o

Understanding the Bugs of
Novice Programmers

Jeffrey Bonar

COINS Technical Report 85-12

University of Massachusetts
Computer Science Department
Amherst, MA 01003

April 1985

This work was primarily supported by the National Science
Foundation under NSF Grant SED-81-12403. Currently, the
author is supported by the Office of Naval Research under
Contract Numbers N00014-83-6-0148 and N00014-83-K-0655.

Any opinions, €£findings, conclusions, or recommendations
expressed in this report are those of the author, and do not
necessarily reflect the views of the U.S. Government.

Table of Contents
1. Introduction
1.1. Motivation
2. A Theory of Novice Programming Bugs
2.1. Representation of Novice Programming Knowledge
2.1.1. Fragments of Pragmatic Programming Knowledge
2.1.2. Novice Step-By-Step Natural Language Procedure Knowledge
2.1.3. Representing Functional and Surface Parallels
2.2. The Process of Generating a Bug
2.2.1. Bug Generators; SSK Con founds PK
2.2.2. Bug Generators:; Intra-PK
2.2.3. Bug Generators: Other Con founds PK
3. Plans: Realizing PK and SSK
3.1. Realizing PK
3.2. Realizing SSK
3.3. Representing Functional Links Between PK and SSK
4, Evaluating The Theory
4.1. Expectations
4.2. Using Protocol Analysis
4.3. Protocol Analysis Methods
4.3.1. Selecting Protocols for Analysis
4.3.2. Plan Analysis
4.3.3. Bug Analysis
4.4. Results of the Analysls
4.4.1. Overview of the Protocols
4.4.2. Expectation 1: Plan Use Is Extensive
4.4.3. Expectation 2: Bug Generators Plausibly Explain the Bugs
4.4.4. Expectation 3: SSK/PK Bug Generators Are Critical
5. Concluding Remarks
5.1. The Theory of Novice Programming Bugs
5.2. Teaching Novice Programmers
5.3. Conclusion
Acknowledgements
References
Appendix I. The Plans
Appendix II. The Bug Generators
Appendix III. A Sample of an Analyzed Protocol

11
11
13
14
15
16
20

23
26
28

32

36

39
40
40
4
47
47
51

§5
§7
§7

$858888%

Understanding the Bugs of Novice Programmers”

List of Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-6:
Figure 2-8:
Figure 3-1:
Figure 3-2:
Figure 3-3:

Figure 3-4:
Figure 3-5:
Figure 3-8:
Figure 3-7:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 5-1:

Figure 5-2:

Figure III-1:
Figure III-2:

Example Bug Story For a Novice Program
The Fixed Count Averaging Problem
The Factory Gate Problem
Typical Answer for the Factory Gate Problem
Representation of Novice Programming Knowledge
The Process of Bug Generation
Bug Analysis showing the operation of Bug Generators
Bug Generators: SSK Con founds PK
Bug Generators: Intra-PK
Bug Generators: Other Con founds PK
Pascal implementation of the tactical programming plan for a counter
LISP implementation of the tactical programming plan for a counter
Natural Language implementations of the tactical programming plan for
a Counter
The Payroll Problem
The Ending Value Averaging Problem
Natural Language Implementation of New Value Controlled Loop
Counter Variable Plans: tactical, Natural Language, and Pascal
The Ending Value Averaging Problem
Protocol Segment With Claimed Instance of Counter Variable Plan Use
Examples of Bug Analysis Annotations
Final program for Subject 13 working on the while problem.
Final program for Subject 6 working on the while problem.
Final program for Subject 11
Final program for Subject 12
Fragment of Pseudo-Code Solution to the Ending Value Averaging
Program
Fragment of Typical Novice Natural Language for the Ending Value
Averaging Problem
A Correct Solution to the Ending Value Averaging Problem
Code Written In the Short Example Protocol Analysis

List of Tables

Table 2-1:
Table 3-1:
Table 3-2:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:

Summary of Bug Generators

Reallzation of Components of the Theory of Novice Programming Bugs
Summary of Plans

Summary Statistics for the Four Protocols Analyzed

Break Down of Plan Usage Statistics for the Analyzed Protocols.

Bug Generator Statistics for the Analyzed Protocols

Slip vs. Non-Slip Bug Generator Statistics

Bug Generator Statistics by Bug Generator Type

-

[
© ~3 0 00 =3 3 &

[
[X]

8825 BB8EBEE B888RR

(<]
o

59

74
75

21
27
31
51
52
54
55
56

Abstract

Why do people have trouble learning to program? We present a theory of novice
programming bugs motivated by interviews with novice programmers solving simple
programming problems. Novice programming knowledge is represented both with
fragments of expert programming knowledge (PK) and step-by-step Natural Language
procedural knowledge (SSK) representing the experience a mnovice brings to
programming from Natural Language. Both kinds of knowledge are represented with
programming plans. When a novice Is programming and encounters a gap or
inconsistency in the PK, he or she has reached an impasse. The theory proposes bug
generators as strategies for patching the impasse and continue developing a solution.
Usually this patch introduces a bug. The theory Is evaluated by analyzing the
interviews of novice programmers. A key set of predictions from the theory are
formulated and an analysis of the protocol data Is described. Based on an analysis of
four protocols the predictions of the theory are supported.

1. Introduction

Why do people have trouble learning to program? Specifically, is there a way to
systématically explain the bugs‘ made by novice programmers. We present a theory of novice
programming bugs motivated by Interviews with novice programmers solving simple
programming problems. While much of the programming methodology literature focuses on
mathematical formalization of programming, we instead focus on understanding the knowledge
that novice and expert programmers bring to a programming problem. Our key ldea Is that
many novice programming bugs can be explained as systematlc patterns of inappropriate
knowledge use. In particular, the novice has Inappropriately used knowledge of writing step-by-
step procedural specifications in Natural Lansuage.’

Most modern programming textbooks contaln discussions of "structured design®, “stepwise
refinement®, and other i!deas that have emerged from professional programming methodology.

We feel that weak novice understanding of these design techniques cannot account for most

Lrnis usage of *bug® reflects the common usage in computer seience: an error in s written program. In cogaitive science
literature the term ®bugs® is more commonly used to refer to errors in s persons procedure for performing & skill For
example, Brown and VanLehn [Brown and VanLehn 80] and Resnick [Resnick 82] bave discussed bugs in children’s multi-
column subtraction algorithms. Confusion can arise in this work because we are concerned with both mental *programs®
and computer programs,

z’rhronghout. the term Natural Language will bo used to refer to the langusge in which step-by-step procedures are
written. *English®, the other obvious choice, was not used becaunse it unnecessarily implied that the novice programming
phenomena discussed here were limited to English.

As we discuss below, these procedures are often not ®step-by-step? in a strict sense. For example, some steps modily
earlier steps or establish a global condition to bo checked.

2 Understanding the Bugs of Novice Programmers’

novice bugs. While clearly an important part of programming education, the techniques seem at
too high a level for novices who are still struggling with, for example, correctly specifying a loop.
Often, the design techniques simply do not make sense to novices. Novices often report that a
plece of pseudo-code "looks reasonable® but "its not the way I would have done it." Novices do
not understand the principles that allow one to produce useful pseudo-code. In this article, we
attempt to show that novice programmers have difficulty connecting the relatively low-level
syntax and semantics of constructs in the programming language and higher-level design

concerns.

We call the bridge between programming language syntax and semantics and higher-level
design concerns pragmatics. Pragmatics is how the language constructs are used to accomplish
standard programming tasks. Pragmatics capture the role played by a plece of code. Pragmatics
Is the information captured by good comments. It is the level of detail used by programmers
talking to one another: "Well, here we loop through the table, building up a total until we see the
sentinel value®. An appreciation of programming pragmatics is missing from most programming
courses and texts. Much of the work reported here Is concerned with characterizing programming
pragmatics more closely. In particular, pragmatic programming knowledge will be captured in
frame or schema-like structures called programming plans. We will describe programming

plans that capture pragmatic notions like "counter variable® and "sentinel controlled loop.”

It is not surprising that pragmatics Is often overlooked in programming instruction.
Investigations of many domains have revealed that experts have critical tacit knowledge about
the role and purpose of various primitives. In physics, for example, experts categorize problems
according to abstract physics principles (e.g. “conservation of energy”) while novices categorize
the same problems by literal features (e.g. “inclined plane®) [Chi et al. 81]. Consider an example
from a programming textbook. The following Is a typical explanation of the repeat and waile

looping constructs in Pascal:

The action of a repeat sStructure will take place at least once; the while loop's
action may not be executed at all. The repeat structure’s exit condition, when met,
causes looping to stop. The watle’s entry condition, when met, causes looping to
continue. (page 187) [Cooper and Clancy 82]

This Is a relatively low level explanation that assumes the reader understands the situations in
which an “action ... will take place at least once” etc. Consider, In contrast, an explanation

related to the roles played by these constructs:

Introduction 3

The wvhile construct s for loops controlled by a new value either read or created
within the loop. The repeat construct is for loops controlled by a value bullt up within
the loop (like a running total).

(See Soloway et al. [Soloway et al. 82a] for a complete discussion of how novices use the three
Pascal looping constructs.) The standard explanation is correct, of course, but at the level of

semantics, not pragmatlics.

Along with our focus on pragmatic programming knowledge, we focus on bugs. In
particular, bugs arising out of missing or mis-appllied pragmatic knowledge. Bugs are a powerful
window Into a novice’'s understanding of a domain. Bugs appear where a novice has missing or
Inaccurate knowledge. We discuss bugs in elementary programming, and focus on mismatches
between what a novice knows from non-programming experience and the pragmatic programming
knowledge that the novice needs to learn. In particular, we find that a novice uses experience
with step-by-step Natural Language procedures to supply missing knowledge about programming
language pragmatics. This and other similar novice strategies for dealing with missing or mis-

applied pragmatic knowledge are called bug generators.

A bug study of programming Is challenging because of the richness of the programming
domain. Problem solutions typlcally involve many lines of code and not a single numerical
answer, as in a domain like elementary arithmetic. Programming also requires several kinds of

knowledge about both the problem and how to use the programming language.

1.1. Motivation

In this section we motivate our theory of novice programming bugs. The theory was
developed to provide a systematic account of novice bugs. Previous explanations typlcally were
based on bug stories - plausible descriptions of the bugs occuring in a program - and lacked a
systematic or empirical basis. In this section we illustrate the problems with bug stories. We
next present a serles of patterns seen In the work of novice programmers. Our theory of novice

programming bugs Is bullt on these patterns.

In cognitive science it Is commonly assumed that bugs often have a rational basis (Chi et al.
82, Clement 82, Pollatsek et al. 81, Resnick 83, Young and O'Shea 81]. One can demonstrate
rational bug explanations with bug stories [Brown and VanLehn 80] - plausible explanations for
a novice bug. Bug stories have been developed to explain the bugs found in novice programs
Bonar (Bonar 79]. Figure 1-1, for example, includes a simple programming problem, a buggy

4 Understanding the Bugs of Novice Programmers’

The Ending Value Averaging Problem

Write a program which repeatedly reads In integers until It reads the Integer
90009. After seeing 99999, it should print out the CORRECT AVERAGE without
counting the final 99999. Remember, the average of a serles of numbers is the sum of
those numbers divided by how many numbers there are in the series.

The Buggy Novice Program (actual novice program)

Prograa StedentSprobless (Iaput, Outpat);
Var nus, nextaum, couat, s : iateger;
av @ real;

Begia (sprograme)
aum:=0;

aextous:=0;
couat :=0;
IF aextaua <> 0000
THEN Begin (eIF THENs)
road (2extaum);
count:=countey;
8 : = nus + ACXLIuUS;
END (oIF THENSs)

nse
Begin (ELSEs)
Av:s S/count; .
wvriteln (av:8:2)
END (ELSEe)
OD. (eprograae)

The Bug Story :

In this program the student used the Pascal 1f tiea else construct as if it were a looping
construct. This stems from people using the Natural Language phrase "if then® to imply looping.
For example: the phrase “see that hallway, §f a locker is open, then close it® implies looping
through all the lockers. '

Notice that the running total Is not really being accumulated in 8. Instead, the assignment
to 8 reflects reasoning llke "to get the next sum, add the current number (aus) in 8 and the next
number (aextaus) that has just been read®.

Note finally, how, even if 8 were getting the correct value, It and ecouat would be off because
nextaus, the value read In, is not tested until after it has been counted and summed. This Is due
to novice preference for the pattern of read a value, process that value. The appropriate pattern
for solving this problem in Pascal - proccss the last value, read the nezt value - enables the
program to test a value before it Is incorporated into the sum and counted.

Figure 1-1: Example Bug Story For a Novice Program

Introduction 5

program from an actual subject, and plausible explanations for the bugs in that program. The
problem presented requires the subject to read In a serles of numbers, watching for an ending
value of 99999, and producing the average of the numbers read in before the 99999. Producing
the average requires the student to accumulate both a sum and count of the numbers read. The
program produced by the subject has three basic difficultles. For slmpllicity, each difficulty is
described as if everything else in the program Is correct:
1. Where the loop should be the student has used an if then elee Statement. The test is
the correct test for the loop, the thaea branch contains the main elements of the loop

body, and the else branch contains the code that should be below the loop.

2. The summation of the numbers read i3 not done correctly. Numbers are read into the

variable nextaus and are incorrectly summed with the statement 3 :a nuas + nextaus.

3. The loop sums and counts the terminating 96999, only testing for it's presence after
the summation and count.
In the bug story we attempt to explain the bugs in the program. We do this by Inferring a
purpose the novice intended for each component of the program. For each bug we then propose
an explanation for In terms of preferences the novice has for certain incorrect implementation
techniques. Unfortunately, there Is no systematic or empirical basis for Infering those particular
purposes and preferences. While valuable for developing hypotheses about novice programming
behavior, bug stories must give way to a more systematic theory to account for how each bug

occurs. Here we present the beginning of such a theory.

The theory was developed after several years working with college student novice
programmers. Our background work included teaching Introductory programming courses,
writing an Introductory programming text [Bonar 85|, detailed study of novice programs that
complle correctly but contain run-time errors (Bonar et al. 82, Johnson et al. 82). The specific
work reported here Is based on a detailed study of video-taped Interviews with novice
programmers solving programming problems. (See [Bonar 84] for a complete discussion.) These
interviews were first used to develop the intuitions that lle beneath the theory presented In this
chapter. Later, they were systematically analyzed to refine the theory.

Prellminary work with interviews of novice programmers solving programming problems

revealed four patterns:

undaersvanaing vaoe pBugs or (Novice rrogrammers‘_

1. Novice programming knowledge is fragmentary. We have observed that
novices know only some programming knowledge, and what they know Is organized
into Incomplete clusters or fragments. This Is not a surprising observation: Iif their
knowledge consisted of more than fragments, they wouldn't be novices. Furthermore,
the observation is consistent with a large body of work on novices learning in many
different domalins (for a summary of this work see Resnick [Resnick 83]). Work in
these other domains has also shown that what novices do know Is stored in clusters,
pot as isolated bits of information. We make explicit this non-surprising observation
about fragmentary novice programming knowledge for two reasons. First, it Is worth
noting that novices studying programming show similar cognitive behavior to novices
learning physics, geometry, or etc. Second, the theory presented below relles on the

notfon of gaps In the novice knowledge. These gaps are the knowledge not In the

fragments.

2. Novice programming knowledge is often organised pragmatically. We have
observed that novices often know more about their programs than is apparent in the
programming code they produce. In particular, they seem to organize their
understanding of the program pragmatically, describing the role of various statements
and variables in the program. This is in contrast to their weak understanding of the

syntactic or semantic features of the program statements and variables.

To clarify these distinctions, consider the following example statements from Pascal:

A counter: Couat :3 Couat + 1
A running total: Total := Total + Nev_Valze

These two statements are quite similar. Syntactically they both have the same form:

Varsable := Variable «+ Value
Semantically they both use assignment statements, and both involve adding to a
variable and then replacing the value of that variable with the sum. Where they
differ, however, is in their pragmatice: the two statements have quite different roles.
The counter is typically used to count iterations of a loop while the running total Is
used to bulld up a sum based on successive new values. While novices may be
confused about the syntax and semantics of s programming language statement, they
are usually clear about the tactics they intend for that statement. One of our

subjects, for example, correctly noted that in the Fixed Count Averaging Problem (see

Introduction 7

Figure 1-2, the problem asks for the average of ten numbers read from the user), the
counter assignment (l.e. Count := Count + 1) "keeps the loop under control® while the
running total assignment (l.e. Sus := Sus + Nev) "has something to do with something

you are gonna . . . take out of the loop with you®.

Write a program which reads In 10 integers and prints the average of
those Integers.

Figure 1-2: The Fixed Count Averaging Problem

3. Novice programmers frequently reason about programming statements
from knowledge of step-by-step Natural Language procedures. Novice
programmers often seem to reason about thelr programs using their experience with
step-by-step Natural Language procedures (e.g. directions to someone’s house,
assembly ln:f.t.ruct,lonss).8 The Factory Gate Problem (shown In Flgure 1-3) asks the
subject to write a step-by-step Natural Language procedure for a junlor clerk to
collect payroll Information from workers coming out of a factory gate. The clerk
needs to report on the average salary for all the workers that leave the gate before the
first supervisor leaves the gate. This problem was designed to parallel the Ending
Value Averaging Problem (shown at the top of Figure 1-1) in terms of requiring an
average and having a distinguished Input value used to stop the loop.

