Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

Integrating Scanning Software:
Training and Vocational Uses for the Nonvocal

Stan Kulikowski IT *

COINS Technical Report 85-7
March 185

1

.‘Theworkmponedinthhpaperisthemﬂtotwopemﬁveeﬂmwithnnwemwkimot
i, and Thomas Gruber here at UMass. We were
WhmwmuﬁmmeMmchmmﬁmCmmﬁmandmem
i i o(t'hhpaper was presented to the IEEE Third Annual

2
;
3
é
B
£
1
§
:

ABSTRACT

Human thought and intelligence is a primary resource in the use of information
systems, and computer technology has led in the development of utilities to
enhance and amplify these human abilities. Profound physical impairment should
not prevemt a person from using computer environments; indeed, such facilities have
great value to someone whose mind is their primary asset. The ongoing expansion
of dedicated personal computers has stimulated the development of scanning
systems for prosthetic communication with some of the most disabled members of
our society. For several years our working group in computer science (in collaboration
with Smith College) has studied first-generation software prosthetic systems and have
specified uniform scanning utilities. We interviewed primary service agencies for the
nonvocal, formulated a model of distinct user subclasses for information systems,
and created a field-testing group for implementation and maintenance of programs we
create.

Integrated software refers to the ability of a program or its data to operate
with other programs. We here introduce the application of scanners which
integrate with standard computer operating systems for training and vocational
use with nonvocal people. One program (ready for public distribution) optimizes
output into a popular microcomputer environment (the Apple II family) and others
which integrate into the mainframe operating system of our computer reseach
facilities (the VAXIVMS environment). We shall demonstrate the principles of
software integration which minimizes the requirements of specialized hardware.

0.0 INTRODUCTION

Profound physical impairment is one of the extremes in the human condition.
Our medical profession has developed techniques for stabilizing the incident
condition which produced the impairment in many cases. Whether the impairment is
present at birth or acquired through trauma, the medical concerns are foremost
during the first year or so, often leaving decades of longterm case management
to nonmedical facilities. ~The prevalence of these conditions are surprisingly
high. Experts have estimated from 500,000 to over a million people live in
this country who have communication needs which are unexpressed due to
physical impairments. While the physical needs of these people are understood
well enough to support their continued existence, expression of the intellectual
needs of the paralyzed or nearly paralyzed are left unexpressed. We have come to
refer to this population as nonvocal, and their situation will continue until direct
repair of the central system is possible.

During the last several decades, computer facilities have been developing
tools for enhancing human abilities to process large amounts of information.
Computer systems have become commonplace in high technology applications, but
only recently the emergence of small personal computers have expanded
applications into the daily life of millions. As soon as these microcomputers
arrived in the public sector, many programmers familiar with biomedical
and engineering approaches to nomvocal communication began to realize the potential
of these small systems to enhancing the lives of nearly paralyzed people.
If computer utlilities could amplify the expression of human intelligence, what
better application than to apply these utilities to people who have active minds in
bodies which are largely inert?

. Today, we are familiar with the first generation of scanning systems

written for nonvocal people. Most of these systems have the characteristics of
the first-generation of other computer applications. They are originally
written for application with a single client; and, since they have not had
the advantage of comparing alternative solutions to the task, they often arrive
at partial sets of utilities. Some systems will have very desirable features which
are completely missing in others. Second-generation scanning systems will soon
be available which have the advantage of collecting the best solutions of previous
systems into standard sets of utilities based on classes of users rather than
individual client cases.

At the University of Massachusetts in collaboration with Smith College, we
have for several years been researching the requirements of scanning systems for
nonvocal communication with people who are nearly paralyzed. We have
reviewed many ecarly first-generation scanners (and written a few ourselves).
From this experience we have completed the specifications for such scanning utilities

based on the four subclasses of prosthetic communication users: the congenital
cases; the traumatically injured; the temporary class; and the prescriptive
specialists. We have formed a case study group based on this model in which
we are field testing software and scanning utilities.

In this paper, we are pleased to describe a series of scanning systems
developed for vocational and training uses in controlling standard computing
utilities. These systems, by their nature, integrate at a low level with
machine-dependent routines.

