Learning by Statistical Cooperation of
Self-Interested Neuron-like Computing Elements *

Andrew G. Barto

Department of Computer and Information Science
University of Massachusetts, Amherst MA 01003

COINS Technical Report 85-11
April 1985

To appear in a forthcoming special issue of

Human Ncuroﬁiology

* This research was supported by the Air Force Office of Scientific Research and the Avionics Labora-
tory (Air Force Wright Aeronautical Laboratories) through contract F33615-83-C-1078. The author
thanks C. W. Anderson, whose research with networks has been indispensible and who performed
some of the simulations reported here; R. S. Sutton, whose theoretical and experimental skills have
contributed in many ways; and P. Anandan, who is largely responsible for the convergence theorem
stated here. Additional thanks are due to J. S. Judd and B. Pinette for their participation in discus-
sions of this work; A. H. Klopf, whose hypotheses have helped shape this research; and M. A. Arbib
and J. W. Moore for their helpful discussions and expert guidance through the literature.

Abstract

Since the usual approaches to cooperative computation in nctworks of peuron-like computating
elements do not assume that network components have any “preferences,” they do not make sub-
stantive contact with game theoretic concepts, despite their use of some of the same terminology.
In the approach presented here, however, each network component, or adaptive element, is a self-
interested agent that prefers some inputs over others and “works” toward obtaining the most highly
preferred inputs. Here we describe an adaptive element that is robust enough to learn to cooperate
with other elements like itself in order to further its self-interests. It is argued that some of the
long-standing problems concerning adaptation and learning by networks might be solvable by this
form of cooperativity, and computer simulation experiments are described that show how petworks
of self-interested components that are sufficiently robust can solve rather difficult learning problems.
We then place the approach in its proper historical and theoretical perspective through comparison
with a pumber of related algorithms. A secondary aim of this article is to suggest that beyond
what is explicitly illustrated here, there is a wealth of ideas from game theory and allied disciplines
such as mathematical economics that can be of use in thinking about cooperative computation in
both nervous systems and man-made systems.

-

I. INTRODUCTION

Cooperative and competitive are among the adjectives commonly used to describe the
style of neural computation. They express the perception that subtle aspects of brain
function are produced through the parallel activity of large numbers of communicating
decision-making entities, variously identified with neural subsystems such as columns, mod-
ules, netlets, or neurons. One of the earliest models making this explicit is the reticular
formation model of Kilmer, McCulloch, and Blum (1969) in which regions of neuropil are
cast in the role of decision-making agents interacting to reach a “concensus® that directs
the animal’s action. Since then, many systems employing similar principles have been
studied (e.g., Amari amd Arbib, 1977; Dev, 1974; Didday, 1976; Grossberg, 1978, 1980;
Julesz, 1971; Marr and Poggio, 1976). The general theme of “cooperative computation”®
has been elaborated in Amari and Arbib (1982) and is extensively discussed in Arbib’s

article in this issue.

There is also growing interest in cooperative computation, and other network ap-
proaches, in the allied fields of Cognitive Science and Artificial Intelligence (Al), where
the term “connectionism™ has been revived to refer to these approaches (see, for example,
Feldman, 1985, and Hinton and Anderson, 1981, for collections of relevant papers).! Not
only have advances in microelectronics made the physical realization of brain-like hardware
more of a possibility, but advances in our understanding of some of the problems involved
in vision, motor control, and knowledge representation suggest that such hardware of-
fers advantages over conventional computational architectures and may be necessary for

real-time performance.

The sense of cooperation and competition most common in these studies is derived from
social or ecological analogy: cooperative processes are ones that enhance each other’s sur-

vival; competitive processes do the opposite. In neural terms, cooperation and competition

! There is much research within Al dealing with interacting parallel processes that does not fall under
the connectionist label (e.g., Lesser and Corkill, 1981). This research is distinguished from con-
nectionism chiefly because the individual components are complex symbolic information processors
rather than simpler neuron-like units. This approach has been called Distributed Artificial Intelli-
gence and is a much less radical departure from conventional computation than is connectionism.

1

are mediated, respectively, by excitatory and inhibitory interactions, with mutually excita-
tory sets of units forming “stable coalitions,” and mutually inhibitory sets of units forming,
for example, “winner-take-all® circuits, to use Feldman’s (1982) terminology. Modelling
formalisms tend to be derived from population dynamics of mathematical ecology: systems
of nonlinear ordinary differential equations with cooperation and competition embodied
in the form of the coupling functions. Analysis and computer simulation of these systems
provide insight into the dynamics of the interacting network components. Other studies
concern forms of cooperativity that are related to physical phenomena, such as ferromag-
petism, in which the interaction of large numbers of units can be studied using statistical
methods (e.g., Ackley, Hinton, and Sejnowski, 1985; Allanson, 1956; Amari, 1974; Beurle,
1956; Cragg and Temperley, 1954; Geman and Geman, 1983; Harth, Csermerly, Beek, and
Lindsay, 1970; Hopfield, 1982; Hinton and Sejnowski, 1983; Smolensky, 1983; Wilson and

Cowan, 1972). Some of these studies are discussed in Section V.

The research described in this article, on the other hand, focuses on learning rather
than network dynamics, and the sense of cooperation and competition derives from the
theory of games as formulated by von Neumann and Morgenstern (1953). A central tenet
of game theory is that the players are “selfish” agents that attempt to maximize their
individual utility or payoff. With this assumption, competition exists insofar as there
are conflicts of interests among the agents, and cooperative interaction only occurs if it
furthers the self-interests of the participants. Since the usual approaches to cooperative
computation do not assume that network components have any “preferences,” they do
pot make substantive contact with game theoretic concepts, despite their use of some of
the same terminology. In our approach, however, each network component, or adaptive
element, is a self-interested agent that prefers some inputs over others and “works” toward
obtaining the most highly preferred inputs. This follows the basic idea of the theory of
the “hedonistic neuron® due to Klopf (1972, 1982), which we discuss below, and allows us
to illustrate network behavior that is cooperative in the game-theoretic sense. It is argued
that some of the long-standing problems concerning adaptation and learning by networks
might be solvable by this approach, and computer simulation experiments are described

that show how networks of self-interested components can solve rather difficult learning

problems.

A secondary aim of this article is to suggest that beyond what is explicitly illustrated
here, there is a wealth of ideas from game theory and allied disciplines such as mathematical
economics that can be of use in thinking about cooperative computation in both nervous
systems and man-made systems. This is not a new suggestion, baving been made in the
Russian literature best known in the West through the work of Tsetlin (1973) and Var-
shavsky (1968, 1972), but here it has been overshadowed by other theoretical approaches.
Current research in the West that continues this tradition is that of Klopf (1972, 1982),
Crane (1978), and the “theory of learning automata® (reviewed by Narendra and That-
acher, 1974), although the latter has largely remained an engineering discipline without
making significant contact with theories of biological information processing. Related re-
search in mathematical psychology is the statistical learning theory begun by Estes (1950)
and Bush and Mosteller (1951a, 1955), but this work has not made significant contact with
theoretical studies of neural networks. Similarly, more recent research involving economic
analyses of animal behavior (e.g., Staddon, 1983) appears not to have been applied at the
more microscopic level of the behavior of neural subsystems. Additional relevant current
regearch, also not being related to neural information processing, concerns the “selfish
optimization” methods that are being studied by computer scientists for their applications
in distributed computer systems. For example, methods for resource allocation in decen-
tralized economies developed by mathematical economists are being adapted to manage
the use of shared resources, such as communication channels, in networks of computers
(Brooks, 1983; Kurose, Swartz, and Yemini, 1985; Yemini, 1982; Yemini and Kleinrock,
1979). These methods illustrate that analogies between societies of utility-maximizing
individuals and networks of computing devices can yield useful algorithms. The research

described in this article provides additional examples of the utility of this methaphor.

An essential feature of the mechanistic process our adaptive elements use for furthering

their self-interests is random variation;2 hence the term statistical cooperation. We bor-

? The term random is not entirely satisfactory here since it is often taken to mean produced according
to a uniform probability distribution. However, here it is taken to mean probabilistic but not
necessarily uniform. Further, note that by mechanistic we do not necessarily mean deterministic.

3

row aspects of algorithms developed by engineers studying stochastic learning automata
to provide adaptive elements with learning abilities robust enough for them to function
effectively as adaptive network components. In these algorithms random variation is the
source of behavioral variety from which effective solutions are selected according to their
consequences in altering the elements’ input. Each or our network components has an
endogenous noise process without which cooperative phenomena emerge only in the most

simple cases.

Dispite the suggestions our research makes regarding the role of noise in nervous sys-
tems, and dispite parallels between our research and theories of the neural basis of learning,
the major source of constraint has been the problem-solving capabilities of our systems
rather than faithfulness to current neurophysiological and neuroanatomical data. Our
position is that it is appropriate to adopt this engineering methodology as long as the
problems with which one is concerned are important and nontrivial to solve, and as long
as one refrains from making unjustified claims about the validity of the resulting construc-
tions as models of specific neural systems. Consequently, we do not strive to make our
gimulated networks conform as closely as possible to presumed neural constraints. For
example, the adaptive units are basically linear threshold elements that are only crudely
gimilar to neurons. We could simulate units that more closely resemble neurons, but the
added complexity would obscure the theoretical issues we are addressing. It is these issues,
which we believe are relavant to learning in both man-made and biological networks, rather

than superficial resemblance to actual neural networks, that our research stresses.

A. The Problem

We have focussed on the problem of obtaining directed learning by adaptive networks
that are more than one layer deep. Although multilayered networks of linear threshold ele-
ments can be constructed to implement any input/output function, it is a highly nontrivial
problem to devise algorithms that permit networks to learn reliably and efficiently how
to realize desired nonlinear functions without being provided with implementation details.
In particular, learning algorithms that work for single layers of adaptive elements cannot

easily be extended to multilayer networks. If elements more complex than linear threshold

elements were to be studied, then one could obtain more complicated processing with fewer
elements, but the problem of obtaining effective learning algorithms for networks would

remain.

Understanding how learning can occur in complicated networks is not only important
for what it would suggest about the operation of nervous systems, but it is also central to
establishing the utility of adaptive networks for Al applications. One of the problems with
learning machines using the single-layer learning procedures is that learning proceeds up
to a certain point and then stops. When the parameters that are adjusted by the learning
algorithm (in a network, usually the connection weights) reach optimum values, the degrees
of freedom of the system are exhausted even though the problem facing the system may be
far from solved.? Somehow, this parametric learning should be augmented with structural
learning by which the roles of the parameters in determining behavior, and not just their
values, are altered by the learning process. Since structures can always be regarded as
being parameteriged, so that adjusting structures amounts to adjusting more parameters,
the distinction between these types of learning is not completely straightforward. However,
what we mean by structural learning generally involves a space of parameters that is so
large, and a performance evaluation surface that is so complex, that the usual algorithms

for parametric adaptation do not work.

One can view the adjustment of a weight connecting two units in a complex network
as a structural adjustment since it affects the role of other weights in generating network
behavior. A complex network will have very many adjustible weights, and the relationship
between changes in a weight and changes in network performance (i.e., the gradient of the
network performance index with respect to the weight) will be complex due to nonlinear
dependencies on the weights of other units—dependencies that do not make themselves
known through information locally available to the connection in question. Additionally,

even if this gradient could be determined locally, following it can lead to network per-

3 One of the points of Minsky and Papert’s book (1969) criticizing the perceptron, an eatly network
using a single-layer learning rule (see Section V), is that the degees of freedom of single-layer learning
procedures will always be exhausted before certain problems are solved that are quite easy to pose.
In other words, it does not require pathological learning problems to thwart such systems.

5

formance that is only locally optimal—there may be other solutions, reachable only by
coherent macro-mutations of sets of connection weights, that are much better. This is the
classical “false-peak” problem: local searches that follow gradient information find only
local performance peaks, and global searches that do not suffer from this deficiency are too
slow for the large search spaces that arise in structural learning. A large number of dif-
ferent approaches to this problem have been studied, none of which provides a universally
satisfactory solution. Minsky and Selfridge (1961) provide a now classic account of this
and other problems, and a partial review of efforts to solve them can be found in Barto

(1984).

These fundamental problems for learning systems can also be viewed as manifesta-
tions of the credst-asssgnment problem (Minsky, 1961). This is the problem of correctly
assigning credit or blame to each of the actions and internal decisions that contributed to
the overall evaluation received. This problem can become exceedingly difficult either as
overall evaluations become more infrequent, making it less clear which overt actions were
responsible for changes in performance, or as the learning system becomes more complex,
making it less clear which internal decisions were responsible. It is useful to divide the
credit-assignment problem into two subproblems. One subproblem is to determine how
the individual actions making up an action sequence should be credited for the evaluation
generated by the entire sequence. The other subproblem is use the evaluation credited to
each step in order to assign credit to the internal processes of the learning system that
determined the action selected on that step. Sutton (1984) calls these subproblems the
temporal and the structural credit-assignment problems respectively. The cause of either
type of credit-assignment problem is initial uncertainty about the causal microstructure of
the interacting system and environment. Unless one is willing to assume the existence of
sufficient a priors knowledge either built into the system or into an external teacher (which
we are not willing to assume), this uncertainty is unavoidable, and mechanisms must be
devised that reduce it. This article primarily concerns structural credit assignment. We
have extensively studied temporal credit assignment and results are reported elsewhere

(Barto, 1984; Barto, Sutton, and Anderson, 1983; Sutton, 1984)

We believe that these difficulties in obtaining learning by adaptive networks arise due

6

to fundamental properties of the problem and not of particular solution methods. Conse-
quently, it would be very surprising if in some form they are not faced—and solved—by
the adaptive mechanisms of real neural networks. For example, bow are multisynaptic
pathways established in the absence of a knowledgeable agency that can instruct individ-
ual neurons? Genetic specification plays a role, but it cannot account for the remarkable
adaptability of neural networks in the face of unforeseen circumstances resulting from indi-
vidual experience. It is highly doubtful, for example, that detailed instructive information

i8 available for many types of sensorimotor learning tasks that animals routinely perform.

B. Selfish Network Components

Although similar ideas had been related to biological information procesging by the
research on the collective behavior of automata such as that described by Tsetlin (1973)
and Varshavsky (1968, 1972), the idea of selfish neuron-like components for adaptive net-
works is due to Klopf (1972, 1982). In a 1972 monograph, Klopf presented the hypothesis
that neurons are self-interested, *hedonistic® agents that direct their firing activity so as
to cause certain types of input patterns to appear on their input fibers and to prevent
the occurrence of other types. In order to be successful, they must incorporate knowl-
edge about the feedback loops in which they are embedded. Although this is a rather
unorthodox hypothesis, there are several reasons to consider it seriously. First, it makes
explicit the idea of the self-interested network component and thereby allows a host of
novel ideas to be brought to bear on problems of neural organization. Second, the type of
algorithm Klopf proposed by which the adaptive components pursue their goals has not
been extensively studied. Whereas the network components typically studied theoretically,
such as those based on Hebb’s (1949) hypothesis of synaptic plasticity, can be regarded
as single-unit analogs of animal behavior in classical conditioning experiments, Klopf pro-
posed that components ought to behave as analogs of instrumental conditioning behavior
where responses are selected according to their consequences. As we shall see in Section V,
learning under these conditions requires algorithms different from those usually studied.
And finally, as we hope our results show, Klopf makes valid suggestions about how some
of the classical theoretical problems in obtaining learning in multilayered networks might

be solved by using self-interested components.

7

What makes the idea of self-interested neurons unorthodox is that it is an inversion of
the order by which certain high-level properties are usually seen to emerge from underlying
neural machinery. According to Klopf’s hypothesis, the sophisticated goal-directedness of
animal behavior is not seen as emerging at a high level from non-goal-seeking components;
rather, the cooperative activity of selfish, goal-seeking neurons gives rise to more sophis-
ticated goal-directed behavior at higher levels. It is beyond the scope of this article to
attempt a thorough discussion of the implications of this hypothesis—the questions raised
are not simple to resolve. In fact, some of these questions have parallels with those raised
by the theory popularized by Dawkins’ book The Selfish Gene (1976), a theory that has
generated considerable debate among evolutionary biologists. A sizable literature already
exists about this debate, included in which is an extensive defense by Dawkins (1982), (see
also Brandon and Burian, 1984). Although evolution and learning in neural networks are
definitely not different instances of a single process, the concepts of the selfish gene and

the selfish neuron involve a similar inversion of orthodoxy.