Please write a set of explicit instructions to help a Junlor clerk collect
payroll information for a factory. At the end of the next payday, the clerk
will be sitting In front of the factory gates and has permission to look at
employee pay checks. The clerk Is to produce the average salary for the
workers who come out of the door. This average should include only those
workers who come out before the flrst supervisor comes out, and should not
include the supervisor’s salary.

Figure 1-3: The Factory Gate Problem

3Note that these procedures are pot strictly step-by-step, though they often take the form of a numbered list of
statements. In actual usage, s number might label one step, several steps, or even a “step® that actually modifies one or
more previous numbered statements,

Understanding the Bugs of Novice Programmers’

a. ldentity worker, check name on list, check wages

Write it down

Walt for next worker, identify next, check name, and so on
When super comes out, stop

Add number of workers you've written down

Add 3ll the wages

g. Divide the wages by the number of workers

~e Aoy

(This procedure written by Subject 13.)

Figure 1-4: Typlcal Answer for the Factory Gate Problem

There are both similarities and incompatibilities between the conventions of step-by-
step Natural Language procedures and the conventlons of congputer programs. A
sample solution to the Factory Gate Problem, shown in Figure 1-3, illustrates several
conventions of step-by-step Natural Language procedures. In particular, consider step
4, the stopping condition for the loop. This condition is phrased as a continuously
active test, always watching the action of the loop for the exit condition to become

4 This kind of control structure is unusual in a programming language. More

true.
typical is a construct where the loop condition gets tested once per loop iteration, e.g.
the waile loop In Pascal. In Natural Language, the word "while® is more typically
used as a continuously active test, as in: “while the highway stays along the coast,
keep following it north”. Novice programmers are easily confused by this difference
between programming languages and Natural Language. One of our subjects even
Inferred a semantics for the continuously active test while loop: “every time {the
variable tested in the wvaile condition) is assigned a new value, the machine needs to

check that value ... ™.

4. Novices patch programming impasses. The fourth pattern we noticed Is in the
way novice errors are actually made. Novices often indicate when they’'ve reached a

toplic where their programming knowledge is weak. They say things like:

*I'm not sure here"
*] don't think I can use that.®

‘Thh is sometimes refered to as a *demon® control structure.

Introduction 9

“I'm sure I'm leaving something out here®

At these points, we say the novice has reached an lmpuu‘ . When novices reach

such an impasse they often propose a series of possible corrections to get past the
impasse. These corrections usually produce a bug, and the novice usually knows that
the corrections are suspicious. Because of they are likely to produce bugs, we call
these corrections patches. These patches sometimes yleld correct programs, but often

fntroduce errors.

As an example of these four patterns, consider Subject 13 working on the Ending Value

Averaging Problem (see the problem statement at the top of Figure 1-1, page 4).

First of all, he is clearly at an impasse. When constructing the counter statements inside
the body of a repest loop, he trys several different forms. It seems that he knows how such a
counter should work (see segments 115 and 121 below), but does not know the right form in
Pascal. Finally he settles on a form, but adds "its not right, I don't think, but I'm gonna leave it
that way for the moment®. In the following, ¥ i3 the counter variable and 1 is the new value
(read) variable. During the time discussed in the following protocol he works on the following

code:

n:=0
Repeat
¥ :3 ¢~ I (THE 1 WAS CROSSED OUT)

108 Subject 13: N equals, I have here [points to initialization of N] N equals 0

109 Interviewer: Yeah

110 Subject 13: So N equals zero plus one, and then, N equal, ehh, and that would
[looking at initialization step, motioning “next*? | reach number N and, all right, we'll
try it that way.

111 Subject 13: N equals, ahh, [WRITES: x := 1] N eq, ahh, N is the number

112 Interviewer: Uh huh

113 Subject 13: And so, I want [pause]

SWe use this term in a similar way to Brown and VanLehn [Brown and Vaoleha 80}

‘Motioning 33 follows: The hand starts palm down and near the body. It then describes a 180 degree are of » circle,
ending up with the palm up and away from the body. During this motion, the index finger is pointing slightly. Saveral
subjects used this motion.

10 Understanding the Bugs of Novice Programmers’

114 Interviewer: What are you thinking now?

115 Subject 13: I want to get a statement that Is going to be clear that we're going to
add the numbers (points to ¥ := i], each number entered, we’ll have the tally of the,
number of Integers entered.

118 Interviewer: Ok, and so, whats going to do that?

117 Subject 13: Ahhh, N equals, ahmm [pointing], integer [changes the 1 in ¥ := 1 to 1]
118 Interviewer: Ah huh, how will that work?

119 Subject 13: No, N, well,

120 Interviewer: What are you thinking now?

121 Subject 13: Not to have this [points to 1 in 5 = 1] be the num, the actual value of
the integer, but the, the ahh, frequency of the integer

122 Interviewer: Ok

123 Subject 13: Ahhh, so if I put, N equals 1, or N equals integer [points to 1], and that's
not gonna necessarily do it, because the Integer, we're gonna repeat this

124 Subject 13: Ummm, ummm, well I think lt:;, ahh, its (s := 1] not right I don't
think, but I I'm gonna leave it that way for the moment.

Subject 13 seems to understand the role of the counter, 8. In addition, he knows that the
value of u will increase by one for each number entered. He does not know how this Is
implemented in Pascal. The transcript shows him trying several solutions to this Impasse. First
he talks about the execution behavior *... N equals zero plus one and then ...” (segment 110), and
writes ¥ := 1 to implement the counter In the loop body. Next, he wants a ®... tally of the,
number of integers entered® (segment 115) and changes ¥ := 1 to ¥ := 1. Next, he discusses that
the 1 is wrong because he doesn’t want “the actual value of the integer, but the, the ahhh,
frequency of the integer” (segment 121). He makes no further changes in this excerpt from the
protocol. He settles on ¥ := I, but adds "it's not right I don’'t think, but I'm gonna leave it that

way for the moment® (segment 124).

This transcript also illustrates the other three patterns. Subject 13 knows something about
implementing counters and running totals In Pascal (pattern: fragments of programming
knowledge). Even though he Is confused about their implementation, he reasons about the

Introduction 11

pragmatics of the counter and the variable receiving the new value read (pattern: knowledge
organized pragmatically). He also shows several examples of reasoning based on step-by-step
Natural Language: "we’ll have the tally of the, number entered” (segment 115), "the frequency of
the integer® (segment 121) (pattern: reasoning based on step-by-step Natural Language

procedural knowledge).

The theory of novice programming bugs Is an embodiment of these patterns. In the rest of
the article we begin by presenting the theory. Next we detail a representation of the plans and
bug generators. We present evidence for our theory from analyzed protocols of novice

programmers at work. We conclude with a discussion of the implications of this work.

2. A Theory of Novice Programming Bugs
In this sectlon we present the two key aspects of our theory of novice programming bugs.

First, we propose a representation for Novice programming knowledge based on the patterns
of:

1. fragmentary novice programming knowledge,

2. pragmatic organization of programming knowledge, and

3. step-by-step Natural Language procedural knowledge.
Second, we describe the process by which novices produce bugs, based on the pattern of novice

impasses and patches.

2.1. Representation of Novice Programming Knowledge

The theory of Novice programming bugs begins with a representation for novice
programming knowledge. 'fhe representation encompasses both kinds of knowledge discussed
above: step-by-step Natural Language procedure kmowledge and fragments of programming
knowledge. The representation is organized pragmatically - that Is, with reference to the role and
purpose of each chunk of programming knowledge. Finally, the representation is designed to
allow a novice to reason about his or her programs with step-by-step Natural Language
procedural knowledge. This is done with connections between the step-by-step Natural Language

procedural knowledge and the programming knowledge.

A schematic for the representation of novice programming knowledge Is shown In Flgure
9-1. The three major parts are the Novice Fragmentary Pragmatic Programming
Knowledge (abbreviated as "PK®), the parallel Novice Step-By-Step Procedure Natural

Understanding the Bugs of Novice Progra.mmers.'

FRAGMENTS OF NOVICE PRAGMATIC PROGRAMMING KNOWLEDGE

Ultimate
Expert
Programming
Knowledge

N

e
SN~

SURFACE AND
FUNCTIONAL
PARALLELS

STEP-BY-STEP NATURAL LANGUAGE PROCEDURAL KNOWLEDGE
(SSK PLANS) S

Figure 2-1: Representation of Novice Programming Knowledge

A Theory of Novice Programming Bugs 13

Language Knowledge (abbreviated as “SSK®), and a set of Functional and Surface Links
that specifically relate components from the two sets of knowledge. The PK represents the
pragmatic fragments of programming knowledge learned by the novice. We call each of these
pragmatic fragments a plsn.’ The PK Is some fraction of the complete set of programming
knowledge known to a programming expert. It contains a number of relatively disconnected
plans representing the fragments of novice knowledge about programming discussed above, (This
Is indicated in Figure 2-1 by drawing the PK plans as isolated tiles and small clusters of tiles in
the larger circle of complete expert knowledge.)

The novice SSK represents what the novice knows about step-by-step procedures in Natural
Langusage. Since novices have all the knowledge they need to write step-by-step procedures In
Natural Language, SSK Is not fragmentary. (This is indicated in Figure 2-1 by drawing the SSK
plans as tiles completely covering the larger circle of complete step-by-step Natural Language
procedure knowledge.) Like PK, SSK knowledge Is represented In pragmatic chunks called plans.

These two sets of knowledge parallel each other in two ways. Functionally, there are
parallels between pleces of knowledge that accomplish simllar functions in the two domains. For
example, there Is knowledge about how to do looping in both the SSK and PK. Surface parallels
are based on common lexical features. For example, a keyword in the PK might be connected to
the corresponding English word. Although the word Is the same, the semantics can be different.
Consider the English phrase “See that hall, if a door is open, then close it. In this case the
English implies a loop, while in Pascal 12 ... thea is a conditional construct. In the
representation, there are functional and surface links to capture these two kinds of parallels.
Although we distinguish between these two kinds of links, a critical component of the theory Is

that a novice usually does not make this distinction.

We now describe each component of the representation in detall.

2.1.1. Fragments of Pragmatic Programming Knowledge
PK represents the knowledge that allsws novices to write some parts of a program
correctly. Consistent with the pattern of fragmentary novice programming knowledge, the PK

consists of some plans and structure from an expert's pragmatic knowledge. Organizing PK as

7eplan® is used bere in the sense of *a scheme . .. for making, doing, or arranging something® [Webster 75]. Using the
word “plan® to refer to programming knowledge structures is from Rich and Schrobe [Rich and Shrobe 78]

14 Understanding the Bugs of Novice Programiners

plans, a kind of pragmatic fragment, is consistent with other work on the structure of expert
programming knowledge [Ehrlich and Soloway 83, Rich 81, Soloway et al. 82a]. It Is also
consistent with a common cognitive science and Artificial Intelligence view of knowledge [Minsky
75, Resnick 83]. Nonetheless, there is little direct evidence about the specific cognitive structure
of PK pla.ns.8 As part of this work we have constructed a database of approximately 40 PK plans
that cover elementary novice programming. This set includes many plans we expect a novice to
know for variables, assignment, conditionals, loops, input and output (see Bonar [Bonar 84] for
the complete list). We do not consider this set definitive. Instead, it is a reasonable partitioning
of the knowledge an Ideal novice would know after an introductory programming course. A
smaller set, used In the protocol analysis described In Section 4, Is described in Appendix L.

The PK Is designed to represent the subset of programming knowledge actually possessed by
a novice. We have not designed the PK to represent inaccurate or errorful knowledge about
programming. In our theory, bugs are the result of processes called bug generators, presented
In Section 2.2. The errorful or inappropriate reasoning that a novice uses when making
programming errors is modeled as a dynamic process involving the PK, SSK, and the links

between them.

2.1.3. Novice Step-By-Step Natural Language Procedure Knowledge

In parallel with Fragmentary Pragmatic Programming Knowledge (PK), novices also use
step-by-step Natural Language procedure knowledge (SSK). Like PK, SSK can.be used to
accomplish certaln tasks: looping, making cholces, specifying sequences of actions. Unlike PK,
there Is no generally accepted paradigm (and very little discussion) about how SSK knowledge is
organized. In order to better understand SSK, we conducted a study of non-programmers writing

step-by-step Natural Language procedures. The study Is discussed In detall in Bonar [Bonar 84].

A key feature of our study of step-by-step Natural Language procedures is that SSK,
although capable of characterizing step-by-step tasks, is less formal than the PK. This is not
surprising since SSK is used by humans and intended for humaas. Humans can bring all their
Natural Language understanding skills to bear on understanding such step-by-step procedures.
Aspects of SSK informality Include flexibility of lexicon and syntax, and explanation on several

different levels of detall. For example, consider the Factory Gate Problem discussed earller (see

8Ehrlich and Soloway [Ehrlich and Soloway 83] do present s methodology for viewing the coguitive structure of plans and
sotne results from early studies with this methodology.

A Theory of Novice Programming Bugs 15

Figure 1-3 on page 7) and the typlical response (see Figure 1-4 on page 8). SSK flexibllity Is
illustrated in llnes 5 and 7 of Figure 1-4. The subject has used the word "Add® in both lines. In
line 5 it means "count® and in line 7 it means "sum up”. Different levels of detall are also
lllustrated in that line 4 actually modiflies the previous three steps. Also, those steps both
perform the first iteration of the loop and Imply the other iterations.

Glven the Informality, Is SSK actually used effectively and understood? People reading
Natural Language procedures like that in Figure 1-4 are able to Infer the key features of the
solution: an average Is desired and only those workers who exit before a supervisor should be
Included in the average. Since most people describe or carry out step-by-step procedures as part
of their daily life, the theory assumes that we are all SSK experts. Complicated tasks stretch the
abllity of Natural Language to unambliguously express a procedure (see, for example, Miller
[Miller 81] or Sime et al. ([Sime et al. 77]), but for simple tasks people seem to have no trouble.
Notice, finally, that in this work there Is a twist on the question "could one program In Natural
Language?”. Here we are not concerned with whether SSK Is able to express procedures with the
power of PK, but Instead with how a novice Is influenced by SSK In their understanding and use
of PK.

3.1.3. Representing Functional and Surface Parallels

The final aspect of the knowledge repr;sentat.!on used for the theory Is representing the
parallels between the PK and SSK knowledge bases. It Is no accldent that there are parallels
- the programming language Pascal and its parents were designed to be like Natural Language.
Many programming texts suggest this connection:

A programming language Is a subset of the English language that allow the
programmer to give unambiguous commands to the computer. [Zaks 80] (page 1)

This has been even further emphasized In the texts that encourage students to write "English

language algorithms® before coding in Pascal:

Stepwise refinement also lets a programmer plan most of a program without actually
writing in Pascal. It’s easier to think in English than In any sort of computerese.
[Cooper and Clancy 82) (authors emphasis, page 82)

Most texts fail to adequately distinguish between functional and surface parallels between
the two kinds of languages. Functlonal parallels exist because both languages are concerned with
repeated actlons, choice between conditions, counting, and ete. Functlonal parallels are concerned

with the purpose of the plans in each of the two knowledge bases. Surface parallels exist

16 Understanding the Bugs of Novice Programmers’

because the programming language Pascal (and many others as well) shares many words with
Natural Language. Above, we mentioned a subject who made such a surface connection between
his “continual test® waile loop and the Natural Language usage where “while® refers to a
continually active test. In order to represent functional and surface parallels, we use functional
and surface links between analogous plans. (In Figure 2-1 these links are Indicated as lines
connecting the PK and SSK circles.) In the next section we discuss bug generators, the

processes accounting for novice use of links between PK and SSK, and novice production of bugs.

2.3. The Process of Generating a Bug

When studying protocols of novices solving programming problems we noticed that there
are gaps in the novices' knowledge which lead to impasses in their developing programming
solutions. When confronted with an impasse In their developing programming solution, novices
often propose a serles of possible corrections to get past the impasse. These "corrections” usually
produce a bug, and the novice usually knows that the “corrections” are suspicious. Because they
are likely to produce bugs, we call these corrections patches. Because the correctness of
computer programs Is very sensitive to modifications, most patches will produce bugs. Bug
generators are patterns of patching that are used when specific knowledge is missing, that is

when the novice is at an impasse.

Consider a novice working on a programming problem. This work can be characterized as a
path through the Novice PK, using the knowledge in various pians there (see Figure 2-2). At
some point though, the novice comes to a gap In the PK knowledge base: he or she has reached
an impasse. The novice may, for example, have come to an inconsistency between plans or need
information from plans that are not yet acquired (in Figure 2-2 an impasse is deplicted as the
solutlon path coming to the edge of a PK plan). The novice needs a way to patch the impasse so
that he or she can continue to work in the known parts of the PK (such a patch is shown In
Figure 2-2 as a path between known PK fragments). Bug generators are the processes that
produce this patch.° The programming process just described can be cast in terms of the
Information processing model of Newell and Simon [Newell and Simon 72). Plans are the
operators that allow the programmer to move between states of the partially formulated
program. Each rroblem state holds some partially formulated program solution. Experts are
able to apply an appropriate plan to a partially formulated program state and thereby move to a

'Repair theory [Brown and VanLehn 80] uses the phrass ®repair heuristic® for the analogous concept.

