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ABSTRACT

Database systems, like all models, must be constrained to represent just those
states and transitions which are possible in the world they model. Database integrity
constraints, transition constraints and transaction definitions specify the conformity of
a database system to the real world. However, when a system is implemented these
specifications must be followed, the constraints enforced, if the model is to be valid.
The enforcement of database system constraints is a difficult problem to solve
efficiently; this follows from the large amounts of data involved and the complexity
of determining minimum required checks. We present a database system development
method in which considerable theoretical support in the form of automated theorem
proving is brought to bear on the integrity enforcement prolem. The theory
underlying the method and the power of the theorem prover also allow the system
to provide a designer feedback on the quality of schemas and transactions as well as
on the behavioral implications of the system’s specification.
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1. Introduction

A database system, like any model, needs to be constrained in order to assure
that it represents only those states and transitions which are possible in the world it
models. Database systems are constrained by integrity constraints defining the legal
states of the database, as well as by transition constraints and transaction
specifications. Transition constraints and transactions define the legal transitions from
state to state. Implementing systems which obey the constraints specified is difficult.
The problem is that the constraints may be very complex and involve large amounts
of information. For this reason, the cost of checking constraints in a straightforward
manner can be prohibitive. Thus, it is imperative that only those constraints which
could be violated be checked as efficiently as possible, and then only at points
where they could be violated. To do this requires sophisticated analysis.

One way of minimizing the expense of constraint checking is to write
transactions which, by their structure, are incapable of violating constraints. For
example, a transaction which unconditionally deletes a record with a given key value
and then inserts a record with the same key value cannot violate the constraint that
the key be unique. If executing such transactions is the only method of modifying
the database, then constraint checks that are not explicit parts of a transaction need
not be made. Deciding that a transaction is in this class and determining the
modifications (e. g., incorporation of constraint checks) which must be made to a
transaction to put it efficiently into this class are problems which must be solved by

a database system development tool.
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In order to solve these problems, it is necessary to add an explicit level of
formal specification and analysis to the current database system development
paradigm of using a semantic data model, schemas, and transaction programs. Our
integration of theory into database systems development has produced a database
version of the specification-based software development paradigm presented in [Balzer
et al. 83]. Our development method incorporates techniques which guarantee that all
trantactions are safe, i.e. incapable of violating database integrity constraints
[Walker and Salveter 81, Stemple and Sheard 84]. The verification technique can
also be used in proving semantic properties of specific transactions, much in the
manner of [Kemmerer 84] but in a more purely database context, and can also be
used to find redundant tests in tramsactions. Other features of our development
method include rapid prototyping and system-generated advice on internal design. We
will not discuss the latter feature in this paper.

The general system development method is illustrated in figure 1. A designer
starts by describing the real world entities and relationships using some semantic data
model such as the entity-relationship model [Chen 76] or the semantic hierarchy
model [Smith and Smith 80). This level of specification is translated into a
specification of information structures and transitions, i. e., a schema and transactions,
with the possible addition of constraints not specifiable in the semantic model. This
specification is analyzed by an inference mechanism, e. g, a theorem prover, the
results .being used along with implementation choices, e. g., file structures, to
generate optimized implementations in some programming language and database
management system. The information level specificatibn ﬁmuld be executable as a

prototype prior to the system’s implementation in order to aid the designer in
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understanding the behavior of .the specified system. The observable behavior of the
prototype and the results of the formal analysis are valuable feedback to the
designer on the quality of both schema and transaction designs.

In figure 2, we give the development paradigm in terms of our choices.‘for an
information level language, ADABTPL (to be illustrated later in the paper), and an
inference mechanism, a Boyer-Moore style theorem prover [Boyer and Moore 79).
The form of the axioms and functions is the Lisp-like language used by
Boyer-Moore. This permits us to use a Lisp interpreter as our prototype interpreter.
The safety theorems in figure 2 are theorems stating that transactions obey the
database integrity constraints. Proofs of these theorems can be used to avoid
run-time checks of constraints; this trades compile-time analysis effort for the expense
of run-time checks. Inability to prove a safety theorem may indicate that either the
transaction or the integrity constraints are faulty. Three alternative actions can be
taken in this case: The system can transform the transaction into a safe version; the
designer can rewrite the transaction; or the designer can adjust the integrity
constraints.