Some questions about cooperativity via self-interested components, and about our the-
oretical work reported here, can be easily addressed to avoid unnecessary misunderstand-
ing. For example, if goal-directed behavior is the result of the cooperative interaction of
gelf-interested adaptive components, what determines the organigational grain at which
such gelf-interested adaptive behavior first appears? In Klopf’s neural theory, the neuron
is chosen as a starting point because it is the obvious candidate, but the important point is
that component self-interest, together with sufficient means for furthering it, first appears
at a relatively fine structural grain. Our research is an attempt to study networks of units
possessing enough but not more behavioral sophistication to allow them to learn to pro-
ductively enter into cooperative relationships with other units like themselves. Whether or
not neurons satisfy this criterion is an empirical question that our simulation experiments
obviously do not address. Our research does suggest, however, that the adaptive capac-
ity required for units to learn how to cooperate is significantly more sophisticated than

that possessed by the adaptive elements considered in most theoretical studies of adaptive

networks.
Another question our approach raises concerns the role of centralized mechanisms in

8

both man-made intelligent systems and in brain function. Our view appears {o be radically
decentralized to the extent that there is no role for centralized controls of any kind. For
example, our view appears to deny the existence of higher-level brain structures such as
centralized reinforcement areas. Although we stress parallel distributed processing, it
is not at all a consequence of our approach that every function is thoroughly distributed.
Similarly, although the networks presented in this article learn to implement mappings from
input signals to output signals without the intervention of any form of internal memory,
it is by no means our intention to suggest that this is an adequate view of how intelligent
behavior arises from underlying network dynamics. The degree of abstraction inherent
in our approach should not be underestimated—in particular, one should not identify the
boundary between one of our simulated networks and its environment with the boundary
between an organism and its enviroment. We have gimply not commented upon high-
level organization and how our approach fits into an elaborate overall model of intelligent

behavior because we are focussing on specific issues involved in decentralized computation.

C. Stochkastic Networks

There are at least two distinct ways in which networks can be stochastic. In the first,
the attributes of elements and their connection structure are randomly established, but
the resulting networks operate according to deterministic rules. For example, connections
between elements may be determined by a probabilistic rule based on the spatial distance
between the elements (e.g., Beurle, 1956; Uttley, 1965). This anatomscal randomness
was assumed by many early neural-network modellers, and the term “random network®
generally refers to this type of system. While there is reason to reject total specificity,
the prevalence of this assumption in that early research may be attributable to mistaking
complexity for randomness.4 A major feature of the study of randomly connected networks
has been the use of “macrostate® descriptions of network dynamics that ignore the behavior
of individual units in the same way that a statistical mechanical description of a gas
abstracts away from the individual molecules (e.g., Allanson, 1956; Amari, 1974; Harth

¢ See the discussion of this issue in Szentdgothai and Arbib, 1074, pp. 357-364. Harth ef ol (1970)
consider the case in which there is “randomness in-the-small” but “design in-the-large” by studying
organized networks whose components are randomly connected netlets.

9

et al., 1970; Wilson and Cowan, 1972). In approaches to pattern classification using
networks, anatomical randomness has been used to provide a set of sensory units with
randomly chosen receptive fields in the hope that some of them would be sufficiently

useful (Rosenblatt, 1962).

The second kind of stochastic network is more physsologically stochastic because the
computational units use some kind of random process in their behavior, such as randomly
varying thresholds. Thus, independently of whether or not the network’s structure is spec-
ified randomly, its operation has a random component. Contrary to what one’s intuition
may say, this kind of randomness can be positively useful rather than a nuisance. There
are man-made devices and algorithms that use noise, sometimes called %jitter” or “dither,”
for a variety of purposes: to counteract effects of quantigation error in digital processes;
to prevent a mechanism from remaining in an unstable equilibrium state; and, most im-
portantly for us, to facilitate a search process by providing the variety that drives the
search and possibly prevents convergence to false performance peaks. The networks to be

described here are stochastic in this sense.

Although there have been many theoretical studies of the stochastic activity of single
neurons (MacGregor and Lewis, 1977, and Moore, Perkel, and Segundo, 1966, discuss
geveral of them), and there have been studies of how to obtain reliable computation de-
spite the presence of noise (von Neumann, 1956), we know of relatively few approaches
in which randomness is purposefully introduced into a network in order to facilitate com-
putation. The recent studies of Ackley, Hinton, and Sejnowski (1985), Hopfield (1982),
Hinton and Sejnowski (1983), and Smolensky (1983) fall into this category (see Section V).
Harth’s (1976) theory of visual perception uses randomness to provide variety in a search
for appropriate feature-specific enhancement of visual input. In his Ph.D. thesis, Min-
sky (1954) described the SNARC (Stochastic Neural-Analog Reinforcement Calculator)
which he constructed in 1951. It was an adaptive network of stochastic components that
roughly corresponded to synapses rather than to entire neurons. Farley and Clark (1954)
experimented with adaptive elements that are similar to the adaptive elements we have
been studying, and they used the term “statistical cooperation” to describe the behavior

of their networks. There are other studies relevant to biological information processing in

10

which randomness is purposefully used but which do not explicitly deal with networks of
neuron-like elements, notably the stochastic learning automata research referred to above
and the genetic algorithms of Holland (1975).

1. A SELF-INTERESTED ADAPTIVE ELEMENT

It is difficult to define precisely what a self-interested adaptive element is. Although
we have attempted a careful characterization of this type of adaptive capability (Barto
and Sutton, 1981a), any definition raises innumerable questions that would take us far
afield to address adequately. It is hoped that the following informal definition together
with a concrete example will suffice. By a self-interested adaptive element we mean one
that works toward causing its input to rank as highly as possible according to its own
measure of preference. In order to do this the element must interact with its environment
in a closed-loop manner so that its actions exert a causal influence on its input. Behavior
is then selected according to its consequences in altering the preference of its input. The
measure of preference need not be defined on separate sensory *snapshots® but can indicate
the relative desirability of extended time sequences of sensory experiences. For example,
the adaptive element to be described here receives a signal at each time step indicating
“reward” or “penalty,” and it learns to generate actions so as to maximige the probability
of receiving the reward signal. It therefore works toward maximiging the frequency of

reward over its “lifetime.”

Although it is relatively easy to interpret the behavior of a variety of systems as
self-interested in this sense (for example, a thermostat might be said to “prefer” sensing
temperatures close to its set point), it is important to distinguish between such systems
according to what they require of their environments in order to successfully further their
interests. Some systems are successful only when interacting with very restricted types of
environments (for example, a thermostat fails if its wires are crossed), whereas others can
be successful in a wide range of environments. We say a self-interested system is more
“robust” than another if it can further its interests when interacting with a wider range

of environments.

Here we describe an adaptive element that is robust enough to learn to cooperate with

11

other elements like itself. The learning algorithm it employs is one of many with which
we have experimented and was first introduced by Barto and Anandan (1985), who called
it the associative reward-penalty, or Ap_p, algorithm. We call the adaptive element the
Ap_pelement. In this section, we describe the element and present a simulation of a
single element; in the next section, we present examples of the cooperative behavior of
these elements. After that, we describe the Ap_p element’s learning capabilities in detail
with respect to its behavior as a network component, and we place it in its proper historical

and theoretical perspective through comparison with a number of related algorithms.

A. The Ap_p Element

Figure 1 shows an adaptive element having n + 1 input pathways and one output
pathway. The input pathways are of two kinds. Those labelled z; through z, are
“normal® pathways that carry input signals generated by other elements of the network
or by the network’s external environment; z;(t) denotes the magnitude of the signal on
pathway z;, 1 < i < n, at time ¢. The remaining pathway is a specialized “reinforcement”
pathway r; r(t) denotes the value of its signal at time ¢. It is often convenient to allow
signals on these various pathways to take on positive and negative values. Although
the reinforcement pathway is shown as if it were an actual physical pathway, it is not
necessary to take this view literally. It is better to regard it as a formally convenient
way to indicate the element’s preference for input patterns—patterns accompanied by a
value of r indicating reward are preferred over those accompanied by a value indicating
penalty.®> To each input pathway z;, 1 < § < n, is associated a parameter, or weight,
w; , with value w;(t) at time ¢, that is adjusted by the learning algorithm. The pathway
y carries the element’s output signal, which is computed from the normal input signals
and the weights according to a response mapping rule to be described; y(f) denotes the
magnitude of the output signal at time ¢. The Ap_p algorithm is easiest to express if
y(t) is either +1 or —1. When we discuss networks, y(t) will be redefined to be either 0

5 One could define a preference ordering directly over the patterns that can appear over the pathways
Z1....,2a; for example, one could let a pattern at time s be preferred over a pattern at time !
if, say, zs(s) < zs(f) and zs(s) > zs(¢). By using a specialized input to indicate ordering, we
are studying certain aspects of all of these possibilities simultaneously, although here we restrict
attention to just two preference classes.

12

Figure 1
A neuron-like adaptive element. Input pathways labelled z; through z, carry non-
reinforcing input signals, each of which has an associated weight w;, 1 <5 < n; the
pathway labelled r is a specialized input for delivering reinforcement; the unit’s output
pathway is labelled y.

or 1.

The Ap_p element operates in discrete time, meaning that ¢ = 1,2,..., where each
step is best regarded as a trial rather than a small time increment.® Assume that at
the start of the *® trial, the environment provides the element with a pattern vector
z(t) = (z1(2),...,za(t)) of real numbers over its (normal) input pathways. The element
then emits an action y(t) that is determined from the weighted sum of the inputs by the

following random thresholding process:

+1, if s(t) + n(t) > 0;
y(t) = .
—1, otherwise;

(1)

where s(2) = 3°7_; w;(t)z;(t) is the weighted sum of the (normal) input signals and each
n(t) is a random real number (more precisely, the {5(t),¢ > 1} are idependent, identically
distributed random variables). Let us assume for the moment that each random number is

chosen according to a mean-gero normal distribution. According to this response mapping

® We have not yet considered “real-time” versions of this algorithm in which events within trials are
represented, although we have done so for other algorithms (Sutton and Barto, 1981).

13

rule, the weighted sum s(¢) determines the probability of each response. For example,
when s(¢) = 0, then both output values are equally likely; whereas when s(¢) > 0, then
y(t) = +1 is the more likely response, and when s(t) < 0, then y(t) = —1 is the more
likely response. The system becomes deterministic as s(t) approaches +o0o or —oo for
each . Changing the weights therefore only changes the probabilities of the output values.
The random process {n(t)} is an endogenous source of noise, purposefully included in the
element, that can be regarded as noise in the membrane potential (to borrow the neural

term). Alternatively, the random process {—n(t)} can be viewed as a random threshold.

Upon receiving y(t), the environment sends to the element a reinforcement signal
r(t) that takes the values +1 and —1 to respectively indicate “reward” (or “success”)
and “penalty” (or “failure”) for producing output y(t) in the presence of z(¢).? Upon
receiving this signal, the Ap_p element updates its weights, w;, 1 < ¢ < n, according to

the following equation:

Aui(t) = { +p[r(t)y(t) -E{y(t)ls(t)}]z;.(t) ff ,(t)jﬂf o
+ap[r(t)y(t) — E{y@)ls@®))zi(t) i r(t) = -1;

where Aw;(t) = wi(t+ 1) —w;(t), p> 0,and 0 < A < 1. E{y(t)|s(t)}, the expected
value of the output given the weighted sum, is a specific deterministic function of s(t) that
is built into the element and depends on the distribution of the random variables. Here it
suffices to regard it as an indication of how the unit usually responds to the current input
pattern. Note that according to Equation 2, the Ag_p element adjusts its weights based
on four types of information: adopting the neural terms, it uses the presynaptic signal z;,
the postsynaptic signal y, the reinforcement signal r that indicates the consequences of
the unit’s activity, and a function of s(t) that indicates what the element usually does for

the given stimulus pattern.

The Ap_p algorithm is an embellishment of Thorndike’s (1911) “Law of Effect®:

Of several responses made to the same situation, those which are accompanied or closely
followed by satisfaction to the animal will, other things being equal, be more firmly con-
nected with the situation, so that, when it recurs, they will be more likely to recur; those

T Clearly a temporally refined version of this element would have to accomodate time delays between
the action and the receipt of the relevant reinforcement signal.

14

which are accompanied or closely followed by discomfort to the animal will, other things
being equal, have their connections with that situation weakened, so that, when it recurs,
they will be less likely to occur. The greater the satisfaction or discomfort, the greater
the strengthening or weakening of the bond. (p. 244)

To see how the Ap_p element accomplishes something similar to this, suppose for simplic-
ity that the input signals are binary and that at trial ¢ a certain set of input pathways
become active (i.e., the signal on each pathway in the active set takes the value 1). Also
suppose that the element produces output y(t) = +1, either totally by chance or partially
as a result of a positive bias due to excitation by the active input pathways. Let us say that
there is no excitation so that E{y(t)|s(t)} = 0. If the environment returns reinforcement
r(t) = +1 (reward), the product r(t)y(t) is +1, and Equation 2 adds p to the weight
of each active input pathway. Thus the output y(t) = +1 is *more firmly connected
with the situation® indicated by the pattern of active input signals. When that pattern,
or a similar pattern, recurs, the probability of producing the output +1 will be greater.
On the other hand, if the environment returns reinforcement r(t) = —1 (penalty), then
r(t)y(t) = —1, and Equation 2 subtracts Ap from the weight of each active pathway, thus
weakening the connection. The case in which the element’s output is y(t) = —1 can be

analysed similarly.

If one assumes that whenever an action is followed by a penalty signal, then the other
action would have most likely produced reward, it is reasonable to regard the product
r(t)y(t) as an estimate of what the output should have been (since —1 x 1 = —1 and
=1x -1 =1). We therefore think of r(t)z(t) as an estimate of the desired response to
the input pattern present on trial ¢. Unfortunately, one cannot always assume that the
other action would have most likely produced reward, and this terminology must not be
taken too literally. A major point, to be elaborated in Section IV, involves the subtle but

critical difficulties this creates for learning.

These difficulties require the learning rule to have two features to ensure its proper
functioning: 1) asymmetry with respect to reward and penalty, and 2) dependence of the
sige of the weight change, and hence of the change in action probabilities, on what the

the element “usually does” in a situation. The amount of asymmetry depends on the

15

parameter A: as A approaches 0, learning upon penalty plays a decreasing role in the
process. In our simulations we use a small but nongero value for A (e.g., .01). Although
this makes the rule a better model of animal learning (and brings it into better agreement
with asymmetric versions of the Law of Effect), our reasons for introducing this asymmetry
are purely functional and will be explained later. The use of the term E{y(t)|s(¢)} makes
the learning process converge properly. It causes the weights to change according to the
discrepancy between an estimate of what the element should have done in the presence
of stimulus pattern z(t) (i.e., r(t)y(t)) and what it usually does in the presence of z(¢).
The magnitude of weight modification decreases as the usual response approaches the
estimated desired response, and it causes a relatively larger weight change when the desired
response is not a very likely output of the element. Additional explanation of these features

of the algorithm is presented in Section IV where the Ap_pelement is discussed more

theoretically.

According to Equation 1, the Ap_pelement uses a fixed threshold of zero. Alterna-
tively, if one adopts the view in which the threshold varies randomly, then the threshold
has a fixed mean value. There is a standard way to allow the threshold to vary, or to let
the mean of the random threshold vary, as a result of a learning process. Let the input
signal on one of the normal input pathways always equal a positive constant; for example,
let z;(t) =1 for all ¢. Since the contribution to the weighted sum, s(¢), from this input
is w;(t), we can regard the unit’s threshold on trial ¢ to be —w;(). Alternatively, if we
regard the element as having a random threshold, its mean value is —p — wy(t) , where p
is the mean of the random variable g(t). By altering w; , known as the threshold weight,
according to the rule used to alter the other weights, the threshold is effectively varied
in such a way that a wider class of transfer functions can be learned.® All the adaptive
elements in the networks we simulate have a constant input value of 1 on pathway z,. Of
course one need not regard this input pathway as being literally present, and we do not

show it in the figures.

8 A linear threshold unit with n weights and a fixed threshold of zero divides the space of all possible
input patterns, R™, into two regions by means of an (n — 1)-dimensional hyperplane that passes
through the origin. If the threshold varies, the hyperplane need not pass through the origin. See
Nilsson (1965) or Duda and Hart (1973).