A Theory of Novice Programming Bugs

17

TWO PLANS FROM NOVICE PRAGMATIC PROGRAMMING KNOWLEDGE

Novice Solution Path

Continued Solution Path

Impasse Bug Generator Patch

Figure 2-2: The Process of Bug Generation

18 Understanding the Bugs of Novice Programmers.

state with a more completely formulated program. Impasses occur when novices do not have a
relevant plan. In this case they use bug generators - operators based on non-programming

knowledge or other heuristics.

Bug generators operate on avallable knowledge: the plans known to the novice at the time
of reaching an impasse. In effect, the bug generator Is parameterized by the plans which the
novice does know. Depending on the type of bug generator, the knowledge in these plans Is
exploited In some heuristic way to create a patch. Of key interest are the step-dy-step Natural
Language procedural knowledge confounded with programming knowledge (SSK Con founds
PK) bug generators. These bug generators take a plan currently used by the student and
improperly use the surface links between SSK and PK to reason in PK and create s patch.

In order to develop the idea of bug generators, we present a detalled example.“’ Subject 13
wrote Sua := 0 + I as part of a running total update inside a loop body. He has Identified 1 as the
variable to receive new values, entered by the user. He has also Identified Sus as the variable to
hold the running total. (Note that a correct version of this line would be Sua := Sus + 1.) Subject
13's trouble with forming the running total update is not, however, the focus of this example. We
focus on a bug brought out when Subject 13 polnts to his line and says “it reads the Sum®. The
only Read statement Subject 13 has used has no arguments and is above the loop along with a
Resdla. What, then does the subject mean by “"reading the sum®? The bug analysis describes
several relevant bug generators and Is shown In 'Flgure 2-3. The Impasse in this case is that
Subject 13 did not know how to implement a read operation for an Input New Value Variable in
Pascal. A correct Pascal implementation uses an explicit Read(1) in each iteration of the loop.
Three plausible explanations, each based on a different bug generator, and one based on a slip

interpretation are shown for the bug. (The reason for multiple explanations s discussed below.)

The first Bug Generator plausibly explaining this bug Is the Programming Language uaed
as if it were Natural Language (PL Used as NL) Bug Generator. This bug generator operates
on a specific plan or plans, using surface links between SSK and PK versions of the plan. Even
though they are surface links, the novice assumes functional links, assuming that the Natural
Language semantlics can be used for programming language constructs. The programming

language construct Is assumed to have the similar semaatics to the parallel Natural Language

m’l’hh example is drawa from protocol 1, which is discussed below in detail. An excerpt of that protocol is shown in
Appendix IIL

@1

A Theory of Novice Programming Bugs 19

BUG: °It reads the Sum®: sus :2 0 + 1
The subject should be saying something like "It reads In a value which Is added Into
the sum®,
g2 PL Used as NL on Input New Value Variable
The read operation is done implicitly whenever a value s needed.
g3 PL Interpreted as NL on Pascal - Resa/Ress1a
Here he Is treating Resd; Readln palir as If they were declaring that reading Is to
be done, and the resuits of the read will be used with Sum.
p2r Multi-Role Variable on Arithmetic Sum Variable, Input New Value
Value
The subject is using the varlable Sum as If it will automatically get a new value
added In whenever that new value Is read.
> Slip
Just slipped and forgot to say ®. .. a value which Is added . .. *.

Figure 2-3: Bug Analysis showing the operation of Bug Generators

construct. In the example with Subject 13, the PL Used as NL Bug Generator operates on the
Input New Value Variable plan. Getting a new value for the Input New Value Variable has been

implemented Implicitly, as in the Natural Language implementation.

The second explanation for the Bug in Figure 2-3 uses the Programming Language
tnterpreted as Natural Language (PL Interpreted as NL) bug generator operating on the Resd
statement written above the loop. In this case, the subject Is seen to be interpreting the Resd as if
It were a declaration statement. (There Is support for this explanation In that the Subject -
discussed the Read statement while discussing other declarations.) The patch was to Interpret the
Bead as If it were Natural Language. In Natural Language one can declare that reading will be
done, and have that reading be implicit In the rest of the step-by-step procedure . Note that the
distinction between the PL Used as NL Bug Generator and the PL Interpreted as NL Bug
Generator Is fine. In the PL Interpreted as INL bug generator, the novice uses a programming
language construct to implement a Natural Language plan; a Besd used as a declaration that
reading will occur into a certain variable. In the PL Used as NL bug generator, on the other
hand, the novice uses programming language constructs as if they had their Natural Language
meanings or omits programming language constructs that would not be needed in Natural
Language; the Implicit Reaa(I) every time a data value is needed.

20 Understanding the Bugs of Novice Programmers

The third explanation for the bug in Figure 2-3 uses the Onec variable assumed to have
multiple roles (Multi-Role Variable) Bug Generator. In this interpretation tl;e subject patches
‘an impasse about getting new values in the loop by collapsing the pragmatics for two different
variables. In particular, he has collapsed the running total to be accumulated with the new value
to be read from a user. In this Interpretation, he thinks that the running total happens
automatically when a new value is read from the user. In particular, the subject understands the

statement Sus := 0 + I to mean that the variable Sus gets the value of added in every time a new

value of I gets Read.

The fourth explanation Is a Slip Bug Generator explanation. It says that the subject simply

spoke sloppily, understanding that a Read(I) statement must appear elsewhere.

Notice that it is possible for two or more (non Slip) bug generators to produce plausible
explanations for a bug. If several different patches produce the same result, there is no
systematic way to choose between the different possible bug generators. In fact, It Is reasonable
that novices could use more than one bug generator In constructing a patch. Given the current
methodology, however, we have no way to relate the novice programmer’s behavior to possible

interactions between plausible bug generator explanations.

The rest of this section presents an overview of the bug generator set. We discuss the three
classes of bug generators: SSK Con founds PK, Intra-PK, and Other Con founds PK. For each

class we present an example. Table 2-1 presents a summary of our bug generator set.

2.2.1. Bug Generators: SSK Con foundes PK

The links between the SSK and PK domalns are the source of this first class of bug
generators. SSK Con founds PK bug generators capture the process of a novice exploiting a link
to move from a PK plan to an SSK plan. Once In the SSK domain the novice reasons about the
Impasse with these more familiar plans, and develops one or more solutions. Finally, using the
links agaln, the novice moves back to a PK plan and continues the normal process of problem

solving. (This Is represented pictorially in Figure 2-4).

Earlier we discussed an example where s novice Interprets a Pascal vhile loop as continually
testing the loop exit condition (not just at the top of the loop). This novice Is at an lmpasse
about how the wvhile loop actually implements the looping and when its condition Is tested. He
resolves the Impasse by reasoning based on how the word “while® works in SSK, and patching

Il

A Theory of Novice Programming Bugs 21

Bug Generator Summary

Based on Similarities between PK and 8SK (8SK Confounds PK):

Programming Langusge Used As Natursl Language (PL Used so NL)

Inappropriately used a programming langusge construct because it is has the same words as a phrase used in the
ostural language implementation of the relevant plan.

Programming Language Interpreted as Natural Language (PL Interpreted se NL)

Interprets s programming laaguage construct as if it were a phrase in a Natural Language implementation of the
relevant plan.

New Programming Language Construct From Natural Language (NL Construct)
Inveats & new programming construct based on a Natural Langusge implementation of the relevant plaa.

Based on missing PK (Intra-PK):

Statements Ordered In Execution Order (Trece)
Orders the program as if it was an execution trace.

Variables Named Generically (Generic Name)

Parts of the program or variables are named generically, based on common programming language
implementation strategies.

Programming Language Overgeneralization (Over Generslize)
Over-generalites from one Pascal implementation plan to another.

Tacties! Similarity (Tacticelly Similer)
Failure to distinguish between things that are similar on a tactical level, but implemented differently.

Based on Confounds Between Other Domains and PK (Othor Confounds PK:)

Multiple Roles For a Variable (AMuiti-Role Variadle)
Uses a single variable but gives multiple roles for that variable,

Knowledge From Other Domains (Other Domain)
Uses an understanding of the problem from s domain like mathematics to produce an incorrect answer.

Operating System Confound (OS Cen found)
Uses or confuses » programming language construct with some command or operation from the operating system.

Slipe

A random error produced while the novice is distracted; s speech slip; s typographical error.

Table 8-1: Summary of Bug Generators

22 Understanding the Bugs of Novice Programmers

FRAGMENTS OF NOVICE PRAGMATIC PROGRAMMING KNOWLEDGE

Ultimate
Expert
Programming
Knowledge

SURFACE AND
FUNCTIONAL
PARALLELS

Patch by
SSK/PK Bug
Generator

STEP-BY-STEP NATURAL LANGUAGE PROCEDURAL KNOWLEDGE
(SSK PLANS)

Figure 2-4: Bug Generators: SSK Con founds PK

A Theory of Novice Programming Bugs 23

with that interpretation for the vhile in Pascal. This bug can be plausibly explained with the PL
Interpreted as NL Bug Generator. The bug generator is parameterized by the generalized Loop
Plan for both PK and SSK. That Is, surface links between the PK Loop Plan and the SSK Loop

Plan allowed our subject to develop a patch to his understanding of the vai1e loop.

2.2.2. Bug Generators: Intra-PK

. The next class of bug generators allow novices to resolve an impasse within the PK. The
Idea of these bug generators Is that novices construct a patch by generalizing or specializing based
on known PK plans. Unfortunately, the patches so constructed often introduce bugs. Figure
2-5 shows a pictorial representation of the process, showing the various PK plans with links to
other PK plans.

The specific bug generators are based on the kinds of inter-plan llnks possible in the PK.
There is an over-generalization bug generator, an over-specialization bug generator, and a bug
generator based on incorrect detall. Incorrect detall refers to a situation where the novice Is using
one PK plan and some aspect of that plan requires more detail, specified in another plan which
the novice does not have. A typical example of such a detail plan would be information about

appropriate actions within a loop, i.e. summing, counting, test for maximum, etc.

Consider some examples of Intra-PK bug generators. Several subjects overgeneralize in
unnecessarily Initializing to 0 a variable used In a Resa statement. One subject asserted that all
variables must always be initialized before they are used. A more subtle overgeneralization
involves novices using a statement like Nev := mew + t and describing this as reading the next value
from a user. In this case tl_u_a subject has reached an impasse about reading the next value. The

patch Is to overgeneralize from how a counter gets the next value.

2.2.3. Bug Generators: Other Con founds PK

The last class of bug generators operates much like the SSK Confounds PK Bug
generators in that they use links to move between the PK and another domain (see figure Figure
2-8). In this case, though, the other domsin is not SSK, but some other domain of common
knowledge that has some parallels to PK. Two particular other domains that we've identified are
Algebra and the programming environment. Algebraic variables, In particular, have parallels
with programming variables (see [Soloway et al. 82b]). Novice programmers are also often less
than experts in algebra. Bugs originating In the algebra domain often seem to translate into the
programming domain. Other work on algebra bugs [Matz 82] [Kaput 79) and specific work with

24 Understanding the Bugs of Novice Programmers '

FRAGMENTS OF NOVICE PRAGMATIC PROGRAMMING KNOWLEDGE

Patch by Intra-PK‘
Bug Generator

Ultimate
Expert
Programming
Knowledge

/ AN
/ N\
[\
|]
\ /
\ /
N\ /
Links Between
SURFACE AND
PK Plans FUNCTIONAL
PARALLELS

STEP-BY-STEP NATURAL LANGUAGE PROCEDURAL KNOWLEDGE
(SSK PLANS)

Figure 2-5: Bug Generators: Intra-PK

3

A Theory of Novice Programming Bugs 25

FRAGMENTS OF NOVICE PRAGMATIC PROGRAMMING KNOWLEDGE

Ultimate
- Expert
-— S Programming
P \\ Knowledge

ad ~
/ \
j \
l\ y]
\ / Patch by

N\ o/ Other/PK |
Bug Generator

SURFACE AND
FUNCTIONAL o o
PARALLELS %o %%

Qo
O0008’ o

OTHER KNOWN
NOVICE DOMAIN

{Algebra,
Programming
Environment)

'

STEP-BY-STEP NATURAL LANGUAGE PROCEDURAL KNOWLEDGE.
(SSK PLANS)

,

Figure 2-8: Bug Generators: Other Con founds PK

26 Understanding the Bugs of Novice Programmers'

algebra varlable bugs [Rosnlck 82] has provided the specific bug generators In this class. In
particular, there are many Instances where novices collapse several varlables into one Identifier.
For example, in the bug analysis shown in Figure 2-3, one plausible explanation is that Subject 13
collapsed the roles of Input New Value Variable and Arithmetic Sum Variable,!' treating the
Arithmetic Sum as if it will automatically get 3 new vslue added In whenever that new value is

read.

The programming environment (command language, editor, etc.) also has parallels to
programming that provides opportunities for bugs. A bug generator exists to account for bugs
based on these parallels. For example, novice programmers may use an editor "read" command

to perform a Read from Pascal.

3. Plans: Realizing PK and SSK

The theory of novice programming bugs Includes two knowledge structures: novice
pragmatic fragments of programming knowledge (PK) and step-by-step Natural Language
procedure knowledge (SSK). In this section, we describe how those structures are realized for use
in understanding protocols of novice programmers. The PK and SSK knowledge structures are

represented as plans.

In this section we also describe details of the links between the PK and SSK plan sets. The
functional links between these PK and SSK plans are represented by closely parallel plan sets in
each domaln. That Is, for 'each PK plan, there is a parallel SSK plan that expresses the same
action in step-by-step Natural Language procedures. Surface parallels, the lexical similarities
between components of SSK and PK plans, are not represented directly in the plans. Instead,
they are represented as part of the action associated with the Bug Generators that use surface
parallels. Our specific realization of the knowledge structures and processes in the theory of

novice programmer bugs Is summarized in Table 3-1.

For the PK knowledge, this section describes what an expert would know. A novice knows
only fragments of this knowledge, that is, only some of the plans. For the most part this expert
knowledge Is tacit. Experts are not aware of their use of this knowledge. We also describe what
an expert would know about the SSK plans. Remember, though, almost everyone is an expert in

SSK, since almost everyone uses Natural Language to produce step-by-step procedures.

My, Inpet New Value Variable receives a value from a Read statement. The ArtAmetic Sum Vericblc holds s running
total built up inside a loop. Both of these plans are discussed in Appendix L

Plans: Realizing PK and SSK 27

Theory Component

PK

SSK

Functional Parallels

Surface Parallels

Bug Generators

Realization

Includes:

e Strategic Programming Knowledge (not discussed in this
article).

o Tactical Programming Plans. A set of tactical plans Is
summarized in Table 3-2.

e Pascal (and other programming language) Implementation
Plaas.

Contains what an expert would know.

Includes:

¢ Step-By-Step Natural Language Procedure
Implementation Plans

Contains what an “expert™ would know, but almost everyone is an
expert.

Realized by each tactical plan having both a corresponding Pascal
implementation plan and Step-By-Step Natural Language Procedure
Implementation plan. The parallels between the two implementation
plans are implicit in their sharing the same tactical plan. Note: In
general, PK contains more differentiated and precise plans that may
not have functional parallels in SSK. For the PK plans discussed in
this article, however, there exist corresponding SSK plans.

Realized by SSK Confounds PK Bug Generators which explolt
lexical similarities between the two kinds of implementation plans to
create a patch.

Realized In the specific set of Bug Generators summarized in Table
2-1.

Table 3-1: Realization of Components of the Theory of Novice Programming Bugs

28 Understanding the Bugs of Novice Programmers

3.1. Realising PK

In the theory of novice programming bugs, novice PK Is described as fragments of an
expert’s programming knowledge. The knowledge Is organized pragmatically, that is, according
to what the statements and variables are used for and their role In the program. We describe
pragmatics in a hierarchy of programming knowledge levels: strategic, tactical, and
implementation. Strategic knowledge Is used by expert programmers to manage the
complexity of large programs. It will not be discussed in detall here.}? Tactical knowledge is
used to recognize and organize standard tasks In programming, but without implementation
details specific to any given programming language. Tactlcal knowledge Is information about the
standard tasks of programming. These tasks Include, for example, running total loops, counter
loops, successive test and selection, and filter out negative valucs. Another way to see tactical
knowledge is as the roles or purposes that can be accomplished by different segments of code and

variables. Program comments often contain information about the tactics used In the program.

Implementation knowledge is used to actually implement a design and set of tactics in a
specific programming language. This knowledge is language specific and can be viewed as
extensions to the language independent tactical knowledge. Implementation knowledge tells us
how to actually implement tactical knowledge. Implementation knowledge is what an experienced
programmer needs to acquire when beginning to use a new programming language. For example,
experienced Pascal programmers can grasp the concepts of programming in LISP, but may take a
while to learn the atandard techniques used In LISP programming. Those techniques are the

implementation knowledge.!?

As an example, consider the tactical programming plan for a counter. In Pascal a counter is
usually implemented with code for a declaration, initialization, and Increment (see Figure 3-1). In

LISP, however, the counter is more likely to be counting recursive calls to a function as shown in

—— g S)
—— s - T L TRS - e

‘zStnluie knowledge is what makes a skilled programmer. Such knowledge is used in planning the overall strategies of
the program, designing dats representations, creating sppropriate layers of functionality, abstracting and simplifying
operations, and dividing s large programming project among s team of programmers. In the software engineering literature
use of this kind of knowledge bas been called *programming-in-the-large® [De Remer snd Kron 78},

We do not discuss strategic knowledge any further. An understanding of strategic knowledge is probably at the heart of
skilled programming and very difficult to characterise (but see [Jeffries et al. 81] and {Ksat and Newell 83]). Our concern s
primarily for the novice programmer, who has enough trouble with the simpler tactical and implementation sspects of &

programming langusge.

