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ABSTRACT

Database systems have many advantages for implementing document retrieval systems.
One of the main advantages would be the integration of data and text bandling in a single
information system. However, it has not been clear how much a database implementation
would cost in terms of efficiency. In this paper, we compare a database implementation
and a standalone implementation of a flexible representation of the conteat of documents
and the associated search strategies. The representation used is a network of document and
index term nodes. The comparison shows that certain features of a database system can
have a significant effect on the efficiency of the implementation. Despite this, it appears
that a database implementation of a sophisticated document retrieval system can be
competitive with a standalone implementation.
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L0 INTRODUCTION

The task of a document retrieval system is to retrieve relevant text documents, or
references to those documents, in response to users” querics. To improve the effectiveness of
these systems, a great deal of research has been done on the indexing and retrieval
components [1,2]. Indexing refers to the process of representing the content of the text in
the documents, and the retrieval process involves the comparison of queries to document
representatives in order to decide which documents should be retrieved. One type of system
that has performed well in retrieval experimeants [1,3] uses a simple automatic indexing
technique that represents a document’s content by a set of important word stems (or index
terms) from the text together with their frequency of occurrence. The retrieval strategies in
this system are based on probabilistic models of documeat relevance and, for a given query,
produce a list of documents ranked in order of their probability of relevance. A variety of
retricval strategies are possible depending on the type of probabilistic retrieval model used.

Document retrieval systems bave typically been implemented as standalone systems
designed for the efficient storage and retrieval of large numbers of documents. However,
both the cost of implementing these special purpose systems and the demands of new
applications have led rescarchers to consider the integration of documeat rctrieval with
database systems [4,56,7). Office systems, in particular, contain large amounts of
information represented as forms that have both fixed format data fields and variable
length textual fields. Implementing a document retrieval system with a database system also
provides features such as concurrent access and recovery that eith.r are not available or are

available only in rudimeatary forms in most standalone document retrieval systems.
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One aspect of the integration of the two types of system is the modification of the

database system’s data model to incorporate the structures and operators needed to handle

variable length text fields [7). Although this aspect is important, another of more vital

concern for document retrieval system designers is how the representations and algorithms

used by sophisticated document retrieval gystems can be implemented in a database system.

McCleods work [4,8] addresses this issuc to some extent, however only limited and

generally simple search strategies are used. Porter [S] considers the implementation of more

sophisticated search strategies with a relational database system but no information on the

efficiercy of the implementation is provided. In this paper, we shall compare a standalone

implementation and a database implementation of a sophisticated documeat retrieval sysiem

in order to answer the following questions.

1.

How do the two implementations compare in terms of their overall efficiency?
The cost measures used include the number of calculations and the number of
disk accesses made during the execution of tasks such as searching and updating.
Many of the experimental results for the two implementations are difficult to
compare directly and, for this reason, the comparisons made are oanly
approximate.

Can a document retrieval system be efficieatly implemented as an application on
a standard database system, or do fundamental changes have to be made to the

data model (as proposed in [6]?

How should document retrieval search strategies be implemented in a database

system?
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4. What aspects of a database system are the most crucial for implementing a

document retrieval system?

The document retrieval system that is implemented consists of a general represeatation
of the document contents and a variety of search strategies that use different aspects of the
representation. The document contents are represented as a network of document and index
term nodes with connections between each type of node. The connections represent
relationships between these nodes. For example, a document node is connected to the index
term nodes that are used to represeat it and to other document nodes that have similar
contents. A detailed description of this approach to document retrieval and its advantages
are given in the pext section.

Whereas most of the previous work on text/database system integration has been done
with relational systems, the implementation reported here uses a CODASYL system []. This
choice was made on the basis of availability. Although the type of database system used
has a significant effect on the implementation of the search strategies, many of the"
observations reported here will apply to any database system.

As mentioned previously, the next section presents a detailed discussion of the
features of the network-based document retrieval system. It should be emphasised here that
the term “network-based” refers to the network of document and term nodes used to
represent document contents rather than to the CODASYL implementation of the document
retrieval system. Section 3 outlines the important operations needed for implementing search
strategies and for maintenance of the network. In section 4, both the standalone
implementation of the network structure and the database implementation are described,

This description includes algorithms for constructing, updating and searching the network.



Croft §

The algorithms differ for the two implementations because they attempt to exploit particular
features to enhance efficiency. The fifth section reports and compares the results of

experiments with the two implementations. The conclusions section summarizes these results.

20 A NETWORK-BASED DOCUMENT RETRIEVAL SYSTEM

Different retrieval strategies can require differeat types of information about the
content of the documents. The aim of the network representation of documents is to
capture the majority of this information within a concise framework. The main advantage
of this representation is the ability to support a variety of search strategies, including some
that would not be possible in conventional eavironments. Retrieval experiments have
provided evidence that being able to choose a search strategy appropriatc for a given
situation will increase the overall performance relative to a system restricted to a single
strategy (10].

At the conceptual level, the proposed representation can be viewed in its simplest
form as a network of document and term nodes connected by links that repmcntl.
associations between them (Figure 1). A weight on each link is used to indicate the

strength of the association. The links and the weights can be classified as follows;

a. Document-Term Link: Indicates how important a term is in the representation of

a document.

b. Term-Term Link: Indicates how closely two terms are related.

c¢. Document-Document Link: Indicates the similarity of the content of the

documents.
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Other types of links, such as document-author and document-citation, could be
included in this network in order to extend the range of search strategics available.
However, in this paper, we shall concentrate on the representation of document coantent
using index terms and assume that other bibliographic information is available but not used.
The contents of the document and term nodes will be discussed in scction 4.

The document-term links are the links that will be used most often by the search
strategies. These links are bi-directional and can be thought of as having two forms;
document-term and term-document. The document-term links identify the terms that-
represent the content of a document. This information is equivalent to that containad in a
conventional serial file of documents. The term-document links identify the documents that
are described by a particular term. This is equivalent to an inverted file of the documents.

