then < is a compatible and weakly steady quasi-order.

PROOF. Since < is fundamentally representable, there exists a D -representation
6 of R suchthat z <y if and only if z0 < yd. Let z, y be elements of R
such that z < y..Then 20 < y9. Let 2 be any element of R. Then 20 is an
element of RO. Since < is left compatible, (20)(z8) < (26)(y9) . But this implies
that (2z)8 < (ay)#, as @ is a monoid homomorphism. Since < is fundamentally
representable, (2z)0 < (2y)0 implies that zz < zy. Hence,
Similarly, it can be shown that the right compatibility of
compatibility of <, and so < is a compatible quasi-order.

< is left compatible.
< implies the right

Let z, u, v, y, and z be elements of R such that z < zv, z < uy, and
z X u. Using the facts both that < is fundamentally representable and that ¢ is
a monoid homomorphism, we obtain that 20 < (zv)d = (z8)(vf), 20 < (uy)d =
(u6)(y), and z0 < uf. Since < is a weakly steady ordering on Pfn(D,D) as
we showed in example 5.30(2), < is weakly steady on the sub-so-ring R9. Thus,
20 < (z8)(y8) = (zy)0 . This in turn implies that z < zy, since < is fundamentally
representable. Therefore, < is a weakly steady quasi-order.

Although the properties of compatibility and weak steadiness are not sufficient
to prove that a quasi-order on a so-ring is fundamentally representable, they are,
nevertheless, necessary as we demonstrated above. It is for this reason that we now
examine some of the quasi-orders on a so-ring R which are compatible and weakly
steady.

5.35 OBSERVATION. The smallest weakly steady, compatible, quasi-ordering on a
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so-ring is the identity ordering A.

5.36 OBSERVATION. For any so-ring R, the multiplicative ordering C is weakly
steady.

PROOF. Let C be the center of R. Suppose that z,u,v,y, and 2 are elements of
R such that s C zv, 2C uy, and zC u. Now, z C zv implies that there exists
f in C such that z = fzv, 2 C uy implies that there exists g in C such that
z=guy, and z C u implies that there exists ¢ in C such that z = eu. Putting
this all together, we have that z = fzv = feuv = feluv = efeuv = efzv = ez =
eguy = geuy = gzy . Hence, zC zy, and so C is weakly steady.

5.37 OBSERVATION. If R is a so-ring in which sums are disjoint, then the sum-

ordering < on R is weakly steady.

PROOF. Suppose that z, z, v, u, and y are elements of R such that z < zv,

z<uy, and z < u. Then there exist k, m, and A in R such that z+4 k = zv,
% =0,z4+m=uy, M =0, z+h =y, and % =o0. Thus, z4+m =

uy = (z + h)y = zy + hy. Now, z < zv implies that

‘Z < £v, by observation 3.25(1)
< 7, by observation 3.26(1).

L

A
=t

-
<%h <

Also, by observation 3.26(1), By < 'h. Thus, % T
ty+Zhy=%z

Therefore, 2= ‘T2+Tm = ‘T (24+m) = T (zy+hy) =
and so < is weakly steady on R.

uT gT

= 0.
<zy,

<

Although for an arbitrary so-ring, there may not be a greatest weakly steady,
compatible, partial order, we can show that for any inverse semiring, there does
exist a largest such ordering. This fact is a consequence of the following theorem
from semigroup theory.

5.38 THEOREM. (Goberstein, 1980, Theorem 4.1) The largest compatible, weakly
steady, partial order on an inverse semigroup S is the multiplicative ordering C.
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We can show that for P fn(D, D), the sum-ordering is a maximal weakly steady,
compatible, partial order containing the multiplicative ordering C. However, we
postpone the preof of this until the next section (observation 5.54), since we need
results from that section in order to prove this resuit.

Amenable Orderings

5.39 DEFINITION. (McAlister, 1980, Definition 1.1) Let S be an inverse semigroup,
and let < be a compatible partial order on §. Then S is said to be left (right)
amenably ordered if for z, y in S, the relation z < y implies that z-1z < y~ly
(zz! < yy~!). In such a case, the ordering < is said to be left (right) amenable.
If <X is both left and right amenable, then it is said to be amenable and S is said
to be amenably ordered.

This definition may be stated identically for inverse semirings. However, we
desire a notion of amenable which is applicable to a wider class of so-rings. Recall
from observation 3.36(4) that if z is an inversible element of a so-ring R, then
z7!z = 7 and zz~! = ‘T. Hence, rewriting the above definition to include

so-rings with domains and ranges, we obtain:

5.40 DEFINITION. A compatible partial order < on a so-ring R with domains and
ranges is left (right) amenable if for z, y in R, the relation z < y implies that
Z <7 (T < 7). An ordering which is both left and right amenable is said to
be amenable.

. We now give several examples of amenable orderings on a so-ring R with do-
mains and ranges.

5.41 OBSERVATION. In any so-ring R with domains and ranges, the sum-ordering
< is an amenable ordering.
PROOF. By definition, the sum-ordering on a so-ring is a partial order, and by
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observation 2.37, it is also compatible. Suppose z, y are elements of R such that
z < y. The existence of both =" and " implies that 7' < 7, by observation
3.25(2). Hence, < is left amenable. Similarly, the existence of ‘Z and ‘y" implies

that ‘7 < 'y’ by observation 3.25(1), and so < is right amenable as well. Therefore,
< is an amenable ordering.

By observation 3.48, we know that the multiplicative ordering C on a so-ring
R is a right compatible partial order. Furthermore, if R is an inverse so-ring, then
we have that C is left compatible as well [Howie, 1976, V.2.4]. However, as we

observed in example 3.49, in an arbitrary so-ring C need not be left compatible, -
and thus, C need not be amenable. But, in any case, we do have the following:

5.42 OBSERVATION. Let R be a so-ring with domains and ranges. If z, y are
elements of R such that zC y, then Z C ¢ .

PROOF. Let C be the centerof R. Let z, y be elements of R such that z C y.
Then there exists e in C such that z = ey. By observation 3.26(2), the existence
of both ¥’ and 7’ = &y implies that 7" = ey < y’. This in turn implies that
—
y

— _ ——

T =79,since T and y arein C. Therefore, T C 7.

Furthermore, if R is a so-ring in which C is left compatible, then R is
amenably ordered, as we show below.

5.43 OBSERVATION. Let R be a so-ring with domains and ranges. If the multi-
plicative ordering C is a left compatible ordering on R, then C is an amenable
ordering on R.

PROOF. In observation 3.48, it was established that C is a right compatible par-
tial order on any so-ring. But we are assuming that C is also left compatible on
R. Hence, C is a compatible partial order on R. It immediately follows, from

observation 5.42, that C is left amenable. To show right amenability, we proceed

as follows. Let C be the centerof R. Let z, y be elementsof R suchthat zC y.

c
c
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Then there exists ¢ in C such that z = ey. Noting that
z=ey
= ¢y 'y, by observation 3.21(1)
= ‘y ey, by observation 3.8(3)

P ——
and that both ‘y” and ‘T = ‘gey exist, we may apply observation 3.26(1), yielding

P

—

T = Yey <'y. Hence, T =%

= 2y, since ‘T and ‘g arein C. This implies

that ‘Z C ‘v, and thus, C is right amenable as well. Therefore, C is an amenable

ordering on R.

