CONSTRAINED EXPRESSIONS:
ADDING ANALYSIS CAPABILITIES TO
DESIGN METHODS FOR
CONCURRENT SOFTWARE SYSTEMS

George S. Avrunin
Laura K. Dillon
Jack C. Wileden

William E. Riddle

COINS Technical Report 85-13
May 19085
(Revised July 1985)

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

A version of this report is to appear in a special issue on Software Design Methods
of the IEEE Transactions on Software Engineering.

G. S. Avrunin is with the Department of Mathematics and Statistics, University of Massachusetts, Amberst
MA 01008.

L. K. Dillon was with the Software Development Laboratory. She is now with the Computer Science
Department, University of Californis, Santa Barbara CA 931086.

W. E. Riddle is with software design & analysis, inc., Boulder CO 80303.

Abstract

We describe an approach to the design of concurrent software systems based on the
consirained ezpression formalism. This formalism provides a rigorous conceptual model
for the semantics of concurrent computations, thereby supporting analysis of important
system properties as part of the design process. At the same time, our approach allows
designers to use standard specification and design languages, rather than forcing them to
deal with the formal model explicitly or directly. As a result, our approach attains the
benefits of formal rigor without the associated pain of unnatural concepts or notations for
its users.

The conceptual model of concurrency underlying the constrained expression formalism
treats the collection of possible behaviors of a concurrent system as a set of sequences of
events. The constrained expression formalism provides a useful closed-form description of
these sequences. We have developed algorithms for translating designs expressed in a wide
variety of notations into these constrained expression descriptions. We have also developed
a number of powerful analysis techniques that can be applied to these descriptions.

In this paper, we describe the constrained expression formalism and these analysis
techniques. We then describe the way this approach would be used in design, giving an
example illustrating its use in conjunction with an Ada-like design language, and discuss

present and future prospects for its automation and use.

Indez terms: constrained expressions, design method, event-based, concurrent software
systems, Ada-based design notation, analysis techniques

1. Introduction

Designing any concurrent software system, particularly a distributed system, is a com-
plex and error-prone task. The main source of difficulty is the large number of subtle
and often unexpected interactions that can occur among the various parts of an asyn-
chronous system. The number and complexity of these interactions make it extremely
hard to understand and accurately describe the properties of the system. To overcome
these problems, designers need both suitably precise notations for describing system de-
signs and their properties and also methods for rigorously analyzing the behavior of the
system represented by a design.

A wide variety of techniques for describing concurrent systems have been proposed,
ranging from specification and design languages to programming languages and graphical
formalisms. These proposals differ in focus, in the types of objects they use to represent
aspects of a concurrent system, and in the assumptions they make about general features
of concurrent computation, such as the nature of communication between various parts
of the system. Such fundamental issues as what types of interprocess communication and
synchronisation primitives should be provided in a development notation have yet to be
resolved. The experience with programming languages suggests that, in fact, different
notations, based on different primitives, may be best suited for use with different types
of concurrent systems or for use at different stages of the development process. All of
this indicates that no single design notation for concurrent systems is likely to receive
widespread acceptance in the near future.

Even an ideal design notation, however, would not by itself solve the designer’s most
pressing problem, which is to understand the interactions among the eeparate parts of the
concurrent system under development. The overwhelming complexity of large concurrent
systems means that a design method must provide a means for rigorously reasoning about
the behavior of the system, not just a suitable design notation. This seems to imply that
a design method should be based on some sufficiently powerful and flexible mathematical
formalism. At the same time, if it is to be of any practical value, it must be amenable
to use by software developers who have little or no training in advanced mathematics or
theoretical computer science.

In this paper, we describe an approach, based on our constrained ezpression formalism,

1

that addresses these problems. With this approach, a developer can formulate a design
using any of a wide variety of standard design notations. This design is then algorithmically
translated into a constrained expression description, which provides an appropriate formal
structure on which to base analysis. We have developed a number of powerful analysis
techniques that can be applied to these descriptions. Developers using this approach
can design systems and phrase questions about their behavior in terms of a congenial
design notation and then answer those questions using analysis techniques based on the
constrained expression representation. Thus the constrained expression approach can add
analysis capabilities to design methods based on a variety of different notations.

The conceptual model of concurrency underlying the constrained expression formalism
treats the collection of possible behaviors of a concurrent system as a set of sequences of
events. In the next section we describe this event-based model and briefly discuss some
other approaches using similar models. In section 3, we outline the constrained expression
formalism. We describe our approach and give an example illustrating its use in section 4,
and discuss our experience with the approach in section §. Our assessment of the approach
and our plaus for its further development are presented in section 6. Finally, an appendix

provides a more complete and rigorous presentation of some of the analysis outlined in

section 4.

