Testing for Equivalent Algebralc Terms — EQUATE'

Steven J. Zeil

COINS Technical Report 8504
February 1985
Revised: November 1985

University of Massachusetts
Dept. of Computer and Information Science
Ambherst, Ma. 01003

! This work was supported by grants MCS-8303320 and DCR-8404217 from the National Science
Foundation, 84M103 from Control Data Corporation, and SCEEE-PDP/850037 from the
Southcastern Center for Electrical Engincering Education. This paper has been submitted to the
IEEE Transactions on Software Engincering.



Abstract

This paper introduces a new testing strategy, EQUATE testing. EQUATE represents an
attempt to merge the strzngths of perturbation testing and mutation testing in order to
provide a testing strategy that offers support for data and functional abstraction, that
detects a wide variety of simple faults, and that also provides good coverage of
combinations of those simple faults. EQUATE selects a number of test locations throughout
the program and chooses a set of expressions derived from the abstract syntax tree of the

module being tested. Test data is required that distinguishes each pair of these expressions
from one another at every test location.

Keywords: Testing, Perturbation Testing, Mutation Testing



I. Introduction

Much of the past research into software testing has depended upon severe restrictions
to the types of data and operations occurring in the modules being tested [3,6,9,11,16,17,18].
This is hardly surprising, since few areas of theoretical research would make much progress
without similar simplifying assumptions, at least in their beginning stages. Perhaps the most
common restriction for testing strategics has been to restrict their operation to numeric data
and to the standard arithmetic operators. Unfortunately, as support for data and functional
abstraction becomes more widely available both in language constructs and in design
methodologies, this restriction becomes less palatable.

This paper introduces a new testing strategy, EQUATE testing. EQUATE represents
an attempt to merge the strengths of perturbation testing [19,20,21] and mutation testing
[1,2,4,5,12] while also attempting to develop a method which is more compatible with the
ideas of modularity and abstraction which underlie much of software engineering. The
primary goals advanced for this testing method are:

1. to provide a testing strategy that is useful for modules employing varying levels
of data and functional abstraction;

2. to provide a testing strategy that both detects a wide variety of simple faults
and also provides good coverage of combinations of those simple faults.

The next section describes EQUATE in its “pure” form, the form most suited to
understanding its power and capabilities. Section III discusses the practical problems involved
in implementing EQUATE and some important shortcuts which greatly reduce the required
computations. Section IV describes its relation to other testing strategies, especially
perturbation and mutation testing. Finally, section V describes some possible avenues for
future research.

II. Conceptual View of EQUATE Testing

A given set of test data may do a thorough job of exercising some portions of a
module while leaving other portions almost completely untested. One possible response to
this observation is to require test data that causes execution to pass through all portions of
the module, or through selected combinations of portions of the module, in effect specifying
certain paths or classes of paths to be executed {10,13,14,15). One shortcoming of such path
selection approaches is the lack of attention to the actual data used to force execution of
the selected paths. It is entirely possible for a statement to be executed repeatedly without
our gaining any real confidence in that statement’s correctness. Such confidence seems tied
to our perception of whether the statement has been tested over a sufficient range of

different program states, a question that is only partially related to the test paths selected
through that statement.

Of course, what constitutes a “sufficient range of program states” is far from obvious
and is probably not subject to any single answer. In this paper an approximation to this
idea is proposed: Each valued object (variables, constants, and expressions) in the module



2

should take on values that, on at least one execution, can be distinguished from those of anmy
other such object and from those of any constant (not necessarily appearing in the module).
When this condition has been satisfied at module locations immediately before and after a
given statement, that statement is considered to have been properly exercised by the test
data. If this condition is not yet satisfied at some location, then a wide variety of possible
faults may be present at that location without their having affected the test results.
Examples include substitution of one object for another, missing assignment statements in
which one object should be assigned the value of another, and a potentially infinite number
of missing or oversimplified expressions that should have involved the two objects.

The EQUATE strategy therefore provides a local measure of the effectiveness of a
set of test data, a measure which is applied at a variety of test locations throughout the
module in order to gauge the overall effectiveness of a set of test data. This measure
consists of a set of designated expressions and constants, referred to as terms, each of
which must be distinguished from the others during testing.

The test locations occur at the beginning of each basic block and immediately
following each statement in the block except when that statement is a conditional or
unconditional branch. As each test location is reached during the execution of a test, the
terms are evaluated and then scparated into equivalence classes. Each equivalence class will
contain only those terms with equal values when evaluated at that test location. Thus,
each time that a test location is reached, a partition is defined on the set of terms. A new
set of equivalence classes are formed from the intersection of the partitions obtained each
time that same test location is reached. Any two terms remaining in the same class have
been equal for every test. Subsequent test data should be chosen to give those terms
non-equal values at that location.

The key to EQUATE’s power lies in the sclection of the sct of terms to be
distinguished from one another. There are three major components to EQUATE’s set of
terms:

1. The first component is the set of all expressions and subexpressions from the
abstract syntax tree of the module being tested. This set is called the expression
set of the module. The procedure in figure 1, for example, has the expression
set shown in figure 2. Testing is required to continue until, at each test
location, all members of the expression set have taken on distinct values at
least once and therefore have been separated into different equivalence classes.

2. The second component of EQUATE's set of terms is the set of values taken
on by the expression set terms during testing. Actually, only the first value
taken on by cach expression set term is really of interest, since the point of
this component is to force each expression set term to take on at least two
different values. Testing must therefore continue until each of these values has
been separated from the expression set term that generated it.

2 In this listing, and elsewhere in this paper, O is used to denote a single blank character.



package Variable Length Strings is
type VString is private;
function String_to_VString (S: string) return VString;
function Len (S: VString) return Natural;
function Left (S: VString; Width: integer) return VString;
function Right (S: VString; Width: integer) return VString;
fuaction Mid (S: VString; Start, Width: integer) return VString;
function ‘&° (S, T: VString) return VString;

private

end ilaﬁable..Lengtb.Suings;

with Variable_Length Strings; use Variable_Length Strings;
procedure Compress_Double_Blanks (S: in out VString) is

L: integer;

bcsinl -1
wl;ile ’l < Len(S) loop
if Mid(S]2) = String_to_VString(“00”) then
S = Left(S,1-1) & Right(S,Len(S)—l);

1=1+1
end if;
end loop;
end Compress_Double_Blanks;

Figure 1: String Manipulation module.

else

Integer: 1 1 Len(S) 2 I-1 Len(S)-1 I+1
String: “«ar
VString: S Mid(S,1,2) String-to_VString(“oo")
' Left(S,1-1) Right(S,Len(S)-I)
Left(S,1-1)&Right(S,Len(S)-T)
~ Boolean: I<Len(S) Mid(S,I,2)=String to.VString(“c0™)

Figure 2: Expression Set for String Manipulation module.




3. The final component is the set of expressions that can be formed by
substituting any member of the expression set for any subexpression of another
expression set member. This procedure will be called operand substitution. Thus,
for the procedure in figure 1, some of the new terms would be I+1<Len(S),
I-1<Len(S), Mid(S,Len(S)-12), and Mid(Left(S,I~1)&Right(S,Len(S)-1),1,2).
Testing is required to continue until each of these terms has been separated
from the expression set term that generated it. (Note that two substitution
terms derived from different expression set terms need not be distinguished
from each other.)

The inclusion of the expression set and the values of the expression set terms by
EQUATE is clearly related to the goal of distinguishing each valued object in the program
(ie., each expression set tcrm) from every other object and from any constant (the values
taken on by the expression set terms). To understand the role of the substitution terms, it
is mecessary to return to the question of what it means to distinguish one object from
another.

Clearly a necessary condition for distinguishing two objects is that the strings of bits
representing the values of the objects must differ. This is not, however, by itself a sufficient
condition. A principal tenet of data abstraction is that an object’s value is revealed through
the operations provided for use with that object. A reasonable conclusion would seem to be
that two objects can be distinguished only if the values of the operations applied to those
objects are different. Thus, for example, a portion of a memory management system
concerned with manipulating blocks of uninitialized storage might be less concerned with
whether the contents of two blocks differed than with whether the sizes of those blocks
differed. Thus in testing a statement of that system it is entirely reasonable to claim that
THIS BLOCK and THAT_BLOCK have not been distinguished from each other until
SIZE(THIS_.BLOCK) is distinguished from SIZE(THAT-BLOCK). Note that “distinguish”
begins to take on a recursive nature. Each expression computed by a module, by virtue of
its returning a value when evaluated, represents a data object in its own right, which
should then be distinguished from the other objects in the module.

Now if X and Y are variables and f is one of the operations on X, X is
distinguished from Y only if f(X) is distinguished from f(Y). If, for example, X were a
floating point number and the module makes use of ABS(X), it makes sense to say that X
and Y bave been distinguished only if they have taken on different absolute values. If g is
an operation on the type of data returned by f, then f(X) is distinguished from f(Y) only
if g(f(X)) is distinguished from g(f(Y)).