10 INTEGRATION OF SCANNING SYSTEMS

The principles of software integration are deceptively simple. A program is
called integrated if it operates upon another program or its data. The simplest
form of integration i8 to write several programs which operate upon a common
data base. One program is used to create a stored file of data; another
manipulates and displays this data; and perhaps a third which formats reports based
upon the data. This is the form which common business software takes. A
software house will write a spreadsheet to enter numerical information and
display in a form commonly used by accountants. Another database program is
written to to search and retreive the information from separate storage files,
and a third program is written to use word processing and graphics displays to
report on the information. We say this task is relatively simple because the teams
of programmers within the software houses have complete and detailed source code
and data specifications to work with. The end user does not have these and has to
use the integrated software as a package. A word processor or graphics
utility preferred from one company cannot operate upon the spreadsheet data
created by another firm. Sometimes data can be transferred into common
form (like files of standard ASCII characters or integers) then these can be
processed into another system. These steps are often difficult and sometimes
deliberately made impossible by firms who want the user to employ all of their
components rather choosing the ones with the most desirable features.

The more difficult form of integration is to require a program to operate with
other software that is hardware-compatible, but whose internal specifications are
not known when the system is designed.

The one of the tasks we have been researching is scanning systems to ‘replace
the standard keyboard input for the most disabled people in our society. Many
of the standard computing utilities which have been developed to enhance human
intelligence are in their third or fourth generation, while our scanning utilities
for the nonvocal are barely completing their first. Clearly, everyone involved in
the biomedical applications for prosthetic communication would prefer to have

powerful scanners which integrate with the most uptodate computing
utilities. Rather than writing a new word processor which scans, we would rather
have a scanner which operates with the best word processors available, and
could move to better ones when they emerge. Writing unique programs which are
accessible to the nonvocal is often like rediscovering the wheel and tends to be
stigmatory. Information skills learned before injury will have to be relearned or
working with systems different from those wused by nondisabled colleagues
can interfere in cooperative tasks.

In this paper we are reporting progress in the development of systems
which provide scanning utilities for the nonvocal and which integrate with powerful
programs written for normal computer use. We started this work with the
cooperation of the Massachusetts Rehabilitation Commission who were interested
in providing vocational and training tools for nonvocal clientele. @ Our primary
completed piece is called TalkBASIC (Drake and Kulikowski 1984). It operates in a
microcomputer (the Apple II family) which is common in schools. We shall
also describe a simpler scanner, called VAXscan (Conti 1984) which operates in
our research environment (VAX 11780 minicomputers) and connects to a
more powerful scanner, called SpeakEasy TALK (Gruber, Kulikowski, and Hawkins
1984) written in Bell Laboratories’ C programming language (Kernigham and
Ritchie 1978). This will be transferrable to a wide range of microcomputer
operating systems when sufficient memory becomes available.

Most scanning systems now available to the nonvocal are designed to output text
in a natural language- usually English. Alphabet scanners can, of course, be
used to produce several languages if the user is competent in them, but
alphabet scanning is fundamentally slow. Scanners improve when vocabulary items
are available for scanning, but this lowers the expressive power of the
devices by limiting the words to a particular language. Even the array of
alphabet characters should be optimized for a particular text production
task, and this lowers efficiency for production of other tasks. With our
interests in integrating scanners with standard computing utilities and with a bias
for vocational and computer training, we have focused these scanners on the
production of files containing programs which execute in a standard
operating environment.

1.1 MICROCOMPUTER SCANNING

In this section we will describe how TalkBASIC worms its way into the DOS
33 operating system (Applc Computer Inc. 1984) found in Apple Ils. Its
method of operation is to integrate itself with the system ‘s input routines.
These usually reside in the Apple’s ROM chips, but TalkBASIC is used to take
over 16K of expansion memory and make a copy of the ROM logic. Our
TalkBASIC program then puts its scanning routines into 4K of available memory
within the ROM and then shifts control of the central processor to this
scanner-mutated ROM copy in the RAMcard. The illustration Figure 1-1 shows the
location of TalkBASIC, hiding like a spider in the RAMcard.