5.44 OBSERVATION. For a so-ring R with domains and ranges, the smallest
amenable ordering is the identity ordering A.

5.45 OBSERVATION. Let R be a so-ring with domains and ranges and with center
C = {0,1}. Then the only amenable orderings between A and C are of the form:? ‘

<a=A4AuU{(0,1)}u{(0,z):z € A C R}.

PROOF. Since C = {0,1}, C = AU {(0,z):z € R}. Thus, for any subset A of
R, <4 =A4AuU{(0,1)} U{(0,z):z € A} is contained in C. One can easily verify
that <4 is a compatible partial order. We know by observation 5.44 that A is
amenable, and we must show that {(0,1)}U{(0,z):z € A} is also amenable. Since
C ={0,1}, 'T =1 =7 for all nonsero z in R. As (0,1) isin <,, 0 <, z
implies both that 0 <4 Z' and that 0 <4 ‘T . Hence, {(0,1)} U {(0,z):z € A} is
amenable. Therefore, <, is amenable,and A C <4, CLC.

For an inverse semigroup S, it is easily shown that the multiplicative ordering
C is an amenable ordering. Although this fact may be deduced from observation
5.43, it may also be proved directly in the following way. Suppose z, y are elements

? Here and in subsequent places we use the ordering symbol < not only to indicate the relation
between twoelements of R asin “z < y” but also to represent the set of ordered pairs deflning
the ordering asin “ <X = {(z,y):2,y€ Rand z < gy} ".
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of S such that z C y. Then by [Howle, 1976, V.2.4], z=! C y~!. Furthermore, by
[Howie, 1976, V.2.4], C is compatible and so both z—!z C y~ly and zz~! C yy!,
which imply that C is an amenable ordering on S. It is possible to characterise
all amenable orderings on § which contain the multiplicative ordering.

5.46 THEOREM. (McAlister, 1980, Theorem 4.1) Let S be an inverse semigroup
with semilattice of idempotents E, and let Czr(E) = {z € S:ez = ze for all
¢ € E} be the centralizerof E. Suppose that Q is contained in Czr(E) and that
Q@ is a subsemigroup of S such that

(1) QnQ~1=E and

(2) 2Qz~1C Q forall z in §.

If < is a relation on S defined by z <y if and only if 2~z C y~ly and yz~! is
in @, then < is an amenable ordering on S which extends C. Conversely, every
amenable ordering on S which extends C has this form for a unique subsemigroup
Q of Czr(E) which satisfies (1) and (2).

5.47 COROLLARY. (McAlister, 1980, Corollary 4.2) If S is a fundamental inverse
semigroup, that is , z7'ez = y~ley for all ¢ in E implies that z = y, then the
multiplicative ordering C is a maximal amenable orderingon S.

We note that both theorem §.46 and corollary 5.47 apply equally well to in-
verse semirings. Generaliging to so-rings with domains and ranges, we obtain the
following results. .

5.48 OBSERVATION. Let R be a so-ring with domains and ranges, and let < be a
compatible partial order on R, which contains C.

(1) If < is left amenable, then z <y implies that Z C 3.

(2) If < is right amenable, then z Xy implies that 7 C 'y .

PROOF. (We prove (1) only; (2) is dual.) (1): The left amenability of < implies
that if z < y, then Z° < ", which in turn implies that 7 = 7 < 77,

— ) — -—) )

gince < is left compatible. Now, ¢ = y' 7, since T, 3§ arein C. Thus,

,and so 'y’ < 7, since C is contained in <. By the antisymmetry



116

of X, =77, and therefore, 7 C 7.

5.49 OBSERVATION. Let R be an adequate so-ring. If < is a relation on R such
that z <y ifand only if T C ', then < is a right compatible quasi-order which
contains C, such that z <y implies 7* < 7.

PROOF. It is easily seen that < is a quasi-order, since reflexivity and transitivity
follow directly from the fact that C is a partial order. If z C y, then by observation
542, T C 3, which in turn implies that z < y. Hence, C is contained in <.

If z<y,then ' C 7y, which implies that Z’c C g'c for any ¢ in R, since by

observation 3.48, C is right compatible. But this in turn implies, by observation
— — _— —

5.42, that 7’c C y'c . Furthermore, by observation 3.28(2), zd = Z¢ C §c =
yé. Hence, zc < yc, and so < is right compatible. Assume that z <y. Then

—_ —_ —_— —
7 C 7. But by observation 3.29, 7= 7 and ¥ = ¥ . Hence, T C ¥
which implies that z' < .

We note that < as defined in observation 5.49 is not necegsarily a left amenable
ordering, since it need not be antisymmetric. Furthermore, < need not be left

compatible. We illustrate both of these facts with examples from P fn(D, D). Let
d; and dz be two elements of D and define two partial functions z and y as

follows:
d {dls ifd:dl; d {dl) ifd=dy;
L = = -
undefined, otherwise; undefined, otherwise.
Now, = 3§, andso z <y and y < z. But clearly z # y, and 80 < is not

antisymmetric. If 2 = z, then 2z = z and 2y = 0. Hence, zZ = 7" # 0 and
Zy =0,and so 77 Z 3§ . This means that 2z £ sy, and therefore that < is not
left compatible.

Although we do not have a complete characterisation of all amenable orders
which contain C on an arbitrary so-ring with domains and ranges, we do have a

complete characterigation of such orders on particular so-rings.
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5.50 OBSERVATION. For Pfn(D, D), Mfn(D, D), and Mset(D, D), any compat-
ible partial order containing the multiplicative order C is an amenable ordering.
PROOF. (We give the proof for Pfn(D, D) only. The proofs for Mfn(D, D) and
Maset(D, D) are similar.) Let < be a compatible partial order containing C, and
let z, y be elements of Pfn(D, D) such that z < y.

Case (1): 7" Z ¢’ : This implies that there exists d' in D such that d' € 7
but &' & §' . Define z in Pfn(D,D) as follows:

ds — d', fd=d';
- undefined, otherwise.

Thus, yz = 0 but zz # 0. Since X is right compatible, £ < y implies that
zz2 X yz=0. Now zz # 0, and so 0 C zz which implies that 0 < zz, since <
contains C. By the antisymmetry of <, we have that 0 = zz, which is clearly a
contradiction. Thus, Z' C y* which implies that Z° < 7. |

Case (2): ‘T [ ‘g : This implies that there exists d' in D such that d' € ‘T
but d' € 'y . Define z as in case (1). Then zy = 0 but 2z # 0. Since < is left
compatible, z Xy implies that 2z X zy=0. Now zz # 0, and so 0 C zz which
implies that 0 < zz, since < contains C. By the antisymmetry of <, we have

that 0 = 2z, which is clearly a contradiction. Thus, Z C ‘y’ which implies that

T<Y

2Y.
Therefore, < is an amenable ordering on P fn(D,-D).

Recall from corollary 5.47 that the multiplicative ordering is a maximal
amenable ordering on a fundamental inverse semigroup and hence on a fundamen-
tal inverse semiring. Generaliging to so-rings with domains and ranges, we see that
maximal amenable orderings may be much larger than the multiplicative ordering.

5.51 OBSERVATION. Let R be a so-ring with domains and ranges. Then the sum-
ordering < on R is 2 maximal amenable ordering containing the multiplicative
ordering C, if < is a total ordering.