If this chain of reasoning were continued for all possible operations then it could
continue in this fashion indefinitely. As a practical matter, we must choose only those
operations that are not only legal but also reasonable for each object. If, for example, X is
a floating point number, the operation SIN(X) may be legal, but there is little point in
checking the value of SIN(X) if the module is not performing trigonometric calculations. On
the other hand, if the module already contains a reference to SIN(X), this constitutes prima
facie evidence that SIN is a reasonable operation on X. Thus EQUATE operates by the
rule that two objects X and Y are distinguished only if, for each operation f such that
either f(X) or f(Y) appears in the module, f(X) is distinguished from f(Y). If there is no
such operation f, ther X and Y are distinguished if X+Y.



5

While this way of limiting the set of operations on expression set terms is a patural
solution, it is not the only reasonable approach. The very name “operand substitution”
suggests the possibility of “operator substitution” as an additional or as an alternate source
of terms. Some data types (eg. integers) may have a massive number of legal operators
and functions. It may be quite common that only a fraction of these would be reasonable
for any given module. (Consider, for example, the possibility of pulling some abstract data
type from a library of frequently-used routines. A considerable number of operations on
that type may have been added for use by other projects that required a fuller set of
operations than the module currently under test) Operator substitution would therefore be
most useful if operators could be grouped into classes of related functions from which
substitutes would be chosen. Such classes might be suggested by the programmer based upon
a perceived relationship among the operators (eg- the relational operators, or the set of
standard trigonometric functions). Where the language or eavironment supports the grouping
of related functions (e.g. the ADA Package), such groups could be taken as the basis for
classification. This form of operator substitution may be considered a likely candidate as a
fourth componeat (possibly optional) of EQUATE's set of terms, but has not yet been
explored further.

Many of the operations on a given object X may involve other parameters besides X.
If we wish to distinguish X from Y, and the operation f(X,Z) appears in the module, what
requirement on f is imposed in order to distinguish X from Y? Clearly it would be
impractical to try all possible values for the second parameter of f. A natural solution is to
use exactly those expressions that actually appeared in the code invoking f(X,Z). In effect,
the actual operation on X is &(x) = f(x,Z), and we are requiring g,(X) to be distinguished

from g,(Y).

The arguments presented here describe exactly the set of terms identified earlier as
the operand substitution terms. It should also be clear from this discussion why each
operand substitution term is only required to be distinguished from the expression set term
it was from which it was derived and not from all other substitution terms. Substitution
will usually be responsible for the bulk of the terms to be employed. Indeed, operand
substitution may appear to generate a prohibitively large number of new terms. It is
possible that, for some appli tions, testing with the expression set and constants without
substitutions would prove adequate. This would be most likely for very large modules,
where the number and variety of expressions and subexpressions is much greater. Keep in
mind, however, that this section is presenting the conceptual view of EQUATE without
regard to computational efficiency. Section III will introduce means of reducing the number
of substitutions to be handied at any given moment.

To conclude this section, consider some possible errors and the way in which
EQUATE might lead to their detection. Figure 3 shows the body of the procedure from
figure 1 with labels indicating the test locations and dotted lines separating the basic blocks.
The first digit in each label denotes the block number, and the second indicates the
position within the block. There are a variety of places where "off-by-1" errors could
occur. Consider the expression Right(S,Len(S)-I). EQUATE would catch such an error by
requiring at least one test on which Right(S,Len(S)-I) gives a value different from
Right(S,Len(S)~(I+1)) and Right(S,Len(S)-(1-1)) at test location 4.1. Similar requirements
occur for all expressions involving I. One might legitimately object that, although EQUATE
would catch off-by-1 errors in this module, it will not do 30 in other modules where “+1”
~ and ‘1" operations do not occur as part of the expression set. It is this author's



oooooooooooooooooooooooooooooooooooo

begin
11-
I:=1
12-
R R EE R
while I < Len(S) loop
31- .................................
if Mid(S,1,2) = String_to_VString(“a0") then
41_ .................................
S := Left(S,I-1) & Right(S,Len(S)-I);
42~
e else. ......................
51—
I=1+1;
52-
wd it T
6.1-
end loop;
71_ ..........................

end Compress_Double Blanks;
Flgure 3: 'r;m Locations.

contention, however, that this type of error is most likely to occur in precisely those
modules where the constituent operations do include incrementing and decrementing by 1,
operations which EQUATE will then use to advantage. :

Another interesting error would occur if the operation “I := I + 1;” were moved
outside of the IF construct, so that it is performed each time through the loop. Such an
error would be detectable only with test data containing a sequence of three or more
consecutive blanks. Such test data would be required by EQUATE since, in order to
separate it from the constant denoting its first value, every term in the expression set must
take on at least two distinct values. Thus the boolean  expression
Mid(S,1,2)=String to_VString(“00") must take on both true and false values at every test
location. For this to occur at location 42, the procedure must be tested with data
containing a string of more than two blanks. This error illustrates the usefulness of basing
the testing requirements at each location on all the terms, rather than just the terms
appearing at that particular location.

Other interesting test cases will arise from the fact that this module has expressions
that count up from O and that count down from the length of S. The principal examples
of these are I and Len{S)}l. EQUATE will require asymmetric strings in order to



7

distinguish terms like Left(SX) from Right(S,.Len(S)}I) or Mid(S,12) from Mid(S,Len(S)1,2).
An additional requirement will be that the patterns of double blanks be asymmetric to
distinguish Mid(S,1,2j<Stringto_VString(“00") from Mid(S,Len(S)1,2)=String_ta_VString(“c0”)
at various locations throughout the module. These requirements test the direction of the
scan performed by the module and its relation to the substring extraction operations.

Many of the test cases required by EQUATE compare quite favorably with intuitive
notions of good testing practice, such as rule-of-thumb procedures for exercising loops. For
example, the fact that I<Len(S) must take on both true and false values at location 2.1
means that test data is required both to enter and to bypass the loop. The test case that
bypasses the loop must be one for which the length of S is no greater than 1; thus the
module is required to be tested with inputs of minimal size. The empty string must be
used as a test case since I and Len(S) can only take on ditferent values at location 7.1 if
the loop is never entered and if Len(S)#1. Tests are also required that execute the loop
more than once since I<Len(S) must at least once be true at location 6.1. In fact since
I<Len(S) must take on both true and false values at locations 42 and 52, tests will be
required that both repeat the loop after each branch of the “if” and that leave the loop
immediately after each of those branches.

HI. Implementation Considerations

In this section, the EQUATE scheme is reviewed with an eye towards the issues and
problems involved in implementing it with reasonable efficiency and with minimal
restrictions on the programming language constructs to which it may apply. This section
therefore discusses the ways in which EQUATE is defined for practical programming
languages, some algorithmic shortcuts to improve efficiency, and the types of supporting
analysis and tools required for use with EQUATE. This section then concludes with an
extended example of the use of EQUATE on the program presented earlier in figure 1.

Programming Language Constructs

The major activity associated with EQUATE is the determination of whether a pair
of terms are equivalent in the current program state. A definition of what it means for
two terms to be equivalent is therefore important. The major criterion for equivalence is
that the values of the two terms must be represented by the same string of bits (or other
underlying representation). Additional criteria for equivalence may be imposed bty a
particular language. In languages with strong typing, two terms can be judged equivalent
only if they have the same type. In fact, a pair of terms having different types may be
considered to initially lie in separate classes provided that there is no possibility for operand
substitutions involving the two types. Additional provisions must be made for derived and
constrained types, if they exist in the language.

Another difficulty with determining equivalence of terms is the possibility that a term
may be undefined or illegal at some points in the testing process. A term is undefined at
some point during execution if any variable referenced by that term has not been assigned
a value since the start of the module or since any statement which “undefined” that
variable. A term is illeca! in some program state if the process of evaluating that term
involves some prohibited operation (such as division by zero) which would cause a run-time



8

error. Two terms will be considered equivalent in some program state if both return the
same data type and if neither is illegal in that state and if either is undefined or both
have equal values in that state. The idea behind this definition is that terms that, if
evaluated at that point, would cause a run-time error may be considered to have been
distinguished from all legal terms, but a term whose value is simply unknown cannot be
guaranteed to be distinct from any defined term. If the module being tested is intended for
use in an environment where references to undefined variables are detected and flagged as
errors, then such undefined terms are actually illegal and may be considered to be
distinguished from all defined terms.

Other practical problems with EQUATE involve determining a reasonable
interpretation of various language constructs. For example, references to array
elements/record fields are probably best treated as expressions involving an indexing/selection
operator with the array/record as one operand and the indices/field as the remaining
operands. A more substantial problem is posed by procedure calls. Clearly the parameters
of a procedure call are themselves members of the expression set and 50 will enter into the
testing requirements. The procedure call itself is more problematic. One possibility is to
regard it as if it were an /O statement and to be satisfied simply with testing based upon
its operands. For many user-defined data types, however, the choice between implementing
the principal operations as functions or as procedures may, for whatever reason, be resolved
in favor of procedures. Ideally, such decisions should not substantially alter the testing
requirements, but in this case the use of procedures would substantially reduce the set of
operations available to EQUATE for generating new terms. A better solution, therefore, is
to treat a procedure call such as PROC(x,y,z) with input parameter x, output parameter z,
and in-out parameter y as an extended assignment statement
‘y := arg2(PROC(x,y2)); z := arg3(PROC(x,yz))", witk the assignments being simultaneous.
The advantage of treating procedures in this fashion is that the procedures themselves
become part of the expression set, and substitutions of procedure parameters become subject
to testing.