123)0te that for a novice there is probably little distinction between implementation and tactical knowledge. Only with
experience does a programmer begin to differentiate thess levels. We make the distinction here to provide sn expert
baseline by which we can examine the extent of povice knowledge.

Plans: Realizing PK and SSK 29

Figure 3-2. And finally, there are step-by-step Natural Language procedural implementations of

the counter (see examples in Figure 3-3).

PK Is represented with both tactical plans and Pascal Implementation plans. This means
that an expert programmer knows both tactical plans describing general programming techniques
and implementation plans describing how those techniques are implemented In a specific
programming language.’* Novices have fragments of this complete tactical and Implementation
plan set. In Table 3-2 we summarize the plans we have developed for use in the Ending Value

Averaging Problem (see Figure 3-5 on page 33).

3.2. Realising SSK

In the preceeding section we discussed a realization of PK plans for capturing programming
knowledge. Here we describe a parallel realization of SSK plans. SSK is represented as
implementation plans for Natural Language step-by-step procedures. These SSK plans can be
thought of as a representation for Natural Language prog}amm!ng. The idea of Natural
Language programming has provoked much discussion. Some have argued that Natural Language
Is too informal to be useful as a programming tool [Dijkstra 78], while others have suggested that
Natural Language would represent the ultimate user Interface [Codd 74]. Miller (Miller 81] (also
see Miller [Miller 74]) reports on a series of experiments characterizing step-by-step Natural
Language procedures. Biermann et al. [Biermann 83} describe work identifying patterns of usage
In step-by-step Natural Language. They have implemented a *Natural Language Programming®
system called NLC. In an experiment with that system, 74% of the subjects were able to learn
the system and produce correct solutions to simple data manipulation problems (solution of a

system of 3 linear equations) in less than 2.5 hours.

The SSK presented in our theory of novice programming bugs Is a different view of natural
language programming then that which motlvated the discussion and and studies mentioned
above. Where other work has focused on the possibility of automated understanding of Natural
Language, our SSK characterizes the kind of Natural Language programming done by humans for
other humans. In this context, it is reasonable to represent SSK as an implementation of tactical

plans. The theory does not Insist on automatic understanding of these Natural Language

“Shneidermu and Mayer [Shaeiderman and Mayer 79] develop s similar model where they describe a "semantic®
programming knowledge base to hold general techniques and » ®syntactic® programming knowledge base to hold language
specific information.

Understanding the Bugs of Novice Programmers’

integer Count; {Declare the variable}
Cout. ;= 0; . {Before the loop doing the counting)

Count := Count + 1; {Inside a loop dolng counting}

Figure 3-1: Pascal implementation of the tactical programming plan for a counter

(defun foo-with-count (x y couat)

Etéo;v;n-eouat « « + (plus count 1))

* e

Figure 3-2: LISP implementation of the tactical programming plan for a counter

Rhe numberof ... 7
Pfrequencyof... "
"get a countof ... "

"count up*

Figure 3-3: Natural Language implementations of the tactical programming
pian for a Counter

Plans: Realizing PK and SSK 31

Summary of Plans

Sentinel Variable
Holds an end of data value.

Counter Variable
Counts activities In a program, particularly in a loop.

Arithmetic Sum Variable
Holds a running total, especially {n a loop.

Result VariableHolds a value whose determination satisfled a local or global goal of the
program.

Input New Value Variable
Holds a new value, recently input from the user of the program.

Loop The generic looping plan.

New Value Controlled Loop
A loop whose stopping condition is based on a New Value Variable.

Illegal Filter Protects some computation from certain "illegal*® values In variables used by
the computation,

Input Gets a value from the user.
Result Output Reports a result to the user.

Instructional Output
Gilves the user Instructions.

Prompt Output
Asks the user to enter some input value.

Table 3-2: Summary of Plans

32 Understanding the Bugs of Novice Programmers

implementation plans, only on characterizing their relationship to the more general tactical and

Pascal implementation plans.

The step-by-step Natural Language procedure plans were developed from a study of non-
programmers. Twenty-four subjects were given four problems requiring the development of 8
step-by-step Natural Language procedure. Consider, for example, the Payroll Problem (shown In
Figure 3-4). This problem is analogous to the Ending Value Averaging Problem (shown In Figure
3-5) in that it requires the same tactical plans for a solution. Each problem In the Natural
Language procedure study was designed to be analogous to a standard introductory programming
problem. This allowed use to identify common tactical plans and contrast the Implementation

plans.

We coded each step-by-step Natural Language procedure by noting noting how each of the
tactical plans underlying the problem were actually realized in the step-by-step procedures. For
example, the Payroll Problem (Figure 3-4) uses the Counter Variable and the New Value
Controlled Loop plans (among others). In Figure 3-8 we show an example solution, written by
Subject 11 before he began an introductory programming course. There, the Counter Varsable
plan Is implemented with the phrase *Add the number of workers you've written down.” (step 5).
The New Value Controlled Loop plan is encoded more subtlely. Steps 1, 2, and 3 all form the
body of the loop, describing approximately the first two iterations of the loop. Repetition of this
body Is indicated with the phrase “... and so on® at the end of step 3. The stopping condition is
described in step 4. We used the results of this study of step-by-step Natural Language
procedures to complle step-by-step Natural Language implementation plans for each tactical plan

previously complled.

3.3. Representing Functional Links Between PK and SSK

For each of the key tactical plans (part of the PK) described in Table 3-2, there is a Pascal
implementation plan (also part of the PK) and a corresponding Natural Language implementation
plan (part of the SSK). For example, in Figures 3-1 and 3-3 we see the corresponding PK and
SSK Implementations for a Counter tactical plan. The functional links between the PK and SSK
are represented through these corresponding plans. If the full knowledge of an expert
programmer Is considered, there are many tactical plans with no corresponding Natural Language
implementation plans. Evidence from our study of step-by-step Natural Language procedures,
however, indlcates that every one of the key tactical plans presented below does have a Natural

Language implementation plan.

Plans: Realizing PK and SSK

Please write a set of explicit Instructions to help a junior clerk collect payroll
information for a factory. At the end of the next payday, the clerk will be sitting In
front of the factory doors and has permission to look at employee pay checks. The
clerk Is to produce the average salary for the workers who come out of the door. This
average should include only those workers who come out dbefore the first supervisor
comes out, and should not include the supervisor's salary.

Figure 3-4: The Payroll Problem

Write a program which repeatedly reads in integers until It reads the integer
999099. After seeing 99999, it should print out the CORRECT AVERAGE without
counting the final 99999. Remember, the average of a serles of numbers is the sum of
those numbers divided by how many numbers there are in the series.

Figure 3-6: The Ending Value Averaging Problem

1. Identify worker, check name on list, check wages

2. Write it down

3. Wait for next worker, identify next, check name, and so on
4. When super comes out, stop

5. Add number of workers you've written down

8. Add sll the wages

7. Divide the wages by the number of workers

(from Subject 11)

Figure 3-8: Natural Langusge Implementation of New Value Controlled Loop

3a uUnderstanaing the pugs of Novice rrogrammers

In Figure 3-7 we show Counter Variable plans as an example of tactical and corresponding
Pascal and Natural Language step-by-step procedural implementation plans. The Counter
Variable is a kind of Arithmetic Sum (running total) Variable that always adds in 1. The tactical
plan consists largely of a description of the plan’s functionality. For example, how the counter Is
initialized, how it is used, and the type of its values. The implementation plans are made up of
»criteria® - things that a programmer would say or write in their program that indicate they
have used the plan. These criteria are used in novice programmer protocol analysis, and
described In detail below. The criteria illustrate how different the two implementations are. In
particular, notice that the Natural Language implementation refers to global counting operations
over a whole set of items while the Pascal implementation refers to individual counting operations
for each item. Also note that In the Natural Language Implementation the count operation is

specifically after the operation being counted.

4. Evaluating The Theory

In Section 2 we developed a theory describing the source of novice errors. Although
detalled testing of that theory i3 beyond the scope of this artlicle, this section presents data to
begin evaluation of the theory. The data Is derived from a detailed analysis on four protocols
selected from a body of interviews conducted to formulate the theory. In the selected protocols
we present the same introductory programming problem to four different novice programmers, all
in the fourth to sixth week of an introductory programming course. The analysis of those four
protocols is described in this section. We begin that analysis by Identifying the underiying plan
knowledge used in each interview. This plan knowledge is then related to specific bug generators,
providing plausible explanations for the errors found. We conclude by presenting summary data
about plan and bug generator usage from all four protocols and showing how It supports the

theory.

The protocols of novice programmers were originally collected to develop Intuitions for the
theory of novice programming bugs. As that theory developed, it became clear that these
protocols, originally used for theory formation, could also be used to provide data for an
initial evaluation. For example, since the theory predicted the key role of programming and
Natural Language plans, an analysis of the protocols should show a pervasive use of plans, as well
as an indication of the which plans were most important. Similarly, a detailed analysis should use
the bug generators to plausibly explain each bug In the protocol, and indicate the overall utility
of each bug generator. In this section, we present an analysis of the protocols used to support
and begin evaluation of the theory of novice programming bugs.

\

Evaluating The Theory 35

Counter Variable Plan
PARENT = Arithmetic Sum Variable Plan

O Description: Counts the occurances of some specific action.
O Initsalization: set to zero
0 How usedf: Builds up a value by incrementing Into itself at at each step.

O Type: integer

IMPLEMENT = Pascal - Counter Variable Plan
IMPLEMENT =¢ NL - Counter Variable Plan

NL - Counter Variable Plan

IMPLEMENTS =% Counter Variable Plan

Criteria:

1) "the numberof ... ™ 8) "get a count of”

2) "the total numberof ... " 9) “take a count®

3) "keep countof ... "™ 10) "counting the .. . "
4) "Count the numberof ... ® : 11) "count up*

5) "Add the numberof ... "

6) "Frequencyof ... "

7) Specifically requires counting to be done after the operation
being counted

Pasecal - Counter Variable Plan
IMPLEMENTS = Counter Variable Plan

Criteria:
1) Needs two statements, and initialize and an increment. If CV
Is the Counter Variable, then the form for these Is:

CV =0 (initialize)
CV:z¢v+1 (Ilncrement)

2) The initialize i3 above a loop

3) The Increment Is inside that loop

4) “count each®

5) "increment one-by-one"

Figure 3-7: Counter Variable Plans: tactical, Natural Language, and Pascal

38 Understanding the Bugs of Novice Programmers'

The analysis presented in this section is not sufficient to confirm the theory of novice
programming bugs. Such 2 confirmation would involve a study with many subjects, many
interviews, and detailed statistical analysis. Given current understanding of the programming
process and the level of detall of our model, such a study seemed premature. Instead, this
analysis is intended to add a level of rigor and detall to the knowledge structures and processes
discussed above. Our analysis is also intended to provide techniques to summarize and compare
protocols of novice programmers. In this chapter we examine the following questions: What kinds
of plans were used, and how often? How are these plans used when bugs occur? What kinds of
bug generators provide plausible explanations for the bugs? How often did each kind of bug

generator provide a plausible explanation?

This section begins by presenting three expectations derived from the theory of novice
programming bugs. These expectations are used to organize the analysis presented. After briefly
looking at methodological questions arising from our use of protocols, we present detalls of the
methods used to perform an analysis of protocols of novice programmers. We conclude this
section with the results of that analysis and an evaluation of the expectations developed at the

beginning of the chapter.

4.1. Expectations

To begin evaluation of't.he theory of novice programmer bugs we develop a series of
expectations deriving from the theory. The expectations are not quantitative predictions
derived from the theory of novice programmer bugs. As discussed above, current knowledge
about novice programming behavior does not justify a quantitative and statistically rigorous
analysis. Instead, the expectations represent Important irends in the theory. As trends, the
expectations are supported by the analysis presented here. This support should not be taken as a
confirmation of the theory. Instead, the support provides evidence that the overail approach is

correct and further work in focusing and developing the theory is justified.

The first expectation concerns the iImportance of plans. The theory of novice programming
bugs uses plans to represent the programming knowledge used by novices. If plans actually do
account for most of the programming knowledge, then plan usage In the protocols should be
extensive. This is the first expectation:

Expectation 1: Novices show a regular and extensive use of plans. Novices should
make use of doth SSK and PK implementation plans.

Evaluating The Theory 37

This expectation says that plans are used extensively by novice programmers. It specifies that
novices use both SSK and PK Implementation plans.“ Evidence for Implementation plans needs
to indicate that the novice was reasoning about implementing a programming step in either step-

by-step natural language or in Pascal.

Expectation 1 can fail because novices may rely on knowledge not contalned In the
programming plans we describe. An obvious non-plan source of programming knowledge
avallable to novice programmers are the descriptions of programming constructs presented by
programming textbooks and language manuals. These are usually relatively formal descriptions,
closely related to the defining semantics of the programming language. Another possible non-plan
strategy for novice programmers is reasoning based strictly on syntactic matching from problem
statement to avallable programming constructs. Where a plan formulation of the program
requires an understanding of the intended results, this syntactic strategy would consist of simply
matching key phrases in the problem statement producing remembered lines of code. Once a
novice had a number of lines obtained in that way, he or she would then work on ordering the
lines of code. (See Larkin [Larkin et al. 80] for a discussion of such a syntactic strategy used by
novice physics students.)

Expectation 1 also can fall because novices may not use doth SSK and PK implementation
plans. We might, for example, find a novice that reasoned with SSK plans, but used another
knowledge base (e.g. the semi-formal textbook descriptions or syntactic matching discussed in the
last paragraph) to write actual Pascal code. On the other, we might find a novice that used PK
plans extensively but no SSK plans at all.

The theory does not specify a particular set of bug generators, only general categories of
bug generators. We developed a specific set of bug generators to account for the bugs In
protocols 1 and 2 discussed below. Since those were.our most errorful protocols, the specific set
of bug generators developed should adequately explain most errors seen In novice programs. This

Is the next expectation:

Expectation 2: The Bug Generator set presented here can plausibly explain most
errors found in the protocols.

This expectation Is tested In the analysls of protocols 3 and 4. The specific bug generators

laWe are unlikely to see protocol evidence for novice uss of tactical plans. Such evidence would need to indicate that the
novice was reasoning about the programming steps in an sbstract, language independent way.

38 Understanding the Bugs of Novice Programmers’

presented may be inadequate to explain the bugs found. In particular, since protocols 3 and 4 are
less buggy then protocols 1 and 2, it is possible that the less-novice subjects producing protocols 3

and 4 make different kinds of errors.

The first two expectations are basic to the theory of novice programmer bugs. They do not,
however, represent the key contribution of the theory. The theory proposes that the Intrusion of
SSK plays an important role in novice programming bugs. From this, we get the third

expectation:

Expectation 3: When novices encounter an impasse in a developing programming
solution, they usually use SSK Con founds PK Bug Generators to patch and continue.

In less formal terms, this expectation says that Intrusion of SSK explains most novice
programming bugs. Most non-programmers are quite familier with SSK. It Is reasonable that
their knowledge of SSK will intrude when they begin to write programs. This Is the key intuition
that led to this work. Evaluation of this expectation lies at the core of the work reported here.

This expectation can fail because the bugs may not be particularly assoclated with SSK or
SSK Con founds PK Bug Generators. For example, we might find that most bugs Involve direct
misuse of programming constructs, e.g. assuming a watle loop, like a repeas loop, tests at the

bottom of the loop - an Intra-PK Bug Generator.

4.2. Using Protocol Analysis

In our interviews we presented an introductory programming student, the subject, with a
problem. The subject worked the problem under our supervision while being video-taped. The
Interviews were later analyzed, looking for instances indicating use of elther SSK or PK
implementation plans. Using this Information, the protocols and the bugs in those protocols were

interpreted in terms of bug generators.

Primarily, a thinking-aloud Interview format was used for these interviews. Subjects
were given problems and Instructed to verballze thelr thoughts while working on the problems.
In addition to thinking-aloud about the program development process subjects were asked to
think-aloud while hand simulating their program. At no time were subjects given hints relevant
to the solution of the problem, or any evaluation of what they had written. See Ericsson and
Simon [Ericsson and Simon 80] for a discussion of methodological Issues in using verbal reports as
data. The use of protocols to study complex behaviors is addressed in depth with the detalled

Evaluating The Theory ‘ 39

model of human problem solving developed by Newell and Simon [Newell 77, Newell and Simon
72]. Other protocol work has been done studying complex problem solving behaviors using other
models of human cognition (Anderson 83, Clement 81, Konold and Well 81].

In refining our theory of novice programmer bugs, we have chosen protocol analysis for two
basic reasons. Firstly, we want to bufld something more than a descriptive mode! of novice
programmer behavior. The Interviews give us a needed detailed view of the novice programmer
process. By watching novice programming behavior in a naturalistic setting (i.e., a novice solving
a complete programming problem during an interview session), we are better able to understand

and capture the novice knowledge and processes by which the knowledge Is used.

The second reason for using protocols is that they provide the right level of overview: they
do not focus on particular programming components, tasks, or phases. Protocols allow us to
study both the components of programming behavior and the relationships between those
components. For example, in a protocol we can study how looping strategles influence variable
usage. We can do this as those topics are naturally brought up by the subject as part of a full
problem solving session. Even more telling, we are able to see, study, and interrelate unexpected
phenomena, like those cases where variable usage Influences looping strategies. Not only can the
Individual components be studied, but how the novice connects those components to the rest of

the program [s indicated by the context in which the discussion of the component arises.