1y R
A W A ER B T aerl,

¢

ol “§iffny
i

*Jh

. Nomudbd wmmr

iMeghn® o

gy, b,

Figure 1-1. TalkBASIC in RAMcard

Once TalkBASIC has inserted its scanning routines into the ROM copy, the
lower 48K of the machine operates as usual, except that it now provides scanning
interpretation of pushbutton responses from the game vO.

Figure 1-2 illustrates the TalkBASIC hierarchical structure. The scanning
routines start on the MAIN level and the user selects transitions to the other
levels. These scanners appear as windows which pull down over the top half of the
usual text screen whenever pushbutton input is present.

The Structure of Present Database:

....................................

!
oot
....
....
.......
1od
ot
00
oot

Pathuways in TALKBasic's Vocabulary

Figure 1-2. TalkBASIC Scanning Network

All of the TalkBASIC scanning windows appear with the name of the present
window in upper leftmost position. Items contained with square brackets are
nonterminal items: they perform a transition to some part of the system. When
terminal items are selected they appear at the DOS }prompt on the Apple
screen. These items are interpreted by the CPU exactly like keyboard input.

The origin of the scanner cursor is the item which appears next to the the
window’s name item. This is called the home position of the scanner. The
primary cycle of the cursor moves vertically for row selection. We have reserved
the topmost row for network transitions to other scanner windows and the
[FULL] function (which pulls the scanner window up for viewing the entire Apple
text screen). The second row is reserved for characters used by all scanning
levels: <SPC>, the spacebar character; [UNDO] which removes the last selected item;
and <CR>, the carriage rcturn. After the user has selected a row during the
primary cursor cycle, the name item of the window becomes part of the secondary
cursor cycle for item selection. The name item is a breakout which homes the
cursor back to primary cycle if the user has entered the wrong row.

The SPELL screen (illustrated in Figure 1-3) is the heart of the system. We
believe that primitive alphabet spellers should be optimized for the language

that is to be produced. The _ETN order is familiar for prosthetic scanners
which produce English, but in our application we expect the user to be producing
the Applesoft dialect of BASIC within the DOS operating system. We made initial
studies of BASIC programs to arrive at the order of the SPELL character arrays.
These studies were not exhaustive-~ only about 40,000 characters of total
programming texts— but they did set a nonarbitrary procedure for establishing the
order to our primitives.

[SPELL] [BASIC] [DOS] [MAIN] [FULL]
PC

E N O ” : 8§) (
T 1 A C L , > <
0 R M = K ; . 1
1 2 S B U & #
P 3 4 5 6 7 8 9
- F + /7 []
H D * X Y _ °

G % <-J Z

W QUV X °C

Figure 1-3. SPELL scanning window.

The BASIC and DOS windows contain frequent vocabulary items used in
Applesoft programs and the operating system. Here we arrived at a dilemma
because of our dual purposes of vocational versus educational uses of the scanner.
The most frequent vocabulary items used by BASIC programmers would
establish an optimal order something like PRINT, REM, POKE, PEEK(, and so
forth. Our field studies of people just learning the language, however, showed
that they preferred these items listed in the familiar ABCD alphabet order. After
preliminary rewriting in our laboratory, we were faced with encroaching
programming limits since there were only 4K memory available for the scanning
routines to fit within the ROM logic. The result was somewhat inelegant—
we had to append small lists of additional commands to bottom of the
alphabetized items.

[BASIC] [SPELL] [DOS] [MAIN] [FULL]
<SPC> [UNDO] <CR> ASC(
CHR$(COLOR= DATA END

FLASH FOR GET GOSUB
GOTO GR HCOLOR= HGR
HPLOT HTAB IF INPUT

INVERSE LEFT$ LEN(MIDS$(
NEXT NORMAL ON PEEK(
PLOT POKE PRINT REM
RESTORE RETURN RIGHT$(RND{
STEP THEN TO VTAB

Figure 1-4. BASIC scanning window.