The remainder of the paper illustrates the information level specifications and
the formal underpinnings of the method. We first give a schema for an example
adapted from [Gerhart 83] and show the axioms which the system generates from the
_type definitions of the schema. We then consider a transaction and discuss its
translation into recursive functions and its analysis. We then briefly outline the
manner in which the system supports rapid prototypﬁg. Finally we discuss the
building of the database theory which the theorem prover uses as the “knmowledge

base” it needs for its work.



Semantic Level System Specification

Information Level System Specification

Implementation parameters Formal analysis
¥ / \
Generation of implementation Prototype
Optimized, safe implementation Observable behavior

Figure 1: Database System Development Model.

2. Database Specification: Structure and Integrity Constraints

A database schema for a particular database system in our approach consists of
a set of type declarations in the Abstract DataBase Transaction Programming
Language (ADABTPL, pronounced adaptable). The type declarations build a set of
structures, tuples and séts culminating in the definition of a database type whose
value set contains all legal databases of the system. In a.typical case, ADABTPL is
used first to define some tuple types from the set of primitive types, e. g., integers

and character strings. Then the tuple types are used as a basis for the finite set



Semantic Model

Refinements

v
ADABTPL
Schema and Transactions

Function generator

axxoms safety theorems

/ (integrity predicates + functions)
Internal schema B-M style Proto'type
prover Interpreter
advice
\Y/

Implementation Safety proofs Transaction
Generator Behavior

Safe implementations
of transactions

Figure 2: Database System Development using ADABTPL.

types, the relation schemes, of the database. Finally, the database type itself is

specified as a tuple type whose constituent types are the relation types. An instance
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of the database is a tuple, each component of which is a database relation. At each
stage of type definition, the designer may introduce predicates defining the
constraints on the constituent being defined, domain, tuple, relation, or database.
Thus all integrity constraints, including interrelational contraints (a part of the
database type declaration), are integrated into the schema in a coherent fashion.

We now present an example to illustrate the ADABTPL type definition
language. First we describe the application we will use throughout the paper and give
an entity-relationship diagram for it. The application is adapted from the example
used in [Gerbart 83). The database is to be used in managing a job agency. Persons
apply for positions, companies subscribe to the service by offering positions, and
companies hire and fire employees. Persons who currently do not hold a job are
candidates. Only candidates may be hired and only by companies with vacant
positions.

Figure 3 is an entity-relationship diagram for a database which will support the

job agency application.

Persons —-——- : e
Jobs —— < Offering >——{ Companies

Figure 3: Entity-Relationship Diagram for Job-Agcncy.'
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Figure 4 shows the ADABTPL type declarations for a straightforward relational
implementation of the Job_Agency E-R diagram. The period () is used both for
sclection of a tuple component and for relational projection, depending on the type
of the variable. Projection on two or more components of a tuple or relatit;n Vis
written V . [Cy, Gy, .. G}

Note that key constraints in figure 4 are in relation type declarations which
can be separate from tuple definitions (e. g, the declaration for Offer).
Interrelational constraints can be included in the database type declaration, in this
example to express referential integrity and the non-totality of certam of the
relationships. It is these constraints and the constraints of the component types

which may not be violated by the transactions.

3. Abstract Data Type Axioms from the Database Schema

Each type definition in ADABTPL supplies parameters to a generic abstract
data type definition and causes the generation of a set of specific axioms for
operations on the database component being defined. These components are either
tuples or finite sets. (Lists are also a feature of our system, but will not be
discussed in this paper) The axioms have been designed to capture the semantics of
operations on the database in a manner which supports the use of the Boyer-Moore
approach in proving transaction safety and other properties of the system [Boyer and

Moore 79, Stemple and Sheard 83).