Sopporting Analysis and Tools

EQUATE is not intended to be applied manually, nor even as a stand-alone testing
tool. Instead, the tools and support facilities of a good programming eanvironment are
presumed available. These include a parser to generate the expression set, tools for data
flow analysis and symbolic manipulation of expressions, the ability to break execution and
save the current module state for later restoration (after the evaluation of expressions that
may include calls to user-defined functions, that may in turn have various side-effects), and
possibly a simple theorem prover.

Some terms may always be undefined at particular test locations. If, for some term,
there is no legal path from the start of the module to a test location on which all
variables appearing in that term are defined, then there is no point to including that term
in the testing criteria for that location. The majority of these terms can be identified via
static data flow analysis.

Some terms may always be equal to some other term (including a constant) at a
particular test location. Identifying such equivalences and treating the resulting group of
terms and constants as a single item might lead to some run-time savings, but, more
importantly, it would allow a testing tool to avoid telling the tester to seek data that



9

would distinguisis two indistinguishable terms. Detecting such equivalences automatically
might seem to require a sophisticated theorem prover, but in fact a great deal can be done
with simpler tools that examine no more than one basic block at a time. Most functionally
equivalent terms will result from assignments such as “X := f(Y)" or from passing through
conditional statemeats such as “if X = f(Y)". At the test location immediately following
this statement, the terms X and f(Y), both of which should be in the expression set, will
be equivalent no matter what data is employed. This equivalence will continue to hold for
all succeeding test iocations within the same block until either X or Y is redefined. The
same will be true for any terms of the form g(X,Z) and g(f(Y),Z). Most such equivalences
can be determined via symbolic execution of the basic block, combined with rudimentary
simplification of those expressions that involve the standard arithmetic operators.

The prospect of introducing additional analysis mnto what may appear to be an
already expepsive testing method may be somewhat discouraging, but mote that the data
flow and symbolic analyses described above operate on the 2tz form of the module and
hence are done only once at the start of testing. There arc, Sowever, substantial advantages
to allowing some of these analyses to be done throughout the testing process. In particular,
a simplifier or theorem prover will require simplification rules or axioms for the abstract
data types appearing in the module under test. If these are not supplied as part of a
formal (algebraic or axiomatic) specification of the module, then the tester should be
allowed to supply such rules during testing. The EQUATE terms can provide motivation
and guidelines for such rules, as will be demonstrated shortly.

Efficlent Implementation of EQUATE

The use of data flow analysis and symbolic evaluation can also help to improve the
efficiency of EQUATE by combining certain classes from several test locations within some
block into a single test location at the start of that block. As an example of this, consider
test locations 1.1 and 12 in figure 3. The intervening statement assigns a value to the
variable 1 but leaves the other variables unchanged. Let X and Y be any two terms. If
neither X nor Y uses the variable I, then X and Y will be in the same equivalence class
at location 12 if and only if they are in the same equivalence class at location 1.1. If,
therefore, we have an equivalence class at 1.2 in which none of the terms use I, then we
can ignore that class because the tests required to distinguish its terms from one another
will also be required at 1.1.

A generalization of this technique for eliminating certain classes involves
back-substituting for the redefined variables, thereby collapsing the testing criteria for several
locations into an expanded set of terms at the start of the block. For example, the terms
affected by the assignment statement between 1.1 and 12 are I, 141, I-1, Len(S)-I,
Mid(S,12), Left(S,JI-1), Right(S,Len(S)-I), Left(S,1-1)&Right(S,Len(S)-I) and I<Len(S).
These are distinct at 12 from each other and from the remaining terms of the expression
sct if the terms 1, 1+1, 1-1, Len(S)-1, Mid(S,1,2), Left(S,1-1), Right(S,Len(S)-1), and
Left(S,1-1)&Right(S,Len(S)~1) are distinct from those other terms when evaluated at 1.1. If
these terms (and the associated operand substitutions) are added to the set of terms for
location 1.1, then nothing at all needs to be done to monitor testing at location 12. The
use of back-substitution may save a tremendous amount of computation if the percentage of
terms affected by a single statement is small, although in the worst case it would
substantially increazs tha amount of computation.



10

It is possible for back-substitution to make the testing criteria more stringent by
forcing the testing of terms which previously would not have been considered together. For
example, the terms I from 1.1 and Len(S)-1 from 12 do not properly belong together, and
before the use of back-substitution there would not have been a requirement for test data
to distinguish the two. Such a requirement can be avoided by associating with each term a
list of the locations at which it is valid, and reporting only those equivalences involving
terms from the same locations. In fact, it may be a good idea to report equivalences as if
back-substitution were not being employed, listing separate classes for different locations, so
that the user is still presented with the conceptual view of EQUATE.

Perhaps the single most expensive-looking aspect of EQUATE, both in terms of
execution time and space, is the sheer number of terms generated by operand substitution.
This number can be dramatically reduced by delaying the substitution process. Consider two
variables X and Y, and an expression set term f(X,Z). By operand substitution, we get a
new term f(Y,Z) and a requirement for test data distinguishing f(X,Z) from f(Y,Z). Note
however, that f(X,Z)=f(Y,Z) whenever X=Y. Consequently we need not begin to check
f(Y,Z) untii we have first distinguished X from Y. Now suppose further that f(X,Z)
consists of a single operator or function with X as one of its operands (though Z may
actually be an arbitrarily complex expression) and that there is a term in the expression set
g(f(X,Z),W). When X is distinguished from Y, we need not automatically consider the term
g(f(Y,Z),W). Instead, we only gencrate the operand substitution terms like f(Y,Z) involving
a single operation on X and Y. The more complicated substitution term g(f(Y,Z),W) need
only be generated when f(X,Z) is distinguished from f(Y,Z) (which may be immediately
true or may occur only after additional tests). Note also that the term f(Y,Z) will cease to
be of interest when this occurs, except in as much as its value is required as an operand
to g, and so need no longer appear in any equivalenre classes.

Thus, when any two terms are distinguished, we generate the operand substitution
terms involving a single operation applied to one of the newly distinguished terms. If each
of these new terms is equivalent to its corresponding term from the expression set, then the
process stops. If a new term is not equivalent, then that term and the original one are
used to generate another level of operand substitution terms. This continues until an
equivalence is found or until neither of the newly distinguished terms is a subexpression of
a member of the expression set. Halting is guaranteed because the terms created in this
manner are growing more and more complicated, and so we cannot continue indefinitely
forming new expressions in this manner before they cease to be members of the expression
set.

An Example of EQUATE

To illustrate the ideas preseated in this section, consider again the procedure in
figure 3. We will step through the testing of this module as guided by EQUATE, taking
advantage of prior data flow analysis, delayed operand substitution and the use of a
symbolic evaluator that can accept new simplification rules interactively and has some very
limited theorem proving abilities for dealing with relational expressions. These capabilities
bave been implemented by the author in a prototype EQUATE system, which was used to
generate the equivalence classes shown here.



1

Suppose that the module in figure 3 is tested with input data S=“abc”. At location
11, the only expression set terms that can possibly be defined are S, Len(S) and
String.to_VString(“c”), so the resulting equivalence classes are {S “ambe™}, {Len(S) S} and
{String_to_VString(“0”) “00"}. Thus we know that we need an additional test where S has
a different value and a different length. The third class would be of interest only if the
Stringto_VString function could return different values given the same inputs. While such
behavior may be prohibited in mathematical functions, it is far from unknown in most
programming languages (The most common example would probably be functions associated
with input from external devices). It is useful to be able to flag “pure” functions and
procedures like String to_VString so that such classes are not reported. Assuming this is
done, since the remaining two classes at this location do not provide much information
about the required test data, we move on to location 12.