16

B. Simulation of a Single Ap_p Element

In order to illustrate the learning behavior of an Ap_p element, we present simula-
tion results showing how a single Ap_pelement is able to learn when the environment
provides stimulus patterns and reinforcement feedback according to the following proba-
bilistic scheme. Let X be the set of all stimulus patterns to be used in training. Each
pattern z € X is an n dimensional vector of real numbers. Suppose that for each trial ¢
the environment selects a stimulus pattern z(t) = z € X with probability £* and presents
it to the Ap_pelement via its n normal input pathways. For each pattern z in X and
each action y, the environment returns reward (r(t) = +1) with probability d(z,y) when
the Ag_p element emits action y in the presence of input pattern z. Penalty (r(t) = —1)
is delivered with probability 1 — d(z,y). The element would maximige its probability of
receiving reward if it responded to each z in X with the action y that corresponds to
the largest reward probability. More precisely, for each pattern z, let y* be the action
such that d(z,y*) = max{d(z, +1),d(z,—1)}; reward probability is maximized when for
all z in X the element produces output y(t) = y* in the presence of pattern z(t) = z
with probability one. Learning tasks like this one are related to instrumental, or cued
operant, tasks used by animal learning theorists, and the stimulus patterns in the set X
correspond to discriminative stimuli. However, since we have not yet thoroughly explored
the Ap_palgorithm as a model of animal behavior in instrumental conditioning experi-
ments, we prefer to use the terminology of Barto and Anandan (1985) and call these tasks

associalive reinforcement learning tasks.®

In order to show the progress of the learning process we use as a measure of performance
the probability that the element will receive reward on the average trial given its current
set of weights. This value, which we denote M; when computed based on the weight values
at trial ¢, additionally depends on the probability that each input pattern will occur on

a trial and the reward probabilities that characterize the environmental contingencies. In

® In these tasks the actions of the learning system only affect the probability of reward; they do. not
have any influence on the choice of input patterns z. If this latter type of contingency were present,
the tasks would be more complex control problems and would present difficulties beyond the acope
of the present article. See Barto et al. (1983) or Sutton (1984).

17

particular, let p}'* = Pr{y(t) = +1|z(t) = z} and p;!* = Pr{y(t) = —1jz(t) = z} =
1—p;!*. These are the action probabilities for trial ¢ conditional on the presence of input
pattern z. Although it is not explicit in this notation, these probabilties are functions of
the weight values on trial ¢ and the distribution function of the random number used in

generating the action (Equation 1). Given all this, we can define our performance measure:
M, =) €[Pr{r(t) = +1]z(t) = z}]
zeX

= z £ [d(z, +1)pf'* + d(z, —1)p;).
z€X

This measure is maximized when the optimal action for each input pattern occurs with

probability 1, in which case it is

My = Z & max{d(z, +1),d(z, —1)}.
ze€X

The distribution function of the threshold noise used in all the simulations described

in this article is the logistic distribution, which we denote ¥, given by
(3)

where T is a parameter. This is a sigmoidal function that is similar to a normal distribution
function but is easier to evaluate. It is also used in the studies of statistical cooperativity
of Ackley et al. (1985), Hinton and Sejnowski (1983), and Smolensky (1983), where T
is the “computational temperature® of the system. As T approaches gzero, the function
given by Equation 3 approaches the step function with a discontinuity at r = 0, which

means that the element becomes more deterministic.

Given this distribution function, the term E{y(t)|s(t)} in Equation 2 becomes a
specific function of s(t). In particular, since ¥(r) = Pr{n(t) < r}, we have that
pr® = Pr{s(t) + n(t) < 0} = ¥(—s(t)), and p}'* = 1 — ¥(—s(t)). Therefore we

have that . .
E{y(t)|s(t)} = -1-p;* +1.-pf'*

=1 29(—s(t)
_ eo(l)/T -1
T eW)/T 41

18

This is plotted as a function of s(t) for T =1, .5, and .25 in Figure 2. In all simulations

presented in this article, we set T = .5, so that this function has a slope of 1 at the origin.

% ' — ' ~ = o
5 /
E{y()is(t})} 0} —_—
-.sb T=1
-1 - N N a 4. _ e Ai
5 = 3 02 N 0 i 2 3 3 ;
s(t)
Pigure 2

Plots of E‘{y(t)ls%} . When the noise distribution function ¥ is the logistic distri-
bution function, E{y(t)|s(t)} as a function of s(t) is sigmoidal. Here it is plotted
for T =1, .5, and .25. The curve approaches the discontinuous step function as T
approaches zero. We use T = .5 in all of the simulations reported here (except where
otherwise noted).

The task simulated here is an analog of a conditioned inhibition procedure for instru-
mental conditioning. There are two stimulus components: the presence of one component
alone signals the contingency in which action +1 is optimal, and the presence of both
components together signals the contingency in which action —1 is optimal. One would
expect that the first stimulus component would become excitatory and that the second
would become sufficiently inhibitory to counteract the excitation of the first. For this task,
then, the stimulus patterns are the vectors z(!) = (1,0) and z(2) = (1,1), corresponding
respectively to the cases in which only the first stimulus component i8 presented and both
stimulus components are presented. These vectors are equally likely to occur at each trial

(§' = €2 = .5). Since the first stimulus component is 1 for both patterns, we could re-

19

gard the weight associated with it as a threshold weight as described above. Both weights

are set to gero at the start of each sequence of trials, which makes the actions initially

equiprobable for both stimulus patterns.

The reward probabilities implemented by the element’s environment are given by the

following table:
z d(z,-1) d(z,+1)
(1,0) .6 9
(1,1) 4 2

Table entry d(z,y) is the reward probability given that the element produces action y
when receiving z as input. Thus it is optimal for the learning system to respond to (1,0)
with action +1 to obtain reward with probability .9, and to respond to (1,1) with action
—1 to obtain reward with probability .4. Therefore, in this task Mpax = (.9+.4)/2 = .65,
and the initial overall reward probability is (.6 + .9 + .4 + .2)/4 = .625.

Figure 3a shows results of simulating an Ap_p element in this task with p = .5 and
three different values of A: .01, .05, and .25. Plotted for each trial ¢ is the average of M;
over 100 runs, where a run is a sequence of 5000 trials, each starting with weight values set
to gero and using different random numbers. The dashed lines show theoretical asymptotic
performance levels for the three values of A. Exactly how performance varies with the
parameters will be treated in Section IV. Here just note that this asymptote approaches
the optimal performance level .65 as A decreases and that the learning rate decreases as
A decreases. The average final weight vectors for A = .01, .05, and .25 are respectively
(2.99, —4.05), (2.73,-3.08), (1.91,—-1.71), meaning that in each case the first stimulus
component becomes excitatory, and the second becomes inhibitory. Figure 3b shows the
performance of the Ag_pelement with A = .05 in a single run. All the individual runs

that we have observed show similar behavior.

From this simulation it is clear that it takes the Ap_p element a considerable number
of trials to approach asymptotic performance levels. However, tasks like this involve several
subleties that can make them quite difficult. The first type of sublety would be present even

if the element were not required to discriminate between input patterns. Consequently,

20

.65071

-639

. 600t

REWARD

.S75¢

PROBABILITY

L5950t

. 925}

.500¢t, N . s L . . - 2 2 .
1 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

TRIAL HUMBER

b)

650
-1 A= .08
. 625

.600F

REWARD

.97%

PROBABILITY

. 9501

. 525}

. 500¢, . L . N . N . s . a
1 500 1000 1500 2000 2500 3000 3500 4900 4500 5000

TRIAL HUMBER

Pigure 8

Simulation results for a single Ag_p element. a) Average of the performance measure
M, over 100 sequences of 5000 trials with p=.5 and A= .01, .05, and .25. The
dashed lines show the theoretical asymptotic values given the three values of A. As
A decreases the asymptote approaches perfect performance (.65) and the learning rate
decreases. b) Performance of an Ag_p element with p=.5 and A = .05 for a single
sequence of 5000 trials.

let us focus only on the learning problem for a given fixed input vector z. Note that the
reward probabilities for producing the two actions in the presence of z need not sum to
one; that is, it need not be true that d(z,+1)+d(z, —1) = 1. This means that for a given

input z, it might be true that no matter what action the unit produces, it usually receives

21

reward (i.e., d(z,+1) > .5 and d(z,—1) > .5, as for pattern z(1) in the simulation);
or it might be true that no matter what action the unit produces, it usually receives
penalty (i.e., d(z,+1) < .5 and d(z,—1) < .5, as for pattern z(in the simulation).
Given these possibilities, the feedback received from producing one action provides no
snformation about the sustability of the other action. This implies that it is not possible
to solve this type of problem by any procedure that resembles the following: pick any one
action and perform it sufficiently often in the presence of z to obtain a good estimate of
the probability of reward associated with it; if the estimated reward probability is greater
than .5, then that action is the right one, otherwise the other action is the right one. No
matter how good (or how bad) an action appears, the other action might be better (or
worse). Consequently, in the presence of each input pattern, an algorithm must produce

both actions sufficiently often in order to figure out which one is better.

But what does it mean to perform each action sufficiently often? Since one can never
obtain a perfectly accurate estimate of a probability by means of any finite number of
observations, each action, even the inferior one, must be performed infinitely often. The
following algorithm, for example, always leaves a chance of deciding on the wrong action:
for a given input pattern, perform each action N times, where N is as large as desired but
finite, then choose the action that yielded the largest proportion of rewards. Obviously, no
matter how large N is, the observed reward frequency may be different from the actual
reward probability. But on the other hand one need not demand complete certainty in
making the decision, and hence one can simply take N as large as is required to make
the decision with the desired confidence level. This strategy, however, raises the question
of how the trials are to be allocated among the actions. Does one perform one action N
times in succession before trying the other action; or would it be better to continually
intermix the trials of the actions so that there is little chance of performing the worst

action for long periods of time? What is the best way of doing this?

This last dilemma is fundamental to adaptation and learning. There is a tradeoff
between using knowledge already acquired in order to perform well, and the necessity to
acquire more knowledge. In the decision problems being considered, in order to improve

the accuracy of the reward estimate for the action that appears to be worst, the system

22

must temporarily abandon performing the action that appears to be best, thereby probably
sacrificing performance in order to keep open the possibility of attaining optimal perfor-
mance in the limit. Systems need to maintain a balance between these requirements, and
what kind of balance is appropriate depends on how stationary the environment is. If the
environment is changing rapidly, for example, then a bias toward using current knowledge
is appropriate since careful knowledge-gathering may take too long to be useful.® Cover
and Hellman (1970) and Robbins (1952) discuss this tradeoff, and we were first made aware
of it through the work of Holland (1975).

These questions and others have made decision problems under this kind of uncertainty
a topic of considerable mathematical research. Several distinct theoretical traditions have
developed around these questions, and there are several approaches to designing algo-
rithms. The theory on which the Ap_p algorithm is based is that of learning automata
which originated with the Russian research (e.g., Tsetlin, 1973; Varshavsky, 1968, 1972)
and has been extensively developed since then (Narendra and Thathachar, 1974). An
independent but similar line of research was conducted by mathematical psychologists in
the 19508 and 19608 (e.g., Atkinson, Bower, and Crothers, 1965; Bush and Estes, 1959;
Bush and Mosteller, 1955). Another tradition concerns sequential decision problems and
the “two-armed bandit problem® (e.g., Cover and Hellman, 1970; Cover, 1968; Robbins,
1952). These problems have been studied under a variety of assumptions such as finite
memory and finite time. Despite this well-developed theory, we are not aware of algorithms
that combine these ideas with the discrimination abilities of linear threshold elements in
the way the Ap_p algorithm does. Neuron-like adaptive elements studied in the past are

not able to learn effectively if the environment imposes contingencies like those in the

simulation.

In addition to these problems arising from the nondeterministic nature of the en-

vironmental feedback, the task in the simulation also illustrates problems involving the

19 These differing requirements for differing degrees of environmental stability are related to ecologists'
concepts of K-selection and r-selection. K-selection favors characteristics suitable for slowly-varying
and predictable environments, such as large size, long life, and few carefully nurtured offspring; r~
selection favors characteristice suitable for unstable environments, such as the ability to reproduce
rapidly. See Dawkins (1982).

23

discriminability of stimulus patterns. At one extreme, all the stimulus patterns are iden-
tical and no discrimination is possible. Here the task becomes one in which the system
must adapt to a changing environment with no clue as to when the reward probabilities
change. Performance is likely to be poor since the system cannot respond selectively to
different situations. At the other extreme, all the stimulus patterns are totally dissimilar
so that any action can be associated with any stimulus pattern. In this case, any necessary
discriminations can be made but no transfer of training can occur from one stimulus to
another. Consequently, learning has to occur separately for each stimulus pattern and is

therefore likely to be relatively slow.

The more interesting case in which similar stimulus patterns must be discriminated
falls between these extremes. Suppose two input patterns are similar by virtue of their
sharing a subset of stimulus active components, but that the optimal actions for each
are different. This is the case illustrated in the simulated task. How can generaligzation
between the patterns due to their similarity be overcome? This question was of great
concern to psychologists studying “stimulus sampling theory” (Atkinson and Estes, 1963),
and several methods were proposed to address it (Bush and Mosteller, 1951b; Restle, 1955).
The Ag-_pelement, however, uses a method developed independently by engineers and
computer scientists who were studying pattern classification. The Ap_pelement forms
a linear discriminant function, determined by the weight values, that can discriminate
between any two different but arbitrarily similar patterns (where pattern similarity is
determined by the vector dot product). However, being forced to discriminate between two
patterns obviously has implications on the decisions that are possible with respect to other
patterns. Pattern classification theory therefore focusses on how decision rules partition
the space of all possible stimulus patterns. The relation between stimulus sampling theory
and pattern classification is discussed further by Barto (1984) and Sutton (1984), and good
introductions to the theory of pattern classification can be found in Duda and Hart (1973)
and Nilsson (1965).

This method of discriminating stimulus patterns can also be related to models of
classical conditioning, such as that of Rescorla and Wagner (1972), in which the total

associative strength of a stimulus is represented as linear combination of the associative

24

strengths of its component stimuli. Sutton and Barto (1981) point out, for example, that
the Rescorla/Wagner model of classical conditioning is essentially identical to a pattern-
classification method developed earlier by Widrow and Hoff (1960). The Ag_p element is
very closely related to both of these systems as is detailed in Section V below. This implies
that the Ap_p element is capable of producing analogs of all of the stimulus context effects
that are accounted for by the Rescorla/Wagner model—but the paradigm resembles the
instrumental, or cued operant, paradigm rather than classical conditioning. An analog of
conditioned inhibition is illustrated by the simulation just described, and analogs of over-
shadowing and blocking are also produced by the Ag_pelement. Behavior not included
in the Rescorla/Wagner model’s repertoire, such as latent inhibition, is also not produced
by the Ap_pelement.

The neuron-like elements that are usually studied by theorists are not designed to
learn in tasks like the associative reinforcement learning tasks illustrated here. In some
cases, adaptive elements can be modified to learn under reward/penalty feedback, but the
resulting elements are not able to learn effectively for arbitrary reward contingencies. In
the next section, we discuss learning in networks and argue that it is just this ability that

allows the Ap_p element to reliably learn to cooperate with other elements in a network.

. NETWORKS OF Ap_p ELEMENTS

The most commonly studied neuron-like adaptive elements are capable of what en-
gineers and computer scientists call “learning with a teacher” or “supervised learning”
(e.g., Duda and Hart, 1973). In this paradigm, the element is provided with a signal that
directly specifies what its response should be for each stimulus pattern in a training set.
The element adjusts weights so that its output signals match these training signals. This
paradigm’s major interest to theorists lies in the fact that since the resulting response
rule applies to patterns not presented during training, it produces a form of gneralization.
This paradigm, which we discuss in more detail in Section V, is closely related to the
classical conditioning paradigm and does not involve all of the subleties of the associative

reinforcement learning task.