Schema of Job-agency

Personrel = Set of [Pid: integer, Pname: string, Paddress: string, Placed: (‘yes’, ‘no”)]
where Key(Pid); '

Jobtel = Set of [Jid: integer, Jdescription: string]
where Key(Jid);

Companyrel = Set of [Cid: integer, Company_name: string, Company_address: string]
where Key(Cid) and Key(Company_name);

Offer = [Cid: integer, Jid: integer, Number_of_positions: integer, Comments: string]
where Number_of_positions > 0;

Offering = Set of Offer where Key(Cid, Jid);

Placementrel = Set of [Pid: integer, Jid: integer, Cid: integer)
where Key(Pid);

Job_agency = [Persons: Personrel, Jobs: Jobrel, Offering: Offerrel,
Companies: Companyrel, Placements: Placementrel]

where Persons . Pid Contains Placements . Pid and
Companies . Cid Contains Placements . Cid and
Jobs . Jid Contains Placements . Jid and
{Placement is a ternary, non-total relationship.}

Jobs . Jid Contains Offering . Jid and
{The offered jobs must be known jobs, but
not all jobs are necessarily offered.}

Companies . Cid Contains Offering . Cid and
{All companies offering jobs are known companies,
but not all companies offer jobs at all times.}

For all P In Persons: If P . Pid In Placements . Pid

Then P . Placed = “yes” Else P . Placed = ‘no’
{If a person has a Placement, Placed status is ‘yes’, else ‘no”}.

Figure 4 ADABTPL Schema for Job-Agency Database.
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Each tuple type definition leads to the axiomatization of a tuple con tructor
operation (named by the type name) and of a set of selector operations (narned by
the component names), one for each component of a tuple. The axioms specify the
expected reciprocity of construction and selection. For example, the definitiox; of the

Offer tuple in figure 4 leads to the axioms in figure 5.

Cid(Offer(c, j, n, 8)) = ¢

Jid(Offer(c, j, n, 8)) = j
Number_of_positions(Offer(c, j, n, 5)) = n
Comments(Offer(c, j, n, 5)) = s

Figure 5: Axioms for Tuple Type Offer.

The first axiom in figure 5 states that constructing an Offer tuple from c, j» n, and
8, written Offer(c, j, n, 8), and then selecting a part using the Cid selector function
returns a result equal to ¢. Such axioms are produced by the system and used by
the theorem prover. They are rarely to be read or used in any way by humans.

The finite set axioms used to axiomatize relations define an abstract data type
with operations insert, choose, rest, and empty and are given in Figure 6. The
choose and rest operation provide the novelty in our treatment of finite sets as an
abstract data type. The axioms are sufficiently complete in the sense of [Guttag 80]
and safe in the sense of [Phillips 84]. More importantly, they have been effective in
providing the basis for proofs of our database theorems using Boyer-Moore
techniques. We have mechanically proven over three hundred theorems and have yet
to fail in proving a theorem we have tried, though man); have required the proof of

several lemmas. (We have tried to prove many non-theorems and have failed every

time.)
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The generation of a set of axioms for finite sets might not seem to be a
significant problem, given the number of axiomatizations of sets in the literature.
However, our requirements included two features which were not present together in
any of the explicit axiomatizations we could find. The two features we required
were: a function which maps from sets to set elements (to allow us to range through
the tuples of a relation, for example), such as Randomtuple [Schmidt 77, Casanova et
al. 84], or choose [Guttag 80, Furtado and Veloso 81]; and support for structural
induction (induction on the structure of a data domain [Burstall 69]) as a proof rule.
The second feature is a goal of many axiomatizations of abstract data types, but is
most often achieved by requiring that the last element used in constructing an
instance of a type be immediately selectable by a selector function [e. g., Standish
78, Boyer and Moore 79, Oppen 78]. This LIFO behavior is appropriate for stacks,
lists, binary trees, and many other data types, but not for sets (nor for that matter,
queues). Most treatments of set types either avoid a function which returns an
element of a s;at, using instead an element-of and delete, or rely on a total order on
the element type. We follow the second of these courses, but hide the order in such
a way as to make the finite set type exhibit just those properties of sets which are
appropriate and still allow the use of structural induction.
The choose operation returns an arbitrary member of its finite set argument.
The member is arbitrary but is the same for equal sets. This operation induces an
order ¢;n the elements of a finite set, but does not impose any particular order.
However, the axioms require that any valid implementation for choose not rely on
the order of insertion for the choose order. This fea'turc. of the axioms constitutes

the major difference between finite sets and the list abstract data type with
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operations CAR, CDR, and CONS. Though it is possible to simulate finite sets using
lists, it adds complexities to the proofs of properties needed in analysing database
transactions and integrity constraints. See [Stemple and Sheard 83] for a further
discussion of the ADABTPL axioms and their relationship to lists. .‘

