Partition Analysis:
A Method Combining
Testing and Verification

Debra J. Richardson
Loni A. Clarke

COINS Technical Report 85-10

Software Development Laboratory
Computer and Information Science
University of Massachusetts
Amherst, MA 01003

This rescarch was supported in part by the National Science Foundation under grant MCS-8104202.

ABSTRACT

The partition analysis method compares a procedure’s implementation to its specifi-
cation, both to verify consistency between the two and to derive test data. Unlike most
verification methods, partition analysis is applicable to a number of different types of spec-
ification languages, including both procedural and nonprocedural languages. This means
it can be used on high-level descriptions as well as on low-level designs. Partition analysis
also improves upon existing test data selection strategies. These strategies usually con-
sider only the implementation, but partition analysis selects test data that characterize
the procedure in terms of both its intended behavior (as described in the specifications)
and the structure of its implementation. To accomplish its goals, partition analysis di-
vides or partitions the procedure’s domain into subdomains in which all elements of each
subdomain are treated uniformly by the specification and processed uniformly by the im-
plementation. This partition divides the procedure domain into more manageable units.
Information related to each subdomain is used to guide in the selection of test data and
to verify consistency between the specification and the implementation. Moreover, the
test data selection process and the verification process are designed to enhance each other.
Initial experimentation has shown that through the integration of testing and verification,
as well as through the use of information derived from both the implementation and the
specification, the partition analysis method is effective for determining program reliability.
This paper describes the partition analysis method and reports the results obtained from
an evaluation of its effectiveness.

Keywords: software testing, software verification, symbolic evaluation.

1. INTRODUCTION

It has been repeatedly demonstrated that neither testing nor verification can guarantee
the correctness of a program (e.g., [DEMI79,DIJK70]). Yet either technique, when judi-
ciously applied, uncovers errors. By building upon the strengths of both these techniques,
partition analysis [RICH81a| combines them into a more effective method for determining
program reliability.

The partition analysis method incorporates information from a specification with in-
formation from the corresponding implementation. This is done by applying symbolic
evaluation techniques to both the specification and implementation, thereby providing a
functional representation of both. These functional representations are in terms of partial
functions over subdomains of the input domain. By forming the intersection of the specifi-
cation subdomains with the implementation subdomains, the subdomains of the procedure
partstion are formed.

The subdomains of the procedure partition reflect the partitioning of the problem
by both the specification and implementation, indicating both where they are the same
and where they are different. Because of the way they are derived, the elements for
each procedure subdomain are treated in a uniform, and usually simple, manner by the
specification. They are also treated in a uniform, and usually simple, manner by the
implementation. Evaluating any differences in these treatments, using both verification

and testing strategies, is the crux of the partition analysis method.

Thus, partition analysis is composed of three steps. First, symbolic evaluation and

other analysis techniques are applied to determine the procedure partition. For each sub-
domain in this partition, there is a description of the elements in the domain, a description
of the computation to be performed on those elements as specified by the specification,
and a description of the computation to be performed on those elements as specified by
the implementation. Second, verification techniques are applied to the two computational
descriptions to determine their consistency over the specified subdomain. Third, the sub-
domain and computational descriptions are used to derive an extensive test data set that
attempts to characterige the functional behavior of the subdomain. In addition, problems

that arise in the verification process are used to drive some aspects of the test data selection

process.

There are several advantages of the partition analysis method. It is one of the few
methods that tries to combine the complementary approaches of testing and verification.
Furthermore, partition analysis derives a more comprehensive set of test data than other
testing methods. Most testing methods select test data based only on the program struc-
ture and thus test the actual behavior of the implementation rather than its intended
behavior. By basing test data selection on the procedure partition, however, partition
analysis derives a set of test data that characterizes both the specification and the im-
plementation, and consequently both the intended and actual behavior. Moreover, the
testing strategy used by partition analysis involves the integration of a number of comple-
mentary testing criteria. This has led to some interesting results and is currently the focus

of additional research.

Apother advantage of partition analysis is its widespread applicability. The method
can be employed with a number of different specification languages, such as high-level
formal specification languages based on predicate calculus [FLOY67,HOARTI| or state
transformation (SILV79] as well as low-level procedural languages [KERN83|. In fact, if
the relationships between the data objects can be established (as will be discussed later),
the method can be applied to any two levels of description such as a high-level specification
with a design or one level of design specification with another. To be applicable with
a language, it is only necessary that descriptions in the language can be reformulated
as subdomains and associated computations. For predicate calculus specifications, for
example, this requires rewriting the specification in disjunctive normal form. Each type of
specification language requires different processing. A few, such as algebraic specification,

do not appear to be amenable to this type of analysis.

In our evaluation of partition analysis we used a hybrid specification language of our
own making, called SPA [RICH81b]. SPA is an extended PDL/Ada [KERN83] that com-
bines predicate calculus and procedural constructs. In particular, the SPA language has
constructs for describing conditional values, existential and universal quantification, finite
summation and product, asgertions, and encapsulations such as abstract data types, as
well as the typical procedural Programming language constructs. Since SPA has a variety
of high-level and low-level constructs, it facilitates the representation of an abstract speci-
fication as well as successively more detailed designs. SPA’s flexibility allows it to be used

throughout pre-implementation.

procedure PRIME(N: in integer inset {1...}) return boolean =

-- PRIME returns true if N is prime or false if N is not prime

8 begin
return case
1 N=1=—
2 false;
4 true;
5 otherwise =>
-- if N has no factor <= N — 1, N has no factor
6 forall {s: integer inset {2.. N — 1} | (N mods / = 0)};
endcase;
f end PRIME,

Figure 1: Specification of PRIME

In Figure 1, SPA is used to specify a procedure to determine whether a number is prime.
This specification was developed by formalizing the simple mathematical properties of a
prime number. An implementation of PRIME in Ada [WEGN80] appears in Figure 2.
This implementation makes use of several facts that improve on efficiency. The procedure
PRIME is used throughout this paper to illustrate the partition analysis method. The

full application of partition analysis to PRIME is provided elsewhere [RICH81b).

In this paper we describe the partition analysis method, demonstrating how it can be

function PRIME(N: in integer range 2..max’int) return boolean is

-- implementation in Ada
- PRIME returns true if N is prime or false if N is not prime

F AC: integer;
ISPRIME: boolean;

8 begin

I if N mod2=0 or N mod3=0 then
--if Nisevenand N / = 2or N is divisible by3and N /= 3,
-- N is not PRIME

2 ISPRIME := (N < 4);

else
-- if N i8 odd, any FACtor of N is odd
-- if N is not divisible by 3, N has no FACtor in the sequence 9, 15,21, ..
-- if N has no FACtor <= aqrt (N), N has no FACtor
-- loop checking for FACtors in the sequence 5,7,11,13,17,19,...
ISPRIME := true;
FAC :=5;
while FACx+2 <= N loop
if N mod FAC =0 or N mod (FAC +2) =0 then
ISPRIME := false;
exit;
else
8 FAC:=FAC +6;
endif;
9 endloop;

N AW

endif;
10 return ISPRIME;
f end PRIME;

Figure 2: Implementation of PRIME

applied to procedural languages at the design and implementation level. The next three
sections, respectively, describe each of the three steps: forming the procedure partition,
partition analysis verification, and partition analysis testing. Section 5 reports on an
experimental evaluation of partition analysis. This evaluation involved the application
of partition analysis to thirty-four procedures, which were obtained from the software
engineering literature and programming texts. The reliability of the partition analysis
method was measured in terms of its ability to detect errors in those procedures and by
mutation analysis [DEMI78b), which measures the adequacy of the selected test data. The

final section discusses limitations of the method and areas of future research.

2. FORMING THE PROCEDURE PARTITION

A procedure corresponds to the mathematical concept of a function — that is, a map-
ping from a domain to a codomain. As is evident in the P RIME example, a specification
and an implementation are intended to be descriptions of the same function at different
levels of abstraction. To facilitate a comparison of these two descriptions, the partition
analysis method decomposes both descriptions into functional representations, called the
specification partition and the implementation partition. For procedural languages, sym-
bolic evaluation techniques [CHEA79,CLARS81] are employed to create these representa-

tions. If the specification and implementation have consistent interfaces, they are said to
be compatible. Provided that there are no major violations of compatibility, the specifica-

tion and implementation partitions are combined to form the procedure partition, which

forms the basis for partition analysis verification and testing. This section describes the
specification and implementation partitions for procedural languages and the symbolic
evaluation techniques employed to develop them. The property of compatibility is then

considered. Finally, the actual construction of the procedure partition is outlined.

2.1 Creating the Functional Representations

A function F is a mapping from a set of input values X y called the domain of F, to a
set of output values Z, called the codomain of F, thus F : X — Z. For a function that
corresponds to a procedure with m input parameters ! , an input value of F is a vector z
corresponding to a point in the m-dimensional domain X. An output value z of F is the
image F(z) for some z in X. If the procedure corresponding to F has n output parameters,
an output value z is a vector corresponding to a point in the n-dimensional codomain Z.

In general, the mapping of a function F is partitioned as a set of partial mappings —
F={F,F,...,Fi|1 < L <).

Each partial mapping Fy is defined over a subset of the domain X , called the domain of
definition of Fy and denoted D|Fy], and undefined elsewhere in X. The function domain
DI[F], or domain of definition of F, is the union of the domains of definition of the partial
mappings, Uf;-, D|Fg], and is a subset of the domain X.