The non-trivial equivalence classes (i.e. those containing at least two terms, with at
least one of those belonging to the expression set) for location 12 are:

{5 “abe" )

{ Lea(s) 5}

{ Lea(SH 4}

{ Mid(S.12) “a0" }

{ LeftSI-1)  “"  Left(Stringto.VString(‘0O)l-1)  Left(Mid(S,1,2),1-1)
Left(Right(S,Len(S}D,-1)  Lefe(Left(S,I-1)&Right(S,Len(S)1)J-1) Left(S,1-2)
Left(S.I-(Lea(S)D)  Left(S-Len(S)) }

{ Right(S,Len(S)})  Left(SI-1)&Right(S,Len(S)}) Cobe
Right(Left(SJ-1)&Right(S,Len(S)}T),Len(S)1). }

{ I<Len(S) true I+i<Len(S) I-1<len(S) I<Len(Mid(S}.2))
I<Len(Right(S,Len(S)}D))  I<Len(Left(S,I-1)&Right(S,Len(S)1)) }

{ Mid(S,I2)=String to_VString(“00")  false Mid($,1,1)=String _ta_VString(“0y")
Mid(S,Len(S),2)=String to_VString(*0r") Mid(S,1-1,2)=Stringta_VString(“00)
Mid(S,Len(S)1,2)=Stringto_ VString(“tI?™)  Mid(S,1,2)=S S=String_to_VString(“0")
Mid(Left(S,I-1)],2)=Stringta_VString(“00™) Mid(S,I,Len(S))=String to_VString(*00")
Mid(S,1,I-1)=Stringta_VString(“0r") Mid(S.!,Len(S)-T)=Stringto_VString(“7")
Mid(S,12)=Left(SI-1)  Mid(S,],2)=Right(S,Len(S)-I) Mid(S,1 2)=Left(S I-1)&Right(S,Len(S)-T)
Left(S,I-1)=Stringta_VString(“00") Right(S,Len(S)-I)=String ta_VString(“o™)

Left(S I-1)&Right(S,Len(S)-T)=Stringta_VString(“rr”) )

The first four classes are, like those at 1.1, reflections of the need for each expression to
take on non-constant values. Since this requirement is trivially easy to satisfy at this
location, we proceed to consider the fifth class. Since I is always equal to 1 at this
location, the expression set term Left(S,I-1) simplifies to Left(S,0). This class therefore
indicates that Left(S,0) should be distinguished from the empty string and from a variety of
other terms involving Left. Since the operation Left(S,0) represeats a special case returning
the empty string, most of the terms in this class are redundant and could be eliminated if



12

the simplifier knew that Ceft(X,N) - *“” whenever N=0’ Giving this rule to the simplifier
reduces this class to

{ Left((S11)  Left(SI-Len(S)  Left(SI(Len(S)D) ).

The further inference that Left(S,1-Len(S)) must always return an empty string is too subtle
for the current simplifier, but, once discovered by the tester, it can be entered as a further
axiom. Thus the class is reduced to { “" Left(S,I-(Len(S)I)) }. The latter string simplifies to
Left(S.2-Len(S)), which can be non-empty only if Len(S)=1, so0 we know know that a test
case consisting of a single character is required. This seems specific enough for us to
propose a second test run, this time with input S=“x". Running this test case and taking
the two new axioms into account causes both equivalence classes at 1.1 to become trivial,
and reduces the classes at 12 to:

{ Left(S.I-1)&Right(S,Len(S})  Right(S,Len(S)N)
Right(Left(S I-1)&Right(S Len(S)}) Len(S)}H) }

{ I<Len(S) I+i<len(S) I<Len(S}l I<Len(Mid(S12)) I<Len(Right(S.Len(S)T)
I<Len(Left(SI-1)&Right(S,Len(S)D) }

{ Mid(S,1,2)=String-to_VString(“"0¥")  false  Mid(S,I,1)=String-to.VString(“C")
Mid(S,Len(S),2)=String-ta.VString(“0")  Mid(S,I-1,2)=String_to_VString(“CI")
Mid(S,Len(S)}1,2)=String_to_VString("00")  S=String-ta..VString(“0")
Mid(Left(S,1-1),1,2)=Stringto_VString(“00™  Mid(S,I,Len(S))=String-to_VString(“07")
Mid(S.],Len(S)}-T)=String_ta_VString(“00")  Mid(S,1,2)=Left(S]-1)
Mid(S.].2)=Right(S,Len(S)})  Mid(S,].2)=Left(SJ-1)&Right(S,Len(S)-1)
Right(S,Len(S)-)=String-ta_VString(“00")

Left(S.J-1)&Right(S Len(S)-T)=String _to_VString(“00") }

Examining the first class shows a nced for two more simplification rules. The first is
that “"&X - X for any string X; the second is that Right(Right(X,N),N) - Right(X,N) for
any X and N. Moving on to the second class, we have I<Len(S), which simplifies to
1<Len(S) and which has so far been equivalent to I+1<Len(S) and to I<Len(S)}I, both of
which simplify to 2<Len(S). These two can be distinguished by any test where S is of
length 2. Rather than immediately choose a string of this form, we proceed with the
examination of the classes to see if a more specific requirement can be found. The term
1<Len(Mid(S,1,2)) is inherently equivalent to 1<Len(S) when I=1. Proving this is beyond the
capability of the current simplifier, so it is given as a new axiom. The term I<Len(S) will
be distinguished from I<Len(Right(S.Len(S)}I) when Len(S)=2, so there is no new
information to be gained from this class.

3 Because of the inherent symmetry of the Left, Right, and Mid operations, this rule naturally
suggests similar rules for Right(X,N) and Mid(X,J,N). We will assume henceforth that such rules
arc always supplied to simplifier together with any new rules specifically noted during the
discussion.



B

Moving to the final class, we find that the simplified expression set term
Mid(S,1,2)=String_to_VString(“00") has been false for both test cases used so far. This
suggests that at least one test is required where S begins with a pair of blanks. Combining
this with the earlier requircment of a test where Len(S)=2 suggests that the module be
executed with S=“0". This test, and the new simplification rules, leaves a single class at
location 12:

{ Mid(SJ,2)=Stringta.VString("00™)  Mid(S,Len(S)-1,2)=Stringta_VString(“CIr")
S=String ta_VString(*I)  Mid(S,],Len(S))=String to_VString(“r") }

The first term in this class can be distinguished from the second by any string that has a
pair of blanks at one end but not the other and can be distinguished from the other terms
only by a test where S begins with a pair of blanks but is of iength greater than 2.
Again, since these are fairly gemeral conditions, we elect to examine other classes to get
additional guidance. Since there are no more classes at location 12, we move on to
location 2.1. Because this test location is reached just prior to each evaluation of the
while-loop condition, this location has been reached with many more program states than
has location 12. It is therefore not surprising that very few classes are left here. The
classes remaining at location 2.1 are:

{ Left(SI-1) Left(Left(SI-1)&Right(S,Lea(S}D),1-1) }
{ Right(S,Len(SyI) Right(Left(S,I-1)&Right(S,Len(S)-T),Len(S)}H) }

These classes can be  disposed of by adding the new simplification rules
Left(Left(X ,N1)&Right(Y ,N2)N1) - Left(X )N1) when N1sLen(X) and
Right(Left(X N1)&Right(Y N2),N2) - Right(Y ,N2) when N2sLen(Y), and by unoting that
Isl=Len(S)+1 at every location but 1.1. This last rule is different from the ones employed
so far, in that it is not an axiom on the data types manipulated by the program, but
instead represents a statement about this module that cannot be determined via purely local
information. A theorem prover capable of global analysis of the code would have little
trouble proving that I=1 and could also determine that IsLen(S)+1 given a few axioms
regarding the length of the strings returned by Left and Right. In the absence of such a
powerful tool, the system should allow the tester to enter such rules. These rules are
distinct from the data type axioms in two important aspects: 1) these rules may be tied to
specific program locations, while the axioms apply throughout the program, and 2) these
rules are specific to this program, while the axioms could be stored with the modules they
describe, allowing them to be used during the testing of other programs that call those
modules (We have assumed during this example that this is the first time the VString
package has been used, and so0 no axioms are available from previous tests).

Location 3.1 is executed almost as often as is 2.1, and so it is not surprising that 3.1
bas no non-trivial equivalence classes remaining. Interestingly, location 4.1 also has no
non-trivial classes remaining, even though this location has so far been reached only twice
during testing. Location 42, however, has the following classes:

{ Left(SJ-1)  Left(S.Len(Sy(I+1)) }

{ Right(S,Len(S}T)  Right(S,Len(S)-2) }



14
{ Mid(S12) Mid(SLY)  Mid(S,Lea(SH2) }

(I<Len(s) 1<len(S) I+1<len(S) I<Len(Left(SJ-1MkRight(SLen(SH)) 2<Len(s) )

{ Mid(S,1,2)=String-to_VString("0T")  false Mid(S,1,2)=String_ta_VString(“0r)
Mid(S,Len(S),2)=String _ta_VString(“rxr") Mid(S I-1,2)=String_ta_VString(“Ccr”)

Mid(S,I +1,2)=String to_VString(“0L7") ~ S=String ta_VString(“00r")

Mid(Left(S I-1),1,2)=Stringta_VString("0")
Mid(Right(S,Len(S)-1),],2)=String-ta_VString(“00")

Mid(Left(S,I-1)&Right(S Len(S)),1,2)=String to_VString(“0r")

Mid(S,1,1)=String to_VString("0)  Mid(S,J,Len(S))=String-to_VString("T")
Mid(S,1I-1)=Stringta_VString(“00") Mid(S LI +1)=String-ta_VString(“™)
Mid(5,1,2)=Left(S,J-1)  Mid(S,1,2)=Right(S,Len(S)-T) Mid(S,1,2)=Left(S I-1)&Right(S,Len(S)-T)
Left(S,1-1)=String to_VString(“co") Right(S Len(S)-)=String_ta_VString(“0r")

Left(S I-1)&Right(S,Len(S)-I)=String to_VString(“00™) Mid(S,2.2)=String_ta_VString(“r")
Mid(S,1,Len(S)-D)=String_to_VString(“cr”) }

Examining the first of these classes, the equality of Left(S]-1) to the term
Left(S,Len(S)I-1) at this point in the program basically means that, each time this location
has been reached, the Ith character has been the one just to the left of the center of S.
Choosing a test case where the double blanks are well away from the center of the string
should remedy this situation. The second class imposes a requirement that, on at least one
test, there should be more than two characters following a pair of blanks. The third class
requires a pair of double blanks not occurring at the second character, in a string with
more than two characters, thus distinguishing Mid(S,1,2) from Mid(S,1,I), and repeats the
requirement for an off-center pair of blanks to distinguish Mid(S,1,2) from Mid(S,Len(S)1,2).