There are three restrictions on the assignment of sorts to the sort variable
elements in figure 6. The first is that an equality relation be defined on the sort.
The second is that, though elements may be a set type, it may not be the sct being
defined or be based indirectly on it. Third, the sort substituted for elements must
have a before function which obeys the axioms involving before. An equality
relation is the sole requirement for using a type as a tuple component. Since
relational equality is defined by the finite set axioms and an order on the relations
of a type can be defined in terms of the clement order, nothing in our theory

restricts relations to first normal form.



Syntax (signature)

emptyset: —> fsets

rest: fsets —> fsets

choose: fsets —> elements

insert: elements X fsets —> fsets

before: elements X elements —> boolean
smaller: fsets X fsets —> boolean

Basic axioms

rest(insert(e, 8)) = if s = emptyset
then emptyset
else if ¢ # choose(s)
then if before(e, choose(s))
then s
else insert(e, rest(s))
else rest(s)

choose(insert(e, 8)) = if s = emptyset
then e
else if before(e, choose(s))
then e
else choose(s)
s # emptyset —> insert(choose(s), rest(s)) = s
insert(e, s) # emptyset
Order axioms (normally hidden)
a = b —> not before(a, b)
before(a, b) —> not before(b, a)
before(a, b) and before(b, c) —> before(a, c)
smaller is a well-founded relation and

s # emptyset —> smaller(rest(s), s)
(These two axioms restrict sets to finite sets.)

Figure 6: Finite Set Axioms.
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4. Transaction Programs: Abstract Database Type Operations

Transactions are the operations of the database system considered as a single
abstract data type (the database being the object of the type) and are written in the
procedural part of the ADABTPL language. The database type definition, i. e., the
type definitions of the database schema, together with type definitions of the input
parameters (also in ADABTPL) constitute the declarative part of an ADABTPL
transaction. An ADABTPL transaction is composed from update statements on
database components, control statements, assignment statements, output statements
having no effect on the database, and a header statement declaring the input types
and preconditions of the transaction. Though an ADABTPL transaction rcsembles a
typical iterative, non-applicative program such as might be written in Pascal or Pascal
R [Schmidt 77], it differs from such programs in three major respects. First, there
are no true updatable variables other than the loop controllers. Second, all
operations in an ADABTPL transaction are fully axiomatized by the database type
definition. Third, ADABTPL transactions have semantics which are expressible as (in
fact, defined as) pure recursive functions on the database type. The second and
third properties allow us to call the programs abstract specifications and are also the
reasons that safety theorems may be proven using Boyer-Moore techniques.

Figure 7 shows the ADABTPL tramsaction which updates the Job_Agency

database when a company hires an employee.
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Transaction Hire (Company: integer, Hiree: integer, Job:integer);
Preconditions

Hiree In Persons . Pid;
[Company, Job] In Offering . [Cid, Jid];
For the P in Persons where P . Pid = Hiree: P . Placed = 'no”’;

Begin {Hire body}

For the Offer In Offering
where Offer . [Cid, Jid] = [Company, Job]

Do {Update offer}
If Offer . Number_of_positions = 1

then Delete Offer from Offering
else Update Offer using
[Number_of_positions = Number_of_positions - 1J;
{Set Placed status for hiree to yes}
For the P In Persons where P . Pid = Hiree
Do Update P using [Placed = “yes];

{Add Placement relationship.}
Insert [Hiree, Job, Company] into Placements;

End {Hire transaction}.

Figure 7: ADABTPL Transaction Hire.