PROOF. By observation 3.50, < contains C, and by observation 5.41, < is an
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amenable ordering on R. Furthermore, any total order is a maximal partial order
on R. Thus, < is a maximal amenable ordering on R, which contains C.

5.52 OBSERVATION. Let R be a so-ring which is a distributive lattice. Then the
sum-ordering < (equal to the lattice ordering) is a maximal amenable ordering
containing the multiplicative ordering C .

PROOF. Let <X be an amenable ordering on R containing <, and let z, y be
two elements of R such that £ < y. Define z = z Ay, the lattice meet of z
and y. Hence, z < z which implies that z < z. Since < is left compatible,
£=zAz=XzAy=2,and so by the antisymmetry of <, z = z. But this implies
that zAy = z, which in turn implies that z < y. Therefore, z < y implies that
z <y and thus that <=<. Hence, < is a maximal amenable ordering containing
C.

5.53 OBSERVATION. For Pfn(D,D), Mfn(D,D), and Mset(D,D) the sum-
ordering < is a maximal amenable ordering containing the multiplicative ordering
C.
PROOF. (We prove the result only for Pfn(D, D); the proofs for M fn(D, D) and
Mset(D, D) are similar.) By observation §.41, < is an amenable ordering, and by
observation 3.50, < contains C. Now suppose that < is an amenable ordering
which contains <, and let z, y be elements of Pfn(D, D) such that z < y.
Case (1): 7' £ 7. Then there exists ' € 2 such that d' ¢ 7. Define a

partial function z such that

ds = d, ifd=d';
undefined, otherwise.

Then yz = 0, but zz # 0. Since < is right compatible, z < y implies that
zz X yz=0. Now, since zz # 0, 0 < 1z, and since < extends <, 0=<1zz. But
by the antisymmetry of <, zz = 0, which is a contradiction. Thus, 7 < ¢ .
Casge (2): T £ °y. Then there exists d' € ‘T such that d' ¢ ‘v . Define
a partial function z as in case (1). Then zy = 0, but zz # 0. Since < is left
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compatible, z < y implies that zz < zy = 0. Now, since zz # 0, 0 < 2z, and
since X extends <, 0 < zz. But by the antisymmetry of <, zz =0, whichis a
contradiction. Thus, ‘Z < gy .

Now, suppose that z <y but that z £ y. In cases (1) and (2), we have shown
that z < y implies both that Z* < § and that ‘Z < ‘g’. Thus, since z £ y,
there exists d' € 'z and d' € ‘y such that d'z # d'y. Define z in Pfn(D, D) as
in case (1). Since X is left compatible, £ <y implies that zz < zy. This in turn
implies that zZ < Zy, since < is left amenable. But z2 = d'z # d'y = Zy, and
8o zZ £ zy . This, of course, a contradiction, by case (1). Thus, z < y.

Therefore, z < y implies that z < y, and so < is a maximal amenable ordering

containing C.

5.54 OBSERVATION. For Pfn(D,D), the sum-ordering < is a maximal weakly
steady, compatible, partial order containing C .

PROOF. We know, by observation 5.50, that any compatible partial order on
Pfn(D, D) containing C is amenable. Hence, any weakly steady, compatible,
partial order on P fn(D, D) containing C is amenable. Furthermore, by observa-
tion 5.53, < is a maximal amenable ordering containing C for Pfn(D,D). By
example 5.30(2), < is weakly steady on P fn(D, D). Therefore, for Pfn(D, D),
< is a maximal weakly steady, compatible, partial order which contains C.

Note that the above result does not hold for M fn(D, D) or Mset(D, D), since

by counterexamples 5.31, the sum-ordering is not weakly steady on either so-ring.

Although the sum-ordering is always an amenable ordering on a so-ring with
domains and ranges, it need not be in general a maximal amenable ordering, as we

demonstrate below.

5.55 COUNTEREXAMPLE. Let R be a so-ring with trivial addition and trivial mul-
tiplication, and with domains and ranges. In such a so-ring, C = {0,1} and also
C=<==%p=AU{(0,z):z € R}. Furthermore, suppose that R contains at

least three elements. Define < = <p U{(y,2)}, where y, z are two elements of R
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such that y #0# z and y # z. It is easily shown that < is a compatible partial

a
order. Furthermore, ¥ ='y =1= 7 =7, ands0 ¥ <7 and 7 < 7.
Thus, < is an amenable ordering which properly contains C and <. Therefore,
for this so-ring, < is not a maximal amenable ordering.

In those cases in which the sum-ordering is a maximal amenable ordering, it
need not be the greatest such ordering containing the multiplicative ordering. There
may be several maximal amenable orderings which contain C, and thus no greatest
such ordering, as we now show.

5.56 COUNTEREXAMPLE. Let R be a so-ring with domains and ranges and with
center C = {0,1}. Then C = <z = AU {(0,z):z € R}. Furthermore, suppose
that R contains at least three elements and that < is a total orderon R. (The real
numbers R with the usual finite addition and multiplication is such a so-ring.) By
observation 5.51, < is a maximal amenable ordering containing C . By the Duality
Principle for partial orders, >, the converse of < is also a maximal amenable
ordering on R. But > does not contain C. We define a new relation on R as
follows. For any z, y in R,

z2'yifz=00orifz>yand y#0.

It is easily demonstrated that >’ is a total order which contains C, and that >!
is amenable. Therefore, by observation 5.51, >’ is a maximal amenable order on
R containing C, but >’ clearly does not contain <. Hence, there is no greatest

amenable ordering on R which contains C.



CHAPTER VI

OTHER INFINITE PARTIAL SUMS

In this chapter, we describe three different algebraic structures which possess in-
finite partial sums. These structures — generalised cardinal algebras, Y -structures,
and infinite sums in topological groups ~ are interesting as points of comparison with
partial monoids, but are not cental to our study of so-rings.

Generalised Cardinal Algebras
|

Tarski’s motivation for developing cardinal algebras stems from work on the
arithmetic of cardinal numbers. He states, in the preface to his book Cardinal
Algebras [1949), that results in this area appear to be of two types. The first are the
very general theorems which have been established by invoking the axiom of choice.
The second are results which have been arrived at by construction; these tend to
be of a more restrictive nature, but are no less interesting. Using the constructive
method, it is possible to derive results about cardinal addition using an arithmetic
approach based on certain basic theorems. These derivations do not tend to be
any more involved than derivations by other methods. Tarski notes that the basic
theorems are rather like formal laws, which can be applied to other mathematical
systems, in addition to cardinal arithmetic. Thus, he suggests developing a set of
algebras for which these basic theorems are actually the defining postulates - the
cardinal algebras.

D. S. Scott suggested that parallels might be drawn between cardinal algebras
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and partially-additive monoids, ! although the motivation for developing each of
these algebraic structures was indeed different. Following his suggestion, we inves-
tigated some relationships between the two structures.

6.1 DEFINITION. A cardinal algebra (or CA) (A,+,Y) is a set A together with
a binary operation + and an infinitary operation Y, subject to the following
postulates: 2

(1) (Finite Closure Postulate.) If a,bc A, then a+be A.

(2) (Infinite Closure Postulate.) If ag,a;,...,q;,...€ A, then Yico B EA.