Adaptive elements designed for learning in this paradigm reveal critical limitations

25

when they are used as components of adaptive networks. In order to train such a network,
each component element must be provided with its own individualized training signal. This
means that there must be a “teacher® that knows enough about what every component
must do that it can furnish each component with desired responses for a sufficiently varied
training sequence. Consequently, although networks of such elements can be trained to
implement any associative mapping, the details of the implementation must be worked
out beforehand. The generalization abilities of the elements can still make this worthwhile
(e.g., Hinton, 1981), but the process seems better described as a form of programming
rather than as a form of learning—some agency needs to know from the start *how” the
desired mapping is to be implemented by the network. However, the type of network
learning that is of interest here, and which would be much more useful, occurs when
gome agency just knows “what” constitutes the desired behavior of the network, and the

network, as it were, figures out for itself how to accomplish it.

It is important to contrast this objective with what has been called called “unsuper-
vised learning,” “learning without a teacher,” or “self-learning” (e.g., Duda and Hart,
1973). Here, the learning process extracts structure that is inherent in the input stream
rather than forming associations in a manner directed or constrained by an outside agency.
It constructs “clusters” of patterns, where patterns in the same cluster are more similar to
one another than to patterns in other clusters according to a built-in similarity measure.
Unfortunately, the label “unsupervised® incorrectly suggests that unsupervised learning is
more difficult or more powerful than is supervised learning. It suggests that the learning
system is able to solve, without supervision, the same class of problems a supervised learn-
ing system requires supervision to solve. However, the kind of clustering an unsupervised
learning system does is not directed toward the satisfaction of any constraint except that
imposed by the built-in measure of similarity and perhaps a built-in specification of the
number of clusters. A supervised system is in fact more adaptive than is an unsupervised
system because it forms clusters in order to solve problems posed to it by environmental

contingencies rather than to solve a problem of its own.!! Unsupervised learning is more

11 A qualification is in order here. If coupled to a component that adaptively adjusts the built-in
similarity measure based on system performance, an unsupervised learning system can contribute

26

accurately regarded as supervised learning with a fixed, built-in teacher.

These observations are relevant to the present discussion because unsupervised learning
can be readily extended to multilayered networks as illustrated by the “neocognitron® of
Fukushima (1980). Successive layers form clusters of the clusters formed by preceding
layers. Although hierarchical clustering by a layered network is an extremely interesting
Process, it does not address the problem in which we are interested, that is, the problem

of learning “how® to do something on the basis of information only specifying *what.”

Consider an adaptive network operating in an environment that can evaluate the be-
havior of the network, that is, the collective behavior of the network’s elements, but cannot
specify the desired behavior of each individual component.!? This can occur in several
ways. For example, the environment may be capable of evaluating the consequences of the
network’s behavior in controlling some aspect of the overt behavior of the entire learning
system. Here, not only is the proper behavior of each network component unknown, but
the proper behavior of the overall network may be recognizable only through its effects,
which may quite indirect, on overt behavior. In other paradigms, the network’s environ-
ment may know the desired behavior of a subset of the network’s components, where the
remaining elements must interact with these components in some unknown way in order
for them to perform as desired. In all of these cases, structural learning must take place,

and a difficult structural credit-assignment problem exists (Section I).

A learning task of this kind occurs when a network of some arbitrary number of el-
ements faces a problem similar to the one to which we subjected a single Ap_p element
in the preceding section. The network’s environment presents stimulus patterns to the
network by making the patterns’ components available as input to some subset of the

network’s elements. We call the elements that receive this external stimulation the input

to more powerful forms of directed learning.

12 By an agency in a network’s environment, we do not necessarily mean an agency outside of the

organism or device in which the network resides; this agency may be another component of the
overall learning system, such as a module specialized for delivering reinforcement to other modules.
It would be underestimating the degree of abstraction inherent in our approach to identify the
boundary between a network and its environment with the boundary between an organism and its
environment.

27

elements. The output signals of another subset of elements are received by the environ-
ment, and patterns of these signals constitute the “overt” actions of the network. These
are the output elements, or to use the term of Hinton and Sejnowski (1983), “visible ele-
ments.” The elements that are not output elements (including any input elements that are
not output elements) we call the “hidden elements” after Hinton and Sejnowski (1983).
Suppose that the environment evaluates the activity of the visible elements and broadcasts
a reinforcement signal to all the elements of the network. Since all elements receive the
same reinforcement, they have no conflicts of interest and constitute a “team® according

to game-theoretic terminology (Marshak and Radner, 1972).

If we view the problem from the perspective of an individual adaptive element em-
bedded in the interior of this network, we can gain some understanding of the type of
learning capability such an element might have to possess. Consequently, let us focus on
the learning task faced by one of the hidden elements. Even if the environment determin-
istically evaluates the network’s actions, the relationship between this element’s actions
and the evaluation signal will not appear to be deterministic. ‘This is true because the
evaluation depends on the behavior of other elements, and relationships between them,
in addition to the behavior of the element in question. Since it lacks knowledge about
what the other elements are doing and how their activity influences the global behavior
of the network, the given element will perceive that the evaluation is randomly related to
its actions. In addition to this, the contingencies faced by the element will vary with time
as the other elements adapt. Thus, even if the overall task faced by the network involves
only fixed deterministic contingencies, the task faced by an individual element will involve
nonstationary and random contingencies. The element must be able to detect correlations
between its actions and the reinforcement it receives that are buried in noise generated by
the rest of the network. This is why the Ap_p element’s ability to improve performance
in arbitrary stochastic contingencies is essential to its performance as an adaptive network

component

But how can a hidden element inprove its reward probability when its output cannot
directly effect the environment? The only possibility is for it to assist visible elements in-

crease their reward probabilities; and this might be possible only by assisting intermediate

28

elements. For example, a hidden element might adjust its weights in order to produce a
signal A that another hidden element combines with other information to produce a signal
B, where signal B, in turn, allows a visible element to make a required discrimination.
This does not require “altruism® on the part of the hidden element since its reward prob-
ability increases along with that of any other element.!® The problem is not to provide
the elements with sufficient incentive to cooperate in this way; it is rather to endow them

with sufficient ability to discover how they can contribute to the common goal.

In making this argument, we assumed that the reinforcement signal generated by the
environment is broadcast to all the elements of the network, and this is obviously not
the only possibility. It represents a worst case in which no knowledge exists within the
learning system that can ameliorate the structural credit-assignment problem. If centers
exist that can send appropriate individualized reinforcement signals to different subregions
of the network, then the task faced by an interior element can be made easier. Such
centers most certainly exist in animal brains, and would certainly be useful in man-made
learning networks, but we must ask where their knowledge comes from. If it is innate, then
the learning system already knows something about how to implement the process being
required by the environment, and structural credit assignment is easier. However, except
in the unlikely case that the learning system already knows how to solve any task it is likely
to face, the plight of an interior element that we have described will always exist within
the subregions. On the other hand, if such knowledgeable reinforcement centers acquire
their knowledge form experience, then it is likely that elements within these centers face
learning problems gimilar to the one we have described. In either case, then, the problem
we are considering occurs within the network at some level and to some degree. We now

turn to some examples.

3 The situation is analogous to kin selection in evolutionary processes in which genes are selected

because they cause individuals to help close kin, i.e., other organisims that are likely to share those
genes. This can account for the evolution of certain forms of apparent altruistic behavior. Here,
since all the elements in a network receive the same reinforcement signals, the elements are related
to one another in a way analogous to genetic relatedness.

20

A. A Minimal Case of Cooperative Learning

Figure 4 shows a network of two Ag_pelements, ¢; and e;. Only e¢; receives stimulus
patterns from the environment, and only the action of ez is available to the environment
(ey is hidden; ez is visible). Suppose this network faces an associative reinforcement
learning problem like the one described above for a single Ap_pelement. That is, the
network’s output, the output of e; , affects the reward probability in a manner that depends
on the stimulus pattern presented to e;. Both elements receive the same reinforcement
signal. If there were no means for ¢; to communicate with ez, the elements would be
capable of achieving only limited reward frequencies. The action of e; influences the
reinforcement of both elements, but in the absence of a communication link, e» remains
blind to the discriminative stimulus and therefore cannot learn to respond selectively in a
discrimination task. On the other band, in the absence of a communication link, e; can
sense the discriminative stimulus but cannot influence the reinforcement received. The
complementary specialties of the two elements have to be combined in order for each to
attain optimal performance. In simulating this situation, we arranged for the action of
e; to potentially influence ez by providing an interconnecting pathway with an initial
weight of gero. If this weight can be adjusted properly, the network can respond correctly.
However, the correct value of the interconnecting weight depends on how e; has learned
to respond to its input. Conversely, the correct behavior of ¢; depends on the value of
the interconnecting weight, that is, on how e; has learned to respond to its input signals.
Thus the two elements must adapt simultaneously in a tightly-coupled cooperative fashion

in order to maximige reward frequency.

To be more specific, we set up the simulation in the following way. Each element
is provided with a constant input to allow its threshold to vary (as described above)
and one other input pathway. We regard only this second stimulus component as the
stimulus pattern z, treating the constant input as part of an element’s internal mechanism.
Although according to Equation 1 Ag_p elements produce actions +1 and -1, we find it
convenient to recode these to be 1 and 0, respectively, when we are considering networks.
In other words, the Ap_p mechanism works exactly as specified by Equations 1 and 2

(with y(t) = +1 or —1), but an output signal of ~1 is changed to 0 when transmitted

30

B e, e, 1 Environment

Pigure 4

A simple network of two Ap_p elements. Only ¢, receives the discriminative stimulus,
z, and only ez can affect reinforcement, r, which is delivered to both elements.

to other elements or to the network’s environment. We think of the output values 1 and
0 as “responding® and “not responding® respectively. With this recoding, each element of
the network in Figure 4 can therefore receive the input “pattern® O or 1, where for ¢, it

is generated by the network’s environment, and for e, it is the (recoded) output of e; .

The reward probabilities implemented by the network’s environment are given by the

following table:
z d(z,0) d(z,1)
0 9 .1
1 1 9

Table entry d(z,y) is the network reward probability given that e; receives z as input
and e; responds with y as output, that is, given that the network as a whole responds
to z with y. Thus it is optimal for the network to respond to z = 0 with action 0 to
obtain reward with probability .9, and to respond to z =1 with action 1 to obtain reward
with probablity .9. In this task M, = (-9 +.9)/2 = .9, and the initial overall reward
probability (with all weights sero) is (.9 + .1 4.1+ 9)/4 = .5. Note that if the network
fails to discriminate by responding identically to all input patterns, the overall reward
probability is (9 +.1)/2=.5.

31

There are two ways the network can solve this problem. Let us denote the weights
associated with ¢;’s (nonconstant) input pathway w', ¢ = 1,2. In the first solution,
e; learns to fire only when stimulus z = 1 is present by setting its threshold high (i..,
setting its threshold weight negative) and setting w! positive. Element ez does the same
thing—sets its threshold high and w? positive—so that it it fires only when stimulated by
e, ’s firing. Consequently, the network as a whole fires only when z = 1. In the second
solution, e, learns to fire at all times ezcept when stimulus z = 1 is present, and e; learns
to fire at all times ezcept when ¢; fires. Then when e¢; is silent in response to z=1, e

is disinhibited and so fires.

In simulating a trial with this network, and with all the networks to be considered,
the environment first presents a stimulus pattern to the network, and then proceeding
from the input side of the network, we sequentially compute the output of the successive
elements 8o that their actions are available as input to “downstream” elements. This is
possible because the networks described here do not have recurrent connections. When the
network’s overt action is generated, the environment produces the reinforcement signal,
and all the elements update their weights. We view the weight modifications as occurring

simultaneously for all elements, although this is actually done sequentially by the computer

program.

Some features of this tightly regimented procedure for computing a trial can be relaxed
without presenting major difficulties. The environment can generate stimulus patterns,
monitor network actions, and generate reinforcement simultaneously and continuously, and
the network’s activity can be “pipelined.” This would require that we pay more attention
to the real-time aspects of the problem than we do here, but would not be difficult. The
addition of recurrent connections within the network, however, presents deeper issues that

we have not yet considered. !4

14 The research by Ackley et al (1985), Hinton and Sejnowski (1983), Hopfield (1982), and Smolensky
(1983) dealing with stochastic networks containing recurrent connections is probably relevant, but
we wish to avoid the restriction to symmetric connections that is essential for their results. We do
pot see major difficulties with using Ag—p elements in networks with recurrent connections, but we
have not yet studied this case in detail.

32

a) 1.0
Priy = 1jz =0} 0.5}

0.0

.....................................

v
4O

100 200 300

300 500

1.0}

Pr{yi =1z =1) 0.5}

"% 100 700 7mine woemcn 300 700 500

b) '
Priga=1ls=0) 0,5} p--prevrvorrrrmmagmmmm e ieeieeiiiacieceeeccecemccccaanaad
700 500

. ;

O 1 T] S e T E
700 500

0.8}
REWARD
PROBABILITY 0.7¢
0.6p
0.5¢
0.4 C 2 A 2 A re
0 100 200 300 400 500
TRIAL NUMBER
d
) -
NUMBER OF
TRAINING St
SEQUENCES
0r U [] N ‘J
0 1500 OVER 2000

TRIALS UNTIL SOLUTION (NEAN=SID)

Pigure b

Simulation results for the two-element network. See text for explanation.

Figure 5a and 5b show the behavior of the network for a typical sequence of 500 trials
with A = .04 and p = 1.5. Figure 5a shows the evolution of the behavior of e; in terms
of two graphs. The first shows the conditional probability that e; fires (y; = 1) given
that its (nonconstant) input is 0, and the second shows the same thing for input 1. Both
of these probabilities start at .5 since the weights are initially gero, and they change in
approximately the same way for about the first 50 trials. This means that during these
trials the element is experimenting with firing and not firing in the presence of both input
signals. At this point the two conditional probabilities show the beginning of differentiation
between the two cases, which becomes unequivocal by about trial 80. From then on, with
a few brief exceptions, e; has a high probability of firing in response to an input of 1 and
a low probability of firing in response to an input of 0. Figure 5b shows the evolution of
the mapping implemented by ¢; and e; acting together by showing the probability that
ez fires (y2 = 1) for the different values of the network input z (not for the values of
e2 ’8 local input). Since the network learns to respond correctly, e; learns to remain silent
unless excited by e; ’s activity; that is, the first solution is formed in which both w; and
w9 become positive and both units set high thresholds. Figure 5c shows the evolution of
the overall performance measure M;. Figure 5d is a histogram of the number of trials
required to reach a criterion of 98% of My, for each of 100 sequences of trials. In all
sequences the network reached this criterion before 1500 trials. In 45% of the sequences,

the network produced the first solution; in the remainder it produced the second.

A series of two elements in a discrimination task provides one of the simplest examples
we could devise to demonstrate statistical cooperativity of self-interested elements. It is
clear that the Ap_p elements effectively form a link that permits them to obtain higher
reward rates than they could attain if they were to act independently. Moreover, an
element contributes to the formation of this link only because doing so furthers its interests.
We interpret this as a form of cooperativity in the literal game-theoretic sense. One may
regard the link as a *binding agreement® by which the elements form a coalition for mutual
benefit. We have simulated series of 3, 4, and 5 elements with appropriate connections
being made in all cases, although learning slows considerably as the depth of the network

increases. Although the discrimination required in these tasks is not difficult, the necessity

34

to construct a long chain of elements that faithfully transmits the discriminative stimulus is
quite difficult. The correct behavior for any element depends on the behavior implemented
by all the other elements so that the solution cannot be constructed from stable solutions
to subtasks. This has implications, which we discuss below, about what initial network

architectures might be expected to support faster learning than others.

B. A Nonlinear Task

In the task just described, cooperative learning is required only because the network
lacks a direct pathway from input to output. The task itself is easily within the capabilities
of a single element. Here we illustrate the simplest example of a task that cannot be solved
by a single linear threshold element, or any single-layer network of them. In this problem
the hidden element is not needed just to transmit a discriminative stimulus to the visible
element; the hidden element must learn to respond to particular configurations of its
stimulus components in order to create a signal that the visible element needs to behave
properly. In our simulation, a network of two Ag_p elements is placed in a task requiring
it to form the two-component exclusive-or mapping. The network has a single hidden
element, ¢;, and a single visible element, ¢;, which are connected as shown in Figure
6. The stimulus patterns are all the two-component binary vectors: z(® = (0,0),z(}) =
(0,1),2 = (1,0),z® = (1, 1). These patterns are equally likely to occur on any trial.

Each element also has a constant input and a threshold weight.