S. Functional Forms of the Transactions

In, this section we discuss the translation of ADABTPL programs into recursive
functions. The functions are expressed in essentially the language used by Boyer and
Moore to express functions and predicates. We call this language the Functional
Abstraction Specification Language (FASL, pronounced- facile). Transactions written

in ADABTPL must be translated into a recursive function form for processing by
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the theorem prover. The reason for having two languages, one for humans and one
for the mechanical prover, will become obvious as we examine the recursive function
forms of the transactions. Though this form facilitates the use of Boyer-Moore
proof techniques, humans should never be required to write anything compliéuted in -
such a language. Designers do not write in FASL. FASL axioms and functions are
generated automatically from ADABTPL type definitions and transaction programs,
respectively.

Figure 8 gives the FASL form of the Hire transaction given in figure 7 in
ADABTPL. Its general form is that of an if statement whose condition is the
conjunction of the transaction’s preconditions. If the preconditions are false then the
original database (db) is retuned as the value of the function. If the preconditions
are true the function specifies the construction of a new database, by the
construction function job-agency. The job_agency function constructs a new database
state from the unchanged jobs and companies relations, persons changed by the
function fed-person, offerings changed by fed-offer, and placements with a new tuple
inserted. The functions fed-person and fed-offer use a generic update function to
compute the new persons and offering relations. This function models “for the in a
set” statements and i8 a bit complicated. It takes a relation (passed for technical
reasons as two parameters, r agd §), two predicates, p and q, a tuple update
function, f, and some optional parameters, &x. It returns a relation containing the
tuples of r which do not obey p, either minus the tuple of r which obeys p and q,
or plus the update by f of the tuple which obeys p butA not q. This function is just
one of the patterns of updates which occurs commonly and is used only in cases

where at most one tuple obeys the predicate p, for example where p specifies a
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unique key value. There are corresponding update functions for other patterns such
as changing all tuples in a relation that obey some predicate. The reason for using
such generic functions is that thecorems can be proven about them and functions such
as fed-person and fed-offer inherit the theorems. This facilitates mechanical proofs of
the properties of transactions like Hire.

The functions after update in figure 8 are used to parameterize update to
model the “for the” loops in the Hire program. The function falsehood returns false

for all input which means that no tuples of persons will be deleted by fed-person.

6. Theorems about Safety and other Properties

A safety theorem for a transaction states that if the transaction is applied to a
valid database with valid input and the preconditions are met, then it returns a valid
database. Safety theorems allow an implementation to avoid checking constraints not
explicitly checked in the body of a transaction, relying on the system to guarantee
no incomplete execution of a transaction i. e., guarantee the atomicity of transactions
by concurrency oontrpl mechanisms. A simple example of a safe transaction that is
easily proven safe is one which first deletes a tuple with a given key, say an
employee tuple with social security number as key, and then inserts a tuple with the
same key. This transaction respects the key constraint, but would lead to a redundant
check because of the insert if the delete was not taken into account. This is a very
simple example and the general problem of detecting that a transaction is safe is in
the most general case undecideable. Even in the case of ADABTPL schemas and

transactions, the theorem prover will not be able to prove all safe transactions safe.



hire(company, hiree, job, db) =

if (member(tuple($clist(pid), hiree), project(persons(db), pid)) and
member (tuple($clist(cid, §d), company, job), propct(offenngs(db), cid, fid)) and
for-all (persons(db), ‘unemployed, hiree)))

then
job-agency (fed-person (persons(db), persons(db), hiree),
jobs(db),
fed-offer (offerings(db), offerings(db), company, job)
companies(db),
insert (placement(hiree, job, company), placements(db)))
else
db))
where

fed-person(r, ans, h) =
update(r, ans, ‘named, ‘falsehood, ‘mark-employed, h)

fed-offer(r, ans, c, j) =
update(r, ans, ‘comp-job-match, ‘ast-job, “dec-num-pos, c, j)

update(r, s, p, q, f, &x)
if empty(r) then s
else
if p(choose(r), &x)
then if g(choose(r), &x)
then delete((choose(r), s)
else insert(f(choose(r), &x),
delete(choose(r), s))
else update(rest(r), s, p, q, f, &x)

named(x, h) = equal(pid(x), h)

mark-employed(x, dummy) = person(pid(x), pname(x), paddress(x), ‘yes’)

comp-job-match(x, c, j) = equal(projT(x, $clist(cid, jid)), tuple(Sclist(cid, jd), c, })

last-job(x, dummy1, dummy2) = equal(number-of-positions(x), 1)

dec-num-pos(x, dummyl, dummy2) =offer(cid(x), fid(x), subl(number-of-postions(x)))
Figure 8: FASL Form of the Hire Transaction.