Both an implementation and a specification have a structure that can be related to

'For simplicity in the presentation we only consider procedures where input and output is only done via a
known number of parameters. In practice, this restriction can easily be dropped.

the structure described for the function of a procedure. Both represent a mapping from
a domain to a codomain and partition their domain by describing partial mappings over
certain subdomains. The partition analysis method applies symbolic evaluation techniques
to both the specification and the implementation to derive functional representations of
the two descriptions of a procedure. The similarities and differences between the partial

mappings described by the functional representations are then examined.

In applying symbolic evaluation techniques to an implementation, symbolic names are
assigned for the input values of the parameters and a path, a sequence of statements
through the implementation, is interpreted. While interpreting the statements on the
path, the values of all variables are maintained as algebraic expressions in terms of the
symbolic names. Similarly, the branch predicates for the conditional statements on a
path are represented by constraints in terms of the symbolic names. After symbolically
evaluating a path Py, its symbolic representation consists of the path computation C[Py],
which is a vector of algebraic expressions for the output parameters, and the path domain
D{P,|, which is defined by the conjunction of the path’s branch predicate constraints.
Some paths through a program may not be executable. The path domain for such a path
is empty since the conjunction of the path’s branch predicate constraints is inconsistent.
Although constraint consistency can not always be determined, in practice it can usually

be done.

Most implementations contain loops, thus a symbolic representation of all executable

paths through such a program is usually unreasonable since there may be an effectively

10

infinite number of executable paths. With the addition of loop analysis techniques paths
that differ only by the number of iterations of loops can often be represented as a class
of paths [CHEA79,CLARS1). Loop analysis techniques attempt to replace each loop by a
closed form expression that captures the effect of the loop. When successful, this enables
an implementation to be decomposed as a finite set of classes of paths.

Hence, an implementation P is represented by the smplementation partition, which is

the set of domains and computations of the (classes of) executable paths in P,
{ (D[R], ClPy)), .. -+ (D[Pn],C|Px]) | 1S N<o0).

The domain of definition of P is the union of the path domains, U)=; D[Py}, and is called
the smplementation domain D|P]. The implementation partition of PRIME is shown in
Figure 3.

Note that the symbolic representations of the domains for paths Ps; and P; contain a
closed form representation for the loop in PRIME.

Symbolic evaluation and loop analysis techniques have been extended to be applicable
to SPA specifications [RICH81b). Using these techniques, a feasible sequence of statements
through a specification, referred to as a subspec, is evaluated in terms of symbolic names
assigned to the input values. A specification can then be decomposed as a finite set of
(classes of) subspecs. Each subspec S; is described by a subspec domain D|S;] and a
subspec computation C|[S;|. The specification partition that represents a specification S is

the set of domains and computations of the (classes of) subspecs in S,

{(DIS:],C[S:]); - - ., (D[Sp), ClSum]) | 1S M < 00).

11

P]' (S,I,Z,IO,f)
D[P, : ((trunc(n/2) * 2 — n = 0) or (trunc(n/3) * 3 — n = 0))
ClP): (n<4)
Py: (3’l$3)4!5’9)101f)
D|P;): (n < 25) and (trunc(n/2) ¢+ 2 — n # 0) and (trunc(n/3)*3 —n # 0)
C|P;): true
Ps (3:133t4)51637'9t losf)
D|Ps) : (n > 25) and (trunc(n/2) + 2 — n # 0) and (trunc(n/3) *3 — n # 0)
and ((trunc(n/5) « 5 — n = 0) or (trunc(n/7) + 7 — n = 0))
C|Ps): false
Py: (s,1,3,4,5,6,8,5,9,10, f)
D|P,): (n > 25) and (n < 121)
and (trunc(n/2) * 2 — n # 0) and (trunc(n/3) *3 —n # 0)
and (trunc(n/5) * 5 — n # 0) and (trunc(n/7) * 7—n # 0)
C|P,): true
Py : (s 1,3,4,(5,6,8),5,6,7,9,10, f)
D[Ps} : (n > 121) and (trunc(n/2) * 2 — n # 0) and (trunc(n/3) * 3 — n # 0)
and exists{k, :=2...| ((trunc(n/(6 k. — 1))+ (6+ k. — 1) —n =0)
or (trunc(n/(6* k. + 1)) x (6 x k. + 1) — n =0))
and forall{k := 1.k, — 1 | (trunc(n/(6 + k — 1)) « (6 s k— 1) — n # 0)
and (trunc(n/(6+k+1))+(6xk+1)—n # 0) and (36tktt2+60*k n < —25)}}
C|Ps]: false
Py : (s,1,3,4,(5,6,8),5,9,10, f)
D[P} : (n > 121) and (trunc(n/2) * 2 — n # 0) and (trunc(n/3) *3 — n # 0)
and exists{k, :=2...| (trunc(n/(6 k. — 1))« (6 x k. — 1) — n # 0)
and (trunc(n/(6+k.+1))*(6+k.+1)—n # 0) and (36 %k, «+2+60% k. —n > —25)
and forall{k := 1.k, — 1 | (trunc(n/(6 sk — 1)) *(6s k— 1) —n #0)
and (trunc(n/(6=k+1))*(6+k+1)—n # 0) and ((36+«k*+2+60+k—n < —25)}}
C|Ps]: true

Figure 3: Implementation Partition of PRIME

12

Sy : (slllzif)

Di$y]: (n=1)
C|Si): false

S : (,1,3,4,f)
D[Sy): (n=2)
C[S,] : true

Ss : ("vllansierf)
D[Ss] . (n 2 3)
C[Ss]: forall{s:=2.n— 1| (trunc(n/i) i —n #0)}

Figure 4: Specification Partition of PRIME

The domain of definition of S is the union of the subspec domains, U}, D[S;], and is called

the spectfication domain D[S). Figure 4 provides the specification partition of PRIME.

2.2 Determining Specification and Implementation
Compatability

The specification and implementation partitions provide common representations of the
specification and implementation of a procedure. The partition analysis method attempts
to determine consistency between these two descriptions of the procedure by comparing
these partitions. This comparison begins by determining whether the implementation and
the specification have consistent interfaces — that is, whether they have the same number
and type of inputs and outputs and the inputs are restricted to values from the same

domain. This property is referred to as compatibility.

13

Deflnition: An implementation P is compatible with a specification S if both
accept as input a vector £ = (z; : Xi,...,Zm : Xn) in domain X = X, X
+++ X X, produce as output a vector z = (2, : Z,...,2n : Z,) in codomain

Z=2,%--- X Z,, and are defined over the same domain, D[S] = D[P].

In the trivial case, the domain X; for input z; or the codomain Z; for output z; is the
entire set of values for a predefined type (e.g., the set of integers). Some specification and
programming languages have constructs that can be used to further restrict the input and
output values. User-defined types, such as those provided by Pascal and Ada, support
such restrictions. Moreover, the domain over which a specification or an implementation
is defined may be constrained by initial assertions, such as those provided by Gypsy and
Alphard. When input and output statements are included, then the restrictions imposed
by format statements must also be considered [ABRAT79]. The specification language SPA
has constructs for both user-defined types and initial assertions.

To demonstrate compatibility, the correspondence between the specification’s parame-
ters and those of the implementation must be determined and then equality of the domains
must be shown. The correspondence between parameters can be determined by match-
ing names, comparing the types and input/output modes of the parameters, or, as a last
resort, asking the user. Finally, the domain over which the specification and implementa-
tion are defined must be checked for equality by comparing any statements restricting the
application of the specification and the implementation.

Violations of compatability are sometimes unavoidable due to the differences in the

14

specification and implementation languages. Some programming languages, FORTRAN
for instance, do not support either user-defined types or initial assertions. Implementa-
tions written in such a language have input parameters whose domain is determined by
the predefined types of the programming language. If such an implementation explicitly
checks for violations of user-defined types or initial assertions that restrict the specification
domain, it is reasonable to consider the two compatible. Further, the implementation may
never be executed for input values that are not jn the specification domain, and viola-
tions of compatibility may not be a problem. The definition of compatibility given here,

therefore, is stronger than necessary.

Certain violations of compatibility can be handled within the partition analysis method.
In the situation described above, in which compatibility is not satisfied due to the inequal-
ity of the specification domain and the implementation domain, partition analysis notes
the discrepancy between the domains of definition but continues by considering only the
domain over which both the specification and implementation are defined, D[S|N D|P] (in
most cases this will be the specification domain D[S]). Partition analysis can also continue
when the input/output mode of a parameter in the specification is diﬁ'eg_ent than in the
implementation; the mode indicated by the specification is assumed. Partition analysis
can not continue when a violation of compatibility inhibits the construction of the pro-
cedure partition. The procedure partition could not be constructed, for example, if the
specification and implementation have different numbers of parameters or if the base types

of a parameter are different.

15

The specification and implementation of PRIME are not compatible. While both the
specification and the implementation state that the input parameter N is an integer, the
specification indicates that N > 1, but the implementation indicates that N > 2. This
does not inhibit the construction of the procedure partition, and partition analysis can
continue by comparing the implementation and the specification over their mutual domain

N>2.