(3) (Associative Postulate.) If ag,ay,...,a;,... € A, then Piceo® = a0 +
2licoo Bitl -

(4) (Commutative-Associative Postulate.) K ay,ay,.. 3 Biyeenyboybyy..ayby,... €
A, then 35, (a4 b)) = scoo i+ T icoo bi-

(5) (Postulate of the Zero Element.) There is an element z € A such that ¢ + 2z =
z2+a=a forevery ac A.

(6) (Refinement Postulate.) I a,b,cy,c1,...,¢,...€ A and a + b = 2 i<oo i
then there are elements ag,ay,...,q;,...,b50,b1,...,b;,... € A such that a =
icoo®is 0=Y ;o bi,and cq =ay +b, for n=0,1,2,....

(7) (Remainder, or Infinite Chain, Postulate.) If B0yB1y.eeyBiyennyboybyy...,biy... €
A and if @y = by + ap41 for n =0,1,2,..., then there is an element ¢ € 4
such that ap =c+ 3 ;. bays for n=0,1,2,....

6.2 EXAMPLES. Although the motivating example for cardinal algebras is indeed
the cardinal numbers under cardinal addition, there are many other examples,
among them the extended set of natural numbers as defined in example 2.12, the set
of nonnegative real-valued functions over an arbitrary domain, and any countably
complete Boolean algebra.

1 Personal commaunication, 1982.

3 Weuse J°, ., todenote the sum over a family indexed by N, and Y ica to denote the sum
over a family indexed by the set {0,...,n—1}. In addition, we use “€ A", in reference to +
and ), as an abbreviation for “defined and in A ".
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Note that in a CA all sums are defined. However, we are interested in a wider
class of algebras — those for which + and )  need not be totally defined. These
algebras are referred to as generalised cardinal algebras, and they essentially obey
the postulates for a CA with added premises and conclusions about existence of
sums. More formally,

6.3 DEFINITION. A generalised cardinal algebra (or GCA) (A,+,Y) is a set A
together with a binary operation + and an infinitary operation ¥, both of which
may be only partially defined, subject to the following postulates: 3

(1) (Associative Postulate.) If a; € A for every i < 00 and } ;. _a; € 4, then
LicooGi+1 € A a0d 35,.0i =80+ T Bin1 -

(2) (Commutative-Associative Postulate.) If a;, b;, a; +b; € A for every i < co
and Y, oo(ai +b;) € A, then 3, a, 3 o0 €A and T, (a;+b) =
Ei<oo a; + Eu’<eo b" .

(3) (Postulate of the Zero Element.) The statement remains unchanged for GC As.

(4) (Refinement Postulate.) The statement is identical to that for CAs, with the
additional hypothesis that a + b€ A.

(5) (Remainder Postulate.) The statement is identical to that for CAs, with the
additional conclusion that 3, _ bs4s € A forall n < co.

6.4 THEOREM. (Tarski, 1949, 6.24) An algebra U = (4,+,3) isa CA if and only
if it is a GCA which satisfies the infinite closure postulate.

There is a natural relation on the elements of a GCA that is analogous to the
sum-ordering on the elements of a partial monoid.

6.5 DEFINITION. We say that a < b if ¢,0 € A and if there is a ¢ € 4 such that
a+c=0. The relation < is always a partial order.

3 For the sake of continuity, we have retained the names of the CA postulates for the GCA
postulates, even though the statements differ slightly between algebras. In the future, when we
refer to a postulate by name, the context of the algebra under discussion will make clear the
version of the postulate to be applied.



123

Since in a GCA all summable families have countable support and the relation
< is always a partial order, we can try to compare GCAs with w-so-monoids.
Note, however, that )  acts only on countable families in a GCA but acts on
arbitrary families in an w-so-monoid. Hence we cannot directly compare GCAs
with w-so-monoids. Our solution to this problem is to extend the definition of
Y ina GCA to f as follows. Let (a;:4 € I) be any family in a GCA and let
(a;:s € J) be its support. Define

. Y (a;:s€J), if Jis countable;
Y (aziel) = .
undefined, otherwise.

In a sense, all we have added to the definition of a GC A is the axiom that the sum
of an arbitrary number of geroes is still zero. Henceforth, we assume that all GCAs

satisfy this property. We may now compare such GCAs with w -so-monoids.

First, we ask whether all w-so-monoids are also GCAs. The partition-
asgociativity axiom together with the unary sum axiom immediately imply both
the associative postulate and the commutative-associative postulate. The existence
of the empty sum in an w-so-monoid serves to satisfy the postulate of the gero ele-
ment. However, we observe that neither the ~efinement postulate nor the remainder

postulate need be obeyed in an w-so-monoid. For instance,

6.6 COUNTEREXAMPLE. Let X be any set, and let 4 contain all subsets of X of
cardinality different from 1. Define ) over A so that a family of such subsets is
summable only if it contains countably many non-empty pairwise disjoint members,
in which case ) is set union. Then (4,)) is an w-so-monoid. In particular, let
X = {0,...,5}. Substituting for the variables in the statement of the refinement
postulate, let a = {0,1,2,3}, b= {4,5}, c0o ={0,1,2}, ¢; = {3,4,5},and ¢, =0
for n > 1. Then a+b =3, . ¢;, and so the premises of the postulate are satisfied.
Suppose that the conclusion of the postulate is also satisfied. That is, there exist
@0, B1y. ..y Biy.eeyboybyy..oybiy...€ A suchthat a =3, o, b=, b, and
Cn = 8a + b, for all n < co. Then it must be true that for n > 1, a, =0 =b,.
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Hence, a=a9+a;, b=0bg+ b, co=apo+bp,and ¢c; =a;+b;.

Case (i): ao = 0. This implies that a; = a, which in turn implies that
¢1 = a + by . This is impossible since a Z ¢; .

Case (ii): ao contains at least two elements. Since ¢y contains three elements,
and by cannot have cardinality 1, then it must be true that by = @. This in turn
implies that a9 = ¢9. But since the cardinality of a is 4 and the cardinality of ay
is 3, then a; must contain only a single element. This is by assumption impossible.
Therefore, the w-so-monoid (A4,) ) does not obey the refinement postulate.

In attempting to satisfy the refinement postulate, one would like to construct
the set of a, 8 and the set of b, 8 by decomposing each ¢, into its contribution from
a and its contribution from b. As we showed in the example above, it is not always
possible to do this in an w-so-monoid. However, it appears that a wide variety of
w -go-rings do obey the refinement postulate. In an w-so-ring, one might hope to
determine the contributions from a and from b in each c, by finding elements r, ,
Spn, tn, and u,, where 0 < r,,#, <1 and 0 < s,,4, <1, such that:

(1) rac=a, =tsa and spc = by = unb.

(2) ra+8a=1.

(3) Licooti=1=2 500 i

It is not sufficient, however, simply to be an w-so-ring in order to satisfy the
refinement postulate. It appears that it is also important to have a nontrivial
multiplication as well as a rich structure on the set of z for which 0 < z < 1.
(Note, however, that both of these attributes need not be present simultaneously.
For instance, refer back to example 2.34.)

6.7 COUNTEREXAMPLE. Consider the following poset (P, <) consisting of five dis-
tinct elements -0, a, b, ¢, and d.
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Note that this poset is a finite upper semilattice under the operation of supremum
and as such is an w -so-monoid. Using observation 2.49, we can extend this w -go-

monoid to an w -so-ring

such that the multiplication is trivial.