The reward probabilities are given by the following table:

z | dz,0) d(z,1)
©,00] .9 1
©,1)] .1 9
(1,0 .1 9
(Ly| .o 1

Table entry d(z,y) is the reward probability given that the network receives = as input and
responds with action y. The optimal reward probability is Mya, = 9, which is obtained
when the action of the visible element is the exclusive-or of the pattern components, that

is, when e; fires when one or the other, but not both, stimulus components are present. It

35

must also not fire when both components are absent. A single Ap_p element can be correct
for at most three of the four cases, yielding a reward probability of .7, since weights do not
exist that allow a single linear threshold element to respond correctly to all four stimuli
(see Duda and Hart, i973, or Minsky and Papert, 1969) . However, the performance of
the network of Figure 6 can approach Mpax if the hidden element learns to respond only
to the fourth case and the visible element takes advantage of this signal to “debug” its
responding. This can happen in several ways depending on whether the hidden element

learns to turn on or off for the fourth case.

6 ° Environment

Pigure 6

Network for the exclusive-or task. The elements must cooperate in order for the network
to learn to implement the exclusive-or mapping.

Figure 7 shows performance of the two-element network for a typical sequence of 5000
trials with p = 1.5 and A = .08. In Figuire 7a are graphs showing how the output
probabilities of the visible element develop for each input pattern; Figure 7b shows the
analogous information for the hidden element; and Figure 7c shows the overall performance
of the network as a function of the trial number. The visible element quickly learns to
respond correctly to all patterns except z(!) = (0,1) (Figure 7a), causing the network
performance to level off near .7 (Figure 7c). Eventually (¢ ss 1400) the hidden element

comes to respond reliably to z(!) and to reliably not respond to any other pattern (Figure

36

a)

I
/

Priy = Lz = £19)),
0.
(N
Pr(n = Uz =) g,
0
1
Pe{y =1z =z g,
0.
1
Pr{n = 1]z = %) 5.

0.

b)
!

Priy = Ijz = =g,
0.
1.
Pr{yi =1z =3sM) o,
0.
1
Pr(y; = 1]z = s} g,
0.
1.
Priyi =z =2},

0.

REWARD

PROBABILITY

l.
0.
0.
0.
0.
0.
0.

Behavior of network elements in

2 = (0,0), 2% = (0,8), 511 = (1,0), ¢ = (11

POV

3000
TRIAL HUNSER

7000

...

3000
TRIAL NUMBER

7000

7000

Seed

3000 3000

TRIAL NUNMBER

2000

1000 5000

Piguare 7
a typical sequence of 5000 trials in the exclusive-or

task. See text for explanation.

37

7b). At the same time, the visible element begins to be excited by the hidden element’s
signal so that its output tends to be correct more frequently for all four patterns (Figure
7a). Once this mutually beneficial relationship between e; and e; begins, it quickly
develops until almost perfect performance is achieved (the theoretical asymptote is .892
for this value of A). It is clear that this is a cooperative process. Figure 8 shows a
histogram of the number of trials until a criterion of 95% of My, is attained for each of
100 sequences of trials. The average number of trials until criterion is 3501, or about 875
trials for each stimulus pattern. In all of the sequences the network reached this criterion

before 15 000 trials.

NUMBER OF
TRAINING St H

SEQUENCES

“”[]Uﬂ 000 0

) : 5000 19000 15000 OVER 20000
TRIAI;‘ UNTIL SOLUTION (MEAN-SSO!)

Pigure 8

Simulation results for 100 sequences of trials in the exclusive-or task. The histogram
shows the number of trials to a criterion of 85% of optimal performance for each of 100

sequences of trials.

This example illustrates how a hidden unit can learn to respond to particular constel-
lations of stimulus components, and to influence other elements, in a useful way without
being provided with explicit instructional information. Consequently, this two-element
network can learn to implement any of the 16 two-valued functions of two binary stimulus

components. This raises the following question: Why not begin with elemental components

38

that can individually implement all of these functions? Or, more generally, why not use
elements that can implement transfer functions more complicated then memoryless linear
threshold functions? It is certainly the case, for example, that neurons are not simple linear
threshold elements. We have no objections to this except that such a theoretical approach
would not by itself solve the problems we are addressing. It would still be necessary to
consider ways of obtaining cooperative interactions among these more complex elements,
and the same problems we have been discussing would appear again. By focussing on ele-
ments with relatively simple transfer functions, we can study the problems of cooperative
learning in a relatively simple framework. Moreover, althought it is not illustrated here,
we believe that there are no major difficulties in extending what we have learned using

linear threshold elements to networks of more complicated primitives.

C. A More Difficult Nonlinear Task

The network shown in Figure 9 has six input components and a single principal output
pathway (from Element 5). There are 39 weights to adjust: one associated with each
of the pathway intersections and one threshold weight for each element. There is also a
reinforcement pathway which is not shown in the figure. The reward contingencies imple-
mented by the network’s environment force the network to learn to realige a multiplexer
circuit in order to obtain optimal performance. A multiplexer is a device with k address
input pathways and 2* data input pathways (here & = 2) each of which is associated
with a distinct k-bit address. Given a pattern over the address pathways, i.e., an address,
a multiplexer’s output is equal to whatever signal (0 or 1) appears on the data pathway
asgociated with that address. It therefore routes signals from different input pathways
to a single output pathway depending on the “context® provided by the pattern over the
address pathways. For each of the 64 possible input patterns, we rewarded each element
of the network with probability 1 if the visible element (Element 5) produced the correct
output, and we penalized each element with probability 1 otherwise. The input patterns
were chosen randomly for presentation to the net. All of the elements implement the
AR-p algorithm with T = .5 except for the visible element (Element 5) which uses T =0
(and therefore essentially uses the perceptron algorithm; see Section V). Figure 10 is a
histogram of the number of trials required for the network to respond 99% correctly for

39

1000 consecutive trials in each of 30 sequences of trials with p = 1 and A = .01. The
average number of trials required is 133 149, or about 2080 presentations of each stimulus

pattern. In every sequence the network reached the criterion before 350 000 trials.

Address [

Data

Pigure 9

Network for the multiplexer task. Depending on the activity pattern over the address
pathways, one of the data signals must be transmitted as the output of e5. All elements
receive the same reinforcement signal, which is not shown.

This is a difficult task since the natural generalizations produced as a result of sim-
ilarities among the stimulus patterns tend to be irrelevant or misleading with respect to
the required actions of the network. Consequently, this task represents a rather stringent
test of the learning method. The hidden elements (Elements 1-4) must tune to certain
constellations of the stimulus components in order to disrupt misleading generalizations.
There are several ways that this can be done, and the network comes up with different
golutions in different sequences of trials. This task also illustrates some of the compu-
tational sophistication that can arise with the formation of highly nonlinear functions.

Linear threshold functions can exhibit only a very restricted form of context sensitivity:

40

NUNBER OF

TRAINING 2

L0 0 D0mooo [

0000 100000 150000 200000 250000 300000 350000
TRIALS UNTIL SOLUTION ("EAN-I” llﬂ)

SEQUENCES

Pigure 10

Simulation results for the multiplexer task. The histogram shows the number of trials

required for the network to reach criterion performance in each of 30 sequences of trials.
contextual information can bias activation one way or the other, effectively raising or low-
ering the threshold. Nonlinear context sensitivity, on the other hand, can result in the
complete alteration of behavior as a function of contextual information. The exlusive-or
task of the preceding example illustrates this in the simplest form, where one stimulus
component can be regarded as switching the processing of the second stimulus component
between the identity and inversion functions. The multiplexer illustrates a more extreme
form by which the contextual information provided over the address pathways completely
alters the set of signals to which the principal element is sensitive. A similar phenomenon
appears to occur with the so-called “place cells” in hippocampus that seem to represent
different places depending on the context (Kubie and Rank, 1983).

D. Discussion of the Simulation Results

These simulation experiments suggest that layered networks of Ap_p elements can
reliably learn nonlinear associative mappings without being explicitly instructed how to
implement them. However, these results also suggest that the process may take a consider-
able amount of time. It is difficult to evaluate the learning rate of Ap_p networks without

comparing their performance with that of other learning algorithms, and we have not yet

41

systematically done this. Preliminary comparison with unsophisticated random search
through the space of all combinations of weight values indicates that Ag_p networks are
vastely faster, but much more work needs to be done before we can knowledgeably com-
ment on the efficiency of Ap.pnetworks. It must be remembered, however, that the
dimensionality of this search space is relatively large even for the small networks simulated
here; for example, the weight space for the multiplexer network has 39 dimensions. Still,

learning times may become exceedingly long for large networks.

There are several factors that bear on the issue of learning rate. First, in the simulations
described here, each sequence of trials begins with all the weights set to zero so that
the required mapping has to be learned from scratch. This is merely a methodological
convenience and does not imply that we are philosophically inclined toward a tabula rasa
view of learning and intelligence. On the contrary, it is likely that large, deep networks
are only capable of learning sufficiently quickly if they begin with initial pathways and
weight values that place the network’s behavior “in the ballpark.” Moreover, it should not
be overlooked that the learning methods described here also permit networks to recover
from damage. In this case, the starting point for adaptive reorganization will depend on

the extent of the damage.

A second factor concerns the tradeoff between speed and accuracy that is inherent in
any type of stochastic search. Although the networks are able to improve performance
with any admissible parameter values (0 < A < 1, p > 0), these values effect the speed of
learning and the degree of performance eventually achieved. The simulation in Section II
(Figure 3) shows the tradeoff for various values of A for a single Ag_p element, and similar
results appear when networks are simulated. The parameter p has a more complex effect
on performance but also participates in this tradeoff. 15 In the next section, theoretical
results for a single Ap_p element are described which we have not rigorously extended to
networks of Ap_p elements; nevertheless, our network simulations suggest the following.
If one is willing to accept the network getting stuck at suboptimal performance levels,

then learning can be made much more rapid. On the other hand, if one demands eventual

15 For Ag_p elements that use the logistic distribution (Equation 3), the same effect can be achieved
by either varying p or T : increasing p has the same effect as decreasing T'.

42

near-optimal peformance, then one has to be willing to wait for it. The important point,
however, is that unlike the situation for networks with a single adaptive layer, near-optimal
performance will always be achieved (we must emphasize again that this has not been
proven). A compromise between these extremes might be obtainable by systematically
varying the parameters as learning proceeds—for example, by starting with A near one

and decreasing it as performance improves, but we have not yet experimented with this.

A related issue concerns the manner in which a network’s performance approaches a
desired level. If a large network facing a difficult learning problem can maintain a high level
of performance while the learning process is underway, then a long wait for an optimal
solution may not be such a problem. Networks of Ap_p elements appear to have this
property if their architectures are appropriate. For example, in solving the exclusive-or
task described above, the network quickly solved the easy part of the problem by learning
to respond correctly to three of the four cases. Considerably more trials were required to
obtain the complete solution, but during this period the network’s performance remained
relatively high (Figure 7c). Behavior like this is characteristic of networks which do not
require long chains of elements to be formed to allow environmentally supplied stimuli to
influence the visible elements. This suggests that effective network architectures might be
like that of Figures 6 and 9, with hidden elements forming auxiliary side networks rather
than being strictly interposed between layers. This architecture is also plausible from an
evolutionary perspective if we imagine that additional network structure is added around

existing, functional structure rather than being inserted into it.

IV. THEORETICAL ANALYSIS

In this section we provide a theoretical justification for the reliable performance of
the Ap_pelement as an adaptive network component. By first ‘looking carefully at the
nonassociative aspects of the task faced by a hidden network element and then at the
learning capabilities of a single Ag_p element, one can gain some understanding of the
learning process. In the next section, we relate the Ap_pelement to adaptive elements
developed in the past and gain some understanding why networks of those elements are

not able to perform reliably in similar tasks. The notation used in this section is that

43

developed in Section II.

A. Contingency Space

To help understand the nonassociative aspects of the task faced by a hidden element
we borrow the notion of contingency space from animal learning theorists (see Staddon,
1984). Recall that an associative reinforcement learning task for a learning system with two
actions +1 and —1, as described in Section II, is characterized by two reward probabilities,
d(z,+1) and d(z,—1), for each input pattern z in X. We can therefore represent the
task by a set of points, one for each z, plotted in a contingency space whose coordinates
are respectively the reward probability given action +1 in the presence of z and the reward
probability given action —1 in the presence of z (Figure 11). A single point corresponds
to one of the component nonassociative reinforcement learning tasks that comprise the
associative task. Various regions of the contingency space correspond to nonassociative

reinforcement learning tasks that pose different kinds of problems for learning algorithms.

Letting the abscissa be the reward probability for action +1, the diagonal line of
slope 1 divides the space into two triangular regions, the lower-right one corresponding
to (nonassociative) reinforcement learning tasks in which action +1 is the optimal action,
and the upper-left one corresponding to tasks in which action —1 is the optimal action.
Without loss of generality, let us assume that action +1 is optimal and focus only on
the lower-right triangle, i.e., the set of points with d(z,+1) > d(z,—1). All of the
regions to be delineated have obvious counterparts in the upper-right triangle. Figure 11
shows three numbered regions. Region 1 consists of all those points with d(z,+1) > .5
and d(z,—1) < .5. We consider this to be the “easy” region since the environment
usually rewards the optimal action and usually penaliges the non-optimal one. Notice
that the set of tasks in which the reward probabilities for the two actions sum to one lies
completely within the easy region. Region 2 consists of those points with d(z,+1) > .5
and d(z,—1) > .5. These tasks are much more difficult because the environment usually
rewards both actions, and the learning algorithm must figure out, so to speak, which
of two good actions is better—%the greater of two goods.” Region 3 consists of points

corresponding to tasks that are difficult for the opposite reason: the learning system must

44

Rewerd Region 2
Prodability
Qiven .5
Actlon =1

Region 1

Region 3

o .5 1
Rewsrd Prodebllily
glven Action 1

Pigure 11

Contingency space. Each point in contingency aﬁace corresponds to a nonassociative
reinforcement learning task. Tasks falling in the different labelled regions present
different types of difficulties for a learning algorithm; see text for details.

figure out which of two bad actions is better—*the lesser of two evils.”

Tasks that fall in regions 2 and 3 present special difficulties because the predominant
estimate for the desired action, i.e., the more frequent value of r(t)y(t) , depends on the
action probabilities of the learning system. For tasks in Region 2, for example, an action
can more frequently appear to be the desired action just because it is being performed
more frequently than the other action; for tasks in Region 3, an action can more frequently
appear to be the desired action just because it is being performed less frequently than the
other action. For tasks in the easy region, on the other bhand, the predominant estimate
for the desired action is independent of the learning system’s action probabilities, and
learning algorithms can be simpler. These observations, which are shown mathematically
by Barto and Anandan (1985), provide one way of understanding the role of the term
E{y(t)|s(t)} used in the Ap_p algorithm (Equation 2). This term adjusts the magnitude

45

of weight changes to exactly counteract any advantage an action may appear to have that

is actually due to its being performed more (or less) frequently than the other action. 18

The point of this analysis is that the task faced by a hidden element in a network will
not generally fall in the easy region of contingency space for all of its input patterns. For
example, in the exclusive-or task described above, before trial 1400 the hidden element, e, ,
is usually penalized no matter what it does when input pattern z(1) is present. This occurs
because the visible element is reliably acting incorrectly in this case, having incorrectly
generalized from its experiences with the other three patterns. Thus, for this input pattern,
the task of e; falls in Region 3 of contingency space, a hard region. In fact, the task
faced by the visible element, ez, also falls in Region 3 for this input pattern. As all
of the weights of the network change, the point representing the task of e¢; given z(1)
moves about contingency space but generally remains in Region 3. At the same time,
the task of ez moves about contingency space but generally also remains in Region 3.
Both elements need to be able to make progress under these circumstances. As we see
next, the Ap_p element is able to solve associative reinforcement learning problem§ whose

component problems fall anywhere within contingency space.

B. The Ag_p Convergence Theorem

The learning capabilities of the Ap_p element when faced with an associative rein-
forcement learning task are summarized by a theorem proved by Barto and Anandan
(1985). Here we informally describe this result. Several conditions on both the task and
the Ap_p element are sufficient to ensure the convergence result. The set X of stimulus
patterns used for training must be a linearly independent set of vectors (i.e., no vector in
the set can be a linear combination of any of the others). Further, each stimulus pattern
in X must have a nongero probability of being presented on any trial, which implies that

in any infinite sequence of trials, each pattern in X will (almost surely) occur infinitely

16 Another method for coping with this difficulty is to use another set of weights to construct an
estimate of the reward probability for each input pattern. Weight updates are then based on the
discrepancy between this estimate and the observed reward. The effect of this “reinforcement
comparison mechanism” is to adjust the effective reinforcement so that the contingency appears to
be in the easy region of contingency space. Sutton (1984) extensively discusses this approach.