The fourth class shows that, so far, I<Len(S) exactly when 1<Len(S). These two
terms can be distinguished only by reaching this location with I=Len(S)>1, which in turn
means that S must end in a pair of blanks and have at least one additional character. If S
has at least 2 additional characters, then 2<Len(S) will also be distinguished from I<Lea(S).
The term I+1<Len(S) can be distinguished from I<len(S) only if this location is reached
with I+1=Len(S), requiring S to have a pair of blanks followed by exactly one character.
Combining these requirements implies that S must end in three blanks,

Combining all the requirements encountered since the last choice of test data suggests
a new test of the form S=“0xCr1>”. This leaves the following class at 4.2;

{ Mid(S,1,2)=Stringta_VString("C0")  Mid(S,],Len(S))=Stringta_VString(“00r)
Mid(SLI-1)=String to_VString("00")  Mid(S.LI+1)=String_ta_VString(“0r")
Mid(S 1,))=String_ta.VString(“0rr") )

This class can be climinated by a test where a string of blanks of length 3 or more occurs
at a position beginning other than with the first two characters in the string and being
followed by more than two characters. Moving on to location 5.1, the only equivalence
classes at this location are:

{ I<Len(S) 2<Len(S) )



{ Mid(S1,2)=String_ta_VString("00™)  Mid(S,I,[)=String_ta_VString(“00")
Mid(S,Len(S).2)=String-ta.VString(“"00")  Mid(S,I-1,2)=String ta_VString(“00™)
Mid(S,12)=S  S=String_ta_VString("0I")  Mid(Left(S,1-1),1,2)=String-ta_VString(“0¥")
Mid(S,1,1)=Stringto_VString(“05")  Mid(S,I,Len(S))=Stringto_VString(“0T")
Mid(S,1,1-1)=String-to_VString(“00")  Mid(S,1,Len(S)-T)=String_to_VString(“00")
Mid(S.12)=Left(SJ-1)  Mid(S,1.2)=Right(S.Len(S})  Mid(S,1,2)=Left(SI-1)&Right(S,Len(S)-I)
Left(S,I-1)=String_ta_VString(“")  Right(SLen(S)-)=Stringta_VString(*00™)

Left(S I-1)&Right(S,Len(S) [)=String-ta_VString(“*00”)  Mid(S,1,2)=Stringta_VString(“03")
Mid(S,1,1+I)=String_ta_VString(“03") }

In the first class, the term I<Len(S) must always be true at this location, so we must find
data for which 2<Len(S) is false at this location. This can occur only if this location is
reached with Len(S)=2, so we need a test with S of length 2 but not consisting of two
blanks. This test condition is incompatible with the still outstanding requirement for a test
with a string of at least 3 blanks, so we cannot combine the two. Running the test S=“cc”
climinates the first class at location 5.1 but leaves the second class unchanged.

In the second class, the expression set term Mid(S,I,2)=String to_VString(“00") must
be false at this location, so it can be distinguished from the other terms only if those other
terms can become true. A little examination shows that the rules Mid(X,JN)#Y when
Lea(Y)>N or Len(Y)>Len(X)J or Mid(XJ,Len(Y))#Y, Mid(XJ,N) - “* when JI>Len(X),
and Len(Left(X,N))sN reduces this set to:

{ Mid(S,]2)=String_ta_VString(“00")  Mid(S,I-1,2)=String.toVString(“0F")
Mid(S,1,2)=String_to_VString(“00r")  Lefe(SI-1)=String to_VString(“0LF")
S=Stringto_VString(“0")  Mid(S12)=Left(SJ-1)  Mid(S.1.2)=Right(S,.Len(S})
Mid(S,]1 2)=Left(S,I-1)&Right(S,Len(S)}T)  Right(S,Len(S)-I)=Stringto_VString(“CL¥")
Left(S.J-1)&Right(S,Len(S))=String to_VString(“0cr") }

The first term is the expression set term, always false at this location. The next four terms
essentially ask whether the program has been correct on the first I characters. We certainly
would hope that these three terms are inherently false, but proving it would require a
complete proof of correctness for this program. The sixth term can be true for an S whose
first and last two characters are identical and not double blanks. The seventh is true if the
third and fourth characters of S are identical to the last two and are not both blanks, The
eighth term is satisfied when S consists of any three identical non-blank characters, and the
final two terms can be made true by any string of the form “XO0” where X is any
non-blank character. Combining these requirements suggests test data “aaaalaaaa”, “ox”
and “xtm”,

With this test data, there are no remaining classes at locations 51, 52, or 6.1. The
final location, 7.1, has the following classes:

{1 Len(s)}
{ Len(S}1 0}
{ Mid(S]12) Mid(SLI) Mid(S,1,1) Mid(S,ILen(S))  Mid(S,1,1+1) }

{ Left(S,JI-1) Left(S,I-1)&Right(S,Len(S)-I) }



16

{ Right(S,Len(S)}) “~  Right(S,Len(SHI+1)) Right(String to._VString("r),Len(S)H)
Right(S,Len(Mid(S.I.2)}T)  Right(Mid(S,1.2),Len(S})  Right(S,Len(Left(SJ-1))T)
Right(Left(S,I-1),Len(S))  Right(S,Len(Right(S,Len(S)}-D)-1)
Right(S,Len(Left(S,I-)&Right(SLen(S}N)})  Right(S1-1) )

{ I<Len(S) false I<Len(Mid(S.12) I<Len(Right(S,Len(S)-)
[<Len(Left(S,I-1)&Right(S,Lea(S)-D) )

{ Mid(5,1,2)=String to_VString("00™)  false Mid(S,1,2)=String_to_VString(“0")
Mid(S,2,2)=Stringto_VString(“0")  Mid(S,J-1,2)=String._ta_VString(“tIr")
Mid(S,Len(S)}1,2)=String ta_VString(“0")  S=String ta_VString(“0r")
Mid(Right(S,Len(S)-I),1,2)=String_ta_VString(“0)
Mid(Left(S,1-1)&Right(S,Len(S)-1),],2)=String_toVString(“0r")

Mid(S,1,Len(S)-)=String ta_VString(“00™)  Mid(S.1,2)=Right(S,Len(S)-T)
Left(S.I-1)=Stringto_VString(“Xr’)  Right(S,Len(S)})=Stringto_VString(“cor)
Left(S,J-1)&Right(S Len(S))=String to_VString(“0T") Mid(S,1I-1)=String_to_VString(*00™) }

An examination of the first two classes and a quick scan of the others show that a
number of terms are listed only because of the need to distinguish I from Len(S). At this
point in the program, I=Len(S) unless S is the empty string. This immediately suggests the
empty string as a mew test case, after which we can henceforth assume that I=Len(S). The
third class can also be simplified by introducing the rule that
Mid(XJN) - Mid(XJLea(X)J+1) when N>Len(X)J+1. The classes at 7.1 are then
reduced to:

{ Right(S,Len(S}) ~ Right(S.Len(Mid(SJ2)})  Rizht(Left(SJ-1)Len(S)H) }
{ I<Len(S) I<Len(Mid(S12)) I<Len(Left(SJ-1)&Right(S,Len(SH) }

{ Mid(S,I,2)=String to_VString(“0r")  Mid(S,1,2)=Stringt0_VString(“c")
Mid(S,2,2)=String ta_VString(“0”)  Mid(S,I-1,2)=String_ta_VString(“00)
Mid(S,Len(S)1,2)=String-to_VString(“00")  S=String-to_VString(“0r")
Left(S,I-1)&Right(S,Len(S)-T)=Stringto_VString(“00™) }

None of these classes contain terms that can be distinguished, so the completed test set is
“adbe™, “x”, ‘0", “OxOX", “aaaaliDaaaa®, “ox™, “xa0”, and ‘. This test set includes
tests that bypass the module’s loop, that execute each internal branch within the loop
exactly once and then exit the loop, and that require multiple executions of the loop both
alternating and not alternating the internal branches taken on successive iterations of the

loop.