Note first that c =aVvb. Let ¢o =b,c; =d, and ¢, =0 for n > 1. Then,
¢ =co V¢, and so the premises of the refinement postulate are satisfied. Let us
suppose that the conclusion is true. Then ¢ =agVay, b=by Vb, co =aq V by ,
¢t =a1Vb,and for n > 1, ay =0=1",. Now, a; Vb = ¢; = d implies that
a; =0 or a; = d, since the only elements of P that are < d are 0 and d itself.
Since agVa; = a and d £ @, a; # d. Thus, a; = 0 which in turn implies
that 5 = d. However, by Vb, = b, and since d £ b, b; # d. Hence, we have a
contradiction, and 8o such an w -so-ring does not satisfy the refinement postulate. .

It is a bit tricky to construct an w-so-monoid which does not obey the remainder
postulate. We first show that any w -so-monoid which obeys the countable limit
axiom “almost” satisfies the remainder postulate. Then, we give an example of an
w -so-monoid which fails to satisfy the remainder postulate.

6.8 THEOREM. Let (4,)) be an w-so-monoid which satisfies the countable limit
axiom. If ay,ay,...,a;,..., bo,b1y...,b;...€ A and if g, = bp + ap4y for n =
0,1,2,..., then 7, . bas; is defined and in A for all n < oo, and there are
elements ¢, in A such that a, = ¢, + YicooOats for n=0,1,2,....

PROOF. First, we show by induction that Y, , ba., is defined for all n,k < co.
For k=1, ¥ . ba4i = ba, by the unary sum axiom. Assume that for k < m,
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Y i<k Un4¢ exists. Then,for k<m+1,

Gp = by + a1
= by + ba+1 + Gas2

=ba+bat1+ ...+ bntm-2+ Gpym-1
=by+bups1+ ...+ baym-2+ ba+m—1 + Gagm

=) b.+.-) + Opim

s <m

= Z ba+t') + ba+m + Gatm+1

t<m

= z ba-l-a') + Gatm+1-

f<m+1

We have thus shown that for all n < oo, given that 3, ; b,4; is defined for all
k < m, then it is defined for all ¥ < m + 1. Hence, it is defined for all & < oo.

The next step is to show that 3. 054 i8 defined. Since all subfamilies
of a summable family are summable, and since (bp4;:f < k) is summable for all
n,k < 00, all finite subfamilies of (bs4:¢ < 00) are summable. Therefore, by the
countable limit axiom, (by4s:% < 00) is summable.

Lastly, we must show that for each n < 00, thereis a ¢, in 4 such that a, =
Ca + 2icoo Inti- Since ag = 30, 4 buyi + auqp forall n,k < 00, 3t basi < 6a
for all n,k < co. Hence, for any § < 00, du4; i8 a summand of a,. Therefore,
Dicoo Unti < aa, which implies that for each n < 00, there exists ¢, in A4 such

that an =ca + Y ;coo Unsti -

However, there may fail to exist a single ¢ in A such that ay =c+ Y ;. dn+s
for all n < oo, as is shown by the following:

6.9 COUNTEREXAMPLE. Let X be a set, and let A be the collection of all subsets
of X with cardinality different from 1. I we define Y to be set union over
families of countable support, then (4,)]) is an w-so-monoid. In particular, let
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X =N. Foreach n < 0, let a5 = {1}U{m € N:m is even and m > 2n}, and let
ba = {2n,2(n + 1)} . Suppose there exists ¢ in A such that ay = c+ Y ;. boss
for each n < co. Then 1 i8 in ¢, since for all n < 00, 1 is in a, but is not in
ba4s for any ¢ < 0o. Since ¢ is a member of A, it must contain more than one
element, and so, in addition to the number 1, it must contain some even number
m, because for each n < 0o, the elements of a, are all the even numbers > 2n
together with the number 1. Hence, m = 2; for some j < co. But 2j & a; for
any k> j. Hence, m cannot be in ¢, and 80 ¢ = {1}, which implies that ¢ is not
in A, a contradiction. Therefore, (4,)°) does not obey the remainder postulate.

We have thus shown that an w-so-monoid need not satisfy all the postulates
for a GCA. However, as we demonstrate below, all GCAs are w-so-monoids.

6.10 OBSERVATION. The unary sum axiom is satisfied by every GCA.
PROOF. Suppose that b; =a for i=0. Then l.a=3; 6=, ,bi=by=a.4

Before we can show that the partition-associativity axiom is also satisfied by
any GCA, it is necessary to look more closely at generalized cardinal algebras.

Many theorems which apply to C'As can also be made to apply to GC A 8, often
with additional hypotheses and conclusions about the existence of sums. Instead
of re-proving each of these theorems for GCAs, we can automatically extend the
results for CAs to GCAs. We now show the manner in which this is done.

6.11 DEFINITION. An algebra U = (4,F,Y) is a closure of an algebra U =

(4,+,Y]) if the following conditions hold:

(1) Uisa GCA, T isa CA, and A is a subset of 4;

(2) for any elements a,aq,a;,...,8;,... € A, the formulas a = 2 icoo @ and
a= i'-«oa.- are equivalent;

(3) for every element a € A there are elements ag,a;,...,a;,... € A such that
a= E‘«»“‘ .

! Ina GCA A, the notation n-a is equivalent to Y icn0 foreach a€ A.
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6.12 THEOREM. (Tarski, 1949, 7.3,74) ¥ U = (4,F,Y) is a closure of U =
(A,+,2), then for every n < oo and for any elements a,b,¢c,a,4y,...,4;,...€ 4
(1) 6=, 0; and a =3 ;..a; are equivalent;

(2) a=b+¢ and a = b5 ¢ are equivalent;

(3) a=n-b and a=n"b are equivalent;

(4) d€ A and d < a is equivalent to d€ 4 and d < a.

6.13 THEOREM. (Tarski, 1949, 7.8) (Imbedding Theorem) For every GCA U =
(4,+,Y]), there exists a CA U which is a closure of U.

If we have a particular arithmetic result for CAs, we can immediately extend
the result to GCAs. First, we imbed a GCA U into its closure U which is a
CA. Since the given result holds in any CA, it holds in . This in turn implies,
by the above equivalences, that the result also holds in U .

We apply the imbedding theorem to the following theorem for CAs, in order _
to obtain a version for GC As.

6.14 THEOREM. (Tarski, 1949, 1.40) Let n,p < 00, and let ko, ky,...,k;, ... with
t<n+p, lo,yy..., k... with § <n,and mg,m,,...,m;,... with § < p be three
sequences of finite nonnegative integers, each without repeating terms, such that
every term of the first sequence occurs in one and only one of the remaining two
sequences, and conversely. Then 3 ., 0k = Y;catt, + ¥, Om, -

Note that the above theorem guarantees a restricted form of partition-

associativity for CAs.