2.3 Construction of the Procedure Partition

The specification and implementation impose two partitions on a procedure, represent-
ing two ways in which the procedure may be divided. It is not surprising to find a subspec
domain and a path domain that are equal. The testing and verification of the subspec
and path computations can then be considered over this subdomain as a whole. On the
other hand, there are often differences between these two partitions; a subspec domain may
overlap with more than one path domain or vice versa. Such a discrepancy may be due to
an error. Alternatively, this may not be indicative of an error, but rather occurs because
the specification is a more abstract description of the problem than the implementation.
PRIME provides an excellent illustration of the variation that can occur between the
different levels of abstraction. The one element in the “N = 2” subspec domain and some
of the elements in the “otherwise® subspec domain, those for which N is divisible by 2
or 3, are grouped in the “N¥N mod 2 = 0 or N mod 3 = 0” path domain, hence a path do-

main overlaps with more than one subspec domain. The other elements in the “otherwise”

16

g

subspec domain, those for which NN is not divisible by 2 or 3, are in the remaining path

domains, hence a subspec domain overlaps with more than one path domain.

It is clearly not adequate to use either the specification partition alone or the imple-
mentation partition alone as the basis for demonstrating program reliability. As is seen
in the procedure PRIME, both partitions must be considered or potentially useful infor-
mation is lost. The procedure partition is constructed by overlaying, or intersecting, these
two partitions, thereby taking into account both descriptions. Each subdomain so formed

is the set of input data for which a subspec and a path are mutually applicable.

The subdomains are constructed by taking the pairwise intersection of the set of subspec
domains and the set of path domains. The nonempty intersection of a subspec domain
D(S;] and a path domain D[P;] is referred to as a procedure subdomain, and denoted D,,
— that is, Dy; = D(S;] n D[P;] # 0. Associated with each such intersection are two
computations, the subspec computation and the path computation, which are intended
to specify equal values for all elements to which they both apply — that is, all elements
in the procedure subdomain. The computation difference C;; for a procedure subdomain
Dy, is the difference between the subspec computation C[S;] and the path computation
C[P;] — that is, Cyy = C[S1] - C|P;). If the specification domain and the implementation
domain are not compatible, there may be input data in a subspec domain D[S;| that
are not treated by any path; this set is denoted Dy = D[S;) \ D[P} # @ (where \ is
the set difference operator). In addition, there may be input data in a path domain

D[Py] that are not treated by any subspec; this set is denoted Do; = D|Ps)\ D(S] # 0.

17

Procedure subdomains of these types, Dy or Dy,, are called noncompatible procedure
subdomains (since their existence implies that the compatibility property is not satisfied),
while all others are called compatsible. For any noncompatible procedure subdomain Dy,
or Doy, there is only one associated computation, C[S;] or C|P;), respectively, the other
computation is undefined. The computation difference for a noncompatible procedure
subdomain Dyp or Dy, is represented by Cjo = C|[S;] — A or Co; = C[Py] — A, respectively
(where A represents the undefined result).

Thus, the procedure partstion is composed of the procedure subdomains and the asso-

ciated computation differences,
{(D15,Cry) | 1£TI<Mand1<J < Nand D[S/|ND|P;] #0}
U{ (D10,Cro) |1 £ I < M and D[S;|\ D|P) #0}
U{ (Dos,Cos) | 1 £ J < N and D|P;]\ D[S] #0 }.
To help conceptualize the formation of this partition, Figure 5 shows a hypothetical exam-
ple of the procedure subdomains that would result by overlaying partitions of a specification
and an implementation domain.

The construction of the procedure partition is driven by the relationships between the
subspec and path domains, because if for a particular subspec and path pair, the in-
tersection of their domains is empty, then the relationship between their computations is
immaterial. Moreover, since both the specification and the implementation are determinis-
tic, the subspec domains are mutually disjoint as are the path domains. No such restriction
i8 made on the computations; the subspec computations need not be distinct nor need the

path computations. For these reasons, the creation of the procedure partition is driven

18

partition into partiticn into
subspec demains path domains

partition into
procedure subdomains

Figure 6: Hypothetical Procedure Subdomains

19

by the the relationships between the subspec domains and the path domains. The con-
struction of the procedure subdomains and computation differences is illustrated for the
procedure PRIME and the procedure partition created for PRIME appears in Figure 6.
In the construction of the procedure partition, subspec domains and path domains are first
compared for equali‘ty. For each subspec domain D|Sk] and path domain D|P.] that are
equal, one procedure subdomain Dg/ is provided. Demonstration of the equality of these
two domains can sometimes be achieved by a term-by-term comparison of the constraints
in their symbolic representations. When domain representations cannot be shown equal
by such a comparison, equality can be demonstrated by showing that D[Skx| N ~D|[P,]
and D[Syx]) N —~D|P,| are empty. Since the subspec domains are disjoint, as are the path
domains, a subspec domain that is equal to a path domain does not have any elements in
common with any other path domain, and vice versa. Thus, a subspec domain and a path
domain that are determined to be equal need not be considered further in the pairwise

intersection of the subspec domains and the path domains.

For each remaining subspec S; and path Py, their intersection is constructed by con-
joining the representations of the subspec domain D[S;] and path domain D[P,] — that is,
D;; = D|S;| A D|P;). In procedure PRIME, D|S,| has elements in common with D[P
and D|(S;] has elements in common with each of the path domains. Hence, compatible

procedure subdomains Dy, Ds,, Ds2, Dss, Ds4, Dss, and Dsq are derived.

For each compatible procedure subdomain D;,, the symbolic representation of Cy; is

derived by forming the difference between the symbolic representation of the path computa-

20

: (n=2)
2 (true) - (n < 4)

: (n2>3)and ((trunc(n/2)x2—n = 0) or (trunc(n/3) » 3 — n = 0))
t (forall{s := 2.n — 1| (trunc(n/i) s s —n #0)}) - (n<4)

: (n>3)and (n < 25) and (trunc(n/2) x2 — n # 0)

and (trunc(n/3) « 3 — n # 0)

: (forall{s := 2.n — 1| (trunc(n/i) +§ - n # 0)}) — (true)
: (n225)and (trunc(n/2) +2 — n # 0) and (trunc(n/3) x3 —n # 0)

and ((trunc(n/5) 5 — n = 0) or (trunc(n/7) x 7 - n = 0))

i (forall{i := 2..n — 1| (trunc(n/i) i - n # 0)}) — (false)
: (n 2>25)and (n < 121) and (trunc(n/2) x 2 — n # 0)

and (trunc(n/3) «3 — n # 0) and (trunc(n/5) + 5 — n # 0)
and (trunc(n/7) + 7 — n #£ 0)

: (forall{s:=2.n 1| (trunc(n/i) xi — n #£ 0)}) - (true)
: (n 2121) and (trunc(n/2) + 2 — n £ 0) and (trunc(n/3) +3 — n # 0)

and exists {k, := 2...| ((trunc(n/(6 + k, — 1)) *(6+k.—1)—n=0)

or (trunc(n/(6 = k. + 1)) * (6 * k, + 1) - n=0))

and forall{k := 1.k, — 1| (trunc(n/(6x k— 1))+ (6 % k — 1) = n #0)

and (trunc(n/(6+k+1))«(6+k+1)—n # 0) and (364 k++2'4 60+ k—1n < -25)}}

b (forall{s := 2..n — 1| (trunc(n/i) +5 —n #0)}) — (false)
: (n2>121) and (trunc(n/2) +2~n # 0) and (trunc(n/3) + 3 — n # 0)

and exists{k, := 2...| (trunc(n/(6 + k, - 1))« (6+k. —1)—n #£0)

and (trunc(n/(ﬁ*k,+1))*(6tk,+l)—n #0)and (36+«k, *+24+ 605k, —n > —28§)
and forall{k := 1.k, — 1| (trunc(n/(6 % k — 1)) + (6 % k — 1)-n#0)

and (trunc(n/(6+k+1))«(6¢k+1)—n #0) and ((36+k++2+60sk—n < -25)}}

¢ (forall{s := 2.n — 1| (trunc(n/i) xi —n £ 0)}) - (true)

Figure 6: Procedure Partition of PRIME

21

tion and the symbolic representation of the subspec computation — that is, Cy; = C[S;] —
C|P;). In general, both of these symbolic representations are vectors corresponding to the
output vector z = (2,,2,...,2,). For the output value 2;, which corresponds to the ith
output parameter, we denote the computational difference by C;;.2; = C|S;].z; — C[Py}.2;.
In procedure PRIME, the only output parameter is PRIME and the computation differ-
ence for a procedure subdomain Dyy is C;; PRIME = C|S;|.PRIME - C[P;|.PRIME.
Note that in Figure 6, Cy, = C[S,] — C[P\] : .PRIME = (true) — (n < 4) means that
Ci1.PRIME = (true) — (n < 4); this notation is used because it is cleaner when compu-

tations are composed of more than one symbolic value.

If the specification domain and the implementation domain are not the same, then
the representations for the noncompatible procedure subdomains must also be developed.
Of course, if any subspec domain does not intersect any path domain or vice versa, it is
clearly a noncompatible procedure subdomain. In procedure PRIME, for example, the
intersections of the subspec domain D[S,| with each of the path domains are found to be
empty, thus the noncompatible procedure subdomain D,y is formed. It is also necessary
to determine whether all the elements of a subspec or path domain are in some compatible
procedure subdomain. For subspec domain D[S)], the easiest way to accomplish this is to
conjoin the representation of D[S;] and the negation of the implementation domain D[P]; if
this represents a nonempty set, then the noncompatible procedure subdomain Dy is formed
as D;o = D|[S;]A-D|P]|. Likewise, for each path domain D(P,|, Dy; = D(P;|A-D|[S]. The

computation difference for each noncompatible procedure subdomain is trivially derived.