17
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Once a schema has been entered, the designer may write a transaction in
ADABTPL and submit it to the system for analysis. The system forms a safety
theorem from the FASL translations of the schema and the transaction and submits
it to the theorem prover for proof. If the theorem can be proven the designer may
be sure that the transaction is sound in terms of obeying the database constraints. If
the theorem cannot be proven, the designer may want to examine the transaction or
those constraints which the theorem prover cannot verify that the transaction respects
as written. If the problem is simply a matter of a missing constraint test, the
designer can allow the system to genmerate a run-time test. Otherwise, the designer
can change the transaction or constraint(s) to bring them into conformity.
The safety theorem for the Hire transaction can be expressed in FASL as

Consistent(db) and Valid(Company, Hiree, Job, db) —>
Consistent(Hire(Company, Hiree, Job, db))

where Consistent is the predicate function combining the where clauses in the
database type definition into a single consistency predicate, and Valid is a predicate
on the input values and the database derived from the preconditions and the type
definitions of the input (the latter are trivial in this case, but in general, are more
complex).

To illustrate a check that can be eliminated in the Hire transaction, consider
the statement

- Insert([Hiree, Job, Company), Placements)
The system must insure that, after the insertion, Placements obeys the four database
constraints on it, those in the where clause in the definition of the Job-Agency tuple
in figure 4. This could be done by checking each set (say implemented as a file)

separately at run-time. It can, however, easily be seen that this need not be done for
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the inclusion of Hiree in Persons.Pid, since it is a precondition of the transaction
and will have been checked if the insertion statement is reached. But what of
Company being a known company, and Job being a known job? The preconditions
do not state these constraints. Should the system generate the code for the ;un-time
check? No, the validity of the insertion can be inferred from the precondition
requiring that [Company, Job] be in the [Cid, Jid] projection of the Offering set.
This follows from the constraints that make the Offering job identifier identify
current jobs and the Offering company identifier identify current companies. Thus a
safety proof of Hire will allow the system to execute the Insert without additional
checking.

The requirement that the Placed status of person be ‘yes” if the persons
identifier is in a Placements tuple is also verifiably obeyed by this transaction and
thus need not be checked. Note that this constraint is not met between setting the
Placed status ‘yes” and inserting the placement tuple. It is just such cases which
make considerations of transaction safety more than just optimization and show that
treating only simple updates is ineffective and sometimes meaningless. A check after
the update of the Placed status would show the database to be inconsistent and
always causc the transaction to abort. Questions of which constraints to check and
where to check them are very difficult to answer reasonably (all constraints after
every transaction is not reasonable) without a powerful inference mechanism and
without a sufficiently formal capture of the semantics of transactions. We have

proven mechanically the safety of this transaction using our version of the

Boyer-Moore theorem prover.
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The system can go further than just avoiding the generation of needless checks
and actually delete explicitly specified, but redundant, checks in some cases. Suppose
the designer had written, instead of the simple Insert,

If Job In JobsJid and Company In Companies.Cid
then Insert ([Hiree, Job, Company], Placements)
else Reject_transaction (‘Bad Placement”)
We can see from the discussion above that this will always execute the Insert and
thus is more expensive than need be.

Write statements must be handled specially since they are not expressible as
functional actions on the database, as are all other semantics of ADABTPL
programs. In order to correct this, the verification subsystem automatically appends
write sets to the database type when asked to prove properties of tramsaction output.
Writes are treated as inserts into their particular write sets. (In some cases, such as
when order of writing is semantically important, we use write lists instead of sets,
but we will not discuss these cases beyond commenting that they present no more
difficulty than do sets) Assertions about output can then be verified in the same
manner as safety is verified.