6.15 THEOREM. The restatement of the above theorem as it applies to a GCA
U = (A4,+,)) contains the same set of hypotheses, with the following conclusions:
Licatpohi € A ifand only if 32, a1, 5cp0m;, and T, o, + LicpOm €A,
in which case, 3 ;cp4p8k = Lica o, + LicpOm; -

PROOF. First, weimbed U in its closure T = (4, F,Y.) . Hence, by the imbedding
theorem, theorem 6.14 becomes true in U. We prove the “only if* portion, leaving
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the “if* portion to the reader. Suppose that Ek,,_“, ay, € A. By applying theorem
6.11(2) if n+p = oo (theorem 6.12(1) if n 4+ p < 00) and then theorem 6.14, we

obtain . . .
> s T a=TaT o,

i<a+p i<n+p i<n i<n

This implies that

f%g E Gk, and -faﬂn g Z Gk,

i<n t<n+p i<p i<n+tp

which by theorem 6.12(4), in turn implies that

fq‘ € A and fa,,., € A.

i<n <p
Hence,
> o= ST Tom
<n+tp <n i<p
= Za,, F Ea,,,,. by theorem 6.11(2) and/or 6.12(1)
i<n i<p
=6, +)_ Gm, by theorem 6.12(2)
t<n i<p
inthe GCA U.

In addition to the above theorem, we need the fo-llowing theorem in order to

show that any GC A satisfies the partition-associativity axiom.

6.16 THEOREM. (Tarski, 1949, 2.21, 7.10) (Fundamental Law of Infinite Addition )
B 3 icad € A and Y, .a; < b for every n < oo, then 2 icoo® € A and
Et'<oo a; S b.

Having prepared the necessary background, we are ready to show that

6.17 THEOREM. Any GCA U = (A, +,Y) satisfies the partition-associativity ax-
iom.
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The theorem is proved as a set of lemmas.

6.18 LEMMA. In any GCA U = (4,+,)]), the partition-associativity axiom holds
for all finite partitions.

PROOF. We prove the “only if* part of partition-associativity, leaving the if* part
to the reader. Theorem 6.15 demonstrates that partition-associativity holds for
all partitions of cardinality < 2. Assume that partition-associativity holds for all
partitions of finite cardinality < m. Let (a;:¢ € I) be a summable family in 4,
and let (I;:5 < m) be a partition of I of cardinality m. Then, by the inductive
assumption, 3 (a:i€ ;) € A foreach j<m, ¥, (S (a:i€ I;})) € 4, and

Z(a.':i €eN= Z (E (a:i e I,-)) .
Jj<m
Choose k < m, and let {Ij,,I;,} be a partition of Ii. By theorem 6.15, we
know that the existence of ) (a;:4 € I;) implies the existence of 3 (a::i € Ii,)
for ¢ =0,1 and the existence of 3 ,(3 (ai:1 € Ii,)) . Furthermore,

Z(a.-:i el)= z (Z (ai:ie I,,')) .

g<2?

Hence,

Y (ezsen=Y (Z (a.-=i€1:'))

=Y (X @ieL))+Y (arieh)

j<m
jnk

= E (Z (as:s eI,-)) +q§(z(w:ieb;,)) .

J€<m
§i 1]

Now, {Ioy...s Je=15 Jkoy Jtyy Ik 41y - - -» Im—1)} 18 3 partition of I of cardinality m+1.
Since we arbitrarily selected the original partition, the k** member of it, and the

partition of the k*® member, we have shown that partition-associativity holds for
any partition of cardinality m 4 1, and thus for any finite partition.
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We must now show that partition-associativity holds for all countable partitions,
and to do this we use the fundamental law of infinite addition. Let (a;:5 € 1) be a
summable family in A of infinite cardinality. Without loss of generality, we assume
I = N. Again, we prove the “only if* portion of partition-associativity, leaving the
%if® portion to the reader.

6.19 LEMMA. If 3. . a; € A and (J;:5 < oo) is a partition of N, then for any

n<oo, 2,'«(}: (aﬁ':i € IJ)) € A and E,'«(Z (a"". € Ij)) < Z:.'<oo“-‘ .
PROOF. Forany n < 00, {U;<, fj»U;>q I} is a partition of N of cardinality 2.
Applying theorem 6.15 with this partition yields 3= (a4 € Uj., I,-) € A and

.Ea.- =2 (a.-:iegz,o) +3 (“"“GJLZ{I,) .

Note that (I;:5 < n) is a finite partition of Uj<n I;- By applying lemma 6.18 to
this partition, we obtain

) (a.-:iegt,-) =J§(2(a.-:iel,-)).

Hence,

doa=) (a,-:ie U.r,-) +3 (a.-:‘ie Uzj)

N = Z’:‘ (2 (a: ; L)+Y (a.-:i GZJ- 1,-) :

Therefore, 35, (3 (a:i€ L)) € A and T, (T (aii € 1)) € Ty s -

We obeerve that lemma 6.19 establishes the premises of the fundamental law of
infinite addition (substituting ) (a;:5 € I;) for a; and 3, a; for b). Thus, we
may conclude that 35. (3 (ai:i € I;)) € A and that Y i<eolX (a:i € I})) <
Et'<oo a; -
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We still need to show that 3=, a; < 30 (3 (a5:6 € I})) in order to com-
plete the proof that 3. 6 = T,coo(X (aizi € I;)) . Let K; = {j} for each
j < co. Then (Kj:j < oo0) is an infinite partition of N. Applying lemma 6.19 to

this partition yields
Z (z (a:i € K,-)) = Za,-

J<n J<n
for any n < co. Hence, 3., a; € A.

Now, for each n < 0o, there exists § < oo such that a, € (a.-:iel,-),
since (I;:j < oo) is a partition of N. Let & be the maximum element of
{:3m < nsuchthat am € (ai:i€1;)}. Substituting 3" (ai:i€l;) for q;
and K; for I; in lemma 6.19, we obtain 3. .. (T (ai:i€ I,'))':q € K;) =
Lick+1(T (aizi € I;)) € A. From the proof of lemma for 6.19 we also find that

Z (Z(a,-:iel,-)) =Z a;:8 € U I].
J<k+l j<k+1

Now (a;:% < n) is a subfamily of (a,-:i € U<t I,-) . Let Ko = {0,1,...,n-1},
and let K1 = (U;ces1Z;) — Ko. Then {Ko, K,} is a partition of UU;py, Iy of
cardinality 2. Thus, we can apply theorem 6.15 to this partition to obtain

2(«;:3’6 U I,’) =Z(a,-:s'eKo)+Z(a;:ieK1).

J<k+1

Hence,

kz;a.-=2(a.-:eexo)
<>, (a.-:a‘e U I;)

J<k+1

= 2 (Z(a,-:t’elj))

J<k+1

<Y (X esier)),

J<
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We have thus again established the premises of the fundamental law of infi-
nite addition (this time substituting Y. ..(¥ (a::4 € I;)) for b). Therefore, we
conclude that 35,8 £ ¥coo(X (ai:4 € I})), and by the antisymmetry of the
relation <, that 30, 6; = ;< (X (as:4 € I;)). This shows that the partition-
associativity axiom holds for all infinite partitions. Thus, we have proved that the
partition-associativity axiom is satisfied by any GCA U.

We have shown that any GCA is an w-so-monoid, but that an w-so-monoid
needn’t be a GCA. We conclude by showing that the countable limit axiom is not
necessarily satisfied by a GCA.

6.20 COUNTEREXAMPLE. The set N with + defined as the usual addition and with
2_ defined only for families of finite support, in which case 3 is also the usual
addition, is a GCA. However, N does not satisfy the countable limit axiom since
a family of countably infinite support is not summable even though every one of its -
finite subfamilies is summable.