46

often. Each random number n(¢) used by the Ap_p element must be selected according to
a (cumulative) distribution function that is continuous and strictly monotonically increas-
ing. The major implication of this condition is that any increase (decrease) in the weighted
sum s(¢) always increases (decreases) the probability that the element emits action +1;
there is no ceiling effect. This excludes the case in which the n(t) are selected according to
any uniform distribution, including the deterministic case in which all the n(t) equal the
same constant. It is satisfied by the logistic distribution we used in the simulations. Fi-
nally, the parameter p in Equation 2 must decrease at a certain rate with successive trials.
This is a standard condition for the convergence of certain types of pattern classification
algorithms, but it is often ignored in practice since learning is greatly slowed by decreasing
p and the algorithms tend to behave well with it held constant. Although decreasing p is
required for the convergence result to be stated, we held it constant in all the simulations
presented. See Barto and Anandan (1985) for the details of this condition. No restriction
of any kind is placed on the reward probabilities d(z,+1) and d(z,—1); the component

tasks can therefore fall in any region of contingency space.

Under these conditions, the following convergence result holds for an Ap_p element
in an associative reinforcement learning task. For any initial weight values and any value
of A, 0 < A <1, every infinite sequence of learning trials causes the Ap_p element to
converge!” to a weight vector that causes the correct action to be produced in response
to each stimulus pattern in X with probability greater than .5, i.e., the correct action
will be more likely than the incorrect one. Further—and this is the important part—the
smaller A is, the larger will be the probability of producing the correct action in response
to each stimulus pattern in X when the process converges; in fact, as A approaches gero,
the probability of each correct action approaches one. By the correct action for an input
pattern z we mean the action y* such that d(z,y*) = max{d(z,+1),d(z,—1)}. Recall
that A determines the relative effectiveness of reward and penalty in the learning process.

-As)\ approaches gero, the process becomes more asymmetrical, with the effect of penalty
approaching gero. Interestingly, the proof by Barto and Anandan (1985) does not go

17 “Every infinite sequence” is not quite accurate. The random process almost surely converges,

meaning that the probability of seeing an infinite sequence of trials for which the result does not
hold is zero.

47

through, and the result appears not to hold, when A actually equals gero.

One of the most important implications of this result is that the Agz_pelement can
improve its performance in a wide range of associative reinforcement learning tasks without
the necessity of using different values of the parameters p and A for tasks involving
contingencies in different regions of contingency space. Therefore learning is possible
when there is no a priori about the contingencies—a property critical to the performance
of Ag_pelements that are embedded in networks. Unfortunately, however, the situation
is not quite so straightforward. For given parameter values, the asymptotic performance
level is only quaranteed to be better than chance. How much better than chance depends
not only on A, as described above, but also on the environmental contingencies. The
asymptotic performance level with a fixed value of A decreases as contingencies move
deeper into the hard regions of contingency space (i.e., closer to the lower-left or upper-right
corners). This suggests that one should set A very small so that adequate performance
will be attained in all foreseeable cirsumstances. Unfortunately, however, learning rate

decreases as A decreases. So we are faced with a tradeoff unless methods are devised for

varying A as learning proceeds.

The most serious limitation of this result is the requirement that the stimulus vectors
form a linearly independent set. Although this is8 a much weaker condition than orthog-
onality of the stimulus vectors, it implies that there can be at most n different patterns
in the training set, where n is the number of input pathways of the adaptive element
(excluding the reinforcement pathway). Does this mean that we have to make sure that
no linear dependencies ever exist among the input vectors? Fortunately, the answer seems
to be no. Linear independence of the training vectors ensures that any associative map-
ping from X to action probabilities can be implemented by the adaptive element.!® In
particular, there exist weight values that yield performance as close to optimal as desired.
However, although it has not yet been proven, when X is not a linearly independent set,
it is likely that the AR'_p element is able to find the weight values that yield some sort
of best approximation to the optimal performance that can be attained by adjusting the

18 Of course, this does not mean that any associative mapping from R™ to action probabilities can
be implemented by a single element.

48

weights. Algorithms capable of doing this for problems restricted to the “easy” region
of contingency space are well-known (such as the Widrow/Hoff rule described in Section
V), where best approximation means one yielding the least mean-square error. We are

currently working toward extending the Ap_p convergence theorem in this direction.

We know of no other algorithm that is provably capable of this combination of deci-
sion under uncertainty and associative learning. Other algorithms, such as those using
the “reinforcement comparison” approach developed by Sutton (1984), may possess the
required degree of robustness, and we are in the process of systematically comparing their

performance in networks with that of the Ap_p element.

V. RELATIONSHIP OF THE Agp_p ELEMENT TO OTHER ADAPTIVE ELEMENTS

The Ap_palgorithm was devised by extending several well-known algorithms and
is therefore closely related to them. By comparing adaptive elements implementing these
algorithms with the Ap_p element, we can place the Ap_p element in its proper historical
and theoretical perspective and gain some understanding about why the other elements
are not able to learn as hidden elements of networks. In addition to the the algorithms
discussed here, many others have been proposed in the literature on adaptive pattern
classification, and it is impossible to treat them all. We have chosen examples that are
the most well-known, that have been presented as neuron-like adaptive elements, and
that represent major classes of algorithms. Some of the adaptive elements described here
are also described by Sutton and Barto (1981), and only what is necessary to make the
presentation self-contained will be repeated. All of the elements to be described use the

notation introduced in Figure 1.

A. Correlational Elements

A simple rule for updating the connection weights is

Awi(t) = p y(t)zi(t), (4)

for each 1, 1 < i < n, where p > 0 is a constant determining the rate of change of w;.

This rule adjusts a weight according to the correlation between the presynaptic signal,

49

z;(t) , and the postsynaptic signal, y(t). It is perhaps the most literal mathematical inter-
pretation of Hebb’s postulated learning rule (Hebb, 1949), and has been used extensively,
with a variety of modifications, in theoretical adaptive network studies. For example, units
employing this rule have been used in associative memory networks that have a number of
interesting properties (Anderson, Silverstein, Ritz, and Jones, 1977; Hinton and Anderson,

1981; Kohonen, 1977).

Adaptive elements using variants of this rule are suited to a type of learning that
resembles classical conditioning. The unconditioned stimulus (US) arrives at the unit via
a pathway that has a large positive weight. The US therefore causes the unit to fire (thereby
contributing to the unconditioned response, or UR). Any input pathway that is active when
the US-UR occurs therefore has its weight increased, making a signal arriving on that path
(a conditioned stimulus, or CS) more efficacious in firing the unit (and thereby contributing
to the production of the conditioned response, or CR). Although this pure-contiguity view
of classical conditioning is not accurate, the rule can be modified in a number of ways to
make it a better model of classical conditioning as discussed extensively by Sutton and
Barto (1981), who also discuss the necessity to add additional mechanisms to obtain a
stable learning procedure. For our purposes, it is important to note that although there
is no specialized reinforcement pathway, a given pathway, or a set of pathways, is initially
provided with a weight of large magnitude, often unaffected by the learning rule, that acts
not only as a built-in reflex pathway but also as a training pathway. A signal arriving
via this pathway forces the unit’s activity to be high or low. Equation 4 changes the
weights of the simultaneously active input pathways so that the unit’s output will tend to
be driven correspondingly high or low when those active input pathways are active again

in the future, even if the training pathways are not active.

This type of learning, which is performed better in many respects by more sophisti-
cated learning rules, is a form of supervised learning in which the element’s environment
specifies desired responses. Although the training signals are often regarded as a form of
reinforcement (just as the US in classical conditioning is regarded as a reinforcer), this
type of element is in no sense capable of maximizing reward frequency, or of controlling

any aspect of its input, and we do not regard it as a self-interested element.

50

B. Widrow/Hoff Element

Widrow and Hoff (1960) described an adaptive element that they called an ®adaline,”
for adaptive linear element (see also Widrow, 1962). Its response is determined by com-

paring the weighted sum of the inputs to a fixed threshold:

" +1, if s(t) > 0; 5
y()—{-—l, if a(t) < 0; ¢)
and the weights are updated as follows:

Aw;(t) = plz(t) — s(¢))z:(t), (6)

for each 1, 1 <1 < n. Here, 2(t) is the value of a specialized training signal giving the
desired response of the unit. This rule is suitable for supervised learning tasks as described
for correlational rules except that it is designed to adjust the weights in order to match
each 2(t) and s(t) as closely as possible, that is, to reduce the error, or discrepancy,
e(t) = z(t) — s(t). When s(t) is too low, e(t) is positive, and Equation 6 increases
(decreases) the weights of pathways carrying positive (negative) signals, z;(t). This causes
& to be larger when a similar input pattern appears in the future. When 8(t) is too high,
¢(t) is negative, and the same thing happens mutatis mutandis. This process is called

“error-correction.”

There is a well-developed theory about this learning rule, some of which is discussed
in Sutton and Barto (1981), where it is also pointed out that it is essentially the same as
Rescorla and Wagner’s (1972) model of classical conditioning. It is capable of forming de-
sired associative mappings under a broader set of conditions then are simpler correlational
rules. However, we still do not consider this adaptive element to be self-interested since
it is not able to learn to control any aspect of its input. Its goal, as it were, is simply to

produce a match between its actions and the training signal.

C. Perceptron Element

Although Rosenblatt (1962) studied many learning rules for his perceptron,” the rule

that has come to be called the perceptron learning rule is an error-correction procedure very

51

similar to the Widrow/Hoff rule. Element responses are produced according to Equation

5, and weights are updated by the following rule:
Aw;(t) = pl2(t) — y(¢)]=:(2), (7)

for each 1, 1 <1 < n, where 2(t) is +1 or —1.1° Here the error is the difference between
the desired output and the actual output, y(¢), rather than the weighted sum, s(t), as
in Equation 6. No weight changes are made when the response is correct. Despite their
similarities, the Widrow/Hoff and perceptron rules have significant differences in their
convergence properties (see Duda and Hart, 1973, or Minsky and Papert, 1969), but these

need not concern us here.

Although there is considerable controversy about the relationship between classical
and instrumental conditioning (see, for example, Mackintosh, 1983), there seems to be no
disagreement that error-correction learning rules, such as the Widrow/Hoff and percep-
tron rules, are not designed for learning in paradigms involving response contingencies.
Nevertheless, we have seen descriptions of these rules, and the paradigms in which they
are intended to operate, that are very misleading in this regard. Sometimes the discrep-
ancy, or error, e(t) = z(t) — s(t) for the Widrow/Hoff rule and e(t) = z(t) — y(t) for
the perceptron rule, is regarded as being computed by the learning system’s environment
rather than by the system itself. In this case, the training signal is this error signal,
which $s response-contingent feedback. Consequently, the term “trial-and-error learning,”
generally treated as roughly synonymous with instrumental learning, has been applied to
this process. This is a very misleading view because the error signal provides a differ-
ent kind of information than does a reward/penalty signal. Considering the perceptron
rule, for example, e(t) = +1 tells the element that it should have fired when it did not,
and e(t) = —1 tells it that it should not have fired when it did. On the other hand,
a reward/penalty signal, such as r{t) used by the Ap_pelement, evaluates the action
performed without directly specifying what action would have been correct. For example,

r(t) = +1 tells the Ap_p element that the action just performed, whatever st was, should

19 Usually this rule is defined with a threshold function that yields the values O and 1 instead of —1
and +1, and z(t) =0 or 1. This version is the same as ours if its p is twice ours.

52

be performed more frequently in the presence of the current stimulus. It does not tell it
that the action should have been +1. Now in the case of just two possible actions, the
element can combine a reward/penalty signal with knowledge of its action to deduce an
error signal (e.g., if it just performed action —1 and received a penalty r(t) = —1, then
it should have performed action +1, 8o the error is +1.) This is the basis of the learning

rules described in Subsections E and F below.

D. Associative Search Element

The author and colleagues described an adaptive element in some previous publications
that is mentioned here in order to make the connection to that earlier work (Anderson,
1982; Barto et al., 1981; Barto and Sutton, 1981b). In addition, this element, which we
call the “associative search element,” is perhaps the simplest extension of the correlational
rule (Equation 4) which makes it applicable to associative reinforcement learning. An
explanation of this element serves to relate the basic idea behind all of the reinforcement
learning rules to the Hebbian postulate. The output of the associative search element is
computed in the same way that it is computed by an Agz_p element: the weighted sum
of the input signals is compared with a random threshold according to Equation 1. The

weights are updated according to the following rule:
Au;(t) = p r(t)y(t)z: (), (8)

for each i, 1 < i < n, where r(t) is +1 (reward) or —1 (penalty). This is just the
correlational rule (Equation 4) with an extra factor that modulates the process according
to reinforcement. In previous studies we were careful to point out that there is a necessary
time delay between an action and the contingent reinforcement. In the simplest case in

which the delay is always a single time step, the rule appears as follows:

Awi(t) = p r{t)y(t — Vzift - 1).

Since in the present discussion we are not addressing real-time issues, we ignore any delay
occurring within a trial, and Equation 8 is adequate if it is understood that r(t) is the

reinforcement contingent upon action y(t).

53

This rule makes clear the three factors minimally required for associative reinforce-
ment learning: the stimulus signal, z; the action produced in its presence, y; and the
consequent evaluation, r. One can view the learning process as one in which basic yz
correlations are formed but held in abeyance until the relevant reinforcement occurs,? at
which time they are “fixed” in a manner that depends on the type of reinforcement re-
ceived. The adaptive element proposed by Klopf (1972), which he called the “heterostat,”
first introduced this idea to us. The Ag_pelement incorporates this same principle but
has as a basis a rule like the Widrow/Hoff or perceptron rule instead of the simpler corre-
lational rule. The associative search element is not capable of performing well when facing
tasks with contingencies falling in the hard regions of contingency space, and it is not
able to discriminate among similar stimulus patterns in the way that the Ap_p element
can. Its performance improves in both of these respects when the reinforcement it re-
ceives is preprocessed by a mechanism that compares the actual reinforcement with that
“expected” when acting in the presence of similar stimulus patterns. This approach is

developed extensively by Sutton (1984).

E. Selective Bootstrap Element .

Widrow, Gupta, and Maitra (1973) described an extension of the Widrow/Hoff algo-
rithm that is, to the best of my knowledge, the algorithm in the literature most closely
related to the Ap_p algorithm. Whereas the Widrow /Hoff and perceptron elements receive
a training signal, z(t), that directly specifies the desired response at trial ¢, the selective
bootstrap element receives a reward/penalty signal, r(t), as does the Ap_p element. The
selective bootstrap element uses the deterministic thresholding given by Equation 5 to

determine its output. It uses the following equation to update its weights:
Aw;(t) = plr(t)y(t) — s(t)]z:(t), (9)

for each §, 1 <1 < n, where r(t) is +1 (reward) or —1 (penalty). This element therefore

differs from the Ag_p element in that its output is a deterministic function of s(¢) and

30 Again, we are purposefully ignoring the problem of determining when the relevant reinforcement
occurs (the “temporal credit-assignment problem”). See Barto et ol (1983) and Sutton (1984).

54

s(t) is used instead of E{y(t)[s(t)} in the weight update equation. Additionally, it is
a symmetric rule that changes weights by equal magnitudes upon reward and penalty,
although Widrow et al. (1973) did discuss an asymmetric version. Loosely speaking, this
element is a deterministic version of the Ap_p element, and its behavior can be understood

in similar terms. 2!