Taken together, these parts of the network cam be used to implement many of the

o document node

- term node

— dOCument-tarm fink

- =~ document-document tink

Figure 1: A network organization.
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probabilistic strategies meantioned in the literature [1,11]. The particular form of the
document-term link weight used here is the within-document frequency of the term.

A search strategy that will be used in the experiments reported in section S ranks the
documents according to the following score (which is an estimate of their probability of
relevance);

% wix; (1)

In this score, w; is a weight for query term i and X; is a document ierm (in this case,
assumed to be either 1 or 0). One form of the weight w; that is derived from a
probabilistic model ([3,12] is log pj(1-q;¥(1-p;)q;, where p; is the probability of term i
occurring in a relevant document and q; is the probability of term i occurring in a
nonrelevant document. The q; probabilitics can be estimated from the statistics of the entire
collection of documents. Estimating p; is' more difficult. Initially, p; can be assumed to be
a constant for the query terms. ' This gives a weight that is inversely proportional to the
collection frequency of the term (also known es the inverse document frequency weight or
IDF)[13]. After the user has evaluated some of the retrieved documents, better estimates of
p; can be made.

Other search strategies are based on the assumption that the occurrence of terms is
dependent on other terms [14,15,16). These strategies can make use of the information
contained in the term-term links. The association between terms represented by the links
can derived statistically or manually using a thesaurus. A method of generating the
statistical links is described in the next paragraph.

Document-document links are used to provide the informaticn for a cluster-based
search strategy {1,17]. In this strategy, clusters or groups of related documents are ranked in

order of their similarity with the query. Many previous experiments have been done with
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a single-link cluster hierarchy of documents that can also be represented in the network by
a minimum spanning tree of links (MST)[18). The generation of the MST (for both
documents and terms) is esseatially an O(nz) process although it can be made reasonably
efficient [19]. The main drawback with the MST is that it is expensive to maintain when
new documeats are included. A more efficient approach results from experimental evidence
that indicates that only the strongest document-document similarities are useful for retrieval
{1720 Many documents are only weakly connected to each other so their
document-document links are not significant and need not be represented. In terms of the
single-link hierarchy, this means that only the lowest level (smallest) clusters are required.
Therefore, rather than generating the MST as a representation of the document-document
links, each document need only be connected to its nearest neighbours (defined in terms of
a similasity measure). A similar statement can be made for the construction of term-term
links. In both cases, the network can be restricted to contain links for the single nearest
neighbour only (or the set of equal nearest neighbours). The restriction of clusters to those
involving nearest neighbours can result in significant efficiency benefits with no loss in
effectiveness.

The document-document (or term-term) links formed by the nearest neighbour process
can be thought of as star clusters. A star is a cluster in which every member is related
to a distinguished central member of the cluster [20). Each document in the network
representation serves as the central member of a star cluster formed by connecting that
document node to its nearest neighbour document nodes (Figure 2).

In general, the formation of star clusters is bighly order dependent in that a different
clustering is constructed depending upon which nodes are regarded as central nodes. Since

We gencrate” a separate star cluster using each node as a central node, the generation of
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Star duster of
documents
- %t

o documentnode

o termnode
——— dOocument-term link
....... termeterm Bnk

o === document.documentliak

Figure 2: A star closter in the network represeatation.

star clusters is order independent in the network organization.

The star clusters formed in the network organization are small overlapping clusters of
highly related documents or terms. This means that, in contrast to the document-term links,
the term-term and the document-document links are directed in the sense that they define
two different relationships. These relationships can be called the document-to-documeat,
term-to-term, document-from-document and term-from-term links. One set of links defines
the other members of the cluster having the current document (or term) as the central
member. The other set of links defines the clusters that the current document (or term)
belongs to as a non-central member.

Cluster searching uses the document-document links from the star clusters. In
general, this type of strategy requires cluster representatives for comparison to the queries,

However, for maximum flexibility and storage savings, the cluster representatives are not
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stored in the network as scparate entities, but are generated dynamically. The algorithms
for cluster searching as well as for the probabilistic search will be described in section 4.

As well as the probabilistic and cluster-based searches, the network organization could
allow the user to follow any links in the network while searching for relevant documents.
A special retrieval strategy, called browsing, could be based on this ability. A browsing
strategy will be particularly useful as an alternative to more formal strategies or as a means
of assisting the user with the quety formulation process. In some related work, Oddy
proposed a simple network organization which was used to implement a system entirely
based on a browsing strategy [21].

An obvious implementation of the document and term network would be to directly
represent the nodes and links in a graph data structure [22]. In addition to the probable
efficiency benefits of such an implementation, it would also be able to exploit the grouping
inherent in the clusters constructed from the terms and documents. Since these clusters
contain either terms or documents with similar contents, it could be assumed that storing
the members of a cluster physically close to each other would yield additional -efficiency
benefits.

The advantages of a database implementation of the network are also significant. The
most important of these advantages is the simplicity and flexibility inherent in the
separation of the logical representation from the physical representation. The crucial question
is whether this flexibility results in much lower efficiency. The experiments reported in this

paper are designed to address this question.
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30 THE BASIC NE'I'WOR]_{ OPERATIONS
A number of basic operations are required when the network representation is
searched and updated. The same operations are also a part of the algorithms used to
construct the initial network. One basis for comparison of the network structurc and
database implementation is to contrast the relative efficiency of these operations. The
operations are as follows,

1. Given a node identifier (for example, a document or term number), retrieve the
contents of the node.

2. Given a node identifier and a link type (document-term, term-document,
term-to-term, term-from-term, document-to-document or document-from-document),
retrieve all nodes connected to the specified node by the specified link type.

3. Given the content information, create a new node.

4. Given a link description, create a new link.

5. Given a node identifier and new information, update the conteats of an existing
node (similar to operation 1).

The first two of these operations are the most important for our experimental

implementations. These operations will be referred to in the following sections.