Y, -Structures

Higgs (1980] has developed the notion of 3 -structure in order to motivate
integration theory from an algebraic standpoint. He considers an integral as a linear
function which preserves the algebraic structure of the underlying vector space, in
this case, a }_-vector space — a vector space together with a Y -structure which
provides infinite sums subject to a set of axioms. Higgs’s axioms for a Y -structure
are similar to the axioms on infinite sums in topological groups [Bourbaki, 1966
(also discussed below). They are related to but not equivalent to the axioms for a
partial monoid.

6.21 DEFINITION. A Y -monoid is a non-empty set A together with a partially
defined operation )7 such that for (a;:4 € I) a family in A, the following axioms
hold:
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(1) Unary Sum Axiom. If (a;:i € I) is a one-element family in A and I = {j},
then ) (a;:8 € I) is defined and equals a;.
(2) If 3-(a;:6 € ) existsand f: I — J is any function, then 3 (a;: f(5) = 5) exists
for each j € J, and 3 (3°(as: £(8) = §):5 € J) exists and equals 3" (a;:5 € I).
(8) If f:I — J is any function with J finite, and Y (a;: f({) = j) exists for
each j € J, then ) (a;:5€ ) exists and Y- (3 (a;: f(5) = j):5 € J) exists
and equals ) (a;:8 € I).

6.22 EXAMPLES. The motivating examples are the basic ) -monoids of analyais -
the real numbers R and the complex numbers C — where in each case ¥° is defined
so that (a;:¢ € I) is summable if and only if Y (a;:4 € I) is absolutely convergent.

In the above examples, each element of each ) -monoid possesses an additive
inverse. By observation 2.4, this implies that a }_ -monoid need not be a partial
monoid. Must a partial monoid necessarily be a ) - monoid? Note that the unary
sum axiom is axiom (1) and that the “only if® direction of the partition-associativity

axiom gives axiom (2). However,

6.23 OBSERVATION. In a ) -monoid A, all finite families are summable.

PROOF. Let (a;:s € I) be a finite family in A. Let J = I and define f: I — J
to be the identity function on I. For each j in J, ) (a;: f(3) = j) = a;. Hence,
the premises of axiom (3) are satisfied, and 80 ) (a;:s € I) exists.

Observation 6.23 need not hold in a partial monoid. For example, we know
that it fails in Pfn(D, D). Thus, we observe that a partial monoid need not be a
Y -monoid.

We now examine other algebraic objects which are constructed from ) -monoids
- Y -groups and ) -semirings.

6.24 DEFINITION. A Y -group is a Y -monoid which is a (necessarily abelian)
group under the operation a; +az = ) (a;:¢ = 1,2), and in which, if " (a;:4 € I)
exists, then 8o does Y (—a;:é € I) with ) (-a;:s€el)=-3 (a;:s€1).
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6.25 DEFINITION. A ) -bimorphism of ) -monoids A,B, and C is a func-
tion f:Ax B — C such that if }>(a;:s€J) and 3 (b:5 €J) exist, then
(f(a;,b;):8 € I,5 € J) exists and equals f(T(a;:i € 1), (bj:5 € J)).

6.26 OBSERVATION. A function o:A X A — A is a ) -bimorphism of the ¥ -
monoid 4 if and only if 35 and o obey the distributive laws for a partial semiring.
PROOF. If we assume that o:Ax A — A4 is a Y -bimorphism, then it follows
immediately that > and o obey the distributive laws.

Conversely, let (z;:i€J) and (y;:5 € J) be two summable families in A.
Suppose that ) and o: A x A — A obey the distributive laws. Then

Y(aieNo Y (yried) =Y ((X(awien)oyzjed)
=Y (X (@moyrien:jel)
=Y (moyrieljel).
Thus, o is a 3" -bimorphism.
6.27 Dnrmnoﬁ. A 3" -semiring is a }_-monoid which is also a monoid (A4, o)

with Ax A= A a ¥ -bimorphism.

If the 3 -monoid of a 3 -semiring is a partial monoid, then the ¥ -semiring
i8 a partial semiring. Alternatively, if the partial monoid of a partial semiring is a
2 -monoid, then the partial semiring is a Y -semiring. Both of these statements
are a consequence of definition 6.27 and observation 6.26.

This concludes our discussion of ¥ -structures. We now turn our attention to
the last infinitary partial addition.

Infinite Sums in Commutative Groups

The discussion of infinite sums in Bourbaki [1866] is confined to Hausdorff com-
mutative topological groups in which the group operation is written additively. The
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results obtained for infinite sums are used in determining series convergence. Since
every group element has an additive inverse, a nontrivial group is not a partial
monoid. However, these groups do satisfy the axioms for a _ -monoid, as we shall
see presently.

6.28 DEFINITION. Let (z;:4 € I) be a family in a Hausdorff commutative group
G. For each finite subset J of I let s; =3 (z;:4 € J). The family (z;:i€ 1) is
summable and its sum is s if, for each neighborhood V' of the origin in G, there
is a finite subset Jo of I such that for each finite subset J O Jy of I we have
aye8+V.

Hence, since all finite families are summable, the unary sum axiom is satisfied.
But because such a group is not a partial monoid, this implies that the partition-

asgociativity axiom ‘is not satisfied.

If we add the constraint that G is also a complete group (in the sense that G
is a group which is also a uniform topological space endowed with a left and a right
uniformity, each of which is a structure of a complete topological space), then we
have the following characterigation of summability.

6.29 THEOREM. (Bourbaki, 1966, IIL.5.2, Theorem 1) (Cauchy’s Criterion) A fam-
ily (zi:s€I) is summable if and only if for each neighborhood V of the origin
in G, there is a finite subset Jo of I such that 3 (z;:s€ K) € V for all finite
subsets K of I which do not meet Jj.

In the remainder of this discussion, we make the assumption that the group G
is complete.

6.30 PROPOSITION. (Bourbaki, 1966, I11.5.3, Proposition 2) Every subfamily of a
summable family is summable.

6.31 THEOREM. (Bourbaki, 1966, II.5.3, Theorem 2) (Associativity of the Sum)
Let (zi:4 € I) be a summable family in G, and let (Iy:A € L) be any partition of
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I. If s) denotes ) (z;:¢ € I)), then the family (s):) € L) is summable and has
the same sum as the family (z;:s € I).

6.32 PROPOSITION. (Bourbaki, 1966, III.5.3, Proposition 3) Let (z;:5€ I) be a
family in G, and let (I\: A € L) be a finite partition of I. If each of the subfamilies
(zi:8 € 1)) is summable, then the family (z;:1 € I) is summable and

Z(E(zﬁ:ielx)='\65) = E(z;:iel).

6.33 PROPOSITION. (Bourbaki, 1966, ITI.5.5, Proposition 5) Let f be a continu-
ous homomorphism of a commutative group G into a commutative group G'. If
(zi:¢ € I) is a summable family in G, then (f(z;):¢ € I) is a summable family in
G', and we have Y (f(z;):s € I) = f(X_ (z:i:5 € I)).