It is instructive to discuss the reason that Widrow et al. (1973) chose the term “selective
bootstrap adaptation” to describe this learning process. Their starting point was the super-
vised learning paradigm in which the training signal, z(t), specified desired responses, but
they supposed that this training signal was not available. They called learning by means of
the Widrow/Hoff rule with z(t) = y(t) “positive bootstrap adaptation.” It updates weights
as if the output actually produced was in fact the desired response—bootstrapping, as it
were, based on its own actions. On the other hand, they called learning by means of the
Widrow /Hoff rule with z(t) = —y(t) “negative bootstrap adaptation.” In this case weights
are updated as if the output not produced was the desired response. Finally, “selective
bootstrap adaptation® means switching from positive to negative bootstrap adaptation,
or vice versa, depending on a signal from the environment, r(t), indicating reward or
penalty. Equation 9 can then be seen as switching the Widrow/Hoff rule (Equation 6)
between its positive and negative bootstrapping modes. The Ap_p element can be given

a similar interpretation.

Although the selective bootstrap element and the Ap_pelement are similar, they
have very different learning capabilities. Whereas the Ap_p element can learn effectively
for response contingencies that fall anywhere within contingency space (Figure 11), the
selective bootstrap element is only able to learn reliably when facing response contingencies
that fall within the easy region of contingency space (Region 1). Barto and Anandan
(1985) describe simulations that compare the performance of these elements for various
types of contingencies. The selective bootstrap element can learn much faster than the
ARr-pelement for easy tasks, but either oscillates or sometimes converges to the wrong

action in hard tasks. This severely limits the utility of the selective bootstrap element as

31 1t is not literally the deterministic specialization of the ARr-p element since if the random numbers
in Equation 1 ate all equal to zero, then E{y(t)|s(¢)} = y(¢) rather than #(t) as in Equation 9.

55

an adaptive network component.

F. Reinforcement Learning Perceptron

Although this adaptive element has never been singled out as being different in any
significant way from the the perceptron element described above, it is mentioned here
because it is a special case of the Ap_p element. Note that the response mapping rule of
the Ap.p element (Equation 1) reduces to that of the perceptron element (Equation 5) if
each random variable n(t) in Equation 1 is always zero. In this case, the expected output
given s(t) is just the actual output y(¢), so that if welet A =1 the Ag_p learning rule

given by Equation 2 becomes
Aw;(t) = p[r(t)y(t) — y(8)]=:(t),

for each ¢, 1 < ¢ < n, where r(t) is +1 (reward) or —1 (penalty). This is just the
perceptron rule (Equation 7) modified to accept reward/penalty signals rather than desired

responses. 22

The distinction between this version of the perceptron rule and that given above in
Subsection C is so slight that several authors have described the reinforcement learning
version without noting its difference from Rosenblatt’s original form (e.g., Minsky and
Papert, 1969). Unfortunately, this special case of the Ar_p algorithm does not satisfy
the conditions required for the Ap_p convergence theorem since the noise distribution
function is not continuous and strictly monotonically increasing (it is a step function). It
performs very poorly in tasks that fall anywhere in contingency space except the upper

left and lower right corners that correspond to deterministic tasks.

G. Learning Automata

Although learning automata are not typically cast as neuron-like adaptive elements,
a number of interesting connections can be pointed out by relating the Ag_p element, as

well as some of the other elements described above, to various classes of learning automata

72 Forthe case in which the A z_p element uses the logistic distribution (Equation 3), the Ag_p element
becomes the perceptron clement when T is zero.

56

(Narendra and Thatachar, 1974). Learning automata are designed for nonassociative
versions of the associative reinforcement learning task that we described in Section II.
Consequently their theory addresses the problem of decision making under uncertainty
but not the problem of forming optimal associative mappings. Specifically, the associative
reinforcement learning task reduces to the task focussed upon by learning automaton
theorists if the set X of possible stimulus patterns contains just a single pattern. This
means that the learning system always senses the same input pattern and is not required
to form any discriminations. This kind of task corresponds to a single point in contingency

space.

The class of learning automata relevant here consists of “variable-structure stochas-
tic® learning automata, which can be described as methods for updating action proba-
bilities. Suppose that on each trial the automaton can perform one action from the set
{y(V,...,y'™)}. At each trial ¢, the automaton selects an action y(¢) according to a prob-
ability vector (pfl). ,p,"')) , where p,('.) = Pr{y(t) = y()}, 1 < i < m. These automata
implement a common-sense notion of reinforcement learning: if action y® is chosen and
the environment’s feedback indicates reward, then p(*) is increased and the probabilities
of the other actions are decreased; whereas if the feedback indicates penalty, then pl) is
decreased and the probabilities of the other actions are adjusted. Many methods that have
been studied are similar to the following linear reward-penalty (Lp_p) method, which was
proposed for the case of two actions by Bush and Mosteller (1951a):

If y(t) = y*) and the resultant evaluation is reward (i.e., r(t) = +1), then

P¢+)1 =p(') +a(l - ("))
(ﬂ —(l)p‘(ﬂ’ J#s.

¥ y(t) = y*) and #(t) = —1 (penalty), then

), =(1-p)pf?

pl(i)l —_p_ + (l -ﬁ)p(’)s J# t

57

where 0 < a,f < 1. When a =, the algorithm is the symmetric Lr_p algorithm, and

when B =0, it is called the linear reward-snaction (Lg—y) algorithm.

Barto and Anandan (1985) show that the Ap_p algorithm reduces to the two-action
version of this algorithm (m = 2) if the distribution function for the noisy threshold is a
uniform distribution (i.e., each random value n(¢) in Equation 1 is equally likely to fall
anywhere between, say, —1 and +1), and the input pattern is held constant (and nonzero)
over trials. If the distribution function is not uniform, the Ag_p algorithm similarly
reduces to a nonlinear learning automaton algorithm. This means that an Ap_p element
that receives, in addition to reinforcement input, just a constant threshold input, and
adjusts just its threshold weight, is an example of a stochastic learning automaton. This
is in fact how the Agp_p algorithm was designed, and the convergence theorem described
in Section IV is an extension of an existing theorem due to Lakshmivarahan (1981) for a

class of stochastic learning automaton algorithms.

The selective bootstrap element and the reinforcement learning perceptron also reduce
to learning automata when their input patterns are held constant. Since the resulting
learning automata are deterministic, they have well-known difficulties when facing con-
tingencies in the hard parts of contingency space. The reinforcement learning perceptron
in fact reduces to the “win-stay/lose-shift” strategy (also known as the two-state Tsetlin
automaton) which performs better than chance, but far from optimally, under all nonde-

terministic contingencies.

A final interesting connection is that the symmetric Ap_p algorithm (A = 1) will
“probability match® when facing contingencies in which the reward probabilities for its
two actions sum to one for each stimulus pattern. This means, for example, that if the
reward probabilies for performing actions +1 and —1 are respectively .7 and .3, then the
Ap_p element will eventually perform action +1 and —1 with respective probabilities .7
and .3. This yields an overall reward probability that is better than chance but far from
optimal. Probability matching was extensively studied by mathematical psychologists (see

the review by Meyers, 1976).

68

H. Boltzmann Machines

Although we cannot point out direct relationships between learning by networks of
ApR_p elements and learning by the “Boltzmann machine® of Hinton, Sejnowski, and col-
leagues (Ackley et al., 1985; Hinton and Sejnowski, 1983), this approach is of sufficient
interest in the context of stochastic cooperativity that we briefly discuss it. A similar ap-
proach has been independently developed by Smolensky (1983). A Boltzmann machineis a
network of stochastic linear threshold units, each having an input/output function identi-
cal to that of an Ap_p element using the logistic distribution (Equations 1 and 3). Unlike
the networks considered here, these networks are symmetrically connected, meaning that
if unit A influences unit B, then unit B influences unit A in exactly the same way. This
assumption permits the application of mathematical results from statistical thermodynam-
ics to determine the relative probability of each pattern of activation at equilibrium. If
one regards the interconnection weights as specifying constraints that are to hold between
the activities of pairs of units, then at equilibrium the probability of an activity pattern
is higher to the extent that it simultaneously satisfies all of these constraints. There is
an analogy between the degree the constraints are satisfied and the energy of a physical
system—the system evolves so as to spend a higher proportion of time in low energy states.
The computational temperature of the system, T', can be manipulated to affect both the
time it takes the system to reach equilibrium and the equilibrium probabilities of activity
patterns. This connection between statistical physics and networks of neuron-like elements
is due to Hopfield (1982), with an earlier but less specific connection being made by Cragg
and Temperley (1954). The computational process of obtaining equilibrium probabilities
i8 described by Kirkpatrick, Gelett, and Vecchi (1983) and by Geman and Geman (1984).

The learning algorithm proposed by Hinton and Sejnowski (1983) is of interest here
because it addresses the problem of assigning credit to the hidden elements. The train-
ing paradigm is similar to the supervised-learning paradigm discussed above for the Wid-
row/Hoff and perceptron elements. Here, however, only the visible elements of the network
are directly told what they should be doing. It turns out that the gradient of overall net-
work performance with respect to any weight, even an interior weight, can be determined

using only the behavior of the two elements the weight connects provided this behavior

59

is measured when the network is operating according to the equilibrium probability dis-
tribution. The learning procedure then changes weights according to this gradient by a
stochastic hill-climbing method. Although it can be proved that the gradient of the global
performance index can be determined locally in this manner, it is not necessarily true that
the stochastic hill-climbing procedure is always capable of avoiding false peaks. Neverthe-
less, simulation experiments show that the process does tend to work, but as in the case
of networks of Ag_pelements, there are many unanswered questions about the amount
of time needed for learning and how it increses as problems become harder. See Ackley et

al. (1985) for the most complete discussion of this learning process.

Despite some superficial similarities, networks of Ap_p elements and Boltzmann ma-
chines are quite different. First, the units of Boltzmann machines are not self-interested
components that learn to cooperate in the sense of game theory. Second, the networks
of Ap_p elements we have simulated so far have all been layered networks without recur-
rent connections, whereas the Boltzmann learning procedure is restricted to symmetrically
connectioned, hence totally recurrent, networks. In a layered network the entire stage
corresponding to the running of a Boltzmann network or Harmony system (Smolenski,
1983) to equilibrium appears in a degenerate form: it is just the process of evaluating the
input/output function realized by the network, and no iterative relaxation procedure is
required. Hence, layered networks do not solve subtle constraint satisfaction problems.
On the other hand, once a layered network has learned, its performance in computing
this function is essentially instantaneous. We have not yet decided on the best way to
extend our approach to the recurrent case, but we do not think it is inherently limited to

nonrecurrent networks. Future research will concern the case of recurrent but asymmetric

networks.

As the preceding comparisons show, the Ap_p element is closely related to a number
of existing adaptive elements and learning algorithms. Under one set of restrictions, it spe-
cializes to more conventional deterministic adaptive elements, such as those embodying the

perceptron algorithm, that are designed to form linear associative mappings when explicit

60

and reliable training information is available. Through this direction of specialization,
the Ap_p element makes contact with models of animal behavior in classical conditioning
such as the Rescorla/Wagner model. Under another set of restrictions, the Ap_p element
specializes to stochastic learning algorithms that are capable of improving their perfor-
mance under response contingencies that are disguised by high degrees of noise. Through
this connection, the Ag_p element makes contact with both the stochastic automaton
algorithms developed by engineers and the stochastic learning models of mathematical
psychology. Consequently, the Ap_p element lies in the intersection of important classes
of algorithms developed within theoretical traditions that have remained largely separate.
Although we think that these theoretical connections are interesting for their own sake,
our major interest in Ap_p elements, and similar elements, is a result of their ability to
learn to cooperate with one another as components of multilayered adaptive networks.
The various theoretical threads brought together in the Ap_p element complement one

another in ways critical to this capability.

These properties of the Ag._p element suggest that it may be a good candidate for care-
ful empirical investigation as a model of associative learning at the cellular level. From
a broad perspective, the Agr_pmechanism is Hebbian since it bases synaptic change on
both pre- and postsynaptic signals. Consequently, the empirical support, or lack of it,
for Hebbian synapses is relevant to the status of the Ap_pelement as a neuronal model.
Viana di Prisco (1984) provides a good review of the current state of the evidence for Heb-
bian synapses, and the overall picture is far from compelling. However, the Ap_p model
would suggest that the conditions for synaptic change in associative learning are consid-
erably more stringent than those required by the Hebbian postulate. That the conditions
for synaptic change in associative learning are more stringent than those suggested by
the Hebbian postulate may provide an explanation for the relative difficulty in obtaining
synaptic changes with the usual experimental manipulations designed to test the Hebbian

postulate,

On the other hand, it may not be correct to associate an Ap_pelement with a neuron
in the manner suggested by Figure 1. For example, the influence of postsynaptic activity

on synaptic modification required by the Ap_ palgorithm could be mediated by pathways

61

external to the neuron that carry information about post-synaptic activity to the presy-
naptic terminals. This implementation of the Agr_p algorithm would be similar to one
suggested by Sutton and Barto (1981) for a different algorithm. Alternatively, the pro-
cesses required by the Ag_p algorithm could occur at an organizational grain finer than
entire neurons, for example, at the level of groups of adjacent synapses. These possibilities
suggest that although the Ap_p element is “neuron-like” in the tradition of of the adaptive
elements described in this section, its specific features may not map in a literal way onto
actual neurons. We would hope, however, that the principles of learning embodied in the

Ap_p algorithm would survive various interpretations.

V1. DISCUSSION

Cooperativity in neural networks undoubtedly takes many forms, some of which are
surely represented in the mathematical models and computer simulations to which the
label cooperative computation is usually applied. The research described in this article is
an attempt to add another level of meaning to computational cooperativily by starting
with elemental units having preferred inputs and means for learning how to obtain them in
a variety of environments. Whereas a set of computational units whose activity is mutually
supporting through excitatory interactions may be usefully regarded as a coalition, a set of
gelf-interested adaptive units in a similar arrangement may be understood to have entered
into this configuration because it furthered their individual interests to do so. We therefore

gain some sense both of how the coalition formed and why it is maintained.

A major factor affecting the ability of Ar_p elements to learn as hidden elements of
petworks is their use of randomness. Spontaneous random activity gives Ar_p elements
the ability to improve performance under response contingencies falling in arbitrary re-
gions of contingency space. We have argued that this ability is essential for network
self-organization because each component’s environment implements time-varying contin-
gencies that cannot be guaranteed to remain within the “easy” regions of contingency
space. Although we have not demonstrated it here, deterministic elements such as those
reviewed in Section V are not able to do this and fail as adaptive network components

except in simple cases. Intuitively, the random component of an Ag_p element’s activ-

62

ity provides variety that causes the activity of a network to explore more thoroughly the
space of activity patterns. Deterministic elements do not test enough possibilities before
they stop learning. As an Apg_pelement’s weights increase in magnitude, its behavior

becomes more deterministic in a way carefully controlled to prevent the inferior actions

from dominating.

The simulations presented here show that networks of Ap_pelements are able to
learn to implement associative mappings that are beyond the capabilities of individual
elements. More importantly, they are able to do this when being directed by evaluative
feedback that is based on knowledge of “what” the network as a whole should accomplish
but no knowledge of “how” the network should accomplish it. It is commonplace to
postulate the existence in nervous systems of command hierarchies in which high-level
commands are directed to lower-level processes that are able to carry them out. The form
of learning with which we have been concerned provides a means for a subordinate process
to acquire the knowledge required to carry out such commands. The *what” knowledge
of the superordinate center is sufficient to generate evaluative feedback for its subordinate

but is not sufficient to provide detailed instruction.

Network learning algorithms capable of learning under these conditions in an efficient
and reliable way have remained elusive despite considerable effort over the last thirty years.
We can by no means claim that the approach described here solves all of the problems.
We have not extended the Ap_pconvergence theorem to networks of Ap_p elements,
and we have not yet answered the critical questions concerning the rate of learning and
how it changes as the networks become larger. It is relatively easy to devise algorithms
that are guaranteed to find optimal solutions by *brute-force” search of the space of all
possible weight values. The point is to do it much more quickly than these, or more
quickly on the average, while probably settling for solutions that are sufficiently good
but not necessarily optimal. We are currently in the process of performing comparative
simulation studies that will allow us to suggest answers to these questions. At present we
only know that for relatively small networks the simplest brute-force search generally yields
almost no improvement in performance by the time the Ap_p networks are performing

near optimally.