40 THE TWO IMPLEMENTATIONS
The following discussion covers various aspects of the two implementations of the
network representation. After a general description of the iu.plementation, the algorithms
for the initial construction of the network are given. This primarily involves the generation
of the document and term nearest ncighbours used for the document-document and

term-term links. The remaining sections discuss, for ecach implementation, the following
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topics;
a.  The use of the physical grouping inherent in the document and term clusters.
b. The search algorithms for the probabilistic and cluster searches. The browsing
strategy is implemented using basic operations 1 and 2.
¢. The method of updating the network. If the network is to be used in a real
system existing in a dynamic eanvironment, updating must be efficient and must
not degrade the effectiveness of the structure. Insertion of a document into the
network establishes links to the related documents and terms, creates additional
term nodes if new terms are introduced, and modifies any term-term or

document-document links that sare affected.

The nearest neighbour and probabilistic search algorithms used for the network
structure are very similar to algorithms described in previous studies [2324). For the
database implementation, however, these algorithms proved to be very inefficient and had to

be modified. The modifications are discussed both in this section and in section 5.

4.1 The network structure

The representation of the network as a graph structure is accomplished by six arrays
storing the. document nodes, term nodes, and the four varieties of links, The varieties are
Doc-Doc, Doc-Term, Term-Doc, and Term-Term links, The arrays are divided into fixed
length "pages” for simulating page access oan a virtual memory system. The nodes contain
the minimal amount of information to define a term or document, which consists of the
pointers to the links, the number of the links of each type (also called the postings), and

some other details required for the operation of the grouping algorithm. Having only this

information allows us to keep the nodes small so we can place a number of them on a
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512 byte page. A link consists of a node number, which corresponds to an index into one
of the node arrays, and a weight. The main disadvantage of separating the links from the
nodes is that it will generate a fault as we follow the links from node to node. The
storage overhead required for this organization is very similar to that required by a
combined serial/inverted file which also contains document-document and term-term links.

Information such as the text of the document, title, author(s), and the words
corresponding to term identifiers could be stored in a scparate area. Access to this
information will generate a page fault. In our experiments, this information is omitted.

The nodes (documents and terms) are grouped and the lists of links are also grouped,
so that lists of links of similar nodes are stored contiguously. Using this technique it is
possible to fit many nodes on one page, but few lists of links on one page, since each list
of links will take up a good portion of a page.

Indexing into the network is performed by hashing. Hashing will usuvally cost one
page fault to locate a document or term node, given the document or term identifier (basic
operation 1). The location of nodes connected to a particular node (operation 2) is carried
out in the following way. First, the node with the given identifier is found. Then the
pointer to the links of the specified type is used to access the appropriate part of the link
array. Finally, the node numbers in the link array are used to access the connected nodes.
The overall efficiency of this operation will depend on the effectiveness of the physical

grouping algorithms.

Coustructing the network.
The main problem with the construction of a network for a given set of documents
and terms is the generation of the documeat and term ncarest neighbours. Various

methods for efficiently finding aecarest ncighbours in the information retrieval environment



Croft 14

have been proposed [23,24]. These methods use the following basic algorithm (we shall
discuss only document nearest neighbours, term nearest neighbours are found in a similar
way);

To find the nearest neighbour for documeat D, calculate similarity values between D and
documents having at least one term in common. The document-document pairs for the
similarity calculations are found by first finding the set of terms that describe D and thea
using the inverted lists to retrieve the documents associated with those terms. Documents
which have been seen in a previous inverted list are ignored. The similarity measure used
in the experiments reported here is Dice’s coefficient (1), which can be represented as
2IDinDjl/(lDil+D’-l). In this expression, II is the modulus operator and D represents a set of
binary index terms.

Smeaton and Van Rigbergen modified this procedure to avoid processing all of the
inverted lists associated with the terms in document D. After each inverted list is
processed, an upper bound (Ul) is calculated for the maximum similarity value that could
be obtained by comparing D to documents in the remaining inverted lists. The upper
bound is calculated by assuming that any document not seen could have all the remaining
terms in common with the document D. The assumption is also made that only N nearest
neighbours are required. A ranked list of the top N document scores is maintained and
when the lowest score on this list is greater than Ul, processing stops. Since we only
require the nearest neighbour, N is 1 in the experiments reported here. The use of Ul
avoids many unnecessary calculations byt guarantees correct results. If the inverted lists
were organized in order of frequency of use of the associated terms, this method will also

avoid using the longest lists.
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Murtagh used an upper bound (U2) which is calculated for each candidate document
on a new inverted list in order to determine whether the actual similarity calculation for
the document should be made. This upperbound is a more precise form of Ul in that it
says that the maximum number of terms that D could bave in common with a particular
document D’ not seen before is either the remaining number of terms or the number of
terms in D°, whichever is smaller. The number of terms in D’ is also used to provide a
more accurate upperbound for Dice’s coefficient. The use of U2 avoids many calculations
of the number of co-occurring terms between two documents which is the most expeasive
part of the similarity calculation.

The method used in the experiméats reported in section 5 is a combination of these
two approaches with some modifications which are designed specifically for the task of
finding nearest neighbours for all documents in a collection. Upper bound Ul is used, as
described previously, to determine if more inverted lists should be processed. Upper bound
U2 is used to determine if documents within these inverted lists should be considered. A
minimum threshold T is also placed on the similarity value. The upperbounds Ul and U2
are compared to the threshold T before comparing them to the lowest score on the list of
N nearest neighbours. Processing stops when no document can achieve a score greater than
T or when no more nearest ncighbours will be found. Any document score actually
calculated that is less than T is ignored. The use of the threshold value affects mainly
those documents that are only weakly related to other documents. These weak links are not
regarded as significant and this results in documents with no nearest neighbours.