Theorems are proven using the Boyer-Moore theorem proving techniques. This
technique has been shown to be powerful in proving theorems about recursive list
functions. The formality brought to database systems by our approach has been
designed to produce theorems which closely resemble theorems about list functions,
though we have assiduously avoided modelling finite sets as lists, The form of our
theorems can be contrasted with those of Gardarin and Melkanoff who use proof
techniques based on the Hoare axiomatic approach applied to predicate calculus

axioms and assertions imbedded in extended ALGOL 60 transaction programs
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[Gardarin and Melkanoff 79]. We believe that the translation of ADABTPL
programs into recursive functions will case the difficulty of proving theorems by
stereotyping the theorems, thus making a tailored set of heuristics and lemmas more
generally effective than might be the case if functions, axioms, and theore:r;s were
“hand-generated”. We are currently trying to validate this belief through

experimentation.

7. FASL Functions as the System Prototype

Pre-implementation testing can be performed during the system design stage by
executing the FASL functions. The FASL functions are LISP-like, and a LISP
implementation of the tuple constructor and selector functions, the finite set
operations, and the if function is all that is needed to allow the execution of FASL
functions directly in LISP.

There are only two non-trivial considerations in these implementations. First
the if function cannot behave like an ordinary function in LISP, in that it cannot
blindly evaluate all three of its parameters. It must first evaluate its predicate, and
then evaluate either the true or false branch depending upon the result. Fortunately
most LISP implementations have special constructs for defining such functions.

Second, any implementation of the constructor, selector and set operations must
not only implement our intuitive notion of their purpose, but they must also obey
the axioms in figure 6. These axioms are not particularly difficult to satisfy, since
we designed them first to axiomatize finite sets, and second to describe the way real
databases are usually processed (at least abstractly), and we can easily simulate

certain file processing.
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For example, consider a relation with a key constraint, this could be
implemented in a real database using the behavior of a B-tree, where tuples are
inserted into their position according to key-order. The functions insert, choose,
and delete could be implemented in a similar manner using LISP functions which
maintain the tuples in their key-order. We let each tuple be implemented as a list
and each relation as a list of tuples, and we define insert, rest, delete, choose, and

emptyset by

(emptyset) = nil
(insert x 1) =
(if (eq r nil)
(cons x nil)
(if (before x (car r))
(cons x 1)
(cons (car r) (insert x (cdr r))))
(choose 1) = (car 1)
(delete x 1) =
(if (eq r nil)
nil
(if (equal x (car r))
(cdr 1)
(cons (car r) (delete x (cdr 1))
(rest r) = (delete (choose r) r)
The before function tests if its first argument comes before its second in key-order.
Note that the above implementation satisfies all the axioms (we have proven
this by ‘using the list axioms [Boyer and Moore 79] and the function definitions to
prove the finite set and tuple axioms as theorems) and maintains sets as lists in
key-order. We realize that such an implementation is extremely inefficient, but the

purpose of the prototype is to convince the designer that the specification specifies

what he or she thought it did. Since this purpose is served by relations with few
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tuples, the benefits obtained from running such a prototype far outweigh the costs

involved in executing it.

8. The Extended Theory: The Knowiedge Base of the Prover

In order to make the theorem prover effective in dealing with theorems about
transactions on highly constrained databases it has been necessary to build a
knowledge base of database theory. There are two aspects to this knowledge base, the
extensions to the theory (function definitions) and the theorems proven and collected
in a database accessible to the prover. Choices of both are crucial to the
effectiveness of a theoretical design aid. The choice of extensions is partially based
on the kinds of constraints that a designer needs to write. For example, key
constraints and set containment as well as quantification predicates are essential
components of a database constraint language. Therefore these concepts must be
“understood” by the theorem prover. To properly deal with the effects of updates on
constraints expressed using these concepts, the theorem prover relies on lemmas which
capture the interaction behavior of various updates and these constraints. Likewise
the concepts of relational algebra should be known to the theorem prover. In figure
9 we give some examples of extensions to the basic theory in terms of function
definitions. Figure 10 gives some theorems which we have proven using the theorem
prover and which are stored in its lemma list for use in proving transaction
theorems.