[DOS] [SPELL] [BASIC] [MAIN] [FULL]
<SPC> [UNDO] <CR> $
,D1 D2 S A
BLOAD BRUN BSAVE L
CATALOG DELETE EXEC FP
IN# INIT INT LOAD
LOCK MON MXFILES NOMON
OPEN PR# READ RENAME

RUN SAVE UNLOCK WRITE
CALL CONT DIM HOME
LIST NOTRACE TEXT TRACE

Figure 1-5. DOS scanning window

An additional scanning window for scrolling-process interrupt will appear if the
disabled user responds during Apple output processes, such as the listing of a
BASIC program. The [FULL] function removes the window to view the entire text
screen. The “C (computerese for the control C character) will break the
process and the “S will continue the scrolling process. These are standard
interrupt characters used by the Apple Ils.

10

TalkBASIC is typically used to create or execute BASIC programs. One such
program we provide in conjunction with TalkBASIC is called CONFIG. This
allows the user to set parameters which control the operation of TalkBASIC.
If the disabled user is capable of controlling one input switch, the
CONFIG program allows the item selection function to operate from any of the
three pushbutton inputs in the Apple I game I/O. When more switches are
used, other TalkBASIC functions (like homing the cursor or stepping the cursor
faster than present scanning speed) can be configured to the additonal
pushbuttons. Other parameters are set in CONFIG which establish the default
cursor speed for the next time TalkBASIC is used. The user can also inform
TalkBASIC if the lower case expansion option is available in the microcomputer.

The most powerful uses of TalkBASIC involve the integration with other
programming utilities. The most common form of this use is to run TalkBASIC
simultaneously with a BASIC programming environment. In our laboratory and in
field testing we typically boot TalkBASIC then load the Applesoft
Programmer’s Assistant (APA) from the DOS TOOLKIT (Apple Computer Inc.
1979). APA provides standard programming utilities like automatic line
numbering, line renumbering, variable crossreferencing tables, and 50
forth. Accessibility to these utilities have been vital to our disabled users. In
this case, the integration pattern of the software is:

TalkBASIC > APA envronment > Applesoft program.

Another powerful use of TalkBASIC is to integrate it with the assembler
which was used to assemble TalkBASIC’s source code. We used the Big Mac
6502 assembler (Bledon and Waddell 1982). This theoretically gives the
disabled user the complete ability to alter any feature of the TalkBASIC scanner.
The integration pattern of this use is:

TalkBASIC > Big Mac assembler > TalkBASIC source code.

We believe this is the first prosthetic scanner with ability to alter any detail
of its own internal structure. We do not anticipate that many disabled users will
make use of this integration because the source code is 6502 assembly
language code, and it is very tightly written to get this much utility into the 4K
available memory for the scanning routines.

Not all programs will operate with this approach to prosthetic scanning in
the Apple IIs. Most programs which require the use of the 16K RAMcard
will interfere with the scanner’s own code which resides there. Some Applesoft
programs read the keyboard directly rather than through the normal
INPUT routine, and so our scanner-mutated ROM copy is not accessed in the
usual manner. The diskette copying utility, COPYA, found on the DOS 33

1

System Master (Apple Computer Inc. 1980) is an example of direct keyboard
reading. There is an easy fix for this which the disabled wusers can perform
themselves from TalkBASIC. It involves changing the appropriate lines of the
program to INPUT statements. For the COPYA utility, this required the
change of a single line of code to make the program accessible to the disabled.
A more serious problem is the use of nonstandard operating systems which
publishing houses use in a foolish attempt to prevent pirate copying. Since this
approach does not permit entry from the standard DOS operating system,
the TalkBASIC scanner is wiped out when the system is booted to enter the
commercial programs. As a result, none of the Apple II word processors
we have are accessible to our disabled «clients in field testing. There are
undoubtably good word processors available in the public domain which permit
entry from standard DOS, but we have not found the time to search for them. At
the end of our public testing (in computerese, this is called beta-maintenance of
a program), we intend to put the finalized form of TalkBASIC blasted into chips
on its own card which may solve some of the problems encountered with
nonstandard operating systems. We have not had time yet to develop TalkBASIC
to operate under the ProDOS operating system.