22

The procedure partition provides the basis for the application of both verification and
testing techniques. Each procedure subdomain and its associated computation difference
are of interest and should be verified and tested independently of the rest of the procedure
partition. In the next two sections, both steps are described along with the manner in

which they interact.

3. PARTITION ANALYSIS VERIFICATION

Partition analysis verification attempts to determine consistency between an imple-
mentation and a specification. Thus far, compatibility has been demonstrated and the
procedure partition has been constructed. Compatibility is a necessary condition for the
implementation to be correct with respect to the specification. To realize the function
described by the specification, however, the implementation must not only have the same
interface, it must compute the specified output values for each input value in the domain.

This property is referred to as equivalence.

Definition: Given a specification S : X s Z and an implementation P : X
Z, with D[S] = D|P), P is equivalent with S if and only if for all z € D[S,
P(z) = S(z).

Equivalence between a procedure specification and its implementation implies that the
implementation is correct with respect to the specification. This property can be related
to the procedure partition. Since both the specification and the implementation are de-

terministic — that is, for each input vector, one and only one subspec applies and one

23

and only one path applies — the subspec domains are mutually disjoint as are the path
domains. Consequently, the procedure subdomains are mutually disjoint; thus, each input
vector is in one and only one procedure subdomain. Given an input vector z, suppose
z € Dy; (z € D|S;] and z € D|P;]). Then S(z) = P(z), if and only if the subspec S; and
the path P, compute equal output values — C|[S,|(z) = C|[P,|(z). The subspec compu-
tation C[S;] and the path computation C[P;| are equal when restricted to their mutual
procedure subdomain Dy,, if for all z € Dy;, C;,(z) = 0; this is denoted C;;|D;y; = 0.
The equivalence of an implementation and a specification can thus be restated in terms of

the equality of the computations over procedure subdomains.

Given a specification S : X — Z and an implementation P : X — Z, with
D[P) = D|[S], P is equivalent with S if and only if forall fJand J,1<I< M

and 1 S J S N, such that D[S[] N D[PJ] # @, C[JlD[j =0.

This alternative definition enables the decomposition of the process for determining
whether equivalence holds. Equivalence is demonstrated in terms of the procedure parti-
tion by proving that for each procedure subdomain, the corresponding subspec and path
computations produce equal values for all elements of this mutual procedure subdomain.
This is done by employing standard proof techniques to demonstrate that the symbolic
representation of the procedure subdomain implies that the computation difference is zero.

The property of equivalence states that the implementation and specification have
the same domain of definition, which implies that compatibility holds. After all, it does

not make much sense to say that an implementation is equivalent with a specification

24

if it has completely different parameters or js defined over a different domain. Yet at
times, it is virtually impossible to achieve compatibility with the specification when the
procedure must be implemented in a language lacking certain high-level constructs (e-g.,
FORTRAN). As mentioned previously, however, the premises underlying equivalence are
valid in the context of certain restricted violations of compatibility, in particular, those
that do not inhibit the construction of the procedure partition. Although incompatibility
implies that the equivalence property is not satisfied, it is usually worthwhile to continue

with the determination of equivalence for the compatible procedure subdomains.

To determine whether the equivalence property prevails, the equality of the subspec
computation and the path computation over each compatible procedure subdomain must
be determined. For procedure subdomain Dy, the equality of C|[5;] and C|[P)] is deter-
mined by demonstrating whether or not the associated computation difference Cy; is gero
when it is restricted to the procedure subdomain. In general, the computation difference
Cts is a vector corresponding to the output vector z = (21,22, .. 2,). Thus, each compo-
nent Cy;.2; must be considered and C1;|Dyy = 0if and only if Cyy.2;|Dyy = 0 for 1 <i<n.
In many cases, the simplification of the computation difference Cj;.z; reduces that expres-
sion to gero, in which case the two computations C[S;).z; and C|P;].z; are symbolically
identical and thus equal over any domain. The simplification of C;, .2; i8 synonomous to a
term-by-term comparison of the symbolic values of C[S:), z; and C|[P;].z;. Two computa-
tions C[S;].z; and C|Py).2; are also equal over the associated procedure subdomain Dy, if

the condition defining D;; implies that the computation difference C;;.z; is gero. Proving

25

that D;; = Cy;|Dyy = 0 can be done through the application of proof techniqus such as

those employed by automatic program verifiers.

The process of applying partition analysis verification to the procedure PRIME is
somewhat complicated, primarily due to the properties that are used in producing the
efficient implementation. Only the proof developed by partition analysis verification for
procedure subdomain D, is discussed here, and shown in Figure 7, because it illustrates a
way in which the verification process guides in the test data selection process. In proving
that D,, implies that C,; = 0, partition analysis verification notes that the value of the
computation difference Cy, will clearly vary depending on whether (n < 4) or (n > 4). This
prompts the further division of the procedure subdomain into two subsets — D,,,, which
contains those elements in D,, for which (n < 4), and D,;;, which contains those elements
in Dy, for which (n > 4). The proof is then done in two parts, D,;, = C,; = 0 and D,y =
Ca = 0. The condition defining D5,, implies that the sequence [2..n — 1] contains only the
element 2 (this fact is denoted 21a-1 in the proof) and also that (trunc(n/2) + 2 — n # 0)
(21a-2). These two facts imply that forall{i := 2..n — 1| (trunc(n/i) +i —n # 0)} is
true (21a-3). The condition defining D, also implies (n < 4) (21a-4). The facts denoted
by (21a-3) and (21a-4) imply that Cp = 0. A similar proof is generated to show that
D34 = Cy = 0. The two proofs serve to demonstrate that D,, = C,; = 0. Because this
proof was contingent on the further division of the procedure subdomain, it is clear that
the differences between the subspec and path computations vary between these subsets

of the procedure subdomain. It is thus important to test elements in both subsets of the

26

D;,: (n 2 3) and ((trunc(n/2) 2 — n = 0) or (trunc(n/3) +3 —n = 0))
Cz: (forall{i := 2..n — 1 | (trunc(n/s) i —n #0)}) — (n < 4)

ng: {Dz; I (n < 4)} U {Dgl l (n 2 4))

Dyio: (n 2 3) and ((trunc(n/2) 2 — n = 0) or (trunc(n/3)*3—n = 0)) and (n < 4)
= (n =3) and ((trunc(n/2) 2 —n =0) or (trune(n/3)+3 —n = 0))

Dyi: (n 2> 3) and ((trunc(n/2) +2 —n =0) or (trunc(n/3) *3 —n = 0)) and (n > 4)
= (n > 4) and ((trunc(n/2)+2 —n =0) or (trunc(n/3) + 3 — n = 0))

Proof of Dz;, = Cu =0:

(n=3)=>(2.n-1=2) (21a-1)

(n =3) = (trunc(n/2) * 2 — n £ 0) (21a-2)

(21a-1) and (21a-2) = forall{i := 2..n — 1 | (trunc(n/i) +i—n#£0)} (21a-3)

(n=3)=>(n<4) (21a-4)

(21a-3) and (21a-4) => Dy, = Cyy = (true) — (true) =0 (21a-5)
Proof of Dyyy = Cy =0:

(n>4)=(2<n-1)and(3<n-1) (21b-1)

(21b-1) and ((trunc(n/2) « 2 — n = 0) or (trunc(n/3) +3 - n =0)) =
exists{s ;= 2..n — 1| (trunc(n/i) s{ —n = 0)} =

not forall{s := 2..n — 1 | (trunc(n/i) + i — n # 0)} (21b-2)
(n > 4) = not (n < 4) (21b-3)
(21b-2) and (21b-3) = Dy, = Cyyy = (false) — (false) =0 (21b-4)

Proof of D3y = Cy, =0
(21a-5) and (21b-4) =
Dy =>Cy=0

Pigure 7: Partition Analysis Verification of PRIME
(Procedure Subdomain D,,)

27

procedure subdomain. In general, whenever partition analysis verification must divide a
procedure subdomain into subsets and prove that the computation difference is gero over
each subset independently, partition analysis testing is directed to select test data from

each such subset of the procedure subdomain.

Partition analysis verification is a variation on symbolic testing [HOWD77] in which
the symbolic representations of the domains and computations derived from a program
by symbolic evaluation are examined. Partition analysis verification, however, compares

these representations with those derived from the specification.

Partition analysis verification uses standard proof techniques to determine the equality
of computations over a domain. In general, the problem of equivalence is undecidable and
thus partition analysis verification suffers one of the same drawbacks as other verifica-
tion approaches to demonstrating program reliability. Traditional verification approaches
decompose the implementaton into sequences of statements and employ proof techniques
to show that assertions are true at points between these sequences. By so doing, failure
to prove a single assertion may cause failure to show that any of the implementation is
correct. When partition analysis verification fails to prove the equality or inequality of the
associated computations for a procedure subdomain, it does not affect the proofs for other

procedure subdomains.