While a ncarest neighbour for a particular document is being calculated, a record is
kept, for every other document, of the highest similarity value that the document was

involved in. For example, if while finding the ncarest neighbour for document 100, a
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similarity value of 0.53 was calculated for the document pair 100,123, this similarity value is
compared to the previous highest value seen for document 123 and stored if it is higher.
This means that when the necarest neighbour for document N is to be found, the
calculations start with the similarity value found from the calculation of nearest neighbours
for documents 1 through N-1. That is, upperbounds Ul and U2 must be greater than this
previously calculated similasity value for processing to continue. This procedure significantly
reduces the number of calculations requires and it ensures that document pairs containing
documents 1 through N-1 need not be considered whea calculating nearest neighbours for
document N. An outline of the overall nearest neighbour algorithm appears in Figure 3.
This algorithm for finding nearest neighbours relies heavily on the ability of the
network structure to quickly locate the list of terms connected to a particular document
and the list of documents connected to a particular term. In fact, for this task only the
node numbers stored in the link arrays need to be retrieved. As we will see in section 42,
the characteristics of the database implementation require modifications to the nearest

neighbour algorithm.

Physical grouping.

Because of the declining cost of disk storage, large collections of documents will
continue for some time to be stored on disk, a cellular memory device. Grouping of
closely related items in the same cell to reduce inter-cellular references can significantly
reduce the time required to respond to user queries. Grouping is similar in concept to the
use of documeat (and term) clustering to organize a document collection. Although
grouping shares some of the same attributes and techniques of clustering, the two are not
ideatical. In particular, the groups into which a document collection is partitioned need

not correspond exactly to the clusters produced by document clustering.
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1: Get terms in next document (D)

l
Put document with highest previously calculated similarity to D into
nearest neighbour list

|

Rank terms in D in order of increasing frequency

|
2: Calculate Ul

!
If Ul < T or Ul < current nearest neighbour similarity then goto 1

else

I
Get next term from ranked list

Get inverted list for term

I
3: Get next document (D) from list where D° > D
If no more documents goto 2

I
Calculate U2
I
If U2 < T or U2 < current nearest neighbour similarity then goto 3
else
l
Calculate similarity for (D,D”)
l
If similarity value > previous high similarity for (D,D") replace
I
If similarity value >= curreat nearest neighbour similarity then
replace nearest neighbour or add to list of equal nearest neighbours
|

Goto 3
Figure 3: Finding nearest oeighbours for documents 1 to N.

Unlike document clustering, where a document may belong to more than one cluster,
a document may belong to only one group, since it is stored in one location in physical
memory. A method of grouping is required that constructs oon-ove. .apping groups. In
addition, document cluster sizes may vary whereas grouping attempts to produce groups that
are of fixed size, the size of a secondary storage cell (disk track or page), since the entire

cell will be transferred into primary memory whea a reference to any member of that cell
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occurs. A method of grouping is requirod, then, that constructs fixed size groups.

Groups are constructed using srrings, a clustering technique similar to stars. Strings
are clusters in which strongly connected objects are linked up to the natural cutoff of a
loop or maximum length [20]. A string is a group of objects that are related transitively
as nearest neighbours (Figure 4).

Once an object has been placed in a string, it is mot eligible for membership in
another string. If in the course of constructing a string it leads into another string, the
two strings are joined together as one. If the size of a string becomes larger than the.
maximum size allowed, the string is split into two.

The use of strings for grouping suffers from the problem that the construction of
strings is dependent upon the order in which objects are inserted into the network. Another

problem is that it is difficult to generate fixed size groups since many strings will complete

o documentnode

o lrmnode
—— document-term Hnk
........ term-term fink

= = ae document-document Knk

Figure 4: A string in the network structore.
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before the specified size is reached. To overcome this, small strings will be stored together
in cells until the desired size is obtained. Some space will be left in each cell for updating.

The properties of strings used for grouping will be studied in section 5.

Search algorithms.

The prababilistic search strategy described in section 2 is implemented in the network
structure using an algorithm based on the nearest neighbour algorithm. The algorithm
assumes that only a fixed number N (say 20) of the top ranked documents are retrieved
initially. For each query term, the weight w; is calculated using the information stored in
the term nodes. Then, for each term in order of decreasing weight, the set of documents
connected to that term (the inverted list) is found. For each document that has not been
seen before, the set of terms connected to it is found and used to calculate the document’s
total score. Before processing a new inverted list, a check is made on the number of
documents seen. If this number is greater than N and it is not possible for a document
that has not been seen to have a higher score than those already seen, processing stops
[19]. The upper bound used to stop processing is calculated in a similar way to the Ul
bound used in the nearest neighbour algorithm. Because terms used in many documents
have low weights, this algorithm avoids processing many of the large inverted lists.

The cluster search is implemented in the following manner. First, the documents that
contain query terms are located using the documeat-term links (term-document form) of the
network. The document-document links are then followed from these documents to form
cluster representatives and calculate the cluster scores. More details are given in the

section on the database implementation.
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Updating the network,

The insertion of new documents into the network structure is performed as follows
(Figure 5). First, space is allocated for a new document node and the document-term
forms of the links are constructed. The document-term information is taken from the
document representative provided as input to the insertion operation. Next the
term-document form of the link is constructed for every term of the document
representative. If a new term is used, space is allocated for that term in the network.
The oearest neighbour(s) of the new document are then determined to construct the
document-document links. Insertion of a new document may require modification of
existing document-document links, in which case the document-document links of the nearest
neighbours of the new document are reconstructed. Insertion of a new document may also
modify existing term-term links, so for each term of the new document, the term-term links
are reconstructed.  The reconstruction of links is not propagated further in the network
than the nearest neighbour documents or terms, for reasons of efficiency. The nearest
neighbours of the new document and terms should be used to guide the placement of the
new node in the physical grouping of the network. That is, a new document node should

be stored as close as possible to its nearest neighbour.