6.34 PROPOSITION. (Bourbaki, 1966, III.5.5, Proposition 6) If (z;:i€]) and
(vi:s € I) are two summable families in G, then
(1) (-ziziel),
(2) (nzi:s€l) for n€ Z, and
() (zi+ysel)
are summable families in G. Furthermore,
(1) Y(-zie)=-F(zi:i€]),
(2") X (nz:i€e)=n3 (zi:5€ 1), and
(@) YAzi+y:ieD=3Y(zzieD+L(ysse ).
Definition 6.28, theorem 6.31, and proposition 6.32 imply axioms (1), (2), and

(3) for a 3 -monoid, and proposition 6.34 shows that the additional Y -group
axiom is satisfied. Hence, we see that a complete Hausdorff commutative topological

group is a ) -group.



CHAPTER VI

CONCLUSION

This chapter is divided into two parts. The first part contains a summary of
the principal results in the thesis together with open questions and suggestions for
future work. The second part is a discussion of the relevance of these results to

theoretical computer science.

Summary

In chapter II, we presented the definition of a so-ring and provided several exam-
ples of so-rings, the principal ones being the natural numbers, the distributive lat-
tices, and the so-rings important in program semantics -~ Pfn(D, D), Mfn(D, D),
and Mset(D, D). We also defined the concept of so-ring homomorphism and sub-
so-ring, and we provided general constructions of so-rings, namely products, quo-
tients, and free so-rings. Unknown at this writing is the general construction of the

co-product of so-rings.

In Chapter III, we presented basic properties and substructures of so-rings: the
center, domains and ranges, adequacy, and inversibility, and we described their
interrelationships. Begun in this chapter and continued throughout the remainder
of the thesis, we noted the similarities between semigroups and so-rings, and we
generaliged results in semigroup theory to so-rings. Current research in semigroup
theory continues to demonstrate that that the structure of the set of idempotents of
a semigroup greatly influences the semigroup itself. The center of a so-ring, being

138
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the set of its inversible idempotents, appears to be a natural analogue of the set of

idempotents of a semigroup, and as such perhaps plays a similar role for so-rings.

Two related open questions are the following:

(1) To what extent does the structure of the center of a so-ring influence the struc-
ture of the so-ring? '

(2) Is there a close relationship between so-rings and semigroups whose idempotents
form a Boolean algebra?

Matrices over so-rings were introduced in chapter IV. A matrix over a so-ring
was defined as an array each of whose rows is supersummable. We discussed in-
vertibility as it applies to arrays over so-rings and gave equivalent conditions for
array invertibility (due to Manes and Benson [1985]). At this writing, the following
question remains unanswered: does the inverse of a matrix over a so-ring ever fail
to be a matrix? Following the section on invertibility, we discussed the concepts
of independence and basis. We demonstrated that for a wide class of so-rings, in-
cluding Pfn(D,D), Mfn(D,D), and Maset(D, D), a matrix over a so-ring R is
invertible if and only if its columns form a basis for R®, but the proof was not
reminiscent of the same theorem in classical linear algebra. For R equal to any
one of Pfn(D,D), Mfn(D,D), or Mset(D,D), and for n finite and nonzero,
we showed that if D has countably infinite cardinality, then R® has a basis of
cardinality m for each finite, nongzero m. If D is finite, then R™ has a basis of
cardinality n only. Many areas pertaining to matrices over so-rings have not yet
been explored. These include eigenvalues and eigenvectors (some introductory re-
marks appeared at the end of chapter IV), and similarity, equivalence, and canonical
forms of matrices.

In the firast section of chapter V, which was concerned with representations
of so-rings, we showed that any so-ring R may be embedded in the so-ring of
additive maps from R to itself. We also gave a set of conditions on a so-ring which
guarantee that it can be embedded in a so-ring of partial functions. Although these

conditions are sufficient, they are not all necessary. A complete characterization of
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all so-rings which may be embedded in the partial functions has yet to be found.
In the second part of chapter V, we generalized several partial orders studied in
semigroup theory to so-rings, namely, the multiplicative order (introduced at the
end of chapter III), amenable orders, and fundaméntally representable orders, and
we related each to the sum-ordering. There are no doubt other interesting partial
orders in the semigroup literature whose so-ring analogues have yet to be explored.

In chapter VI, we described the relationships between four algebraic structures
with infinite partial additive operations. Three of these - generalized cardinal
algebras, ) -structures, and infinite sums in topological groups — were used as
points of comparison with partial monoids (and partial semirings).

Implications for Computer Science

Although a primary motivation for performing a detailed investigation of the
structure of so-rings was to provide a framework and a set of mathematical tools
with which to build a matrix theory of algorithm transformation, we did not attempt
to develop auch a theory. We chose instead to concentrate on the mathematics,
thinking that providing a more thorough treatment at this stage would make the
development of a matrix theory of algorithm transformation possible, it being clear,
in any case, that imitation of proofs from classical linear algebra was not fruitful. In
addition, the structure of so-rings is interesting in its own right and hence deserves
a careful treatment. We do, however, present a set of questions for further study
pertaining to a matrix theory of algorithm transformation; these are outlined below.

Recall from the introductory chapter of this thesis, that any iterative algorithm
can be written as a matrix equation 2 = A2 4} over the partial functions from
some set D to itself, whose least solution is 2 = }~_,, A"}, the firat component of
which is the partial function denoting the original algorithm.
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The first question we ask is the following: is there any way to simplify the com-
putation of the solution of 2= A2+5?7 If D is a finite set (possibly approximating
an infinite one), then we can pursue an answer along the following lines. Recall
from chapter II, that any partial function can be embedded in the ring of complex
matrices, where each partial function is represented as a matrix of 0s and 1s. Under
this embedding, A and b become 0-1 matrices. Since we are now in a ring, the
matrix equation to solve can be expressed as (I — A)2 = §. It is not difficult to
show that the least solution can be determined simply by row reduction and substi- .
tuting Os instead of 18, when there is a choice of either; this solution is identical to
2 a0 A"b. However, what we have gained by being able to use row reduction, we
have lost by having to translate each partial function into its 0-1 matrix equivalent.
Thus, at this point, it is not clear whether there are any practical advantages in this
approach, but even so, this device has some potential for theoretical investigation.

Another direction to pursue is to determine if it is possible to perform a simi-
larity transform on the matrix A which simplifies the computation of the solution
of 2 = AZ +b. In other words, for some invertible matrix P, it may be eas-
ier to compute (P~!AP)® than A®. Hence, the solution would take the form
P} a>o(P~'AP)*P~'b. Some results have already been obtained by Manes [to
appear].

This leads us to the study of eigenvalues and eigenvectors of A. In classical
linear algebra, the eigenvalues of a matrix are the roots of the characteristic poly-
nomial, which has no analogue here. However, if we embed partial functions (as
0-1 matrices) in the ring of complex matrices, then we can compute the eigenvalues
of A in the classical manner. In any case, it is possible that the form of the eigen-
values of A can tell us something qualitative about the nature of the algorithm in
question. If this is so, then we may be able to use this information to determine the
form of the similarity tranformation of A4 and to determine other canonical forms
of A which might simplify the computation of 2 a>0 A"b. In addition, the nature
of the eigenvalues may give us clues as to how to construct equivalent forms of the
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original algorithm.

We hope that our study of so-rings, and in particular matrices over so-rings, will
form the basis for the development of a matrix theory of algorithm transformation
which will provide answers to the above questions.
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