In the absence of a proof of equivalence, counterexamples can sometimes be found to
demonstrate that the subspec computation and the path computation are not equal over

the procedure subdomain. Partition analysis verification attempts to find some element in

28

the procedure subdomain for which the computation difference is nongero. For procedure
subdomain Dy, this is done by simplifying the computation difference C;, and attempting
to find a solution to the conjunction (D1s and (Cy; # 0)). If this conjunction is satisfiable,
then input data exists in D,, for which Cis is not zero. Thus, C1s|D;; # 0 and the
subspec computation C|S;] and the path computation C[P;] are not equal when restricted
to D;;. When no counterexample can be found, partition analysis testing often succeeds
in detecting errors thereby pointing out counterexamples, otherwise it provides assurance

of the equality of the computations.

4. PARTITION ANALYSIS TESTING

Since partition analysis verification works with a simplified symbolic representation
of the differences between a subspec and a path, it is very important to test that the
conclusions drawn in this postulated environment are also valid in the natural run-time
environment. To demonstrate the run-time behavior, it is important to select test data
for which the paths are sensitive to error. Further, there is always a chance (a very good
one at that) that a subspec is incorrect, thus test data for which each subspec is sensitive
to error are also selected. Selecting sensitive test data for both may draw attention to an
error that might otherwise remain undetected.

Within partition analysis, the symbolic representations of a procedure subdomain and
the associated computations are employed to direct the selection of test data for the subdo-

main. Partition analysis testing thereby draws on information describing both the intended

29

and actual function of the procedure. To increase the likelihood of detecting errors, so-

phisticated test data selection criteria are employed for each procedure subdomain.

The testing literature has classified program errors into two categories: computation
errors and domain errors, according to whether the effect is an incorrect path computation
or an incorrect path domain. A domain error may be either a missing path error, which
occurs when a special case requires a unique sequence of actions but the program does
not contain a corresponding path, or a path selection error, which occurs when a program
recognizes the need for a path but incorrectly determines the conditions under which that
path is executed. A computation error occurs when the correct path through the program

is taken, but the output is incorrect because of faults in the computation along the path.

Error-sensitive test data selection criteria are often geared toward the detection of ei-
ther computation errors or domain errors. Many of these criteria have consisted of intuitive
guidelines [FOSTSO,HOWDSO,HOWDBI,MYER79,REDW83,WEYU8l] , but several have
been made more rigorous, often by incorporating the symbolic representations created
by symbolic evaluation[CLAR8S5a|. These more formalized strategies include computation
testing [CLAR83,HOWD78, HOWDS80] and domain testing [CLAR82, WHITS0), which un-
der certain conditions guarantee the absence of computation errors and domain errors,
respectively. These formalized strategies have been extended to be applicable in the con-

text of procedure subdomains [RICHS81b].

Computation testing is based on the assumption that the way an input value is used

within the subspec and path computations is indicative of a class of potential computation

30

errors. Analysis of the symbolic representation of the computation difference reveals the
manipulations of the input values that have been performed to compute the output values.
For each procedure subdomain, data are selected 1) to demonstrate whether or not the
subspec computation and the path computation are equal over the procedure subdomain,

and 2) to characterize the computations in terms of potential errors and run-time behavior.

Partition analysis testing is sometimes able to demonstrate that the subspec compu-
tation and the path computation are equal over the procedure subdomain. When the
procedure subdomain D;; is small and dfscrete, each element in D;; can be selected as
test data. This amounts to exhaustive testing for this procedure subdomain and thus is

not feasible for nondiscrete subdomains or those with many elements.

Another more interesting case is when a computation is a polynomial; then polynomial
testing techniques can be applied to demonstrate equality. In this case, the computation
difference is a polynomial and the number of test points that must be selected to guar-
antee it is zero is dependent on algebraic properties of the polynomial. For instance, if
the computation difference C;; is a univariate polynomial with integer coefficients whose
magnitudes do not exceed a known bound, a single test point can be found to demonstrate
that C;; | Dyy =0 [ROWLSI). Alternately, if Cys is a univariate polynomial of maximal
degree t, the selection of ¢ + 1 elements is sufficient to determine whether Ci1s|Dt; =0
[HOWD7S]; this holds if Cr; = 0 for the ¢ + 1 elements. If Cps is a multivariate poly-
nomial in k variables (where a variable in this context is the symbolic name for an input

value) of maximal degree ¢, C;; must be gero for O(t*) elements in order to determine

31

that C;s|Dyy = 0 [HOWD78]. Probablistic arguments have been made for limiting the
number of elements that must be selected without sacrificing too much in the way of ac-
curate results [DEMI78a). Selecting test data to demonstrate that C;;|D;; = 0 is a useful

feature to employ when partition analysis verification is not able to determine whether

Du = Cu =0.

The computations are also analyzed in an attempt to characterize potential errors and
run-time behavior. In general, a path computation may contain arithmetic manipulations
or data manipulations, which are inherently sensitive to different classes of computation
errors. Computations containing predominately arithmetic manipulations are sensitive to
errors relating to the use of numeric values and operators in arithmetic expressions. Test
data is selected for which each symbolic name in the computation difference C;, take on
distinct values and for which multipliers, divisors, exponents, terms, and repetition counts
take on special values and extremal ? and nonextremal values. Test data is also selected
to force the specification and implementation computations to take on special values and
extremal and nonextremal values. Computations containing data manipulation typically
maintain compound data structures and as a result are sensitive to errors that involve data
movement operations rather than arithmetic operations. Test data is selected for which
component selectors and components take on both distinct values and identical values,
as well as extremal and nonextremal values. Test data is selected for which the size of a

compound structure is extremal and nonextremal and for which a compound structure is

1A value of large magnitude often serves the purpose of an extremal value.

32

both full and empty. The guidelines that are applied within partition analysis testing for
computations containing either arithmetic or data manipulations are more fully described

elsewhere (CLARS3].

It is important to note that the guidelines may not all be satisfiable due to the condition
defining D;; or the representation of C;. In addition, not all of the guidelines need be
satisfied independently, so the amount of test data is not as large as it might appear. For
example, test data to characterize errors may satisfy the polynomial testing requirements.
The selection of computationally-sensitive test data often results in erroneous or inaccurate
output. If no such errors are uncovered, assurance in the correctness of the computations

has been provided.

Domain testing, as traditionally described, is a path testing strategy that concentrates
on detecting path selection errors. These strategies advocate the selection of test points
near path domain boundaries. The boundary of a path domain is composed of borders
with adjacent path domains. Each border results from a relational expression in a branch
predicate constraint. For each closed border, the strategy selects on test points, which lie
on the border and thus in the path domain being tested, and off test points, which lie on
the open side of the border and thus in an adjacent path domain. (An open border of a path
domain is tested when testing the adjacent domain.) A border shift can remain undetected
only if the on test points and the off test points lie on opposite sides of the correct border.
The undetectable border shifts are kept “small” by choosing the off test points as close to

the border being tested as possible. A thorough description of domain testing, including

33

Figure 8: Domain Testing

the number of test points that should be selected to minimize the potential undetected
border shifts and its effectiveness in detecting path domain errors is provided in [CLARS2).
Figure 8 illustrates a border shift where B is the border being tested and C is the correct
border. The border shift is detected by the selection of on points P and Q and off points
U and V, since V is in the wrong domain. The existence of a border shift implies that a
path selection error has occured, and thus path selection errors are likely to be caught by
domain testing criteria.

While domain testing directly addresses path selection errors, missing path errors will
not be detected unless the missing path’s domain is close to a domain border. Suppose, for
instance, that M and N represent missing borders and thus a missing path error exists,

as shown in Figure 9. Domain testing, as described, will not necessarily force selection

34

Pigure 9: Missing Path Error

of data within the missing subdomain. The error will go undetected unless other testing
criteria (such as the computation testing criteria) cause such data to be selected. In fact,
missing path errors cannot be found systematically unless a specification is employed by
the test data selection strategy, as is done by partition analysis testing.

The application of domain testing based on the procedure partition involves analyzing
the procedure subdomain and selecting test data on and slightly off the procedure subdo-
main boundaries. In partition analysis testing, the correct borders are essentially those in
the specification partition — that is, the borders of the subspec domains. As discussed
previously, however, the implementation may be correct, even though the implementation
and specification partitions are different. Any border of a procedure subdomain is either

part of a path domain boundary or part of a subspec domain boundary or coincides in

35

a path domain boundary and a subspec domain boundary. It is important to test each
type of border. A border that coincides in a path domain boundary and a subspec domain
boundary is tested to substantiate the correctness of the subspec domain, and hence the
path domain as well. A procedure subdomain border that corresponds only to a path
domain boundary separates two path domains, say D[P,] and D[Pg], that both have el-
ements in one subspec domain. Perhaps the implementation has split a subspec domain
into two path domains so as to perform a more efficient computation for some of the
elements. Thus, the path computations C[P;] and C[Pg] are likely to be different. By
testing the border with on and off test points, it can be determined whether the border
separates the path domains correctly or if a border shift, and thus a path selection error,
has occurred. A procedure subdomain border that corresponds only to a subspec domain
boundary, separates two subspec domains, say D[S;] and D[Sg]|, that both have elements
in one path domain. In this case, the subspec computation C[S;] and C[Sg| are probably
different, yet the implementation has grouped two subspec domains together. This may
have been done for efficiency or may indicate a missing path error. Testing this border
with both on and off test points helps determine whether the implementation computation
bas adequately captured both subspec computations. In Figure 9, the borders M and N
are part of a procedure subdomain boundary resulting from a subspec domain. Partition
analysis testing will force the selection of test points on and near the border M and N,
and thus the corresponding missing path error will be detected. By testing the boundary

of each procedure subdomain, both the similarities and differences between the subspec

36

domains and the path domains are tested.