42 The database implementation

The CODASYL implementation of the network is based on the logical schema design
shown in Figure 6(a). Each of the relationships shown in this diagram are many-to-many
and intersection records must be used to implement the schema using CODASYL sets. The
CODASYL schema is shown in Figure 6(b). This schema, although straightforward, leads
to major efficiency problems. In particular, the extra level of complexity that is introduced

by the dt-link intersection records produces unacceptable response times when the documents
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connected to a particular term (or the opposite) need to be found. For example, to find
the 'documenu conpected to term x, each of the member dtlink records in the
TERM_DOC set must be retrieved using a “FIND NEXT” DML statement. Then, for
each of these dt_link records, the owner in the DOC_TERM set is retrieved. We will see
in section S that a major component of the overhead in processing the CODASYL sets is
the repeated execution of the DML statements. As the documeant-term links are the most
crucial for implementing the scarch strategics, some redundancy was introduced into the
schema to overcome this problem.

The revised schema, shown in Figure 7, replaces the dt-link record with two record
types, link_document and link_term. These records contain ecither the document or term
identifiers, respectively. As most of the search strategies require oaly the identifiers to

produce a ranked list of documents, this modification results in considerable savings in
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l l DOC_TO DOC_FROM
DOC

1 DOC_TERM

TERM TERM_DOC
u TERM_TO TERM_FROM

Figure 6: A CODASYL schema for the network.

processing time at the expense of the redundant storage of the identifiers. If the full
document or term information is required, the identifier in the link_document or link_term
record can be used to access the node through the system sets. These sets, which are
showninFigure?,allowdirectmtodommentorterm nodes in a similar manner to
the hash algorithm used in the metwork structure. The records representing document and
term nodes contain identifiers and postings information. The intersection records representing
the links contain a weight that measures the strength of the link.

The basic operations (1 and 2) are implemented through the system sets and
intersection records using the CODASYL Data Manipulation Laaguage (DML) [9). The

algorithms that use the schema to find nearest neighbours or carry out search strategies are
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written as application programs with embedded DML statements.

Constructing the network.

As before, the main problem to be addressed is the generation of the document and
term nearest neighbours. The algorithm described in section 4.1 must be modified for the
database implementation. This is necessary because the efficiency of the database
implementation is heavily dependent on the number of record accesses made through the
linked lists that represeat the CODASYL sets. Each executicn of a CODASYL DML
statement retrieves a single record which represents a single node connected to the original
node. The previous algorithm causes a large number of record accesses because both the
term-document and document-term links are used. The modified algorithm avoids using the
document-term links by accumulating partial document scores as cach list is processed. This
means that the upper bound cutoff values used in the network structure algorithm either
cannot be used in the database algorithm or, if they are, could lead to inaccurate results.

If the upperbound comparison stops processing before all inverted lists are used, either the

SYS..DOC SYS_TERM

O [T

DOC_TO DOC_FROM DOC.'I'BRM ’I'ERM_DOC TE.RM_TO TE

Sy (o Caa Caa)

Figure 7: The revised CODASYL schema.
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similarity value for the nearsst neighbour will be incomplete or the wrong nearest neighbour
will be selected. The modified algorithm is not as appropriate for the network structure
because a single record access in this structure can retrieve an entire document-term or
term-document list.

To find document D"s nearest neighbour(s), each of the terms in the document are
first ranked in decreasing order of their IDF weight. These terms are then expanded in
order by finding the documents connected to them. A hash table is used to count the
number of term lists in which a document occurs. An update is applied to the hash table
for each document in the current term list. If the document has occurred previously, its
score is incremented by one, otherwise an entry for that document is inserted.

Although the use of an upperbound cutoff could lead to inaccurate results, the
potential efficiency savings (in processing time) led to the use of a simple upperbound based
on the number of terms in common between the document D and the other documents.
This upperbound is used as follows. A record is kept of the document with the most
terms in common with document D (referred to as MAXDOC). Term lists are expanded
until the oumber of lists MAXDOC has occurred in is greater than the number of
unexpanded term lists. This cutoff ensures that no documents that have not been seen will
have more terms in common with document D than MAXDOC. However, because Dice’s
coefficient depends on the number of terms in a document as well as the number of terms
in common with D, this cutoff does not guarantee that a document’s actual nearest
neighbour will be inserted into the hash table. Because the terms are processed in
decreasing order of importance, documents that are missed in this way will tend to be less
significant for retrieval. The effect of this possible source of error will be evaluated in

section S.
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After the cutoff has occurred, the documents in the hash table must be processed
further to calculate the exact similarity values. This stage is not required for the network
structure algorithm because exact values are calculated while processing the term lists. The
hash table entries are divided into five possibly empty groups. The first group contains
those documents with the same number of terms in common with document D as
MAXDOC. Documents in the second, third and fourth groups occurred in one, two and
three less term lists, respectively. The last group contains the remaining documents in the
hash table.

Starting with the first group and proceeding to the fourth, each document is checked
to see if the maximum possible similarity value that could be obtained with the document
is greater than a minimum threshold value (03). The calculation of the maximum possible
similarity (which is similar to U2) is done by assuming that the document will occur in all
the term lists which were not expanded. If the maximum possible similasity value is
greater than the threshold, then the actual similarity value is calculated and stored in a
sorted list. Documents are checked this way uatil either the first four groups are
exhausted or ten similarity values are put into the sorted list. The highest scoring document
in the sorted list is then stored in the database as the necarest neighbour. Any other
documents in the list with equal scores are considered equal nearest neighbours and are
also stored in the database. This version of the nearest neighbour algorithm does not
make use of previously calculated similarities because very few complete similarity values
are calculated and itoffs based on similarity values (such as Ul, U2) are not appropriate

when only partial similarity values are available. This would not be a drawback in
operational systems where the database is added to incrementally and previously calculated

similarity values are not available. An outline of this version of the nearest neighbour
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algorithm appears in Figure 8.