The definition of a relational update function which replaces all those tuples of
a relation r for which p is true with f of those tuples is given in figure 11. This is

similar to the update function used in the hire transaction function, but is simplified



member(t, R) = if R = emptyset
then false
else if t.= choose(R)
then. true
else member(t, rest(R))

deleteit, R) = if R = emptyset
then emptyset
else if t = choose(R)
then rest(R)
else insert(choose(R), delete(t, rest(R)))

project(R, clist) = if empty(R)
then emptyset
else insert(projT(choose(R), clist),

project(rest(R), clist)

select(R, P) = if empty(R)
then emptyset
else if P(choose(R))
then insert(choose(R), select(rest(R), P))
else select(rest(R), P)

key(R, clist) = if empty(R) then true
else if member(projT(choose(R), clist), project(rest(R), clist)
then false
else key(rest(R), clist)

contains(X, Y) = if empty(Y) then true
else if member(choose(Y), X)
then contains(X, rest(Y))
else false

forall(R, P) = if empty(R) then true
else if P(choose(R))
then forall(rest(R), P)
else false

forsome(R, P) = if empty(R) then false
else if P(choose(R))
then true
else forsome(rest(R), P)

Figure 9: Extensions of the Basic Theory.



Theorems about select:
member(e, select(R, P)) —> member(e, R)
member(e, select(R, P)) > P(e)
A theorem about key invariance under certain inserts is
key(R, k) and projI(t, k) ¢ project(R, k)) —> key(insert(t, R), k)
Theorems about contains
X =Y <-> contains(X, Y) and contains(Y, X)
(contains(X, Y) and contains(Y, Z)) —> contains(X, Z)
(contains(X, Y) —> contains(insert(a, X), Y)
Theorems about quantification
forall(R, P) —> forall(delete(e, R), P)
forall(R, P) and contains(R, S) —> forall(S, P)
forall (R, P) and P(¢) —> forall(insert(e,R), P)
forsome(R, P) —> forsome(insert(e, R))
forsome(R, P) and contains(S,R) —> forsome(S, P)

forsome(R, P) and not P(e) —> forsome(delete(e, R), P)

Figure 10: Useful Theorems.

update-all(r, p, f) =
if empty(r) then emptyset
else if p(choose(r))
then insert(f(choose(r)), update-all(rest(r), p, f))
else insert(choose(r), update-all(rest(r), p, f))

Figure 11: A Simplified Update Function.

for purposes of illustration. The predicate invariamt shown in figure 12 states that if

q is true for an element of r then p is true for the function f applied to the



element. We have proven

forall(r, p) and invariant(r, q, p, f) —> forall(update-all(r, q, f), p)
This states that if the predicate p is true for all tuples of r and if q is true for a
tuple then p is true for f of the tuple, then updating the tuples of r which satisfy q
by applying the function f will not violate m; constraint that p be true for all
tuples in r. The importance of such theorems is their use in avoiding constraint
checks. For example, given an update function f and the predicates p and o,
checking the forall predicate at run-time can be avoided by a compile-time proof of
p(t) and q(t) —> p(f(t))
which is easily proven in many common cases. This example is illustrative of the sort
of “usable” theory which drives the theorem prover in its analysis of database

transactions.

invariant(r, q, p, f) =
if empty(r) then true
else if q(choose(r)) —> p{f(choose r))
then invariant((rest r), q, p, f)
else false

Figure 12: An Invariant Predicate.

9. Smm_nary

We have presented an approach to specification, verification, and pre-implementation
testing of database systems in which a system designer writes a schema and
transaction programs in a more or less traditional manner. The system specification

produced in this fashion is transformed into formal definitions of abstract data types
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for the elements of the datahase and for the system as a single abstract type. The
formalization supports optimization of system implementations by allowing needless
constraint checking to be avoided. It also supports verification of semantic properties
of the system beyond transaction safety, as well as rapid prototyping to test" system
semantics.

The system described in this paper is currently under development. A version
of the Boyer-Moore theorem prover is operational and has been used to prove over
two hundred theorems including the transaction safety theorem for the transaction
shown in Figure 7, and others of similar complexity. Currently, the translation from
ADABTPL into FASL is partially automated. A translator from ADABTPL to
FASL and a translator which maps from the entity-relationship model into
ADABTPL are under development. Plans include implementations on two

commercial database management systems.
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