Domain testing is a relatively new test data selection strategy for which much further
regearch is needed. The strategy has been well defined for domains that are continuous,
linear convex polyhedra. This assumes that the input space is continuous, that none of
the interpreted branch predicates contaijn a disjunction, and that all relational expressions
are linear. Adequate modifications have been proposed for both nonconvex and discrete
domains, although several problems remain to be addressed [CLARSZ,WHITSO]. Modifi-
cations have been proposed that require the selection of on and off test points near each of
the local minima and maxima of a nonlinear border. Unfortunately, the practical applica-
bility of domain testing is limited to interpreted branch predicates of low degree. Even in
these cases, complications arise when branch predicates contain compound data structures
and their component selectors depend on input values. Due to the dependencies among
components of a compound structure and the component selectors, it may not be possible
to find good on and off test points for a particular border. In such cases, the intuitive
concepts underlying domain testing can be used as heuristics to test the borders of a path

domain.

Figure 10 shows the test data selected for procedure subdomain D,, and computation
difference C,, of PRIME. For each test datum selected, the reason for its selection
i8 noted. Note that since partition analysis verification divided procedure subdomain
D, into subsets to prove that the associated computations are equal, partition analysis

testing applies domain and computation testing to select test data from both subsets

37

Dz: (n 2 3) and ((trunc(n/2) 2 — n = 0) or (trunc(n/3) * 3 — n = 0))
Cy: (forall{i :=2..n — 1 | (trunc(nfi) *i —n # 0)}) — (n < 4)

Domain Testing Criteria:

N= = on (n = 3) of Dy,, off (n > 4) of Dy,

N= = off (n =3) of Dy,

N = = on (n > 4) of Dy, on (trunc(n/2) *2 - n = 0)

N=5 = off (trunc(n/2) * 2 — n = 0), off (trunc(n/3) *3 — n = 0)
N=6 = on (trunc(n/2) * 2 — n = 0), on (trunc(n/3) *3 — n = 0)
N=7 = off (trunc(n/2) +2 — n = 0), off (trunc(n/3) *3 — n = 0)
N=9 = on (trunc(n/3) +3 — n =0)

N = 1000 = on (trunc(n/2) * 2 — n = 0), off (trunc(n/3) *3 — n = 0)
N =999 = on (trunc(n/3) *3 — n =0), off (trunc(n/2) *2 — n = 0)

Computation Testing Criteria:

N=3 = C[S;] = C|P,) = true, forall iterated minimum times
N=14 = C|Ss) = C|P2) = false
N = 1000 = forall iterated maximum times

Figure 10: Partition Analysis Testing of PRIME
(Procedure Subdomain D)

38

Dy, and Dyyy. The domain testing strategy proposes the selection of boundary points
of the procedure subdomain. Thus, test data are selected on and slightly off the borders
of Dy, and Dyy. Due to the simplicity of the computations, most of the guidelines for
computation testing are trivial to apply. For this example, computation testing requires
that test data be selected for which both true and false values of PRIME result and
for which the iteration involved in the forall construct be done a minimum (once) and a
maximum (1000 is assumed to be the maximum) number of times. The data selected by

partition analysis to completely test PRIME are shown in Figure 11.

Combining the domain and computation testing strategies on the basis of the procedure
partition results in the selection of data that more rigorously test a procedure than other
proposed testing strategies. Most programmers would admit that the test set for PRIME
is a more comprehensive set than they would have selected, yet upon examination it is
clear that each datum is selected to test a particular feature of the implementation or the

specification of PRIME.

The domain and computation testing criteria used within partition analysis test-
ing subsume most proposed intuitive guidelines. The computation testing criteria sub-
sume the special value testing and extremal output value testing proposed by How-
den [HOWD80,HOWDS1|, as well as the engineering approach proposed by Redwine
[REDW83]. Domain testing subsumes both the boundary value testing and condition
coverage guidelines proposed by Myers [MYER79] and the extremal input value testing

proposed by Howden [HOWDB80]. The combination of computation and domain test-

39

Dg; .

Dzz:

D23 .

Dz‘ .

D25 .

ng .

Domain Testing Criteria:

N=],N=2,N=3

Computation Testing Criteria:

gomazin Testing Criteria:
N=2,N=3N=4N=5N=6N=71N=9,N=999,N = 1000
Computation Testing Criteria:

N =3,N=4,N = 1000

Domain Testing Criteria:

N=2,N=3
Computation Testing Criteria:
N=5N=23

Domain Testing Criteria:

N =24, N =25N =26,N =49, N = 50, N = 973, N = 995
Computation Testing Criteria:

N =25,N = 995

Domain Testing Criteria:

N =24,N =27

Computation Testing Criteria:

N =27,N=113

Domain Testing Criteria:

N =120, N =121, N = 122, N = 168, N = 169,
N =170, N = 288, N = 289, N = 961, N = 989
Computation Testing Criteria:

N =121,N =989

Domain Testing Criteria:

N =120, N = 127, N = 288, N = 293
Computation Testing Criteria:

N =127, N = 997

Pigure 11: Partition Analysis Testing of PRIME

40

ing covers Foster’s Error-Sensitive Test Case Analysis [FOST80,FOST83,FOST84] and
Weyuker's error-guessing technique [WEYUS81|. Moreover, the computation and domain
testing criteria are integrated within partition analysis testing so as to exploit the overlap

among criteria in an attempt to reduce the total number of test points.

The testing and verification processes are integrated within partition analysis so that
they might complement and enhance one another. Partition analysis testing not only sub-
stantiates the verification process, but may in fact assist in that process. Partition analysis
verification often provides insight into the test data selection process as well. If partition
analysis verification disproves equivalence by detecting counterexamples, these values are
selected as test data. When partition analysis verification is unable to complete a proof,
partition analysis testing attempts to complete the task of determining computation equal-
ity. Although the verification process did not succeed in proving or disproving computation
equality, it may have reached some conclusjon about elements of the procedure subdomain
that are crucial to the prevalence of computation equality. In this case, the test data set
is augmented with such elements. Then, partition analysis testing either shows these as
counterexamples or provides assurance in the computation equality. Another situation in
which partition analysis verification directs the selection of test data occurs when the proof
of computation equality is contingent on the further division of the procedure subdomain.
This further decomposition implies that it is important to test elements in each subset
of the procedure subdomain and partition analysis testing is directed accordingly. Thus

in partition analysis, the verification and testing are complementary techniques that are

41

employed to enhance each other, thereby providing a method that is stronger than either

technique alone.

5. AN EVALUATION OF PARTITION ANALYSIS

An evaluation of the partition analysis method was undertaken that involved applying
partition analysis to thirty-four procedures. These procedures were taken from the program
testing and verification literature and from several programming textbooks. The major
difficulty posed by this choice was the unavailability of accompanying formal specifications.
We often had to write specifications for these procedures based on the implementation and
the English descriptions of their intended function. In the first part of this evaluation,
partition analysis was considered to be successful if it detected all the errors in an erroneous
implementation or if it demonstrated consistency between a correct implementation and
its specification. Since many of the programs were correct or contained only a few, well-
documented errors, we used mutation analysis [DEMI78b| to systematically seed large
numbers of errors into the implementation. For the second part of the evaluation, partition
analysis testing was considered successful if it detected all these seeded errors. The results

from both parts of this evaluation are discussed in this section and summarized in Figure 12.

For the first part of this evaluation, eleven erroneous programs and program fragments
were selected from the “Common Blunders” section of The Elements of Programming

Style [KERN74]. Partition analysis detected all of the blunders in procedures derived

42

NOTE:

ce stands for computation error,
pee stands for path selection error,
mpe stands for missing path error.

Figure 12: Evaluation of Partition Analysis

43

PROCEDURE "ERRORS PARTITION ANALYSIS MUTANTS KILLED
SIN 3 ce, 1 poc errors detected 266 249
CURRENT 2 ce, 1 pse, 1 mpe errors detected 384 362
SUM 1 ce errors detected 82 76
ACCOUNT 1 psc ervor detected 207 193
FIRSTMIN 2 pse errors detected 87 85
LOAN 1ce 1 poe errors detected 256 221
BINSEARCH 4 ce, 1 pse, 2 mpe errors detected 202 273
GRADES 1 ce error detected 133 121
MEANVAR 1 ce error detected 130 127
TRAP 1 ce error detected 337 325
RIGHTTRI 1 poe error detected 272 227
KING1 correct consistency demonstrated 121 102
KING2 correct consistency demonstrated 186 167
KING3 correct loop analysis failed 03 85
KING4 correct consistency demonstrated 171 157
KINGS correct consistency demonstrated 210 203
KING6 correct loop analysis failed 156 139
KING?7 correct loop analysis failed 149 132
KINGS correct consistency demonstrated 108 177
FIND correct loop analysis failed 525 503
BUGGYFIND 1 ce error detected 513 491
CALENDAR 1 pse error detected 99 87
TRIANG 1 mpe error detected 353 315
LADERMAN correct consistency demonstrated 3991 3991
PRIME correct consistency demonstrated 363 295
INTEGRAL correct consistency demonstrated 647 607
PAL correct consistency demonstrated 183 161
HORNERS correct consistency demonstrated 162 154
COSINE correct consistency demonstrated 129 101
TRANSACT correct consistency demonstrated 226 219
DOCKING correct consistency demonstrated 307 289
QUAD correct counsistency demonstrated 293 286
NEARP correct consistency demonstrated 321 309
BISECTION correct consistency demonstrated 592 569