Physical grooping.
The oetwork structure implementation allows direct control over the physical
placement of the document and term nodes. Although this degree of control is not possible

in a CODASYL database, some facilities do exist for specifying where records should be

Get terms in next document D

I
Rank terms in order of increasing frequency (or decreasing IDF weight)

I
1: If MAXDOC > number of remaining lists then goto 3

Get next term from ranked list

Get inverted list for term
I
2: Get next document from list
If no more goto 1
|
Add 1 to score in hash table
If score > MAXDOC, update MAXDOC

i
Goto 2

[Process documents in hash table in order of decreasing number of
terms in common with D]
I
3: Get next document from hash table group
|
If maximum possible similarity < threshold then goto 3
I
Calculate actual similarity
I
Add to list of nearest neighbours
I
If list = 10 stop
else goto 3

Figure 8: Finding nearest neighbours using partial scores.
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stored. In our implementation, the database is divided into two physical areas, term-area
and doc-areca. The main records in these areas are the term and document records,
respectively. The term records are scattered throughout term-area and are accessed directly
(via the system set). The link _doc records that specify which documents contain a particular
term are clustered around the owner term records. The records representing term-term links
are loaded after the link_doc records and are also clustered, as much as possible, around
the owner records. The link doc records are given priority in the physical placement
because they are the most frequently used in the system. The doc-area is set up in a-
similar fashion with the link term records clustered around their owners, followed by the
records representing the document-document links.

The main difference between the physical grouping in the network structure and the
database system is that the document and term records (or nodes) are clustered in the
network structure. The importance of this clustering is studied in section 5.

Search Algorithms.

The probabilistic and cluster search algorithms are modified for the database
implementation for the same reason as the nearest neighbour algorithm - the efficiency of
the database implementation is strongly dependent on the number of record accesses
required, whereas this is a less important factor for the network structure implementation.
Both of these algorithms accumulate document (or cluster) scores in a similar way to the
nearest neighbour algorithm for the database implementation.

The probabilistic search starts by sorting the query terms in o .ier of decreasing IDF
weight. Then, starting with the first term, all of the documents connected to that term are
retrieved and inserted into a hash table along with a score. At this point, the score is

simply the weight of the first term. The second query term is then expanded in a similar
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manner, except that in the case of a document that had already been inserted into the
bash table, the score is incremented by the current term’s weight. The rest of the query
terms are expanded in the same way. The documents in the hash table are sorted by their
score and the top ranked documents are returned to the user. It can usually be assumed
that only a certain number (say 10 or 20) of the top ranked documents are required.

Since the terms are expanded in order of decreasing importance, it is possible to
determine the best and worst possible scores for mew documents. For any document that
has not been seen before, the best possible score for that document is the sum of the term
weights from the current term to the last query term, and the worst possible score is just
the weight of the current term. If, when expanding a term, the number of documeats in
the hash table exceeds the number of documents to be retrieved (usually 10 or 20), then
that term’s weight is recorded. This means that the worst possible score for a document in
the bash table is the weight of that term. From that point, documents are no longer
inserted into the hash table if their best possible score is less than the recorded weight.

In keeping with the fact that the more common a term is the less it contributes to a
document’s score, a second cut-off has been included. After the number of documents in
the hash table exceeds the number required for retrieval, each term is tested to see if it
should be expanded. If a term’s weight is greater than the difference between it and the
weight of the previous term then the term is expanded, otherwise term expansion stops.
This cut-off helps to eliminate processing of the long lists associated with common terms.
Unlike the previous cut-off, this does not guarantee optimal results, but in practice there is

no noticeable change in the documents retrieved (see section 5).
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The cluster search operates along the same general lines as the probabilistic search. A
score for a cluster is calculated by comparing the union of all its documents” terms with
the terms in the query. This union is called a cluster representative. In previous studies, the
cluster representatives were calculated and stored prior to searching. This implementation
reduces storage overhead significantly by generating cluster representatives dynamically. At
present, the number of times a term occurs in a cluster is not taken into consideration, but
will be in a later version of the search.

After the query terms have been sorted on decreasing IDF weigit, the document lists
for each of the terms are processed. Because of the nature of star clusters, each document
must be considered as the central member of one cluster and a secondary member of a
number of other clusters. As each document is processed, it is inserted into a bhash table
as the representative for the cluster of which it is the central member. If the document has
not been seen before, the cluster’s score is the weight of the current term. If the document
has been seen before, the cluster’s score is incremented by the current term’s weight. The
scores are then updated for the clusters in which the document is a secondary member.
This is done by keeping a list of those documents which are the central members of the
clusters in which the current document is a member. The list is generated and stored in
the hash table the first time a document is encountered in an inverted list. The owner
documents for the list are found by following links in the database schema. For each of
these owner documents, if the document is not in the hash table then it is inserted with
the current term’s weight as the score; otherwise, the score for the document’s cluster is
incremented by the current term’s weight. As the cluster representative being used is the
union of the terms in the member documents, each term’s weight is used at most once in

the calculation of a cluster’s score. Note that it is possible to have a cluster whose score is
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not dependent upon its central member, if the central member never appears in a
document list, but one of the secondary documents does. This is a crucial feature of the
cluster search and makes it possible to retrieve different documents than the probabilistic
search.

Figure 9 gives an example of the cluster search algorithm. In this example, the
documents are in tightly connected clusters that results in some redundant calculations of
cluster scores (for example, the document cluster 4,5). This has no effect on retrieval and
only a small effect on efficiency. Note that the cluster (4,5) is an example of a document
being retrieved by virtue of its relationship with another document rather than with the
query.

The cut-offs used in the probabilistic search are also used in the cluster search.
Clusters are not inserted into the hash table when their best possible scores are too low for
them to be included in the set of retrieved clusters. The expansion of query terms is
stopped according to the same criteria used in the probabilistic search. In this case, the

search retrieves the top-ranked clusters, rather than documents.

Updating the network.