In some ways, the above example has exaggerated the difficulty of using EQUATE.
We bave assumed that no prior axioms/simplification rules were known for the functions
and procedures called by the module under test, and that each such rule would be
proposed only when examination of the classes revealed a need for that rule. Many of
these rules, if not already available, could have been proposed at the start of testing based
upon our knowledge of the. routines involved. Similarly, in the example we added new test
data only after rigorous examination of the classes left by earlier tests, proceeding one test
location at a time. In section II, however, we were able to describe much of the required
test data based upon a cursory examination of the expression set terms. Furthermore, we



17

noted during that discussion that much of the test data required by EQUATE correspoads
to good intuitive rules for testing loops and other program constructs. This suggests that a
more profitable approach to EQUATE testing would be to gencrate a number of test cases
based upon a high-level examination of the expression set and upon less rigorous testing
guidelines. Running these test cases should considerably reduce both the number and the
size of the remaining classes, making the subsequent detailed examination of those classes
much casier. EQUATE can then be used to indicate the remaining gaps in the test
coverage.

IV. Relation to Other Testing Strategies

This section discusses the relation of EQUATE to a varicty of earlier testing.
strategies. The strategies considered are mutation testing [1,2,4,5,12], perturbation testing
[19.20,21], Simpler Expression Coverage [9], and the testing subsystem of DAISTS [7]. These
strategies are compared to EQUATE in terms of their support for abstraction, their ability
to detect simple faults, and their ability to detect combinations of simple faults, in
accordance with the goals stated in the introduction. Before discussing these other
strategies, we begin by reviewing EQUATE's performance in these areas.

EQUATE's support for abstraction stems from its emphasis on the operations applied
to each objct. EQUATE makes no distinction between those objects whose data types are
user-defined and those whose types are language-supplied primitives. As a result, it can be
expected to perform equally well with modules at any level of data and functional
abstraction.

EQUATE’s ability to detect simple faults comes in part from the fact that EQUATE
requires the subexpressions appearing in each statement to be distinguished from a wide
range of alternative expressions, thus eliminating the possibility that the given subexpression
should have been replaced with any of those alternatives.

Of course, at any given test location EQUATE not oaly requires the expressions
appearing at that location to be distinguished from those alternatives, but requires many of
those alternatives to be distinguished from one another. In fact, the set of terms to be
distinguished is independent of the test location and hence independent of the statements,
expressions, and structures appearing near that test location. This independence of the local
testing criteria from the local syntactic structure is crucial to the detection of combinations
of simple faults (and thus to the detection of complex faults), although this relationship
may not be immediately apparent.

To demonstrate the importance of independence from local syntactic structure,
consider the following thought experiment, which is centered on the design of a (wholly
impractical) hypothetical testing strategy. The key idea will be to directly generate, on the
first execution of any statement containing one or more expressions, all those expressions
that would yie!d the same results when evaluated in that program state as would those
already appearing in the module. For subsequent executions of the same statement, we can
keep track of how many of these alternatives continue to mimic the original expressions
cither by evaluating each remaining alternative and cumparing its value to the original or
by repeating the generation of equivalent alternatives and taking the intersection of the



18

different sets of alternatives.

To generate the alternative expressions, we will employ repeated mutations according
to one of two rules. ,

1. Any expression or subexpression Ey can be replaced by E, if it is axiomatically
true for the data type returned by E; and E, that Ey = E,.

2. Any variable X in an expression can be replaced by a constant denoting its
current value, and any constant can be replaced by a variable whose current
value is denoted by that constant.

We allow up to N substitutions using these two rules. Clearly, as N approaches infinity, this
strategy generates all those expressions that, when evaluated in the current program state,
would be equivalent to the original expression.* Using intcger expressions as an example,
an expression X+1 encountered at a point in the execution where the program state were
described by {X=2, Y=0, Z=2} might go through a series of mutations X+1 - X+140 -
X+HH0'Z « X+14Y'Z -« 2414Y*Z - 34Y*Z or X+1 - 241 - Z+l - 1%(Z+1) -
0+)%Z+1) ~ (Y+1)*(Z+1) or simply X+1 - 2+1 - 3. The generated expressions may be
cither more or less complex than the original, may appear very similar to the original or
may look to be completely unrelated; the only constant is that they will have the same
value in the current program state as does the original expression.

Consider the properties of this strategy as N increases. We will show that the sets of
alternative expressions generated for different expressions, for different program states, and
for different locations in the module using at most N substitutions all become increasingly
identical. Consider first the set of integer expressions. Let S and g be any two expressions.
Then for any expression £) appearing in the module, there exist an infinite number of
expressions E, (e.g. Ey = Ey+(f—g)) such that Ey#Ey only in states where f#5. Given
any two expressions f and g that have the same value in the current program state, as N
increases, the probability that at least one such E5 will be generated also increases.

The expression E5 can be distinguished from the original expression E;j only if f can
be distinguished from g. Since f and g are arbitrary expressions, as N becomes arbitrarily
large the set of alternatives generated by this hypothetical testing strategy can be
distinguished from the original expression if and only if every pair of expressions are
distinguished from each other. The conclusion, then, is that as N increases, the actual
testing requirements become increasingly independent of the form of the original statement.

Similar behavior will occur, not only with integer expressions, but with expressions
returning any data type for which at least one operation exists, or can be constructed, that
has both an identity element and an inverse. It is likely to be approximately true for many
other data types. In particular, mixed mode operations on two or more types (e.g. an
operation PUSH mixing inputs of types STACK and ELEMENT) tend to guarantee that, if

‘ In cffect, we have defined a new version of mutation testing where the mutation rules are drawn
from the data type axioms and where arbitrary combinations of the mutations may occur in any

expression.



19
this property holds for one type, then it will hold for the other.

The point of this exercise is not to seriously propose the above testing strategy
(although it clearly has a strong relation to EQUATE), but to establish that the goal of
detecting combinations of primitive faults in any statement is tied to the idea that the
testing criteria at any location should be independent of the local syntactic structure at that -
location. It is for this reason that EQUATE employs the same set of terms at every test
location.

What types of faults are best detected by criteria that are independent of the local
syntax? The above arguments would suggest that such independence is particularly useful for
detecting faults that improperly simplified the module, omitting parts of calculations that
may be important only in certain program states. One example would be the omission of
an entire assignment statement. A necessary condition for detection the omission of a
statement X := f(Y) is that the expressions X and f(Y) take on different values at the
location where the statement should have appeared. Local-syntax-dependent strategies such
as [19,12] would usually enforce such a condition only if X or f(Y) were used in one of
the statements immediately surrounding that location. EQUATE, however, would enforce
this condition regardless of the appearance of the surrounding statements, provided that it
recognized X and f(Y) as useful terms.

The basic design of EQUATE stems from an effort by the author to combine the
strengths of two existing testing strategics, perturbation testing, and mutation testing. These
two strategies, though they have very different origins and motivations, share a common
structure, which in turn is partially reflected in EQUATE. Both strategies choose a set of
test locations and postulate a set of possible faults at each of those locations. Bach time
that a test location is reached during testing, these strategies determine the subset of those
possible faults which, if they were present, would still not affect the module output. The
intersection of all the subsets obtained in this manner at a given test location forms a set
of faults which would have escaped detection for all the tests done so far. By providing a
listing of these as-yet-untested faults, both strategies provide guidance for the selection of
new test data, encouraging the choice of tests targeted at those specific faults.

Mutation Testing

Mutation testing places a test location at cvery statement. The postulated set of faults
consists of single applications of a variety of primitive substitutions called murarions. The
mutations are chosen to model faults that are believed to be common in the programming
language being employed. As each test location is reached, the program state induced by
the statement actually appearing at that location is compared to the state which would
result from the mutated versions of that statement. Those mutated statements which result
in the same state as the original correspond to faults which would escape detection on that
particular execution’ The intersection of this sets of faults with those from other tests is
computed implicitly by only evaluating those mutated statements which bhave escaped all

 The form of mutation testing described here is known as weak mutation testing [12] or weak
staterment mutation testing [2], to distinguish it from the much more expensive strong mutation
testing, which requires ecach mutation to cause a change in the module’s eventual output rather
than just a change in the current program state.



20

previous tests.

For example, if mutation testing were performed on the program fragment shown in
figure 4, the mutated versions of the second statement might include:

A:=2"A+1B; B:=2."A+B; C:=2.°A+B; X:=19°A+B; X:=2.1°A+B; X:=2.+A+B;
X:=2.-A+B; X:=2JA+B; X:=2.*A+B; X:=2.'B+B; X:=2.°C+B; X:=2."X+B;
X:=2.+B; X:=A+B; X:=2.%abs(A)+B; X:=2.*-abs(A)+B; X:=2.°A-B; X:=2."A"B;
X:=2A/B; X:=(Q2°A)*'B; X:=2*A; X:=B; X:=2"A+A; X:=2.°A+C;
X:=2."A+X; X:=2.°A+abs(B); X:=2.°A +-abs(B).

If the module were tested with inputs (1.0.0), the set wouil? L reduced to:

X:=2/A4+B; X:=2°°A+B; X:=2.+B; X:=2."absg(A)+B; X:=2°A-B; X:=2'A;
X:=2"A+C; X:=2.°A+abs(B); X:=2.°A+—abs(B).