from these programs and program fragments. For the binary search procedure, the loop
expression for the implementation could not be created and thus the procedure partition
could not be constructed. A partial application of partition analysis, in which symbolic
representations are created for paths that perform zero, one, and two iterations of the loop,
is capable of detecting all of the errors in this implementation. This partial application
of partition analysis is often helpful when the loop analysis technique fails. The eleven
procedures contained a total of fourteen computation errors and eleven domain errors
(eight path selection errors and three missing path errors). Symbolic evaluation was all
that was needed to reveal eight of the errors. Two of the errors are precision errors;
these errors were not reflected in the implementation partition and thus were not detected
by partition analysis verification, but were detected by partition analysis testing. The
other fifteen errors were initially detected by partition analysis verification and also were
detected by partition analysis testing. This group of procedures is of special interest since
Howden used the same procedures to evaluate two testing methods [HOWD76,HOWD77|
— symbolic testing and an approximation to path analysis testing. In Howden’s study,
symbolic testing was found to be somewhat more effective than path analysis testing, and
a combination of the two was conjectured to be more effective than either method used
alone. For this set of procedures, the partition analysis method performs better than
either of these methods or their combination. This is not surprising, however, since our

integrated testing strategies include a more formal version of symbolic testing and path

analysis. The methods evaluated by Howden were ineffective for domain errors, but the

44

partition analysis method, which includes a domain testing strategy and considers both

the specification and the implementation, was effective at detecting these errors.

In addition to the “Common Blunders”® procedures, nine correct procedures were taken
from the verification literature [DEUT73,HOAR7 1,LKING69|. Partition analysis demon-
strated the reliability of five of the nine. The failure of the method on the others was
due to loop structures that are too complex for the loop analysis technique. The FIND
procedure (HOART71], for example, has four loops; the three inner loops can be repre-
sented by a loop expression but the loop analysis technique fails on the outer-most loop.
As noted, partition analysis can be partially applied in an attempt to detect errors in
the implementation, but consistency cannot be demonstrated. Hence, since each of these
four procedures is correct, the partition analysis method failed to come to a conclusion,
although no errors were found in the partial application, thus providing some assurance of

the reliability of the implementation.

In addition, four procedures from the literature on program testing have been used
to evaluate partition analysis. One such program is BUGGYFIND [BOYE?S,DEMI?SC],
which is an erroneous version of the FIND program discussed above. BUGGYFIND con-
tains one computation error, which has been repeatedly demonstrated as very difficult to
detect. Partition analysis testing does reveal the existence of this error. The CALENDAR
procedure has been studied by several authors [GELL78,WEYUS0| and has undergone
the successful application of partition analysis. This procedure contains one domain error

that is detected by both the verification and testing processes of partition analysis. TRI-

45

ANG [RAMA76,DEMI78¢c,WEYUB80] contains one missing path error, which is detected
by partition analysis verification and testing. LADERMAN [RICH78|, which was used to

evaluate mutation analysis, contains no errors and was shown to be correct.

The final group of procedures to which partition analysis was applied, were
ten procedures found in introductory programming and program development texts
[GEAR78,GROG79,KOFF81, WEGN80,WELS79]. Most of these procedures were accom-
panied by relatively precise, although not formal, specifications that were easily written in
the SPA language. The PRIME example that appears in this paper is one such example.
These procedures contained no errors and the partition analysis method was successful in

demonstrating consistency between the specification and implementation.

Although it provided interesting feedback, the first part of our evaluation had some
limitations. First, the application of the verification and test data selection techniques was
done manually. While efforts were made to remain objective, there is always some doubt as
to whether the errors that have been detected would also have been detected if they were
not known to exist. Second, the effectiveness of partition analysis testing is unclear when
the implementation is correct. (Likewise, just because all known errors were detected does
not mean that all errors were detected.) The method’s effectiveness must be evaluated by
some other effectiveness measure in addition to the evaluation in terms of its ability to

detect a few known errors.

To address both of these problems, we undertook the second part of this evaluation in

which we used mutation analysis [DEMI78b] to measure the adequacy of the selected test

46

data. Mutation analysis is based on the assumption that a program is either correct or
almost correct (differs from a correct program by some simple error). Mutation analysis
seeds a large number of simple errors into each statement in the implementation to produce
“mutants”. The original and mutant programs are executed on the selected set of test
data. If a mutant program gives correct results on all of the test data, it is said to be
live, otherwise it has been killed. If all mutants are killed, then the test data is adequate
since it distinguishes the original program from all those containing simple errors. For
any live mutant either the mutant is equivalent to the original program (no problem), the

implementation is incorrect (an error is detected), or the test data set is inadequate.

Using the test data from partition analysis testing, the mutation analysis system demon-
strated the effectiveness of the method. Foreach program analyged, all of the nonequivalent
mutants were killed. For the program PRIM E, for instance, the mutation analysis system
produced 363 mutant programs from the original. Of these, 295 gave incorrect results on
the data selected by partition analysis. All of the remaining mutants were equivalent to
the original program. Thus the test data set selected by partition analysis for PRIME is

adequate.

One limitation of the second part of this study is that all errors introduced by muta-
tion analysis are either computation errors or path selection errors. The structure of the
program is not mutated, and hence no missing path errors are introduced. Thus checking

the adequacy of partition analysis in this way does not exercise one of its most unique

features.

47

6. CONCLUSION

Partition analysis attempts to integrate testing and verification. Our evaluation of the
method demonstrates that it can be very effective at detecting errors. When no errors are
detected in a program, it provides a reasonable level of assurance in the reliability of that
program. This section describes some of the disadvantages and limitations of the method

and of our evaluation and discusses some areas of current and future research.

Partition analysis relies on the development of procedure subdomains, which parti-
tion the set of input data based on the implementation and the specification. Procedure
subdomains appear to be the largest units of input data that can be analyzed indepen-
dently; yet they provide a practical decomposition of the testing and verification process.
Further, the procedure partition appears to overcome many of the problems encountered
with alternative decompositions that are suggested by other verification and testing meth-
ods [FLOY67,GELL78,HOWD76,LOND75,WEYUB80|. There are several problems encoun-
tered, however, in forming the procedure partition. Determining constraint consistency,
creating closed-form expressions for loops, and finding the nonempty intersection between
subdomains are all unsolvable problems in general. In practice, formulating a closed-form
expression for loops seems to be the major stumbling block. While closed-form expressions
were found in most of the examples we examined, the insufficiency of the loop analysis
technique v;ras still the major cause of failure. We are currently investigating more pow-
erful loop analysis techniques. Since no technique will always be successful, we are also

reexamining the heuristics we use when loop analysis fails.

48

Partition analysis verification addresses some of the limitations of other verification
methods. Although this paper has described the method for a design specification and
implementation, it can be applied to any two descriptions and thus can be used through-
out the software development process. Some verification methods have also been proposed
for use throughout software development [SILV79,GRIE76), but these have been restricted
to very particular languages. Because partition analysis is applicable to different kinds of
languages (forming the procedure partition is actually a translation to a common func-
tional representation), it can more naturally be applied with actual software development
efforts. In particular, PDL-type languages appear to be the most widely used type of
pre-implementation specification, yet other verification methods are not applicable with
procedural languages of this sort. Despite these advantages, partition analysis verification
has some of the same drawbacks as other verification techniques. In general, it can not
be proven that two descriptions are equivalent. Also verification is usually based upon as-
sumptions about a postulated environment; the proof or the assumptions could be wrong
[GERH76,DEMIT79]. It is for these reasons that partition analysis proposes that verification

be complemented by testing.

Partition analysis testing has been shown to be a powerful testing strategy. The reasons
for this are two-fold. First, it sntegrates several complementary testing strategies. Second,
the selected test data appropriately characterize the procedure based on both the imple-
mentation and the specification. As such, it is one of the few testing strategies to address

missing path errors. There are several problems with partition analysis testing that must

49

be addressed. In particular, the error-sensitive testing proposed for partition analysis may
result in an excessive number of test points. It is important to note, however, that many
of the test data satisfy more than one selection criteria. This overlap occurs within both
the domain and computation strategies as well as between the two. Thus, various testing
strategies must be more tightly integrated so as to exploit the overlap among criteria in
an attempt to reduce the total number of selected test points. Before this can be accom-
plished, however, more work must be done to understand the strengths and weaknesses of
these techniques and how they relate. We have already started to address some of these
issues [CLAR85b| and intend to pursue this work further. In addition to developing better
integration schemes, it is also necessary that the testing analysis be automated. Most of
the testing strategies being used are difficult to apply and, although it can be shown how
they relate to intuitive guidelines, they are not necessarily intuitive to apply. Finally, we
are also considering using partition analysis testing to direct the testing of specifications.
Even specifications for single modules can be difficult to write or understand, so designing
specification languages that are amenable to testing and developing appropriate testing

methods is an area of current research [KEMM85,BALZ81,GOGU79|.