The algorithms used for updating the database implementation of the network are
very similar to those described for the graph structure. The main difference is that the
actual operations of creating new records and adding them to CODASYL set instances are
done by the database system. The update algorithms include CODASYL DML commands

that specify the operations to be carried out.
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Figore 9: A cluster search example.

50 THE EXPERIMENTS
In order to provide a firmer basis for comparing the two implementations, a series of
experiments using test collections of documents and queries were carried out. The
documents and queries in the Cranfield and NPL collections have been indexed by various

methods [3] and their statistics appear in Table 1.
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Cranfield NPL

Number of documents 1,400 11,429
Number of terms 4,949 7,491
Number of queries 225 93

Average terms per document 536 200
Average documents per term 152 304
Average terms per query 89 72

Table 1: The test collections

The experiments concentrate on the generation of nearest neighbours, the effect of
physical grouping, and the efficiency of the search algorithms. Many of the experimental
results for the two implementations are difficult to compare directly, but it should be
remembered that one of the major aims of the experiments is to study the efficiency of the
database implementation. For this reason, more results are provided for this
implementation. All experiments were run on a single-user VAX 750/VMS machine.
Statistics for the database experiments were collected with the monitoring utility provided
with the DBMS system [25]. The timing figures in the tables are seconds of CPU processing
time.

The generation of nearest neighbours, as well as being the main part of constructing
an initial network, is the most crucial part of updating the network to include new
documents. It is important, therefore, that this operation is relatively efficient. The first set
of experiments used the network structure algorithm described in section 4.1 with the
Cranfield test collection. If the full n(n-1)2 possible similarity values between all pairs of
documents in a collection were calculated and stored in an array, the nearest neighbour of
any document in this collection could be found using this array. This would result in an
average figure of 700 similarity calculations to find a document’s nearest neighbour. The

algorithm using the Ul and U2 cutoffs combined with remembering previously calculated
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values required an average of 209 similarity calculations. To find a term’s nearest aeighbour
required only an average of 25 calculations. The efficiency of the term calculations comes
from the fact that many of the terms in the collection occur in only one document.

The majority of the savings in calculating document nearest neighbours comes from
the previously calculated similarities. In an experiment that used only the Ul upper bound,
it took an average of 480 calculations to find the nearest neighbour for a document. In
an operational system, the majority of nearest neighbours will be calculated as a result of
new documents being inserted into the network. In this case, previously calculated
similarities are not available and the higher average number of similarity calculations is a
better estimate of the efficiency of this algorithm.

As described in section 4.2, the nearest neighbour algorithm used in the database
implementation cannot make use of the Ul, U2 cutoffs or the precalculated similarities
because only partial similarity values are calculated as the term lists are processed. The
algorithm also does not necessarily find the exact nearest neighbour. In order to compare
the database algorithm with the previous algorithm, the number of entries in the hash table
can be taken as roughly equivalent to the number of similarity calculations made. The
average number of hash table entries for the Cranfield collection was 608 without using the
term list cutoff. If the term list cutoff is used, the number of similarity calculations'
required is reduced and the correct nearest neighbour is found in over 85% of the cases.
More detailed statistics for the database algorithm used for the 11,429 documents of the
NPL collection appear in Table 2. In this table and in the remaining experiments,
“records” refers to database logical records (e.g. document, term) and “disk accesses” refers
to the number of disk accesses to the actual database. The buffer size, unless otherwise

mentioned, is 280 pages (each page is 512 bytes).
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Average per document

Term lists processed 15.7
Term lists avoided 43
Entries in hash table 2725
Full similarity calculations 343
Disk accesses 813
Records retrieved 4060
Number of nearest neighbours 0.94

Table 2: Finding nearest nelghbours in the NPL collection

These results can be summarized as follows. The term list cutoff occurs on average
after 75% of the term lists for a document have been processed. As terms are processed
in order of increasing frequency, significant savings are made by avoiding the processing of
the last lists. Taking the number of entries in the hash table to be roughly equivalent to
the number of similarity calculations, an average of 2725 calculations were required per’
document (compared to 6,500 for the full similarity matrix). This oumber is somewhat
misleading, as an average of only 343 entrics in the hash table had to have exact
similarity values calculated in order to find ten values over the threshold value. Most of
the overhead involved with this algorithm is accessing the inverted lists corresponding to a
document’s terms. Since these lists only grow linearly with collection size, the algorithm
appears to be appropriate for large document collections.

The opearest neighbour algorithm for the network structure implementation appears to
have a significant advantage when all the documents are known and precalculated
similarities can be used. However, in the more realistic case when nearest ncighbours are
calculated for every document as it arrives, there is much less difference between the two
implementations. The greatest inefficiency that arose from using the database system was

the repeated execution of the CODASYL DML statements. For example, to find the

members of a particular link_doc set requires the repeated execution of a FIND NEXT
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statement. In our database system, the DML statcments are interpreted at run-time and, for
large sets, this results in considerable delays. Later experiments provide further evidence of

this problem.

The experiments dealing with physical grouping concentrated on measuring the
potential benefits of document and term clustering in the network structure implementation.
To do this, statistics were taken of simulated page faults during the processing of the 225
queries of the Cranfield collection. The grouping of the document and term codes was
done with the string algorithm described in section 4. Two different variations of this
algorithm were used. One variation held the size of a string to a fixed limit. The limited
size strings were designed to be more convenieat for storing on pages. The other variation
started each string on a new page rather than packing strings together as much as possible.
Table 3 presents the results of this experiment. The table compares the number of page
faults obtained for each type of page (document nodes, term nodes or links). The
experiment simulated actual page faults by maintaining a buffer of 64 pages. Whenever a
new page was required that was not in this buffer, a page fault was recorded. The page
replaced was the least recently used. The results show very little increase in efficiency due
to physical grouping. The only significant difference was a 17% decrease in the number of
document page faults. This suggests that physical grouping using strings is not necessary and
the database implementation will not be adversely affected by the lack of this grouping.