12 MINICOMPUTER SCANNING

The future of personal computers lies in today’s minicomputers with virtual
memory access. Several major companies are presently preparing personal
minicomputers for home wuse. Bell Labs UNIX operating system (Ritchie
and Thompson 1974) is slated to be the system we will all be using within the next
decade of high technology progress. In this section we shall briefly describe
a couple scanning utilities our laboratory has been preparing in our research
environment for the day when much larger computer systems are available
for the nonvocal people.

$$$ VAXSCAN $$$ COMMAND SCREEN

=== === = —3—1—+—+ 11 = = et o e ey v s

EXECUTE RUBOUT COMMAND PARAMS SPECIAL FILES SPELL QUIT

e — ——
= = - —2—

HELP MONITOR WHOIS COoPY
VFINGER DIRECTORY SPAWN READ LOGOUT
INFORM SET SEARCH CLAIM SET HOST
TYPE SET DEFAULT PROCESS CLOSE APPEND
ASSIGN SHOW WHAT EOD
DELETE SHOW SYSTEM OPEN CREATE
RUN SHOW NETWORK WRITE RENAME

Figure 1-6. Toplevel VAXscan scanner

The top level scanner for our minicomputer environment is called VAXscan.
It is implemented in Digital Command Language (DCL) which is the proprietary
system command language for VAX 11780s. A nonvocal user can use an
autodialing modem to enter their system account, and the login procedure initializes
the toplevel scanner which accepts any input received as the signal for item
selection. The commands you see displayed in Figure 1-6 are the most frequently
used system logicals in our research environment. When the commands
are constructed from the scanning network, they are executed exactly as if the
input were entered through keyboard routines and then control is returned to the
scanner.

From the VAXscan utility which is used for system commands, the user can
enter a more powerful data-driven scanner we call SpeakEasy TALK. Early
versions of this system were implemented in Apple PASCAL (Apple Computer Inc.
1980) for Apple IIs, but microcomputer limitations have slowed the
development of these powerful scanners. Data-driven scanners get their name
from the fact that all of their vocabulary is contained in data files rather than

written directly into the source code of the scanner. This allows the wusers to
personalize their scanner vocabulary to their individual needs. We believe
this kind of scanner utility will become standard in future generations of
scanning software as it has in the evolution of most other computer utilities.

PROGRAM simple (output);

BEGIN
WRITELN;
WRITELN (° this program writes to the screen °);
WRITELN;

END.

——— v — —— pros 11

<Program> <identifier> <standard-I0> <prog body> <statement>

PROGRAM <spell> (cutput); BEGIN BEGIN
VAR
WRITELN (*
WRITELN

* Ooprs! CONTINUE MORE DONE SPELL OTHER RESTART

Figure 1-7. TALK scanner with a PASCAL data base.

The output of the TALK scanner is a text file. In the example shown in
Figure 1-7, a PASCAL data base (in the bottom half of the illustration) using
vocabulary structured for the programming language has been used to create a
simple program (shown in the top half). Once this file is created by the
data-driven scanner, its execution from the system-level VAXscan is the next
task. The programming environments of minicomputers contain many of the
most advanced programming utilities and it is our intention to make these available
to all users- especially those who can barely close a single switch.

14

REFERENCES

D. Drake and S. Kulikowski, TalkBASIC,
Ambherst, MA: Computer and Information
Science, University of Massachusetts,
1984.

S. Conti, VAXscan, Amherst, MA: Research
Computing Facility, University of
Massachusetts, 1984.

T. Gruber, S. Kulikowski, and B. Hawkins

The SpeakEasy Communication Prosthesis

System, Amherst, MA: COINS Technical

Report 84-22, Computer and Information Science,
University of Massachusetts, 1984,

B. Kemnighan and D. Ritchie, The C
Programming Language, Englewood Cliffs,
NIJ: Prentice-Hall Inc., 1978.

Apple Computer Inc., DOS 33 System
Master, San Cupertino, CA: 1984.

Apple Computer Inc., The Applesoft
Programmer’s Assistant, San Cupertino,
CA: 1979.

G. Bledon and D. Waddell, Big Mac,
Puget Sound, WA: Call APPLE,
1982.

D. Ritchie and K. Thompson, "The UNIX
Time-Sharing System,” Comm. ACM, vol. 17,
no. 7, pp. 365-375, 1974.

Apple Computer Inc., Apple II PASCAL,
San Cupertino, CA: 1980.