On a further test with inputs (0.,1.,1), these remaining vessions (but not the ones already
eliminated) would be evaluated, leaving:

X:=2."abs(A)+B; X:=2.°A+C; X:=2.°A +abs(B).

A major advantage of mutation testing is its wide applicability. Because the
mutations are defined for the given language in terms of the syntax and primitive objects
of that language, mutation testing can be applied to essentially any module in that
language. This advantage, however, is somewhat mitigated by the fact that defining the
mutations in terms of the language primitives results in many mutations being useful cunly
for routines and data structures at a relatively low level of abstraction. Common mutations
such as “if the variable X occurs in some statement, then replace X by X+1" are of
limited use because “+" is only defined for certain data types, and “+1” is defined for an
even smaller set of data types. Modifying the rule to read “if X is an integer variable..”
misses the point, since it is of no help in devising a more general testing method. The end
result is that mutation testing is far more rigorous for statements manipu'ating
language-defined data types than for statements manipulating user-defined data types, a sign
of weak support for abstraction compared to EQUATE.

For arithmetic expressions over integers or real numbers, it is difficult to compare the
simple faults detected by mutation testing to those detected by EQUATE. Mutation testing
includes certain rules specifically aimed at such expressions (e.g. replace an existing integer
expression E by E+1). Since EQUATE would not duplicate such rules (unless similar
expressions, in this case E+1 or other +1 operations already appeared in the code),
mutation testing can require certain tests that EQUATE would not. On the other hand,
siace BQUATE uses operand substitution terms that can be more complex than any of the

¥iumre 4: To Be Tested With (1.,0.,0.) and (0.0.,1.).



21

mutation testing primitives, EQUATE may require certain tests not required by mutation
testing.

If, however, we consider expressions involving user-defincd data types rather than the
language’s primitive data types, comparisons are much simpler. Then the weak mutation
rules described in [2,12]), as well as the strong mutation rules from [1,4,5) that would be
applicable to weak mutation testing, collapse to just a few rules. Mutations would be
generated to 1) substitute each variable name for every existing variable reference, 2) to
substitute constants for each variable reference, 3) to substitute different variable names for
the variable on the left-hand side of an assignment statement, and 4) to delete the
statement entirely. EQUATE subsumes all four of these mutation rules. Consider a
statement that computes the value of an expression f(X) and either writes it to some
output file or stores it at Y. The first mutation ruic would alter the expression by
substituting other variables for X. Thus f(X) would have to take values different from, for
example, f(Z) at least once. In this situation, X, Z, and f(X) would be in the expression
set and therefore f(Z) would be an operand substitution term that EQUATE would require
to be distinguished from f(X). Similarly, EQUATE would satisfy the second rule by
requiring X to take on at least two distinct values, and in fact would go even further by
requiring f(X) to take on at least two distinct values. The third mutation rule would
replace assignments of the form Y := f(X) by assignments such as Z := £(X). This
mutation fails to change the program state only if Y, Z, and f(X) are all equal. Since all
three will be in the expression set, EQUATE will require them to take on distinct values.
The final mutation rule can only be satisfied if the values S(X) computed by the statement
is stored in some object Y that already had that value, a situation avoided by EQUATE's
requirement that Y and f(X) be distinguished. Thus, for non-primitive data types, EQUATE
appears to subsume weak mutation testing, thus confirming the claim that EQUATE offers
better support for abstraction and showing as well that EQUATE detects a wider range of
simple faults in abstract programs.

In terms of detecting combinations of faults, there is a tremendous contrast between
the approaches taken by mutation testing and by EQUATE. Mutation testing exhibits a
strong dependence upon local syntactic structure, explicitly assuming that the possibility of
combinations of faults can be ignored. It seems likely then, that EQUATE should offer
significantly better performance in detecting combinations of faults.

Perturbation Testing

In perturbation testing, the test locations occur at each statement containing an
arithmetic expression. The postulated set of possible faults coasists of a set of error
expressions which might be added to the existing expression. Usually a sufficiently rich set
is chosen to allow for the possibility that an error expression could completely subtract
away the existing expression and add in something of equivalent complexity. Whatever set
is actually chosen, perturbation testing actually considers all faults which could be formed
as linear combinations of that set, and hence considers all possible combinations of such
faults within a given statement. Each time that the test location is reached, it is possible to
compute, from the program state at that time, the set of error expressions that would
evaluate to zero in that state and that would therefore escape detection. (Even though
there are usually an infinite number of these untested faults, a finite description can be
provided.) The intersection of this set with the set of faults previously left untested is then
computed explicitly. Both of these steps are accomplished via the solution of a single system



of linear equations.

For cxample, at the second statement of the module in figure 4, the simplest form of
perturbation testing would consider alternate versions of this statement that had the form
X :=aA + 6B + ¢cC + d, a form which includes most of the alternatives considered by
mutation testing. When the test data (1.0.0.) is used, perturbation testing would then
conclude that the correct form of the second statement might actually be

X := 2°A + B + a(A-1) + BB) + v(C).

for any values of a, B, and y without the difference being detected by that test. The tester
would then be advised to seek test data so that A-1., B, andlor C were non-zero. On
running the further test (G.1.,1)), perturbation testing wouid report that the correct form of
the statement might still be

X := 2°A + B + a(A+B-1) + B(B-C).

If the addition of (A-1) or (B) or (C) to the given expression are considered to be the
simple faults treated by perturbation testing, then the addition of a(A—1.)+B(B)+y(C) or
a(A+B-1)+B(B—C) must be considered to be combinations of those simple faults. In fact,
these expressions stand for an infinite number of possible combinations, all of which are
explicitly monitored by perturbation testing.

Perturbation testing offers essentially no support for abstraction. The nature of the
calculations constituting the perturbation analysis prevents its use with data other than real
numbers and integers. Its ability to detect faults in those statements to which it is
applicable is, however, very strong. For expressions over integers and floating point
numbers, in a program employing only the normal arithmetic operators, any alternative
expression generated by EQUATE would also be tested by perturbation testing. Perturbation
testing is therefore more rigorous in this situation. If, however, the expressions include calls
to user-written functions or to operators and functions other than the normal arithmetic
operators, then it is likely that EQUATE will generate operand substitution terms that
would pot be tested by perturbation testing.

The most important strength of perturbation testing is its ability to deal with
combinations of faults, explicitly tracking all possible linear combinations of its primitive
faults in any given statement. As a comsequence of this part of the analysis, the local
testing criteria perturbation testing imposes are essentially identical, independent of the
testing location. This aspect of perturbation testing was the inspiration for the corresponding
property of EQUATE. Thus EQUATE cannot compete with perturbation testing in modules
employing only integers and floating point numbers and only arithmetic operators, but for
all other programs EQUATE's wider applicability and support for abstraction give it the
edge.

Simpler Expression Coverage

Hamlet proposes a strategy in [9) that selects a set of terms superficially similar to
EQUATE'. His strategy requires each expression in the module to be distinguished from
all possible simpler expressions (involving those variables and operators appearing anywhere
in the code) at the location where the original expression occurs. Thus, at the second



23

statement in figure 4, he would require 2.°A to bhave a different value from 2, A, B, and
C, and 2°*°A+B to have a different value from 2., A, B, C, 2.+2, 2.+A, 2.4B, 2.4C,
A+2., A+A, A+B, A+C, B+2, B+A, B+B, B+C, C+2,, C+A, C+B, C+C, 2.%2, 2.°A,
2.°B, 2.°C, A%, A°®A, A®B, A°C, B%2, B*A, B*B, B°C, C%2, C*A, C*B, C*°C, and
possibly other terms if there are any other variables and operators used in the rest of the
program. On executing the test data (1.0.0.) then, Hamlet’s strategy would report that
2°A had yet to be distinguished from 2. and that 2.°A+B had yet to be distinguished
from 2., 2.4+B, 2.+C, A+A, B+2, C+2, 2.°A, and A®*2. On executing the second test
(0.1,1) he would report that the second statement had been completely tested (assuming
that there were no other terms generated because of variables and operators elsewhere in

the program).

The testing of modules containing abstract, user-defined data types was not a concern
addressed by Hamlet. Because, however, his strategy uses the operators appearing in the
code to generate terms, it does adjust itself to such modules automatically. Many of its
terms, however, may be poor choices. Simpler expression coverage generates every possible
expression (up to some level of complexity) that can be formed using every operator and
variable appearing in the program. If the language does not provide strict encapsulation
facilities, or if the programmer chooses not to use them, many of the resulting expressions
may involve the use of inappropriate operators with some objects. The EQUATE approach
would seem to be more economical.