Protocols also provide an overview to the different cognitive tasks that mske up
programming. These tasks include understanding the problem statement, design, coding, and
evaluation (hand-execution) of the code developed. The broader view provided by an interview is

necessary to build unifying models of the programming task.

4.3. Protocol Analysis Methods

Our analysis of the protocols has two steps: the plan analysis and the bug analysis. The
plan analysis describes the plans that seem to be in use at different points in the transcript. For
each segment of the transcript, the plan analysis presents the relevant plmis and evidence for
those plans. The plan analysis is an attempt to characterize the knowledge in use as the subject
solves the problem. The bug analysis presents the subject’s bugs and proposes bug generators
prepresenting plausible explanations for those bugs. The bug generators act as general, and
usually errorful, repair strategies parameterized by the plans the subject has recently used. For

40 Understanding the Bugs of Novice Programmers

each bug, the bug analysis presents relevant bug generators and plans.’® We begin by describing

how protocols were selected for detailed analysis, and then the detalls of those analyzes.

4.3.1. Selecting Protocols for Analysis

In the course of the work reported here we conducted twenty-two interviews with thirteen
different subjects. ‘That larger body of protocols was use to develop the theory of novice
programmer bugs. In developing the analysis technique presented here, ten of those protocols
were analyzed in depth. Of those ten, four with the same programming problems were selected
for the analysis presented In this chapter. These four protocols were all taken from college
students in the fourth to sixth week of an introductory Pascal programming course. In each

protocol, the subjects worked on the Ending Value Averaging Problem (see Figure 4-1).

Write a program which repeatedly reads in integers until it reads the integer
90999. After seeing 99999, It should print out the CORRECT AVERAGE without
counting the final 99999. Remember, the average of a series of numbers is the sum of
those numbers divided by how many numbers there are in the series.

Figure 4-1: The Ending Value Averaging Problem

In this problem, the program is to find the average of a series of input numbers terminated by a
distinguished value. In Soloway et al. [Soloway et al. 82a], this was found to be the most difficult
of three such simple looping and averaging problems. Later work [Soloway et al. 83] examined
student performance on this problem In relation to a peculiar construction required by the Pascal
vitle loop. (The while is the most appropriate looping construct for this problem.) This extensive
work on the ending value averaging problem made it a logical problem for detalled protocol
analysis. '

4.3.2. Plan Analysis

The plan analysis attempts to account for the subjects utterances and program code In
terms of the plans. In the theory of novice programming bugs, programming is seen as a process
of moving from plan to plan, using the knowledge in those plans to write program code or reason
about code already written. For a novice, many of the plans used In this process may be SSK
plans and not PK pians. The plan analysis attempts to describe which plans are in use by the

18, the analyses presented bere, the Plan Analysis sad Bug Analysis are folded into the Transeript. In this way, it is
easy 1o seo the relations between plans, bugs, and the sctusl transeript.

Evaluating The Theory 41

subject at any given time." Also, the plan analysis presents evidence that the subject is actually

using the plan as claimed.

The key Issue in the plan analysis Is to relate the relatively abstract implementation plan
descriptions (as described In Section 3) to the actual utterances and programs produced by the
novice. This relationship is established by the criteria flelds of the implementation plans.
Consider an example to illustrate the use of criteria and the relationship between implementation
plans and the protocol. A detailed description of the kinds of criteria and their use is provided

after the example.

Figure 3-7 (on page 35) shows the Pascal and Natural Language Implementation plans for a
Counter Variable. (The reader also may want to refer to the plan summary in Table 3-2 on page
31, and bug generator summary in Table 2-1 on page 21.) The criteria flelds correspond to the
ways in which each implementation plan can be recognized in a novice protocol. Consider the
protocol segment and assoclated plan analysis annotation in Figure 4-2. In the plan analysis
annotation we clalm that the subject used a Counter Plan In segment 112. It offers two pleces of
evidence for that claim: one evidence item (N4) says that there Is evidence for the Natural
Language Counter Variable implementation plan, based on criterion 4 (the text after the "N4*
repeats the criterion for ease of reading). The second evidence item (PS) says that there Is
evidence for the Pascal Counter Variable implementation plan, based on criterion 5 (again, the
text for "PS" is repeated). There are three things to note about the example:

1. The example provides more than one evidence item for the plan.

2. A povice often says things that indicate they are using both kinds of implementation
plans simultaneously.

3. The phrase "Incrementing by ones® does not exactly match the criterion target phrase

"increment one-by-one®, but Is considered a match because the criteria for these

target phrases are not applied literally.

These features are covered In the following discussion.

The plan analysis Is presented as annotations to the transcript. Each plan annotation

"Tbe plan analysis is focused on implementation plans and not on tactieal plans. implementation plans contain the
knowledge needed to actually implement s plan in a lsnguage like Paseal or step-by-step Natural Langusge. Tactical plans
contsin more general programming knowledge. The plan snalysis focuses on implementation plans because they contain
information that appears directly in the noviee's code and utterances. Tactical plans cannot be tied to the novice’s work in
this direct way, and therefore are not discussed as part of the plan analysis,

42 Understanding the Bugs of Novice Programmers

112 Subject 11: ... I want It simply Incrementing by ones, it's counting the number of
integers that come through,

PLAN: Counter
Evidence: N4 - *Counting the number of integers ...”
Evidence: P5 - "incrementing by ones®

Figure 4-2: Protocol Segment With Claimed Instance of Counter Variable Plan Use

mentlons specific plans and cites evidence for claiming that those plans are In use. We call each
item of evidence for a given plan an evidence item. In the quantitative summaries presented
later in the chapter, we use counts of evidence items to represent the overall plan activity. This
counting scheme means that each evidence item Is treated as if it were a unique instance of the
plan usage. Although it is acceptable to think that a subject might have several evidence items
for a single plan instance, there Is no way to make a finer distinction In the protocols. The
counting scheme used, though subject to this possible overcounting, is still a reasonable measure

of plan activity.

In many places in the transcrlpt'we show plan annotations with several evidence items.
These are simply a convenient way to present nearby evidence items. For example, the example
plan annotation of Figure 4-2 would result In counting two evidence items: as an instance of SSK

plan activity and an instance of PK plan activity.

An evidence item for a specific plan is represented by s pair of characters like *N4" and
"PS* in Figure 4-2. The first character of the palr says whether that evidence item Indicates the
use of a Natural Language (SSK) implementation plan (denoted by *N*") or a Pascal (PK)
implementation plan (denoted by "P*®). As is shown In the example, in 8 brief utterance the
subject may provide several pleces of evidence for a given plan. It is not unusual for muitiple
pleces of evidence to include evidence for both kinds of implementation, l.e. evidence that the

subject is reasoning with both kinds of plan implementation knowledge.

The second character in the evidence item pair specifies the specific criteria used to assert
that the segment Is coded by the specified plan. For example, the entry PB5 in the plan of Figure
4-2 asserts that a Pascal implementation of the Counter Variable Plan Is in use and offers

Evaluating The Theory 43

criterion 5 as evidence. There are five different kinds of criteria, indicated by the second
character of the evidence pair. These criteria are:

1. N - The subject used a Name that clearly suggests a certain plan. For example, 8us
for the Arithmetic Sum, or Counter for the Counter.

2. 8 - The subject Said so directly. For example, if the subject said “here I'm using a
counter to keep track of the number of values entered®.

3. C - The subject used a Pascal Construct that directly suggests a certain Pascal
implementation plan. For example, repeat and while clearly suggest that the subject
intends to do looping.

4. E - The subject used an Example of some other specific Pascal code. In this case the
subject might say “this is golng to work just like the statement I wrote here®.

5. Function (indicated by a number) - The subject used a phrase or fragments of code
that accomplishes the function of the plan. Since most plans have several functional
criteria, a specific criterion is indicated in the plan analysis by a number Indicating
which functional criterion is intended. Note that many functional criteria take the
form of target phrases - specific phrases to be matched with the wordings in the
transcript. “N4" and "P5" from the example In figure 4-2 are both functional

criteria.

As discussed In Section 3, the functional criteria for Natural Language step-by-step
procedural plans come from a written study of non-programmers writing Natural Language step-
by-step procedures. We used representative target phrases from this study to make up the
criteria for the Natural Language implementation plans. The functional criteria for Pascal
implementation plans represent specific Pascal code, usages, and descriptions assoclated with tha.t.
plan. We developed these Pascal Implementation criteria by introspecting on our own Pascal

programming and teaching experience.

The criterla are not applled strictly. To do so would vastly expsnd the number of
functional criteria. With the Natural Language plans In particular, the target phrase lists would
be very long if they did not allow for small variations In lexicon or syntax. For example, when we
list the phrase "add up total of . .. *, we also consider *add up all ... " and "sumup ali ... "
to be equivalent. In general, If there was any serious question about whether some item qualified

as matching a criterion, It was separated and made Into a new, separate criterion.

44 Understanding the Bugs of Novice Programmers

4.3.3. Bug Analysis

The Bug Analysis shows how errors made by a novice can be plausibly explained as Bug
Generators operating on currently active plans. Bugs are any error the subject makes that Is not
immediately corrected. With this definition we exclude immediately corrected slips from our
analysis. Within the analysis, however, we still may treat the error as an uncorrected slip. (In
the protocols presented below, a number of bugs are plausibly explained as slips.) Typically,
written studies of novice programmers can count only those bugs that are left In finished code.
The protocol, however, allows us to examine and explain even those bugs that a novice later
corrects or mutates. We look for bugs in the programming code the subject writes and in the

explanations given by the subject.

The Bug Analysis, like the Plan Analysis, Is presented as a series of annotations to the
transcript. We analyze ¢ach plece of buggy behavior in a separate bug annotation, Where there
are plausible connections between nearby bugs, that is noted within the separate annotations.
Filgure 4-3 shows two example Bug Analysis annotations. The bug annotations have several
sections. First the bug Is identified (the first line of the bug annotation, In boldface) with a
descriptive title.!® The titles are designed to capture the spirit of the bug. The title Is often a
quote from the subject, as illustrated in the first bug shown in Figure 4-3. Following the title
(the text after the title but before any right pointing hands) is a more detailed description of the

bug, often contrasting the subjects actions with a correct answer.

The next section of the bug annotation contains one or more of the bug generators that
provide plausible explanations for the bug (each bug generator and explanation Is indicated with a
right pointing hand). The bug generators (in italics text) are parameterized by plans (in roman
text). Bug generators are accompanied by a textual description to explain the details of the bug
generator/plan interaction and to provide evidence for that particular explanation of the bug.

For the purpose of the bug analysis we Introduce PK plans describing the usage of each
Pascal programming construct. In Figure 4-3 the second and fifth right pointing hands illustrate
usage of these special PK construct plans. These Pascal construct plans are part of what an

expert knows, not necessarily part of what a novice knows. As used in the bug analysis, the

1810 titles are intendod strictly descriptively. We do not bave » systematie catalog of bugs (and bug names), since such
a eatalog would necessarily be based strictly on the features of the buggy program. Instesd, we understand bugs as bug
gonerators opersting on plans. This allows us to categorise bugs based on the knowledge and processes used by the novice to
arrive at a given bug.

Evaluating The Theory 45

BUG: *It reads the Sum®: sus := 0 + 1
The subject Is Incorrectly tylng the read and sum operations together. Something like ®it reads
in a value which Is then added Into the sum® would be correct.
g2r PL Used as NL on Input New Value - 1
The read operation is done implicitly whenever a value Is needed.
g PL Interpreted as NL on Pascal - Ress/Read1n
Here he Is treating Read; Resdla palir as if they were declaring that reading is to be done, and
the results of the read will be used with Sum.
g Multi-Role Variable on Arithmetic Sum - su, Input New Value - 1
The subject is using the variable Sum as if it will automatically get a new value added In
whenever that new value Is read.
g2 Slip
Just slipped and forgot to say “... a value which Is added ... ™.

BUG: Counter continues to add when set to 1, then 2
Subject says that the Counter Variable when set to 1, and then set to 2 inside the loop body, will
continue to increment on each iteration.

g FL Interpreted as NL on Pascal - repest, Indefinite Loop
The subject is expecting the loop to work like loops in Natural Language. There, It is
common to specify a loop by giving one or two cases of the iteration and assuming that
person reading will know how to generalize. Notice he says that the sus := 0 + I Is the
“first format of that® refering to the action performed for each value of the New Value
Variable.

g2 Trace on Counter
The subject is actually stating the series of values that N will take on through the execution

of the program.

Figure 4-3: Examples of Bug Analysis Annotations

46 Understanding the Bugs of Novice Programmers

novice does not know this plan. Instead, the bug generator is operating to make up for missing
knowledge. The Pascal construct plans are a special case because it is quite typical for a novice

to use Pascal constructs without any pragmatic understanding of the construct.

To lllustrate these features of the Bug Analysis annotations, we discuss the first annotation
shown in Figure 4-3 in detail. (Note here that we are extending the description provided for
Filgure 2-3.) The Bug discussed Is based on the subject describing the following line of code:
Sus := 0 + I Sus IS the Arithmetic Sum Variable and 1 is the Input New Value Variable. In the
subject's discussion of Sus :x 0 + I he says that “It reads the sum™. This quote is used In titling
the bug. In the description of the bug we discuss how the subject seems to have Incorrectly tied
the reading and summation operations together. Also in the description we propose a similar

phrase that, had the subject used it, would have been correct.

The first plausible bug generator Is PL Used as NL applied to the Input New Value
Variable Plan (the subject’s variable 1). The second plausible bug generator Is PL Interpreted as
NL applied to a special Pascal construct plan that summarizes the usage of the Pascal nesd and
Readla. This bug explanation Is proposing the bug generator as substituting for the expert
knowledge about the Pascal constructs. The third plausible bug generator, Multi-Role Variable
operates on the Arithmetic Sum Variable Plan and the Input New Value Varfabie Plan. Finally,
it iIs plausible that the subject just slipped here, and actually did understand that the running
sum operation and inputing a new value were separate operations. There is a final thing to note
about this example bug annotation. As experts we look at the statement Sus := ¢ + I and know
there Is llkely a problem with the 0 on the right side of the assignment. In the bug analysis this is
handled in a separate bug annotation. This concludes our discussion of the example bug anﬁlysls

annotation in Figure 4-3.

All plausible bug generators are Included In the annotation assoclated with each bug.
Usually there is more than one plausible bug generator. Our preference s Indicated by order: the
earllest mentioned bug generator I3 the one we consider most likely. When there Is specific data
for these preferences, it is indicated In the textual description. Note that these explanations are
often not mutually exclusive., Even though we treat the explanations as if they don’t interact, the
best explanation may be a combination of several plausible bug generators. In general,
determining the interaction between plausible explanations and choosing the best explanation Is

still an open problem in this research.

Evaluating The Theory 47

4.4. Results of the Analysis

The protocols of four subjects working on the Ending Value Averaging problem were
analyzed with the methods discussed above. (This problem appears with a correct solution in
Figure 4-1 on page 40.) We begin by dlscussing the four protocols, focusing on the final program
produced by each of the subjects and a summary of the bugs made during the protocol. Next,
the expectations discussed in Section 4.1 are evaluated, based on summary data from the

protocols,

4.4.1. Overview of the Protocols
In this section we detail the performance of each subject on the Ending Value Averaging
Problem.!?
Interview 1:
Subject 13’s final program Is shown in Figure 4-4. There are a pumber of things
wrong with this program, but most critical is his pecullar loop body. Notice that
within the loop body, sus (the Arithmetic Sum Variable) Is first set to o (see 1),
and then to I + Next I (1 Is the Input New Value Variable) (see 2), while » (the
Counter Variable) Is set to 1 (see 8) and then 2 (see 4). The subject seems to be
implementing the loop with the following Natural Language strategy: Show an
ezample of the first few steps, and assume that the other iterations will
happen correctly (he actually shows the first two steps). In Appendix I we

show an analyzed excerpt from Protocol 1.

Interview 2:
Subject 6's The final program is shown In Figure 4-5. It is almost correct. His
problem is that there is no REap Inside the loop. In the protocol he convinces
himself that he needs a meap above the loop (see 1) to make the vEILE test make
sense (see 2), but never thinks to also put a second xEap Inside the loop. At one
point, he uneasily states that each test of xzwnux in the VHILE statement (See 2) will

know to read a new value for that iteration.

Interview 3:

“Noto On Presentation: Throughout this section, code produced by subjects in reproduced here in as accurately as
possible. For example, some subjects used upper-case only in their programs, while others use mixed case. The subject’s
case preference is preserved here.

Small superseript numbers, e.g. *, 3, ete., are used to refor to lines of code discussed in the text.

48

Understanding the Bugs of Novice Programmers

;ro;ru Average (Iaput/, Cutpat):
ar

N, Sum : Integers
Average : Real;
Const :@ Sentinel

Begin (e Aversge of the integers entered)

¥riteln ("Enter series of integers %o bs averaged‘);
vriteln (Integers vill de Averaged whes you
enter tde Integer 90008);

Read:;
Readln;
Sentinel :u §0000;
N :=0;
Sus := 0;
Repest
Read;
Readln;

Sua := o'

%=1

Sum = I + Next 1?

% :=2*

satil I = 00000
tlien Average = Sus/¥

Vriteln (‘Average’:z= 0):
BXD.