Table 4 gives some indication of the effectiveness of grouping the member records
around document and term records in the database implementation. This table gives
examples of processing time and disk access figures for basic operation 2 (retrieve all nodes
connected to a specific node) on the Cranfield and NPL collections. The actual operation

was to retrieve the documents connected to a specific term. These figures show that,
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although the sets with many member records can be retrieved efficiently from disk, they do
take much longer to process than small sets. For example, in the NPL collection retrieving
a set of size 200 required 3 disk accesses and a set of size 805 required 2 accesses. Despite
the efficient grouping of member records on disk, the processing times for these two sets
differ greatly (5 versus 19 seconds). This result supports the earlier observation that the

most inefficient part of the database implementation is executing the DML commands in

the application programs.
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Page faults

Term Link Document

Not grouped 1373 5570 43
Grouped (Limited size)

No new page 1304 5570 2909

New page 1314 5548 2926
Grouped (Unlimited size)

No new page 1350 5521 2861

New page 1346 5567 2905

Table 3: Physical grouping In the Cranfield collection

Examples of basic operation 2.
Size of CODASYL set Disk accesses  Time(secs)

Cranfield 0.18
5.67

1894

DN e

NPL 0.17
489
19.14

59.54

288~ BB~

Average records retrieved per disk access: 1134 (Cran); 189.4 (NPL)
Average records retrieved per second: 362 (Cran); 344 (NPL)

Table 4: Using links in the database implementation

The final set of experiments measured the performance of the probabilistic and cluster
scarch algorithms using the database implementation. The results are presented in Tables 5
and 6. The processing times are shown to be heavily dependent on the number of records
accessed. The figures for the probabilistic search for Cranficld and NPL, together with the

figures in Table 4, indicate that disk accesses are not the majr component of the
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overhead. That is, although the number of records seen and the processing time goes up
considerably from Cranfield to NPL, the number of disk accesses does not increase
proportionally. The NPL collection, with its longer term lists, retrieves more desired records
with each disk access. The reason for the increase in processing time is mainly due to the
overhead, mentioned before, of interpreting a DML command for each record processed.

In order to achieve response times that are acceptable for an operational environment,
a database system that does mot have this overhead (such as a typical relational system) is
needed. The cluster search involves many more disk accesses than the probabilistic search to
follow nearest neighbour links. The relatively long processing times required mean that the
cluster search will essentially be restricted to use as an alternative strategy.

The algorithms used in the network structure implementation require more than twice
the number of logical record accesses when used in the database implementation because
the full similarity values are calculated during the processing of the inverted lists. A more
direct comparison of the network structure and database algorithms can be made using
Table 3. The figures in this table were generated using the probabilistic search algorithm
for the network structure. Each simulated page fault can be taken as equivalent to a disk
access. This gives a figure of 43 disk accesses per query. Because the number of disk
accesses depends on the size of the buffer storage, a run of the probabilistic search on the
database implementation was carried out with a buffer pool of 70 pages (compared to the
64 pages used in the network structure). The average number of disk accesses for this run
was 18. This result indicates that the database algorithm can be competitive in terms of
efficiency with the network structure algorithm. The documents retrieved by the database
algorithm (which uses an inexact cutoff) were virtually identical to those retrieved by the

other algorithm.
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Cranfield NPL

Av. records seen per query 667.7 2954.0
Av. disk accesses 126 17.7
Av. time (sccs) 17 68

Table 5: The database implementation of the probabilistic search

Cranfield NPL

Av. records seen per query 2924 3942
Av. disk accesses 8685 1252.0
Av. time (secs) 117 162
Av. clusters seen 314 448

Table 6: The database implementation of the cluster search

6.0 CONCLUSIONS
A network representation of documents and words can enhance the effectiveness of a
document retrieval system by allowing a variety of search strategies to be implemented. The
comparison of the standalone implementation of the petwork with the database
implementation can be summarized as follows;

a. In terms of disk accesses and the number of similarity calculations required for
the basic network operations, scarch strategies and nearest neighbour algorithms,
the database implementation was comparable to the standalone implementation.

b. The standalone implementation received no significant benefits by exploiting
document and term clustering in the physical organization.

c. The database implementation required long processing times for large CODASYL
sets. This is a result of repeated executions of uncompiled DML statements. The

processing times for the probabilistic search and, in particular, the cluster search
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are too long for an operational system because of this overhead.

Another overhead involved with the database implementation is the storage
requirements. In the CODASYL system, the storage overhead was approximately 250% of
the storage required for the actual data. This is much worse than the standalone
implementation. Most of this overhead comes from representing each network link in a
separate CODASYL record.

The experiments also showed that a database system provides a flexible, convenient
framework for implementing sophisticated document retrieval algorithms. For example, the
same system can be used to implement different versions of probabilistic searches, cluster
searches and conventional Boolean query processing. It appears that these algorithms can
be implemented without requiring fundamental changes to the database system. The
implementation of the search algorithms and the underlying network structure was much
more straightforward in the database system than in the standalone system because of the
separation of the logical and physical levels of design.

The major components of the database system that are involved with the successful
implementation of a document retrieval system are the logical schema, the data
manipulation language, and the underlying implementation of both of these. The CODASYL
database system used in these experiments suffered from long processing times and large
storage overheads due to the large number of DML commands that had to be interpreted
and the intersection records that are a necessary comsequence of using this data model.
These efficiency problems could be largely avoided by using another database system. For
example, database systems that precompile DML statements are curreatly available.
Relational database systems, in particular, appear to offer advantages for network-based

document rctrieval. The DML statements in a relational system are expressed in terms of
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larger units than CODASYL records (relations versus records). The links in the network
can be represented directly in relations (e.g. a document-term relation) and the system can
avoid the extra level of processing required for intersection records. The efficiency of a
relational database implementation of a document retrieval system will, however, depend

strongly on the underlying file organizations.
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