A comparison between the simple faults detected by simpler expression coverage and
by EQUATE is somewhat complicated. In simpler expression coverage, any expression E is
compared to terms including subexpressions of E, subexpressions of E with some operand
substitutions, and other expressions bearing no relation to E except the fact that they are
simpler. There is substantial overlap between this set of terms and the set that EQUATE
would generate. EQUATE would also require E to be distinguished from all subexpressions
of E, and EQUATE’s operand substitution terms would have a substantial overlap with
those of Hamlet. EQUATE would not check E against the many non-expression set terms
simpler than but unrelated to E and not actually appearing in the source code. It is not
clear how valuable such terms really are during testing. EQUATE would, however, compare
E to many terms that were not simpler than E. Hamlet’s strategy is most suited to faults
that make the expressions more complicated, so that the possibly correct alternatives to be
considered during testing are simpler than the expression actually appearing in the code.
Such a bias may not be reasonable unless there is reason to believe that the majority of
faults tend to be faults of over-complication. There is some evidence that the opposite is
more often true for those faults that tend to missed during testing [8).

Clearly Hamlet’s strategy will be effective at detecting complex or combined faults
that result in simpler expressions without introducing any new variables, constants, of
operators. Is this sufficient to guarantee detection of other combined faults, especially faults
that result from over-simplification of the code? Since simpler expression coverage only
requires an expression to be distinguished from the simpler alternatives at the location
where that expression occurs, this strategy exhibits a moderate level of dependence on local
syntactic structure (though considerably less than mutation testing). The arguments presented
earlier would suggest that this represents a weakness, relative to EQUATE.



DAISTS

The DAISTS system of Gannon et al. implements a methodology for the specification,
implementation, and testing of abstract data types. The specification language emphasizes
axiomatic definition of the abstract type. The testing criterion monitored by DAISTS is that
each subexpression appearing in the code of the specification must take on at least two
distinct values. Thus if the expression 2. * A + B appeared in some axiom of a
specification and if the implementation were tested with data that forced the quantities A
and B in that axiom to take on values 1. and 0., respectively, DAISTS would report that
A, B, 2.°A, and 2.°A+B had so far taken on only a single value each (1., 0., 2., and 2.,
respectively). If another test were performed on which the quantities A and B took on
values 0. and 1., respectively, then DAISTS would be satisfied since each of the four
expressions would have taken on two distinct values.

Of the four testing strategies being discussed here, DAISTS exhibits the strongest
concern for abstraction. EQUATE is, however, more flexible since DAISTS is tied to the
concept of axiomatic specification. If that mode of specification is not employed, DAISTS is
not applicable. Note that, while axioms are of use to EQUATE in detecting inherently
equivalent terms, DAISTS emphasizes axioms governing the module(s) being tested while
EQUATE uses mainly axioms governing the modules called by the one being tested.
Finally, while DAISTS is designed for use with fully encapsulated implementations of
abstract data types, EQUATE can be employed with modules employing primitive,
uneacapsulated user-defined types, or encapsulated abstract data types.

DAISTS’ testing criterion is the simplest one considered in this paper. Its requirement
that each expression and subexpression appearing in the specification of an abstract data
type should be forced to take on at least two different values has a direct analogue in
EQUATE where the same is required of each expression and subexpression in the module.
The two requirements are not identical, since one is imposed on the specification and the
other on the code. Since the basic testing problem, that of increasing confidence in the
equivalence of the specification and the code, involves a symmetric relation between the
specification and the code, there is not likely to be any reason for either purely code-based
or purely specification-based criteria to be more effective than the other. (In fact a
combination of the two is probably called for).

Of course, the requirement that each object take on more than just one value during
testing is only a fraction of the total testing requirement imposed by EQUATE, 50 it seems
likely that EQUATE will detect a much wider variety of both simple and combined faults
than would DAISTS.

V. Directions for Future Work

It is imperative that testing strategies be developed that can operate on programs
containing a varicty of abstract, user-defined data types. This paper describes an approach
to this problem, the EQUATE testing strategy. This strategy attempts to offer support for
data and functional abstraction, to detect a wide variety of simple faults, and to provide
good coverage of combinations of those faults.



25

The EQUATE testing strategy is at an carly stage in its development and there are
still a number of basic issues to be addressed. A particularly important subject for future
study is the way in which EQUATE compares to other testing strategies. While some
informal discussion on this subject has been presented here, a more rigorous study involving
more testing strategies is merited.

EQUATE presents a schema for testing that may permit construction of a whole
family of useful testing methods because of the variety of possibilities for sets of terms.
The expression set seems to be an obvious choice as a source of terms, but after that a
number of alternatives open up. Operand substitution terms have been shown in this paper
to be particularly important to the goal of support of abstraction. An option to be explored
further is the use of operator substitution terms, where the substitutions are based upon
language features for encapsulation of abstract data types. Other sources of new terms
might include specifications associated with the module being tested and those modules that
it calls, programmer-supplied assertions appearing in the module, terms from other modules
in the same package as the module being tested, or even terms from the modules called by
the one under test.

More drastic alterations of EQUATE that might be of interest would include
examining the equivalence of larger portions of the abstract syntax tree than simply
expressions and subexpressions. Statements or groups of statements could be subjected to a
similar analysis. It is interesting to compare this idea to what would happen if EQUATE in
its present form were used with functional or applicative languages where an entire module
may be considered to be a single expression.

At present, a prototype implementation of EQUATE exists that is capable of
generating the relevant classes at a single test location for a limited set of data types and
of detecting the majority of inherently equivalent terms in those classes. A more complete
implementation is anticipated in the near future.



References

1. T. A. Budd, “Mutation Analysis: Ideas, Examples, Problems and Prospects,”
Computer Program Testing, B. Chandrasekaran and S. Radicchi (eds.),
North-Holland Publishing Co., 1981, pp. 129-148

2. T. A. Budd, The Portable Mutation Testing Suite, University of Arizona
technical report TR 83-8, March 1983

3. L. A. Clarke, J. Hassell, and D. J. Richardson, “A Close Look at Domain
Testing,” IEEE Transactions on Software Engineering, vol. SE-8, no. 4, 380-390,
July 1982

4. R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data
Selection: Help for the Practicing Programmer,” Computer, v. 11, no. 4, April
1978, pp. 3441

5. R. A. DeMillo, F. G. Sayward, and R. J. Lipton, “Program Mutation: A
New Approach to Program Testing,” State of the Art Report on Program
Testing, 1979, Infotech International

6. K. A. Foster, “Error Sensitive Test Cases Analysis (ESTCA),” IEEE
Transactions on Software Engineering, vol. SE-6, no. 3, 258-264, May 1980

7. J. Gannon, P. McMullin, and R. Hamlet, “Data-Abstraction
Implementation, Specification, and Testing,” ACM TOPLAS, vol. 3, no. 3,
211-223, July 1981

8. R. L. Glass, “Persistent Software Errors,” IEEE Transactions on Software
Engineering, vol. SE-7, no. 2, 162-168, March 1981

9. R. G. Hamlet, “Testing Programs with the Aid of a Compiler,” JEEE
Transactions on Software Engineering, vol. SE-3, no. 4, 279-290, July 1977

10. W. E. Howden, “Methodology for the Generation of Program Test Data,”
IEEE Transactions on Computers, vol. C-24, no. S, 554-560, May 1975

11. W. E. Howden, “Algebraic Program Testing,” Acta Informatica, vol. 10,
53-66, 1978

12. W. E. Howden, “Weak Mutation Testing and Completeness of Test Sets,”
IEEE Transactions on Software Engineering, vol. SE-8, no. 4, July 1982,
371319

13. J. W. Laski and B. Korel, “A Data Flow Oriented Program Testing
Strategy,” IEEE Transactions on Software Engineering, vol. SE-9, no. 3,
347-354, May 1983



14. S. J. Ntafos, “On Required Elements Testing,” /EEE Transactions on
Software Engineering, vol. SE-10, no. 6, 795-803, November 1984

15. S. Rapps and E. J. Weyuker, “Selecting Software Test Data Using Data
Flow Information,” IEEE Transactions on Software Engineering, vol. SE-11,
no. 4, 367-375, April 1985

16. L. J. White and E. I. Cohen,“A Domain Strategy for Computer Program
Testing,” IEEE Transactions on Software Engineering, vol. SE-6, no. 3, 247-257,
May 1980

17. S. J. Zeil and L. J. White, “Sufficient Test Sets for Path Analysis Testing
Strategies”, Proceedings of the Sth International Conference on Sof tware
Engineering, IEEE Computer Society, pp. 184-191, 1981

18. 8. J. Zeil, Selecting Sufficient Sets of Test Paths for Program Testing,
Ph.D. dissertation, 1981, Ohio State University, also technical report
OSU-CISRC-TR-81-10

19. 8. J. Zeil, “Testing for Perturbations of Program Statements,” IEEE
Transactions on Software Engineering, SE-9, No. 3, May 1983, pp. 335-346

20. S. J. Zeil, “Perturbation Testing for Computation Errors,” Seventh
International Conference on Software Engineering, March 1984, IBEE, also
University of Massachusetts Technical Report 83-23, July 1983

21. S. J. Zeil, Perturbation Testing for Domain Errors, COINS Technical
Report 83-38, University of Massachusetts, December 1983, revised February
1984