(superscripts mark lines discussed in the text)

Figure 4-4: Final program for Subject 13 working on the while problem.

PROGRAM AVERAGE (INPUT/, OUTPUT):
COUNT

SENT = 900066;
VAR

NEWNUM, COUNT, SUM, AVE : INTEGER:
BEGIN

COUNT := 0;

SUM := 0;

READLN;

READ (MEVNUM) ;!

VHILE NEVNUX <> SENT®
DO BEGIN
SUM := NEWNUM + SUM;
COUNT := COUNT » 1;
END;
IF COUNT <> O
THEN AVE := SUM DIV COUNT
VRITELN (°AVERAGE = °), AVE:8:2;
EXND.

(superscripts mark lines discussed In the text)

Figure 4-6: Final program for Subject 8 working on the while problem.

Evaluating The Theory 49

Subject 11°'s final program is shown In Figure 4-6. Her program Is almost
completely correct. Like Subject 6, her bugs are related to reading new values
inside the loop. She recognized that some sort of Reat¢ was required inside the
loop, and even realized that it had to come after the Count increment (see 1) and
Total update (see 2). The Reaa (I) below the loop (see 3) was originally, and
correctly, put at the bottom of the loop body. In the protocol she argues that
leaving It there would cause the program to read a new value before the previous
value read is processed. She uneasily moved Resd (I) out to it’s current position
outside the loop (see 3) and settled on Readln (See 4) at the bottom of the loop to

express the right amount of reading.

Interview 4:
Subject 12's final program Is shown In Figure 4-7. This program Is almost
correct. It's bug involves the first value rzap (before the start of the loop) (see 1).
She reads In a starting value, but then sets wux (the Input New Value Variable)
to o (see 2), losing that starting value. From the protocol, it seems that she does

this because she wanted to initialize all variables used inside the loop to o.

For each subject, notice how the run-time behavior of the final program would not clearly
reflect the actual student misconceptions. With the protocols we were able to follow each subject
and account for many of the details of the final program in terms of the student’s knowledge and
strategies. This illustrates the lmportance of the protocol data In formulating the theory of

novice programming bugs presented here.

Table 4-1 contains overview statistics for the four protocols analyzed. Interviews lasted
between 23 and 45 minutes. It is not clear why subjects 2 and 4 took nearly twice as long as
subjects 1 and 3. Notice that time spent on the problem does not appear to have any relationship
to the number of bugs. Plan evidence item counts ranged between 104 and 177, with SSK plan
evidence item counts ranging between 16 and 50 while PK plan evidence item counts ranged
between 88 and 127. The subjects had between 10 and 32 bugs. Notice that in terms of Plans
and Bugs, there seem to be two groups in the protocols: Protocols 1 and 2 show greater use of
plans and more bugs then protocols 3 and 4. We refer to these as the *"buggy group® and the
"less-buggy group®, respectively. In the rest of the section we present evidence that seems to
explain this grouping. It seems that the buggy group shows substantially more use of SSK then

Understanding the Bugs of Novice Programmers

Const

Seatinel = 00999;
Var

I, Count, total, AVQ :@ Integers:
Begin

Count := O;

Total := O]

vritela (’Eater integer’):

Readla;

Read (integer):

Viile I <> 00090 Do

Begin

Count := Couat + 1;!
Total := Total + I°
Readln ¢

Resd (I)?
Avg :z Total Div Count
vriteln ("Avg is °. Avg:0)

(superscripts mark lines discussed in the text)

Figure 4-68: Final program for Subject 11

PROCRAM SUNUP (INPUT/,.OUTPUT):
COoNST

SENTINEL = 00000
VAR
mlllt'lnl. SUM, AVERAGE, COUNT : INTEGER;
VRITELN (°READ IN AN INTEGER AND CONTINUE UNTIL®):
(*FINISEED THEN ENTER 60009 . . . °);
READIN;
READ (wOM);!
COQuUNT := 0
88U := 0;
RKUM := 4.):c
VHILE NUN <> SENTINEL DO
BEGIN
gUM := NUM + SUM;
COUNT := COUNT + 1;
READLN;
READ (NUM)
B;
AVERAGE := SUM DIV COUNT;
VRITELN (°AVERAGE IS, ° AVERAGE : 0);
.

(superscripts mark lines discussed in the text)

Figure 4-7: Final program for Subject 12

Evaluating The Theory 51

the less-buggy group. This correlation between buggyness and SSK Is the substance of
expectation three (and a key finding of the work) and ls' discussed further below.

Protocol Number

1 2 3 4

Subject Number 13 6 11 12
Duration (minutes) 32 45 23 45
Plan Evidence Items 159 177 104 107
SSK Plans 43 50 16 18
PK Plans 118 127 88 91
Ratio: PK to SSK .37 .39 .18 .18
Plans/Minute 5.0 3.9 4.5 2.4
Bugs’ 32 19 11 10

Notes:
1Bugs (errors) found in the protocol.

Table 4-1: Summary Statistics for the Four Protocols Analyzed

In the beginning of this section we developed three expectations based on the theory of
novice programming bugs. Using the methodology developed and illustrated In the preceeding

few sections, and the data just summarized, we now evaluate those expectations.

4.4.3. Expectation 1: Plan Use Is Extensive

The first expectation concerned the use of plans In the protocols:

Expectation 1: Novices show a regular and extensive use of plans. Novices should
make use of both SSK and PK implementation plans.

In Table 4-1 the relevant statistics are presented. There were 104 plan evidence items in the
protocol with the fewest plan evidence Items (protocol 3). This protocol averaged 2.4 plan
evidence jtems per minute. The protocol with the most evidence items had 177, averaging 3.9
plan evidence items per minute. Our subjects did seem to use plans extensively, though it Is

difficult to measure what “extensive” means without a basellne for comparison.

52 Understanding the Bugs of Novice Programmers

There are two ways to break down plan usage: by SSK or PK, and by plan type. Data in
Table 4-1 shows that the subjects used dboth SSK and PK plans. The ratio of PK to SSK ranged
between .18 and .39. The buggy group protocols had ratios of .37 and .39 while the less-buggy
group both had ratios of .18. That I3, the buggy protocols showed more use of SSK plans. This
relationship is discussed further in below.

In Table 4-2 we show the the plan evidence item counts broken down by type of plan.
Again, there is overall support for the importance of plans. In particular, all the plans discussed
above were used by the novices interviewed. All the subjects, including the bugglest novice

(protocol 1), used almost every type plan.

Protocol Number

1 3 3 4
Subject 13 6 11 12
Plan Evidence Items (%) (%) (%) (%)
Sentinel Variable 9 (7 8 (6) 4 (5) 10 (11)
Loop - 19 (15) 10 7) 7 (8) 1 (1)
Counter Variable 21 (18) 15 (1) 15 (18) 12 (13)
Arithmetic Sum 18 (14) 31 (22) 11 - (13) . 14 (15)
Result Variable 17 (13) 10 (7 6 (™ - 10 (11)
New Value Variable 11 (9) 12 (9) 12 (14) 14 (15)
Input 18 (12) 18 (13) 15 (18) 7 (8)
New Value Loop 8 (6) 28 (20) 11 (13) 16 (17)
Result Output 5 (4) 8 (3) 0 (0) 1 (1)
Instructional Output 3 (2) 0 (0) 2 (2) 0 (0)
Prompt Output 2 (2) 1 (1) 2 (2) 7 (8)
Illegal Filter 0 (0) 2 (1) 0 (0) 0 (0)
Total 128 (100) 141 (100) 85 (100) 92 (100)
Bugs 32 19 11 10

Table 4-2: Break Down of Plan Usage Statistics for the Analyzed Protocols.

Detalled analysis of these data will require finer grained analysis methods then used in this study.
To illustrate the problems of drawling simple conclusions from these data, consider several rows
from the table:

New Value Controlled Loop Plan

Evaluating The Theory 53

In protocol 1, where the subject knew very little about constructing the loop, the
count is quite low, accounting for only 8% of the plan evidence items. Other
subjects, whose loops were fairly close to correct, had higher counts ranging
between 13% and 20% of all plan evidence items.

Sentinel Variable Plan
All subjects had little trouble with this plan and had relatively low plan evidence

item counts, ranging between 5% and 11% of all plan evidence items.

Input New Value Variable Plan and Input Plan
These plans gave all subjects a great deal of trouble. Plan evidence items counts
(for the two together) range between 18% and 33% of all plan evidence jtems.

From these and similar observations, a very tentative conclusion can be drawn that plan activity
is highest on those plans that a novice almost knows. Further work Is needed, however, to

conclude this with any amount of rigor.

In summary, the novice programmers studied did use plans. The protocols ranged from 104
to 177 plan evidence items, or from 2.4 to 5.0 evidence items per minute on average. A}! novices
used both SSK and PK plans. Plans of all types discussed are used by all the novices here. Even
without an established baseline, for saying usage was "extensive”, the numbers do support the

Idea that plans play an important part in the novice programming process.

4.4.3. Expectation 2: Bug Generators Plausibly Explain the Bugs
Expectation 2 addresses the adequacy of the bug generator set to plausibly explain all bugs:

Expectation 2: The Bug Generator set presented here can plausibly explain most
errors found in the protocols.

The data are in the "Bugs Explained® line of Table 4-3. All bugs found can be plausibly explained
by one or more of the Bug Generators presented. The bug generator set presented could serve as
a concise way to organize and categorize bugs. Particularly useful Is that the relatively small set

of bug generators i3 sufficient to describe many different bugs and misconceptions.

Table 4-3 also shows the total number of plausible explanations in each protocol and the
number of plausible explanations per bug. These statistics indicate that the number of plausijble
explanations per bug Is relatively constant from protocol to protocol. This gives us some

confidence that the bug analysis techniques have been consistently applied across the four

54 Understanding the Bugs of Novice Programmers’

Protocol Number

1 2 3 4
Subject Number 13 6 11 12
Bugs Found 32 19 11 10
Bugs Explained! 32 19 11 10
Total Explanations® 56 27 15 15
Explanations/Bug® 1.7 14 14 1.5

Notes:
1All bugs found were explalned.
3Number of plausible bug generator explanations for all bugs.
3Average number of plausible (Non-Slip) explanations per bug.

Table 4-3: Bug Generator Statistics for the Analyzed Protocols

protocols. This data also Indicates that while multiple bug generators may be responsible for

some bugs, on the average less than two bug generators will be involved.

The plausible bug generator explanations summarized in Table 4-3 do not include cases
where the bug was plausibly explained as a slip. These data are summarized in Table 4-4. First,
notice that all but two bugs bad a plausible non-slip explanation. That is, almost every bug
detected in the analysis can be plausibly explained as a bug generator operating on plans,
Second, notice that slips can plausibly explain between 34% and 58% of the bugs (depending on
the protocol). Most likely a much smaller percentage are actually slips. Though there are many
bugs that can plausibly be interpreted as slips, this slip interpretation often becomes less likely
when the bug Is examined In the context of the whole protocol. Consider, for example, the first
bug of Figure 4-3 (on page 45). Although we consider a slip plausible in the bug annotation, the
overall context of the bug makes a slip unlikely. In particular, it is unlikely that the subject
actually understands how reading {s done given that he never includes a Bead statement in his loop
body. This is typlcal for many of the slips. Notlce that In the second example of Figure 4-3 it Is
not possible to construct a plausible slip. In this case the subject both wrote and spoke things

indicating a non-slip explanation.

-

L)

-

Evaluating The Theory 55

Protocol Number

1 2 3 4
Subject Number 13 6 . 11 12
Bugs Found 32 19 11 10
Bugs Explained! 32 19 11 10
Bugs Plausibly Explained by Non-Slip Bug Generators®
(%) (%) (%) (%)
32 (100) 18 (95) 10 (91) 10 (100)

Bugs Plausibly Explained by Slip Bug Generators®
11 (34) 11 (58) 5 (45) 5 (50)

Notes:
1All bugs found were explained.
2The number (percent) of bugs plausibly explained by the Non-Slip Bug Generators.
3The number (percent) of bugs plausibly explained by the Slip Bug Generator.

Table 4-4: Slip vs. Non-Slip Bug Generator Statistics

4.4.4. Expectation 3: SSK/PK Bug Generators Are Critical
We have claimed that novice bugs are closely connected to confounds between SSK and PK.
This Is expectation 3:

Expectation 3: When novices encounter an Impasse in a developing programming
solution, they usually use SSK Con founde PK Bug Generators to patch and continue.

The analysis presented here contains two kinds of evidence for this expectation. We look both at
the overall coverage of SSK Con founds PK Bug Generators and the relationship between total
number of bugs and the ratio of SSK plan usage to PK plan usage.

SSK Confounds PK Bug Generators embody the process whereby novices use SSK
knowledge to reason about their programs. As can be seen In the *SSK/PK Total” line of Table
4-5, SSK Con founds PK Bug Generators plausibly explained 46%, 83%, 60%, and 27% of the
bugs found in protocols 1 to 4 respectively. That Is, for protocols 1 to 3, SSK Con founds PK
Bug Generators can explain almost almost one-half or more of the bugs. In protocol 4, with the
lowest coverage by SSK Confounds PK Bug Generators, Intra-PK Bug Generators plausibly

explained 47% of the errors. This evidence, while not conclusive, does support expectation 3.

S

56 Understanding the Bugs of Novice Programmers’

Protocol Number

1 2 3 4
Subject Number 13 6 11 12
Bugs Found 32 19 11 10
Bugs Explained! 32 19 11 10
Explanations/Bug® 1.7 1.4 1.4 1.5
Plausible Explanations By Non-Slip Bug Generators®
(%) (%) (%) (%)
SSK Confounds PK:
PL Used as NL 10 (18) 8 (22) 1 N 1 7
NL Interprets PL 11 (20) 10 (37) 7 (47 3 (20)
NL Construct 2 (4) 0o (0) o (0) o (0)
Generic Name 2 (5) 1 (4) 1 (7) o (0
SSK/PK Total 28 (48) 17 (83) 8 (80) 4 (27)
Intra-PK: .
Trace 10 (18) 5 (19) 1 7N 1 n
Overgen 4 (¢p) 1 (4) 2 (13) 3 (20)
Similar 4 (7 1 (4) 2 (13) 3 (20)
Intra-PK Total 18 (32) 7 .(20) & (33) 7 (47)
Other Confounds PK:
Multi-role 8 (14) 1 (4) 1 N 3 (20)
Other Domasin 3 (58)- 2 ™ 0 (0) 1 (7)
OS Confound 1 (2) o (0) o (0 0 (0)
Other/PK Total 12 (21) 3 (11) 1 (7) 4 (27)
Non-Slip Total 68 (100) 27 (100) 15 (100) 15 (100)

Notes:
1All Bugs found were explained.
’Average pumber of plausible (Non-Slip) explanations per bug.
3The number of bugs plausibly explained by each Non-Slip bug generator.
(23) Is the percentage of plausible explanations by the specified bug generator out
of all plausible Non-Slip explanations. Each bug can have several explanations.
Siip data are presented in Table 4-4.

Table 4-5: Bug Generator Statlstics by Bug Generator Type

‘e

Evaluating The Theory 57

Notice that protocol 4, the least buggy, also had the lowest percentage of plausible SSK
Con founds PK Bug Generators.

There Is a second set of data supporting Expectation 3. Refering back to Table 4-1, we see
that the buggy group (protocols 1 and 2) of protocols had higher ratios of SSK to PK plan
evidence items then the less-buggy group (protocols 3 and 4). The ratios were .37 and .39 for the
buggy group protocols and .18 for both protocols of the less-buggy group. This Is consistent with
the notion that a more error prone and less advanced novice Is doing more reasoning from

Natural Language implementation plans.

5. Concluding Remarks .

In the preceeding section we presented a detailed analysis of four protocols of novice
programmers. From that analysis we provide data to support the theory of novice programmer
bugs. Specifically, we present evidence that plans, both SSK and PK, are critical and pervasive

in the work of novice programmers. We demonstrated that our Bug Generator set can plausibly

“explain all the novice bugs we have seen in our protocols. Most importantly, the analysis

provides support our key assertion: SSK plays an Important role In the bugs of novice
programmers. Bug generators that describe the confounds between SSK and PK can plausibly
explain a substantial number of bugs In each of the protocols, In addition, the SSK to PK

Implementation plan ratio was higher for those novices with buggler protocols.

There are several next steps for this work. In the rest of this section we explore further
development for the theory, implications for teaching, and !mpllc;;t!ons for Intelligent tutoring of
novice programming.

5.1. The Theory of Novice Programming Bugs

Currently, our bug analysis specifies all bug generators which could account for a
programming bug. We would like to develop the theory so that this Is more specific: are there
ways to detect exactly which bug generator(s) is (are) responsible! To do this, It will be necessary
to further develop the bug generator set. The different bug generators need to be more carefully
and formally distinguished. There are situations where bug generators seem closely tled to
specific programming constructs. Does this mean that some bug generators are tied to specific
sections of the PK or SSK?

58 Understanding the Bugs of Novice Programmers *°

In the current theory the application of the bug generators Is still largely informal. While
constrained by plans, the application of bug generators still is represented by an explanatory
paragraph. The theory is now cast In way that makes It easy to modify or extend plans and bug
generators to account for a new bug. A more principled theory requires more constrained and
formal application of the bug generators to specific bug situations. Modifying a plan or bug
generator to create one explanation needs to have consequences for other explanations using that

bug generator.