63

As we mentioned in the introduction, our research is an attempt to study networks
of adaptive elements possessing enough but not more behavioral sophistication to allow
them to learn to enter into cooperative relationships with other elements like themselves.
It is therefore driven by computational, rather then biological, issues. But an assumption
common to nearly all theoretical studies of networks of neuron-like computing elements
is that insight can be gained into biological mechanisms by studying the computational
problems they apparently solve and by proposing mechanisms that are compatible with
presumed biological constraints (Marr and Poggio, 1977) We believe that the problem of
learning by the “hidden® elements of a network is fundamental whether the network is of
natural origin or is man-made. It is hard to imagine where explicit instructional infor-
mation might come from for all of the neural units involved in long-term adaptation to
unforeseen changes in the demands made on an organism’s behavior. On purely logical
grounds, the credit-assignment problem in its various forms seems inescapable. The strat-
egy illustrated by our research, in which credit assignment is accomplished through the
cooperative interaction of stochastic self-interested adaptive components, appears to have
promise both as a technique in man-made networks and as a hypothesis about neural net-
works. Provided the components are sufficiently robust, reliable learning is a more or less
natural consequence of the interaction of self-interested adaptive components. However, as
we have attempted to make clear, the required degree of robustness is not easy to achieve,

and has not been achieved by neuron-like computational elements studied in the past.

It is fitting to close by paraphrasing a remark made by the evolutionary biologist G. C.
Williams (while discussing populations of organisms, 1966): We urge the reader to maintain
a conceptual distinction between a network of adapted components and an adapted network
of components. The behavioral success of the networks we have presented is an incidental
consequence of the adaptations by which each component attempts to improve its own
performance—they are networks of adapted components. It is not at all paradoxical that
the behavioral capabilities of such a network can far outstrip the behavioral capabilities

of any of its constituent elements.

64

REFERENCES

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. A learning algorithm for Boltzmann
machines. Cognstsve Science, 1985, 9, 147-169.

Allanson, J. T. Some properties of randomly connected neural networks. In Cherry, C.
(Ed.), Information Theory. London: Butterworths Scientific Publications, 1956.

Amari, S. A method of statistical neurodynamics. Kybernetik, 1974, 14, 201-215.

Amari, 8., & Arbib, M. A. Competition and cooperation in neural nets. In Metzler, J.

(Ed.), Systems neuroscience. New York: Academic Press, 1977.

‘Amarj, 8., & Arbib, M. A. (Eds.) Competition and cooperation in neural nets. New York:
Springer-Verlag, 1982.

Anderson, C. W. Feature generation and selection by a layered network of reinforcement
learning elements: Some initial experiments. COINS Technical Report 82-12, University
of Massachusetts, Amherst, 1982.

Anderson, J. A., Silverstein, J. W., Ritg, S. A., & Jones, R. S. Distinctive features,
categorical perception, and probability learning: Some applications of a neural model.
Psychological Review, 1977, 85, 413-451.

Atkinson, R. C., Bower, G. H., & Crothers, E. J. An sntroduction to mathematical learning
theory. New York: Wiley, 1965.

Atkinson, R. C., & Estes, W. K. Stimulus sampling theory. In Luce, R. D., Bush, R. R.,
& Galanter, E. (Eds.), Handbook of mathematsical psychology, Vol. II. New York: Wiley,
1963.

Barto, A. G. (Ed.) Simulation experiments with goal-seeking adaptive elements. Asr Foree
Wright Aeronautical Laboratories/Avionics Laboratory Technical Report AFWAL-TR-84-
1022, Wright-Patterson AFB, Ohio, 1984.

65

Barto, A. G., & Anandan, P. Pattern recognizing stochastic learning automata. IEEE
Transactions on Systems, Man, and Cybernetics, 1985.

Barto, A. G., & Sutton, R. S. Goal seeking components for adaptive intelligence: An initial
assessment. Asr Force Wright Aeronautical Laboratories/Avionics Laboratory Technical
Report AFWAL-TR-81-1070, Wright-Patterson AFB, Ohio, 1981a.

Barto, A. G., & Sutton, R. S. Landmark learning: An illustration of associative search.

Bioliological Cybernetics, 1981b, 42, 1-8.

Barto, A. G., Sutton, R. S., & Anderson, C. W. Neuronlike elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 1983,

18, 835-846.

Barto, A. G., Sutton, R. S., & Brouwer, P. S. Associative search network: A reinforcement

learning associative memory. Bsologsical Cybernetics, 1981, 40, 201-211.

Beurle, R. L. Properties of a mass of cells capable of regenerating pulses. Phslosophscal
Transactions of the Royal Society (London), Series B, 1956, 240, 231-277.

Brandon, R. N., & Burian, R. M. (Eds.) Genes, organisms, populations: Controversies
over the units of selection. Cambridge, Massachusetts: The MIT Press, 1984.

Brooks, R. Experiments in distributed problem solving with interative refinement. Univ.

of Massachusetts Ph.D. Dissertation, Dept. of Computer and Information Science, 1983.

Bush, R. R., & Estes, W. K. (Eds.) Studies in mathematical learning theory. Stanford:
Stanford University Press, 1959.

Bush, R. R., & Mosteller, F. A mathematical model for simple learning. Psychologscal
Review, 1951a, 68, 313-323. (Reprinted in Luce, R. D., Bush, R. R., & Galanter, E.
(Eds.), Readsngs in mathematical psychology, vol. 1. New York: Wiley, 1963, 278-288.)

Bush, R. R., & Mosteller, F. A model for stimulus generalization and discrimination.

Psychological Review, 1951b, 68, 413-423. (Reprinted in Luce, R. D., Bush, R. R,, &

66

Galanter, E. (Eds.), Readings in mathematscal psychology, vol. 1. New York: Wiley, 1963,
289-299.)

Bush, R. R., & Mosteller, F. Stochastsc models for learning. New York: Wiley, 1955,

Cover, T. M. A note on the two-armed bandit problem with finite memory. Information

and Control, 1968, 12, 371-377.

Cover, T. M., & Hellman, M. E. The two-armed bandit problem with time-invariant finite
memory. IEEE Tyansactions on Information Theory, 1970, 16, 185-195.

Cragg, B. G., & Temperley, H. N. V. The organization of neurones: A cooperative analogy.
EEG Clinscal Neurophysiology, 1954, 6, 85-92.

Crane, H. D. Beyond the seventh synapse: The neural marketplace of the mind. SRI
Research Memorandum, Stanford Research Institute, Menlo Park, CA, December, 1978.

Dawkins, R. The selfish gene. Oxford: Oxford University Press, 1976.
Dawkins, R. The extended phenotype. Oxford: W. H. Freeman and Company, 1982.

Dev, P. Segmentation process in visual perception. International Journal of Man-Machine
Studses, 1974, 7.

Didday, R. L. A model of visuomotor mechanisms in the frog optic tectum. Mathematical
Bsoscsences, 1976, 30, 169-180.

Duda, R. O., & Hart, P. E. Pattern classification and scene analysis. New York: Wiley,
1973.

Estes, W. K. Toward a statistical theory of learning. Psychololgical Review, 1950, 57,
94-107.

Farley, B. G., & Clark, W. A. Simulation of self-organizing systems by digital computer.
LR.E. Transactions on Information Theory, 1954, 4, 76-84.

67

Feldman, J. A. Dynamic connections in neural networks. Biological Cybernelics, 1982,

46, 27-39.

Feldman, J. A. (Ed.) Special issue on connectionist models and their applications. Cogns-
tive Science, 1985, O.

Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980, 36,
193-202.

Geman, S., & Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Patlern Analysss and Machine Intelligence,

1983, 6.

Grossberg, S. Competition, decision, concensus. Journal of Mathematical Analysis and
Applications, 1978, 66, 470-493.

Grossberg, S. Biological competition: Decision rules, pattern formation, and oscillations.

Proceedings of the National Academy of Science, 1980, 77, 2338-2342.

Harth, E., Csermerly, T. J., Beek, B., & Lindsay, R. D. Brain functions and neural
dynamics. Journal of Theoretical Biology, 1970, 26, 93-120.

Harth, E. Visual perception: A dynamic theory. Bsol. Cybern., 1976, 22, 169-180.
Hebb, D. O. The organszation of behavior. New York: Wiley, 1949.

Hinton, G. E. Implementing semantic networks in parallel hardware. In Hinton, G. &
Anderson, J. (Eds.), Parallel models of associative memory. Hilsdale, N. J.: Erlbaum

1081, 161-187

Hinton, G. E., & Anderson, J. Parallel models of associative memory. Hilsdale, N. J.:
Erlbaum, 1981.

Hinton, G. E., & Sejnowski, T. J. Analyzing cooperative computation. Proceedings of the

€8

Fifth Annual Conference of the Cognitive Science Society, Rochester N.Y., 1983.

Holland, J. H. Adaptation in natural and artsficial systems. Ann Arbor, Michigan: Uni-
versity of Michigan Press, 1975.

Hopfield, J. J. Neural networks and physical systems with emergent collective computa-
tional abilities. Proceedsngs of the National Academy of Science, 1982, 79, 2554-2558.

Julesz, B. Foundations of cyclopean perception. Chicago: University of Chicago Press,

1971.

Kilmer, W. L., McCulloch, W. S., Blum, J. A model of the vertebrate central command
system. International Journal of Man-Machine Studies, 1969, 1, 279-309.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. Optimigation by simulated annealing.
Scsence, 1983, 220, 671-680.

Klopf, A. H. Brain function and adaptive systems—A heterostatic theory. Air Force Cam-
bridge Research Laboratories Research Report, AFCRL-72-0164, Bedford, MA., 1972 (A
summary appears in Proceedings International Conference on Systems, Man, Cybernetics).
IEEE Systems, Man, and Cybernetics Society, 1974, Dallas, Texas.

Klopf, A. H. The hedonistic neuron: A theory of memory, learning, and sntelligence.
Washington, D.C.: Hemisphere, 1982.

Kohonen, T. Assocsative memory: A system theoretic approach. Berlin: Springer, 1977.

Kurose, J. F., Schwartz, M., & Yemini, Y. A microeconomic approach to distributed
resource sharing in computer communication networks. 5th International Conference on

Distributed Computing Systems, IEEE Computer Society, Denver, 1985.

Kubie, J. L., & Rank, J. B. Jr. Sensory behavioral correlates in individual hippocampal
neurons in three situations: Space and context. In Seifert, W. (Ed.), Neurobsology of the
hippocampus. New York: Academic Press, 1983, 433—447.

€9

Lakshmivarahan, S. Learning algorsthms and a—pplications. Springer-Verlag, 1981.

Lesser, V., & Corkill, D. Functionally accurate cooperative distributed systems. IEEE
Transactions on Systems, Man, and Cybernetics, 1981, 11.

Luce, R. D., & Raiffa, H. Games and decisions. New York: Wiley, 1957.
MacGregor, R. J., & Lewis, E. R. Neural modeling. New York: Plenum Press, 1977.

Mackintosh, N. J. Conditioning and associative learning. New York: Oxford University
Press, 1983.

Marr, D., & Poggio, T. Cooperative computation of stereo disparity. Science, 1976, 194,
283-287.

Marr, D., & Poggio, T. From understanding computation to understanding neural cir-

cuitry. Neurosciences Research Progress Bulletin, 1977, 16, 470-488.

Marshak, J., & Radner, R. Economic theory of teams. New Haven: Yale University Press,
1972.

Minsky, M. L. Theory of neural-analog reinforcement systems and its application to the

brain-model problem. Princeton Univ. Ph.D. Dissertation. 1954.

Minsky, M. L. Steps toward artificial intelligence. Proceedings of the Institute of Radso
Engineers, 1961, 49, 8-30. (Reprinted in Feigenbaum, E. A., & Feldman, J. (Eds.),
Compulers and thought. New York: McGraw-Hill, 1963, 406-450.)

Minsky, M. L., & Papert, S. Perceptrons: An sntroduction to compulational geometry.
Cambridge, MA: MIT Press, 1969.

Minsky, M. L., & Selfridge, O. G. Learning in random nets. Information Theory, Fourth
London Symposium. London: Butterworths, 1961.

Moore, G. P., Perkel, D. H., & Segundo, J. P. Statistical analysis and functional interpre-
tation of neuronal spike data. Annual Review of Physiology, 1966, 28, 493-522.

70

Myers, J. L. Probability learning and sequence learning. In Estes, W. K. (Ed.), Handbook
of learnsing and cognstsve processes, vol. 3. Hillsdale, N. J.: Erlbaum, 1976, 171~205.

Narendra, K. S., & Thathachar, M. A. L. Learning automata—a survey. JEEE Transac-
tions on Systems, Man, and Cybernetics, 1974, 4, 323-334.

Nilsson, N. J. Learning machines. New York: McGraw-Hill, 1965.

Rescorla, R. A., & Wagner, A. R. A theory of Pavlovian conditioning: Variations in
the effectiveness of reinforcement and non-reinforcement. In Black, A. H., Prokasy, W.
F. (Eds.), Classical conditionsng II: Current research and theory. New York: Appleton-
Century-Crofts, 1972.

Restle, F. A theory of discrimination learning. Psychological Review, 1955, 62, 11-19.

Robbins, H. Some aspects of the sequential design of experiments. Bulletin of the Amer-
scan Mathematical Socsety, 1952, 68, 527-532.

Rosenblatt, F. Principles of neurodynamics. New York: Spartan Books, 1962.

Smolenski, P. Harmony theory: A mathematical framework for stochastic parallel pro-
cessing. Proceedings of the National Conference on Artificial Intelligence AAAI-83, Wash-
ington, DC, 1983.

Staddon, J. E. R. Adaptive behavior and learning. Cambridge: Cambridge University
Press, 1983.

Sutton, R. S. Temporal aspects of credit assignment in reinforcement learning. Univ. of
Massachusetts Ph.D. Dissertation, 1984.

Sutton, R. S., & Barto, A. G. Toward a modern theory of adaptive networks: Expectation
and prediction. Psychological Review, 1981, 88, 135-171.

Szentdgothai, J., & Arbib, M. A. Conceptual models of neural organization. Neurosciences
Research Program Bulletin, Volume 12, Number 3, October 1974.

71

Thorndike, E. L. Animal sntelligence. Darien, Conn.: Hafner, 1911.

Tsetlin, M. L. Automaton theory and modelling of biological systems. New York: Academic
Press, 1973.

Uttley, A. M. The probability of neural connexions. Proceedings of the Royal Socsety
(London), Series B, 1965, 144, 229-240.

Varshavsky, V. I. Collective behavior and control problems. In Michie, D. (Ed.), Machsne
tntelligence 8. New York: American Elsevier, 1968.

Varshavsky, V. I. Some effects in the collective behavior of automata. In Meltzer, B., &

Michie, D. (Eds.), Machine sntelligence 7. New York: Wiley, 1972.
Viana Di Prisco, G. Hebb synaptic plasticity. Progress in Neurobsology, 1984, 22, 89-102.

von Neumann, J. Probabilistic logics and the synthesis of reliable organisms from unreli-
able components. In Shannon, C. E., & McCarthy, J. (Eds.), Automata studies. Princeton,

N. J.: Princeton University Press, 1956, 43-98.

von Neumann, J., & Morgenstern, O. Theory of games and economsc behavior. Princeton,

N. J.: Princeton University Press, 1953.

Widrow, B. Generalization and information storage in networks of adaline “neurons.” In
Yovits, M., Jacobi, G., & Goldstein, G. (Eds.), Self-organizing systems. Spartan Books,
1962.

Widrow, B., Gupta, N. K., & Maitra, S. Punish/reward: Learning with a critic in adaptive
threshold systems. IEEE Transactions on Systems, Man, and Cybernetics, 1973, b5, 455~
465. '

Widrow B. & Hoff, M. E. Adaptive switching circuits. 1960 WESCON Convention Record
Part IV, 1960, 96-104.

Williams, G. C. Adaptation and natural selection. Princeton: Princeton University Press,

72

1966. (Reprinted in part in Brandon, R. N., & Burian, R. M. (Eds.), Genes, organisms,

populations: Controversies over the units of selection. Cambridge, Massachusetts: The

MIT Press, 1984, 52-68.)

Wilson, H. R., & Cowan, J. D. Excitatory and inhibitory interactions in localized popu-
lations of neurons. Bsophysical Journal, 1972, 12, 1-24.

Yemini, Y. Selfish optimization in computer networks. Proceedings of the 20th IEEE
Conference on Decssion and Control. Piscataway , N. J.: IEEE Press, 1982, 281-285.

Yemini, Y., & Kleinrock, L. On a general rule for access control or, silence is golden....
Proceedings of the International Symposium on Flow Control in Computer Networks. Am-
sterdam: North Holland Press, 1979, 335-347.

73