The evaluation that we did of partition analysis demonstrated some of the strengths
and weaknesses of the method. The evaluation was of a limited scale, however, due to the
fact that we were applying the method manually and to the unavailability of program and
specification pairs. The method is intended to be applied to single modules so the size

of the evaluated modules would not be significantly smaller than a “real world” sample.

50

It would be interesting and worthwhile, however, to apply the method to the modules of
somewhat larger programs to see what problems are encountered and to evaluate how the

method scales up.

51

|[ABRA79)

[BALZS1]

[BOYETS]

[CHEAT9]

[CLARS1]

[CLARS2

[CLARS3]

[CLARSSa]

[CLARSSb|

[DEMI78a]

[DEMI78b)

REFERENCES

P. Abrahams and L.A. Clarke, “Compile-Time Analysis of Data List - Format
List Correspondences,” IEEE Transactions on Software Engineering, SE-5, 6,
November 1979, 612-617.

R.M. Balzer, “Final Report,” Information Sciences Institute, University of
Southern California, February 1981.

R.S. Boyer, B. Elspas, and K.N. Levitt, “SELECT — A Formal System for
Testing and Debugging Programs by Symbolic Execution,” Proceedsngs of the
International Conference on Reliable Software, April 1975, 234-244.

T.E. Cheatham, G.H. Holloway, and J.A. Townley, “Symbolic Evaluation
and the Analysis of Programs,” IEEE Transactions on Software Engineering,
SE-5, 4, July 1979, 402-417.

L.A. Clarke and D.J. Richardson, “Symbolic Evaluation Methods — Imple-
mentations and Applications,” Computer Program Testing, editors B. Chan-
drasekaran and S. Radicchi, North Holland Publishing Co., 1981, 65~102.

L.A. Clarke, J. Hassell, and D.J. Richardson, *A Close Look at Domain
Testing,” IEEE Transactions on Software Engineering, July 1982, 380-390.

L.A. Clarke and D.J. Richardson, “A Rigorous Approach To Error-Sensitive
Testing,” Sizteenth Annual Hawasi Conference on System Sciences, January
1983, 197-206.

L.A. Clarke and D.J. Richardson, “Applications of Symbolic Evaluation,”
Journal of Systems and Software, Vol.5, No.1, January 1985.

L.A. Clarke, A. Podgurski, and D.J. Richardson, *A Comparison of Data
Flow Path Selection Criteria,” Software Development Laboratory, Depart-
ment of Computer and Information Science, University of Massachusetts.

R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on Test Data Selection:
Help for the Practicing Programmer,” IEEE Computer, 11, 4, April 1978, 34-
41.

R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Program Mutation: A New
Approach to Program Testing,” Infotech State of the Art Report on Software
Testing, 2, September 1978, 107-128.

52

([DEMI78c| R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on Test Data Selection:

[DEMI79]
[DEUT73)

[DLIK70]

[FLOY67)

[FOSTS80]

[FOST83)

[FOST84

[GEAR7s)

[GELL7g]

(GERHT76|

[GOGUTY)

(GRIE76]

Help for the Practicing Programmer,” Computer, 11,4, April 1978, 34—41.

R.A. DeMillo, R.J. Lipton, and A.J. Perlis, *Social Processes and Proofs of
Theorems,” Communications of the ACM, 22, 5, May 1979, 271-280.

L.P. Deutsch, “An Interactive Program Verifier,” Ph.D. Dissertation, Univer-
sity of California, Berkeley, May 1973.

E.W. Dijkstra, “Structured Programming,” Software Engineering Princsples,
editors J.N. Buxton and B. Randall, Brussels, Belgium, NATO Science Com-
mittee, 1970.

R.W. Floyd, “Assigning Meaning to Programs,” Proceedings of a Symposium
in Applied Mathematics, 19, American Mathematical Society, 1967, 19-32.

K.A. Foster, “Error Sensitive Test Case Analysis (ESTCA),” IEEE Transac-
tions on Software Engineering, SE-6, 3, May 1980, 258-264.

K.A. Foster, “Comment on The Application of Error-Sensitive Testing Strate-
gies to Debugging,” ACM SIGSOFT Software Engineering Notes, Vol.8, No.5,
October 1983, 40-42

K.A. Foster, “Sensitive Test Data for Logical Expressions,® ACM SIGSOFT
Software Engineering Notes, Vol.9, No.3, July 1984.

C.W. Gear, Programming and Languages, Science Research Associates, Inc.,
1978.

A. Geller, “Test Data as an Aid to Proving Program Correctness,® Commu-
nications of the ACM, 21, 5, May 1978, 368-375.

S.L. Gerhart and L. Yelowits, “Observations of Fallibility in Applications
of Modern Programming Methodologies,” IEEE Tyansactions on Software
Engineering, SE-2, 3, September 1976, 195-207.

J.A.Goguen and J.J. Tardo, ®An Introduction to OBJ,® Proceedings of the
Conference on Specifications of Reliable Software, 1979, 170-189.

D. Gries, “An Ilustration of Current Ideas on the Derivation of Correctness
Proofs and Correct Programs,® IEEE Transactions on Software Engineering
SE-2,4, December 1976, 106-112.

53

[GROG79)
[HOARTI]

(HOWD76)
[HOWD77
[AHOWD7s)
[HOWD80|

(HOWDs1|

[KEMMSS)
[KERN74]
[KERNS3)
[KINGG9]
[KOFFs1]

[LOND75]

[MYER79)
[IRAMA70]

P. Grogono, Programming in PASCAL, Addison-Wesley, Inc., 1979.

C.A.R. Hoare, “Proof of a Program: FIND® Communications of the ACM,
14, 1, January 1971, 39-45.

W.E. Howden, “Reliability of the Path Analysis Testing Strategy,” IEEE
Transactions on Software Engineering, SE-2, 3, September 1976, 208-215.

W.E. Howden, “Symbolic Testing and the DISSECT Symbolic Evaluation
System,” IEEE Transactions on Software Engineering, SE-3, 4, July 1977,
266—278.

W.E. Howden, “Algebraic Program Testing,” ACTA Informatica, 10, 1978.

W.E. Howden, “Functional Program Testing,” IEEE Transactions on Soft-
ware Engineering, SE-6, 2, March 1980.

W.E. Howden, “Completeness Criteria for Testing Elementary Program Func-
tions,” Fifth International Conference on Software Engineering, March 1981,
235-243.

R.A. Kemmerer, “Testing Formal Sepcifications to Detect Design Errors,”
IEEE Transactions on Software Engineering, SE-11,1, January 1985.

B.W. Kernighan and P.J. Plauger, The Elements of Programming Style,
McGraw-Hill Book Company, 1974.

J.S. Kerner, “Design Methodology Subcommittee Chairperson’s Letter and
Matrix,” Ada Letters, 2,6, May/June 1983, 110-115.

J.C. King, “A Program Verifier,” Ph.D. Dissertation, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, September, 1969.

E.B. Koffman, Problem Solving and Structured Programming in Pascal,
Addison-Wesley, Inc., 1981.

R.L. London, “A View of Program Verification,” Proceedings Internatsonal
Conference on Reliable Software, April 1975, 534-545.

G.J. Myers, The Art of Software Testing, John Wiley and Sons, 1979.

C.V. Ramamorthy, S.F. Ho, and W.T. Chen, *On the Automated Generation
of Program Test Data,” IEEE Transactions on Software Engineering, SE-2,
4, December 1976, 293-300.

54

[REDWS3]

[RICH78]

(RICHS1a)

[RICHS1b)

[ROWLSI|

[SILV79)

[WEGN8o0]

[WELS79]
[WEYUso]|

[WEYUSI,|

[WHITSs0]

S.T. Redwine, *An Engineering Approach to Test Data Design,” IEEE Trans-
actions on Software Engineering.

D.J. Richardson, “Theoretical Considerations in Testing Programs by
Demonstrating Consistency with Specifications,” Digest of the Workshop on
Software Testing and Test Documentation, December 1978, 19-56.

D.J. Richardson, L.A. Clarke, “A Partition Analysis Method to Increase Pro-
gram Reliability,” Fifth International Conference on Software Engineering,
March 1981, 244-253.

D.J. Richardson, “A Partition Analysis Method to Demonstate Program Re-
liability,” Ph.D. Dissertation, University of Massachusetts, September 1981,

J.H. Rowland and P.J. Davis, “On the Use of Transcendentals for Program
Testing,” Journal of the Association for Computing Machinery 28,1, January
1981, 181-190.

B.A. Silverburg, L. Robinson, and K.N. Levitt, “The HDM Handbook, Vol-
ume 1: The Languages and Tools of HDM,” Stanford Research Institute
Project 4828, June 1979.

P. Weguner, Programming with Ada: An Introduction by Means of Graduated
Ezamples, Prentice-Hall, Inc., 1980.

J. Welsh and J. Elder, Introduction to Pascal, Prentice-Hall, Inc., 1979.

E.J. Weyuker and T.J. Ostrand, “Theories of Program Testing and the Ap-
plication of Revealing Subdomains,” IEEE Transactions on Software Engs-
neering, SE-6, 3, May 1980, 236-246.

E.J. Weyuker, ®*An Error-Based Testing Strategy,” Computer Science Depart-
ment, New York University, New York, New York, Technical Report No.027,
January 1981.

L.J. White and E.IL Cohen, “*A Domain Strategy for Computer Program
Testing,” IEEE Transactions on Software Engineering, SE-6, 3, May 1980,
247-257.

55