To address these issues, a more constrained set of interviews is planned. In these interviews
subjects would be put in specific situations where bugs are very likely. For example, subjects
might be given a problem statement and a skeleton program missing a key sectlon. Such

Interviews would be accompanied by probes to detect the use of certain bug generators and plaas.

The theory developed for novice bugs in the domain of programming may be applicable to
povice bugs in other expert problem solving domains. In particular, the theory might be
applicable to domains where there is a body of proto-knowledge that many students are likely to
apply to the new domain. Step-by-step Natural Language procedures are proto-knowledge for
programming. Similarly, Aristotellan Physics [DiSessa 82] may serve as analogous proto-
knowledge for Classical Newtonfan Physics. Matz [Matz 82| has shown how basic arithmetlc
knowledge serves as proto-knowledge for the learning of high-school algebra.

5.2. Teaching Novice Programmers

There are several ways that this work can contribute to the education of programmers. We
have shown the usefulness of SSK In understanding many novice programming bugs.
Unfortunately, novice programmers are not told about SSK Confounds PK bugs and SSK Is
rarely If ever discussed in our introductory programming courses. We suggest that Introductory
programming curriculum needs to bridge between SSK and PK. It is not unusual to see
Introductory programming texts that emphasize careful problem analysis and design before
coding. Unfortunately, starting with a typlcal “pseudo-code program® often has already skipped
a key step between the Natural Language implementation techniques and Pascal implementation

technlques.

Consider an example of this contrast between the two kinds of implementation techniques.

The Ending Value Averaging Problem (see Figure 4-1 on page 40) computes the average of a

s« -~ Concluding Remarks 59

series values. In a programming implementation, each value Is entered, Incorporated, and is then
no longer needed. A typical pseudo-code program looks llke Figure 5-1, qulte close to the final

Pascal implementation.

Read a data {tem
vhile more data do
Sum and Count that data item
Read the next data item
Compute the average: Sum/Count

Write out the average

Figure 5-1: Fragment of Pseudo-Code Solution to the
Ending Value Averaging Program

In a Natural Language implementation all values are entered and processed as a group. A novice,
told to “write a plan of the program, using English or Pascal to express the important steps of
the program®, produced the Natural Language procedure in Figure 5-2.

Keep reading data items untsl the final value io secen.
Don t use the final value.
Compute the average by dividing the sum of the values

read by how many valucs there were.

(Adapted from a response by one of our subjects.)

Figure 6-2: Fragment of Typlcal Novice Natural Language for the
Ending Value Averaging Problem

There is a gap between these two approaches. That gap is exactly the knowledge captured
In implementation plans. The gap can be bridged by explicitly supporting novice programmers in
moving beyond their Natural Language implementation plans. This could be done by discussing
the design process in two steps: a preliminary, design based on Natural Language implementation
plans, and then a design based on programming !anguage implementation plans. Introducing this
distinction allows the novice to explicitly address bridging the gap.

60 Understanding the Bugs of Novice Programmers-

We propose a curriculum organized around common programming plans. In the curriculum,
these plans would first be discussed as implemented in SSK, and then discussed as implemented in
PK for a programming language like Pascal. These plans would then be used to motivate and
introduce the actual programming language constructs. This would be a significant departure
from current programming curriculum (Cooper and Clancy 82, Dale and Orchalick 83]. Despite
material on program design, most programming courses are still organized around the syntax and
semantics of constructs in the programming language belng taught: an if statement chapter
followed by a while loop chapter followed by a chapter on procedures. Knowledge of programming

plans available only implicitly by studying examples.

5.3. Conclusion

In this work we propose a theory of novice programmer bugs and a methodology fdr
studying novice programmers. In the theory we characterize the knowledge and processes used
by novice programmers. Specifically, we have found tl{at novice knowledge of Natural Language
step-by-step procedural knowledge seems to shape the kind of errors novice programmers make

when working with a programming language like Pascal.

There Is currently an explosion in the number of people owning and using computers. It Is
still unclear whether these millions of new computer users will be programming thelr machines, or
simply using software developed by others. Currently, many claim that programming s just too
hird for the average person. This work indicates that such a conciusion may be premature.
Novice difficulty with simple programming may not be inherent in the nature of programming.
Instead, the difficulty may result from novice programming languages and introductory
programming courses that do not take novices pre-programming knowledge into account.

Acknowledgements
The author wishes to acknowledge the guidance and patience of Elllot Soloway. His
comments and careful reading have contributed significantly this work.

References

{Anderson 83] Anderson, John R.
The Architecture of Cognition.
Harvard Unlversity Press, Cambridge, Massachusetts, 1983,

)

b

~
.

References

(Biermann 83]

(Bonar 79]

(Bonar 84|

{Bonar 85]

81

Biermann, Alan W., Ballard, Bruce W., Sigmon, Anne H.
An Experimental Study of Natural Language Programming.
International Journal of Man-Machine Studics 18:71-87, 1983.

Bonar, Jeffrey G.

Just So Buga: Stories about Novice Programming Buge.

Technical Report, University of Massachusetts, Computer and Information
Sclence Department, 1979.

Bonar, Jeffrey G.
Understanding the Buge of Novice Programmers.
PhD thesis, University of Massachusetts, 1984.

Bonar, Jeffrey G.

Personal Programming in BASIC.
Academic Press, 1985.

In preparation.

{Bonar et al. 82] Bonar, Jeffrey, Ehrlich, Kate, Soloway, Eliiot, and Rubin, Eric.

Collecting and Analyzing On-Line Protocols from Novice Programmers.
Behavioral Research Methods and Instrumentation , May, 1982.

(Brown and VanLehn 80|

(Chi et al. 81}

{Chi et al. 82)

[Clement 81)

(Clement 82]

[Codd 74}

Brown, John Seely, and VanLehn, Kurt.
Repair Theory: A Generative Theory of Bugs In Procedural Skills.
Cognitive Science 4:379-426, 1980.

Chi, Michelene T., Feltovich, P., Glaser, R.
Categorization and Representation of Physics Problems by Experts and Novlces.
Cognstive Seience 5(2):121-152, 1981.

Chl, Michelene T. H., Glaser, Robert and Rees, Ernest.

Expertise in Problem Solving.

In Sternberg, Robert (editor), Advances in the Psychology of Human
Intclligence. Lawrence Eribaum and Associates, Hillsdale, New Jersey, 1982.

Clement, John.

Cognitive Microanalysis: An Approach to Analyzing Intultive Mathematical
Reasoning Processes.

In Wagner, S. and Geeslin, W. (editors), Modeling Mathematical Cognitsve
Development. ERIC Center for Science, Mathematics, and Envirnmental
Education, Ohio State University at Columbus, 1981.

Clement, John.
Students’ Preconceptions in Introductory Mechanics.
American Journal of Physics 50(1):66-71, January, 1982.

Codd, E. F.
Seven Steps to RENDEVOUS With the Casual User.
IBM Report J1333 (29842), IBM, 1974.

62 Understanding the Bugs of Novice Programmers’

(Cooper and Clancy 82]
Cooper, Doug and Clancy, Michael.
Oh! Pascal!
W.W. Norton and Company, New York, 1982.

[Dale and Orchalick 83]
Dale, Nell, and Orshalick, David.
Introduction to PASCAL and Structured Design.
D.C. Heath and Company, Lexington, Massachusetts, 1983.

[De Remer and Kron 76}
De Remer, Frank, and Kron, Hans.
Programming-In-The-Large Versus Programming-In-The-Small.
IEEE Transactions on Sofiware Engincering , June, 1976,

(Dijkstra 78] Dijkstra, Edsger W.
On the Foolishness of Natural Language Programming.
1978.
EWD Technical Note.

{DiSessa 82] DiSessa, Andrea A. _
Unlearning Aristotelian Physics.
Cognitive Seience 6(1):37-76, Jan.-Mar., 1882,

(Ehrlich and Soloway 83}
Ehrlich, Kate and Soloway, Elliot M.
An Empirical lnvest.lgai.lon of the Taclit Knowledge in Programming.
In Thomas, John and Schneider, Michael L. (editors), Human Factors in
Computer Systems. Ablex, Inc., 1983.

(Ericsson and Simon 80}
Ericsson, K. Anders and Simon, Herbert.
Verbal Reports as Data.
Psychological Review 87(3):215-251, May, 1980.

[Jeffries et al. 81}
Jeffries, Robin, Turner, Althea A., Polson, Peter G., and Atwood, Michael E.
The Processes Involved in Designing Software.
In Anderson, John R. (editor), Cognstive Skills and Their Acquisition.
Lawrence Eribaum Associates, Hillsdale, New Jersey, 1981.

[Johnson and Soloway 83]
Johnson, W.Lewis and Soloway, Elliot.
Proust: Knowledge-Based Program Undcrstanding.
RR 285, Yale University Computer Science Department, August, 1983,

[Johnson et al. 82}
Johnson, W. Lewis, Draper, Stephen, and Soloway, Elliot.
Classitying Bugs Is a Tricky Business.
In Proceedings of the Seventh Annual NASA/Goddard Workshop on So ftware
Engineering. NASA, Baltimore, 1982.

"

« -

References 83

[Kant and Newell 83}
Kant, Elaine and Newell, Allen.
Problem Solving Technlques for the Design of Algorithms.
In formation Processing and Management , 1983.

[Kaput 79)] Kaput, James J.
Mathematics and Learning: Roots of Eplstemological Status.
In Lochhead, Jack and Clement, John (editors), Cognitive Procecss Instruction.
Franklin Institute Press, Philadelphla, 1979.

{Konold and Well 81}
Konold, Clifford E. and Well, Arnold D.
Analysis and Reporting of Interview Data,
In Proceedings of the Annual Mecting of the American Educational Research
Association. American Educational Research Association, 1981.

(Larkin et al. 80] Larkin, Jill H., McDermott, John, Simon, Dorothea P., Simon, Herbert A.
Expert and Novice Performance in Solving Physics Problems.
Sesence 208:1335-1342, 1980.

[Matz 82] Matz, Marilyn.
Towards a Process Model for High School Algebra Errors.
In Sleeman, Derek and Brown, John Seely (editors), Intelliger:: Tutoring
Systems. Academic Press, London, 1982.

[Miller 74] Miller,Lance A.
Programming by Non-Programmers.
International Journal of Man-Machine Studics (6):237-260, 1974.

[Mtller 81] Miller, Lance A.
Natural Language Programming: Styles, Strategies, and Contrasts,
IBM Systems Journal 20(2):184-215, 1981.

[Minsky 75] Minsky, Marvin.
A Framework for Representing Knowledge.
In Winston, Patrick H. (editor), The Psychology of Computer Viston. McGraw-
Hill, New York, 1975.

[Newell 77) Newell, Allen.
On the Analysis of Human Problem Solving Protocols.
In Johnson-Laird, P. N. and Wason, P. C. (editors), Thinking, pages 46-61.
Cambridge University Press, Cambridge, 1977.

(Newell and Simon 72]
Newell, Alan and Simon, Herbert.
Human Problem Solving.
Prentice-Hall, Englewood Clitfs, New Jersey, 1972.

(Pollatsek et al. 81]
Pollatsek, A., Lima, S., and Well, A. D.
Concept or Computation: Students’ Understanding of the Mean.
Educational Studies in Mathematics 12:191-203, 1981.

64 Understanding the Bugs of Novice Programmers

[Resnick 82] Resnick, Lauren B.
Syntax and Semaantics in Learning to Subtract.
In Carpenter, T., Moser J., and Romberg T. (editors), Addition and
Subtraction: A Cognitive Perspective. Erlbaum, Hillsdale, NJ, 1082.

[Resnick 83] Resnick, Lauren B.
A New Conception of Mathematics and Science Learning.
Science 220:477-478, April, 1983,

[Rich 81] Rich, Charles.
Inspection Methods tn Programming.
Technical Report AI-TR-604, MIT, 1981.
MIT AI Lab.

[Rich and Shrobe 78]
Rich, Charles and Shrobe, Howard.
Initial Report on a LISP Programmer’s Apprentice.
IEEE Tranasactions on Sofiware Engineering 4(6), November, 1978.

[Rissland 78] Rissland, Edwina.
Understanding Understanding Mathematics.
Cognitsve Science 2(4):361-383, 1978.

[Rosnick 82) Rosnick, Peter.
Student Conceptions of Semantically Laden Letters in Algebra.
Technical Report, Unlversity of Massachusetts, Amherst, Cognitive Development
Project, 1982.

[Shneiderman and Mayer 79]
Shneiderman, Ben, and Mayer, Richard.
Syntactic/Semantic Interactions in Programmer Behavior: A Model and
Experimental Results.
International Journal of Computer and In formation Sciences 8(3):219-238,
1978.

[Sime et al. 77] Sime, M. E., Green, T. R. G., and Guest, D. J.
Scope Marking in Computer Conditionals -- A Psychological Evaluation.
International Journal of Man-Machine Studies 9:107-118, 1977.

(Soloway et al. 81]
Soloway, Elliot, Woolf, Beverly, Rubin, Eric, and Barth, Paul.
MENO-II: An Intelligent Tutoring System for Novice Programmers.
In Proceedings of International Joint Con ference in Arti ficial Intelligence.
IJCAI, Vancouver, British Columbia, 1981.

-

[Soloway et al. 82a)
Soloway, Elliot, Ehrlich, Kate, Bonar, Jeffrey, and Greenspan, Judith.
‘What Do Novices Know About Programming?
In Shneiderman, Ben, and Badre, Albert (editors), Directions in Human-
Computer Interactions. Ablex Publishing Company, 1982.

Cadd

References 85

[Soloway et al. 82b) :
Soloway, Elliot M., Lochhead, Jack, and Clement, John.
Does Computer Programming Enhance Problem Solving Ability?
In Seidel, R., Anderson, R., and Hunter, B. (editors), Computer Literacy.
Academic Press, New York, 1982.

[Soloway et al. 83]
Soloway, Elliot, Bonar, Jeffrey, and Ehrlich, Kate.
Cognitive Strategles and Looping Constructs: An Empirical Study.
Communications of the Association For Computing Machinery , November,
1983.

[Webster 75] G. & C. Merriam Co.
Webster 's New Collegiate Dictionary.
G. & C. Merriam Co., 1975.

[Young and O'Shea 81]
Young, Richard M. and O'Shea, Tim.
Errors in Children’s Subtraction.
Cognitive Science 5(2):153-177, April-June, 1981.

[{Zaks 80] Zaks, Rodney.
Introductson to Pascal.
Sybex Press, California, 1980.

Appendix I. The Plans

In this section we present a set of key plans necessary for novice programming. Each of the
plans Is presented in three forms: a tactical plan, a Pascal implementation plan, and a Natural
Language implementation plan. For each set of plans, we particularly emphasize the distinctions

between the Pascal and Natural Language implementations.

There has been a great deal of work with programming plans. This includes formal
definition [Rich 81}, empirical Investigations [Soloway et al. 82a], and implementation in Al
systems [Johnson and Soloway 83, Rich and Shrobe 78, Soloway et al. 81]. Plans are flexible and
adaptable as a knowledge representation scheme. Rissland [Rissland 78], for example, uses a plan-
llike representation as a pedagogical tool iIn the domaln of linear algebra. In this dlissertation we
focus on plans as a tool for coding and analyzing protocols of novice programmers working on
programming problems. The plan set presented here reflects only one possible interpretation of
the underlying knowledge of novice programmers. As more work Is done with these plans the
details are likely to evolve. These plans are not a deflnitive set, but rather a usefal

characterization of knowledge needed for a novice programmer to acquire expertise.

86 Understanding the Bugs of Novice Programmers

Only the plans actually seen in the Ending Value Averaging Problem are discussed In detail,
since only those plans were used in a detalled analysis of novice programming protocols. In that

use, these plans were developed, refined, and specified In detall.

Sentinel Variable Plan
The Sentinel Variable Is a used to hold or represent a value that marks the end of data In
an input stream or data structure. Typically a sentinel is some distinguished value which is

recognized by the program.

Arithmetic Sum Variable Plan

The Arithmetic Sum Varlable holds the sum of a serfes of values encountered during
program execution. Notice that the Natural Language implementation criteria refer to adding a
body of numbers while Pascal implementation refer to repeatly adding in an additional single
number. That is, Pascal implements a running total while Natural Language implements a long

sum.

Counter Variable Plan

The Counter Variable is a kind of Arithmetic Sum Variable that always adds In 1 (see
Figure 3-7). Notice that, like the Arithmetic Sum Variable, the Natural Language
implementation refers to global counting operations over a whole set of items while the Pascal
implementation refers to individual counting operations for each item. Also note that in the
Natural Language implementation the count operation is speclﬂcally. after the operation being

counted.

Result Variable Plan

The Result Variable Plan Is used to save the result of some expression. It is used In cases
where one does not want to repeat the computation of an expression, or wants to label some
result. Note that the Pascal Implementation plan requires a Pascal specification of the
computation needed to produce the result, where the Natural Language implementation allows
more flexibllity. Concern about division by zero is considered an Indication of a Pascal

implementation plan.

Input New Value Variable Plan
The Input New Value Variable holds a newly generated value that has been input by the
user. The Pascal implementation plan Is described with phrases where the subject refers to

moving items "in®. Values are discussed as if there is some object that they are moved into. In

o @

”

1

The Plans 67

the Natural Language implementation, on the other hand, one sees the subject use phrases that
are synonymous with "examine®. Also In the Natural Language implementation, an Input New
Value will often be refered to positionally In a sequence of values, L.e. "next ... " or "previous

.+ . " (criteria 8 and 7).

Illegal Value Filter Plan

The lllegal Value Fllter Plan protects a plece of computation that would fall If some
particular value were used in that computation. The Natural Language implementation usually
adds this test as a special case after the computation belng protected. The Pascal
implementation, however, surrounds the computation being protected in a branch of an if

statement.

Successive Case Conditional Plan

The Successive Case Conditional Plan chooses from a succession of related cases. The
conditions that apply to each case are not necessarily dependent from the others. That is, falling
test 1 and 2 may not say anything about success on case 3. In the Pascal implementation,
successive cases are usually nested, enforcing an ordering of testing and exploiting related
alternatives to save redundant tests. In the Natural Language Implementation the cases are
usually arranged flat - without nesting: there Is no assumption about order, and alternatives, no

matter how related, are treated completely separately.

General Looping Plan

Several subjects explicitly mentioned that they knew they needed a loop, but didn’t know
what kind. They later became more specific about the loop. The General Looping Plan was used
to Indicate the knowledge In use before they became specific about the loop.

New Value Controlled Loop Plan
This Is the loop plan used with the Ending Value Averaging Problem.

Results Output Plan
This plan is used to print out the results of a computation. The NL implementation often
leaves this operation implicit, assuming that a description of the result value is sufficient. The

Pascal iImplementation uses a vrite statement.

88 Understanding the Bugs of Novice Programmers

Instruction Information Output Plan
This plan is used to give the program user Instructions on how to use the program. In this
case there Is no Natural Language implementation since the Natural Language procedure Is itself

an instance of “Instruction Information Output Plan®.

Prompt Output Plan
The Prompt Output Plan is designed to request information from the program user. In the
Natural Language !mplementation, this involves verbs like “"tell® or %“ask®. The Pascal

implementation involves use of a Pascal vrite statement immedlately followed by a Pascal Resa.

Appendix II. The Bug Generators

In this appendix we present the specific bug generators developed to account for the bugs
of novice programmers solving programming problems. In the theory presented in section 2, we
describe how novices solving a programming problem encounter impasses: places where they get
stuck in their developing solution. These Impasses are caused when the novice encounters gaps or
Inconsistencles In the PK. Bug generators allow a novice to patch an impasse and continue
solving the problem. Bug generators work by exploiting parallels between PK, SSK, and other
knowledge possessed by the novice. Simply, the bug generators bridge the gaps in PK with other
knowledge; Bug Generators are so named because in patching an impasse they almost always
introduce a bug.

The bug generators described here are used to analyze bugs in protocols of novice
programmers. Many detalls about bug generators are still under development. The detalls in
this appendix represent a certain level of maturity in the bug generator set, but the work is not
finished. In the bug generator descriptions shown below, each bug generator Is described and
illustrated with examples. The “criteria® refered to appear in the Pascal language (PL) or
Natural Language (NL) implementation plan descriptions that appear in (Bonar 84].

SSK Con founds PK Bug Generators:
Confounding the Two Kinds of Knowledge

The first class of bug generators Is based on the similaritles between the SSK and PK
domains. The bug generators exploit these similaritles to reason about gaps in the PK with
knowledge from SSK.

(A

.+ * v, The Bug Generators 69

PL Used as NL
The novice uses programming constructs as if they had their Natural Language
meanings or omits programming constructs that would not be needed In
Natural Language.

Example: A subject uses, as If It were legitimate Pascal, the

repeat. . . until. , . thes construct. He justifies this by saying:

®_ .. If then, while then, repeat until then, well it makes sense ... ®
(Subject 13, protocol 1, 148)

In effect, he is reasoning from what sounds good in English (see Criteria 8 and
7, NL - New Value Controlled Loop Plan).

Example: A subject uses 12 thea to control a process he has clearly identified
as happening repeatedly (see Criteria 4 and 7, NL - New Value Controlled Loop
Plan):

“] only want to do that process as long as the sentinel's not been
read. So uh, just for now [pause] let me see now, a while loop. No, I
don't want a while [pause] I think just an if/then. .. ® (Subject 6,
protocol 2, 75)

(This example has been described in detail above.)

PL INTERPRETED AS NL
The povice uses a programming language construct to Ilmplement a Natural
Language plan.

Example: The word "repeat® in Natural Language suggests a series of specific
steps to be repeated, e.g. “repeat that procedure with the other 3 cylinders®
(see Criteria 8, NL- New Value Controlled Loop Plan). On the other hand, In
English the word "while® suggests a global observer waiting for a condition to
happen, e.g. "continue while the street is still two lanes®. Subjects will apply
this English language distinction to choose between the vhile and repeat loops in
Pascal: "the repeat until will just repeat (hand motlons indicating looping] what
Is entered and add It to, so that would be simpler than a while loop going
through the whole, thing. We just want an average at the end.” (Subject 13,
protocol 1, 8).

70

Understanding the Bugs of Novice Programmers’

Example: A subject puts a Read of the New Value Variable above the loop, but
no read inside the loop. Nonetheless, s-he discusses the loop as if reading is
happening when needed:

*if the sentinel Isn’t the value read In, it's going to take the sum, it’s
going to take the count, it's going to go back and be ready to add in
a new number. . . ® (Subject 8, 187).

One Interpretation of this bug is that the subject is reasoning from Natural
Language where values are all entered at once and usage of the Individual

values is Implicit (see Criteria 1, NL - Input Plan).

NEW PL CONSTRUCT FROM NL

The novice Invents a new programming construct based on a Natural Language

implementation of the relevant plan.

Example: A subject writes the following:

Nev := next Nev
(Subject 13, protocol 1, 235). The subject is using "next” as If it were a
programming keyword that returns the next value of the New Value Variable

.

(see Criteria 6, NL - Input New Value Variable Plan).

Intra-PK Bug Generators: Errors In Programming Knowledge

The next set of bug generators stem directly from missing knowledge in the novice’'s version

of the expert knowledge base:
EXECUTION ORDER

The novice bases programming language statement order on the program
execution order. That ls, the subject tries to order the program as if it was an

execution trace.

Example: A subject is working on the Arithmetic Sum Varlable, writing the
update assignment for inside the loop body:

®"And then integer (the way the subject refers to the New Value
Variable, 1], or rather, sum equals Integer, ahm, equals zero plus
integer, [WRITES 8us := 0 + I] . .. [lower In the loop body] and then
Sum equals integer plus Integer,[WRITES Sus := I + IJ" (Subject 13,
protocol 1, 125 and 131).

It seems he has (more or less) written the execution trace of the first two

assignments to the sus variable.

'

»

The Bug Generators 71

Example: A subject Is working on the update of the Arithmetic Sum Variable:

“It’ll be taking the sum of that plus the value of all the previous
ones. Which I suppose should be another variable. Uh, total, yes,
that'll be another, I'll assign that another variable value for now."
(Subject 6, protocol 2, 18).

There Is no need for another variable, but it seems that he has made this

intermedlate value sufficiently concrete that he gives it a variable.

GENERIC NAMES
The novice names parts of the program or variables generically, based on

common programming language implementation strategles.

Example: A subject names the Input New Value Varlable 1ateger, because it
will hold Integers. (Subject 13, protocol 1 and Subject 12, protocol 5).

PL OVERGENERALIZATION

The subject over-generalizes from one Pascal implementation plan to another.

Example: A subject wants to Initlalize the Result Variable (this variable holds
the result of some computation) while initializing the Counter and Arithmetic

Sum Variable:

“I have to initlalize the count, I have to Initialize total, do I have to
Initialize the average?® (Subject 11, protocol 4, 45).

This Initialization Is not necessary.

Example: A subject assumes that since the vaile and for loops require a vegia
end around a multi-line loop body, 3o does the the repeat uatil loop (Subject 1,

protocol 1, 199).

TACTICAL SIMILARITY
The novice falls to distinguish between things that are similar on a tactical
level, but implemented differently.

Example: A subject considers putting all assignment statements Inside a loop
body inside of Read1a statements:

®... so [t reads each plece separately, it takes In the new ... "
(Subject 1, protocol 1, 233).

72

Understanding the Bugs of Novice Programmers’ ' °

It seems that he is focusing on the variables acquiring a new value, and

assuming that an input statement is needed to do this.

Example: A subject uses the assignment operator to give a declared constant
a value. He does this while initializing the other varlables (Subject 1, protocol
1, 68).

Other Con founds PK Bug Generators: Errors From Other Knowledge

The final set of bug generators represent patches performed in a domain separate from the

step-by-step Natural Language or Programming knowledge bases:
MULTIPLE VARIABLE ROLES

The novice uses a single variable but gives multiple roles for that variable.
This bug generator is drawn from the work of Rosnick [Rosnick 82]. He found
that students often combine variable roles in a algebralc word problems. For
example, in a problem involving the price and quantity of books, students
would use one variable, B, to stand for both price and quantity. Novice

programmers do something similar as a patch.

Example: A subject uses the same variable to stand for both the Input New
Value and a Count of the input values that have been read (In this example 1 is
the Input New Value Varlable and » Is the Counter Variable):

*] want to get 8 statement that is going to be clear that we're going
to add the numbers, each number entered, we’'ll have the tally of the,
number of integers entered ... ahhh, N equals, ahmmm integer.
[WRITES: » := 1]* (Subject 13, protocol 1, 114-118).

It seems that the subject Is using this assignment both to count the number of

elements entered and get these elements.

OTHER DOMAIN

The novice uses an understanding of the problem from some non-programming

(not PK or SSK) domaln to produce an Incorrect answer.

Example: A subject assumes that the variable 1 will automatically Increment,
based on experience with the common mathematical and programming use of)

as a Counter (Subject 11, protocol 4, 75).

- e @ The Bug Generators 73

Example: A problem involves searching for the sentinel 99999. A subject
thinks that there would never be legitimate values greater than 999989, so he
uses < 09090 as the test for the waile loop, Instead of the correct <> 099900
(Subject 1, protocol 1, 83).

OPERATING SYSTEM CONFOUND

The novice confuses a programming language construct with some command or

operation from the operating system.

Example: The subject reasons based on what he expects will be done when
the Pascal compiler reads the code, not what happens when his Read statement

is actually executed.
Example: The subject uses an editor command Inside a program.

Finally, there is the Slip bug generator, which represents “slips of the tongue”, mis-
speakings, ete.

SLIP The novice produced a random error out of belng distracted, making a speech
~ slip, or making a typographical error.

Appendix ITI. A Sample of an Analysed Protocol
This appendix contalns a short segment from a fully analyzed protocol. This segment |is

taken from protocol one in the set of four protocols analyzed In depth and discussed in Section 4.

The subject of this segment is working on the Ending Value Averaging Problem. (See
Figure III-1 for the problem statement and a typical correct solution.) At the point we pick up
the protocol, he is coding the loop. The transcript below is annotated with the plan analysis and
the bug analysis. In the course of the protocol he will write the code shown in Figure I1I-2. The
subject’s basic problem Is that he does not understand how variables are used to process values
inside the loop. As we will see in the protocol, the subject clearly understands that the loop body
must accumulate a running total in the variable sus and a count in the variable n. He also
understands that the varlable 1 will hold new values read from the user. Explanations for the
pecullar code In the loop body are presented in the bug analysis annotations with the transcript

segment shown below.

74 Understanding the Bugs of Novice Programmers”

The Problem

Write a program which repeatedly reads in Integers until it reads the integer
09009. After seeing 99999, it should print out the CORRECT AVERAGE without
counting the final 99969. Remember, the average of a series of numbers is the sum of
those numbers divided by how many numbers there are In the series.

Typical Correct Solution

prograa Vhile_Average_Solution (Input, Output);
coast Sentinel = 00000
var Couat, Sum, Nev @ integer;

begin

Count := 0;

Sus := O;

Readla (Nev):

vhile Nevw <> 90009 do
begin
Sus := Sum + New;

Count := Count + 1;
Readln (Mevw)

ond;
1¢ Count > O .

thea Writela (‘'The average is °, Sus/Couat)

else Writela ("There vere no ausbers to average.’)
end.

Figure II-1: A Correct Solution to the Ending Value Averaging Problem

A Sample of an Analyzed Protocol 75

There are several things the reader should note while reading the protocol segment.
Generally, notice the richness of the reasoning used by Subject 13. Although he has a number of
bugs, he is not working at random. Also, notice that the bug generators proposed as plaxislble

explanations for each bug are parameterized by the plans recently used by the subject.

1) »:=20;

2) 8Sus :=0;

3) repest

4) Sum :=0+1
5) ¥ =1

8) Sug ;= 1+
7) N:=3

8) aatil

(Line numbers are refered to by the protocol on pages 75 to 78.)

[is the Counter Variable,
Sus I3 the Arithmetic Sum (Running Total) Variable
b4 Is the Input New Value Variable

Figure III-2: Code Written In the Short Example Protocol Analysis

Here Is the protocol segment:

124 Subject 13: Ummm, ummm, well I think Its, ahh, its [w := 1, eventually changed to ¥ :=
1, eventually put on line 5] not right I don’t think, but [I'm gonna leave [t that way
for the moment.

125 Interviewer: OK, Fine

126 Subject 13: And then integer (the way the subject refers to the variable 1], or
rather, sum equals integer, ahm, equals zero plus integer, [WRITES: sus :2 0 » 1,
eventually put on line 4] and the number equals the integer, ahhh

PLAN: Arithmetic Sum Variable
Evidence: P3 - Running total assignment to variable sus in loop.

76 Understanding the Bugs of Novice Programmers ‘
BUG: Arithmetic Sum set to current New Value Variable
There will be no running sum operation, since the Arithmetic Sum, sus, always
gets the value of the current New Value Varlable, I.
g Traee on Arithmetic Sum Variable
The subject Is reasoning about the execution behavior of the Arithmeti¢
Sum Variable. He recognizes that on the loops first iteration, sus will be
glven the value ¢ » 1 and then writes that.
127 Interviewer: Why don't you tell me what you are thinking
128 Subject 13: Well I'm thinking that [points to m := I, eventually changed to ¥ := X
and eventually put on line 5] should go after {points to saa := 0 + I, eventually put on
line 4] because the Sum is going to be zero plus the integer and then the Number s
going be, ahh, Number equals 1.
129 Interviewer: Ah huh
130 Subject 13: [WRITES: (Crosses off x := I] And then Number equals one
(WRITES: » :a 1 on line 5} ‘
PLAN: Counter Variable
Evidence: N7 - Counting to variable ¥ done after operation.
BUG: Counter needs to go after the Arithmetic Sum
The increment of the Counter Variable, 8, needs to be done after the update
of the Arithmetic Sum Variable, sus.
gz PL Interpreted as NL on Counter Variable
In Natural Language counting always occurs after the operation being
counted. Here the subject is applying that convention to Pascal.
131 Interviewer: OK
132 Subject 13: And then, and then Sum equals Integer plus integer, (WRITES: sus := 1 +

1 on line 8] and number equals 1. Ahhh

PLAN: Arithmetic Sum Variable
Evidence: P3 - Running total assignment to variable sua in loop.

* A Sample of an Analyzed Protocol

BUG: Arithmetic Sum set to current New Value Variable

There will be no running sum operation, since the Arithmetic Sum varlable sus

always gets twice the value of the current New Value Variable, 1.

g2 Trace on Arithmetic Sum Variable
The subject is reasoning about the execution behavior of the Arithmetic
Sum Variable. He recognizes that on the loops second Iteration, sua will
be given the value 1 » 1 and then writes that.

pr Multi-Role Variable on New Value Variable
The subject allowing the New Value Variable to take two roles: its ®sum
so far* and its next value. Note that later?® he will add “next” as a
keyword in front of the second 1.

133

134

Interviewer: What are you thinking now?

Subject 13: Number equals 2 [WRITES: & := 2 on line 7] and It would go on, it
would repeat, that, if [the loop body] continues to repeat [sweeping motions] this
[points to the 2 on line 7] will increase.

PLAN: Counter Variable
Evidence: P3 - Increment counter variable x inside the loop

PLAN: Indefinite Loop
Evidence: N1 - "Continues®
Evidence: N2 - "this will repeat until ... "

BUG: Says Counter Variable will increase, but it won’t
Says that the Counter Variable, 8, will increase based on the ¥ := 1 and ¥ := 2
inslde the loop.

g2 PL Interpreted as NL on Pascal - repest, Indefinite Loop
The subject is expecting the loop to work llke loops in Natural
Language. There, it Is common to specify a loop by giving one or two
cases of the iteration and assuming that person reading will know how to
generalize. Notice below (137) he says that sus := 0 + ¢ (line 4) Is the
“first format of that® refering to the action performed for each value of
the New Value Variable.

136 I'm assuming for the moment that this Is sufficlent input.

136 Interviewer: OK, “sufficient input”?

zoBeyond the section excerpted here

78 Understanding the Bugs of Novice Programmerse " -+

137 Subject 13: Input to [pause] so that the computer will know that, for each {pause]
for each integer entered, you add 1, you add the integer to the sum [points to sus :2 0 »
1 on line 4), and that this is the first format of that, zero plus integer, % equals 1, sum
equals Integer plus integer, number = 2, ["next" motlon with hand] until [pause]

(WRITES: unt11)

PLAN: Indefinite Loop
Evidence: N3 - “foreach ... "

PLAN: Counter Variable
Evidence: P3 - Increment Counter ¥ inside the loop

PLAN: Arithmetic Sum Variable
Evidence: P3 - Update Arithmetic Sum, Sus, inside the loop

This concludes the example protocol analysis.