3. The Event-Based Perspective
The fundamental idea underlying our conceptual model of concurrent computation

is that system behaviors can be viewed as sequences of events. These events can be of
arbitrary complexity, depending on the eystem characteristics of interest and the level
of system description under consideration. When analysing communication properties
of a system, for example, one might view the system’s behavior as consisting of “send
message” and “receive message” events, while for studying other aspects of the system
«communicate” and “compute” events might provide a more appropriate viewpoint. By
associating an event symbol to each event, we can regard each possible behavior of the
system as a string over the alphabet of event symbols. Sets of such strings, and properties
of those sets, then become the primary objects of interest in assessing the possible behaviors

of a concurrent system.

We use interleaving to represent concurrency. Thus, a string representing a possible
behavior of a system that consists of a number of concurrently executing components is
obtained by interleaving, or shuffling, strings representing the behaviors of the components.
The events themselves are assumed to be indivisible and atomic, with only one event taking
place at any particular time. Events which are to be explicitly regarded as overlapping
in time can easily be represented by treating their initiation and termination as distinct
atomic events.

Viewing a behavior of the system as a sequence of (non-overlapping) events obviously
implies that the events comprising that behavior are totally ordered in time. It has been
argued [6,12] that concurrency can best be represented in terms of a partial order on events,
with those events not comparable in the order being regarded as potentially concurrent.
This approach is, in fact, entirely compatible with the interleaved model of concurrency.
If the relative order of occurrence of two events is not determined by the nature of the
system, then, for each of the possible orders, there will be system behaviors in which the
events occur in that order. By considering the set of all possible system behaviors, the
appropriate partial order can be recovered, even though events in any single behavior occur
gerially.

The developer of a concurrent system is primarily concerned with two sets of event
sequences: the set representing the possible behaviors of the system as it is currently
designed, and the set representing the desired behaviors of the system. Analysis of the
design is intended to determine if the two sets are identical, or at least if one is contained in
the other. A first problem, then, is to produce from the design a precise description of the
set of event sequences representing possible behaviors of the system. In the constrained
expression formalism this is done by deriving a regular expression whose language is a
larger set of event sequences and then “filtering” this set to remove the sequences that
do not represent possible behaviors. This leads to a closed-form description of the set of
possible behaviors of the system.

To see why such an indirect approach is convenient, consider a number of sequential
processes making up a concurrent system. If the processes do not interact, the possible
behaviors of the complete system are represented by the set of all possible interleavings

of sequences representing behaviors of the component processes. But if the processes do

3

interact, not all of these interleavings represent real behaviors. For example, suppose one
process produces information that is used by a second. The event sequences represent-
ing behaviors of the first process will include symbols representing the production of this
information and its transmission to the second process. The sequences representing behav-
iors of the second process will include symbols representing the receipt of the information
and its subsequent use. When such sequences are interleaved, however, no relationship is
maintained between events from the different sequences. Thus a symbol representing the
receipt of a piece of information could occur in the interleaved string before the symbol
representing the production of the information. The result of such an interleaving clearly
does not represent a possible behavior of the system, and should be discarded.

It may seem that it would be easier to describe the event sequences representing pos-
sible behaviors of the eystem directly, rather than first describing the event sequences for
each component process and then removing those interleavings that represent “illegal” or
“impossible® behaviors. Our experience indicates, however, that producing such a direct
description of the behaviors of a concurrent system is extremely difficult and error-prone,
and that the indirect approach of the constrained expression formalism is much more
straightforward and relatively easy o automate. This process is described in the next
section and an example illustrating it is given in section 4 and further elaborated in the
appendix. The use of constrained expressions with three very different design notations is
demonstrated in {10].

A number of event-based models of concurrent computation have been suggested for the
description of software systems. The trace models of Hoare {17] and Misra and Chandy {22]
treat system behaviors as sets of sequences of communication events. Axiomatic proof
techniques are provided for verifying properties of the systems. In contrast, the constrained
expression approach uses a more general concept of event and provides algebraic analysis
techniques for establishing properties, such as absence of deadlock and limited use of shared
resources, that can be interpreted as questions regarding the order and number of certain
event occurrences in behaviors.

Regular expression-like closed form descriptions of the sets of sequences of events rep-
resenting system behaviors are found in the work of Campbell and Habermaann (5] (path

expressions), Riddle (29] (message transfer expressions and event expressions), Welter {35}

4

(counter expressions), and Shaw (32] (fow expressions). Message transfer expressions,
event expressions, flow expressions, counter expressions and the COSY notation [21], which
is based on path expressions, all rely on a filtering procedure, whereby sequences represent-
ing impossible behaviors are eliminated from a set containing all legal system behaviors
and represented by a single, or possibly several, expressions. The various notations use
different, although similar, language operators. The filtering steps are also formulated
differently. In the next section, after presenting a more detailed description of constrained
expressions, we briefly return to a discussion of these notations and their relationships to
constrained expressions.

Greif (12] and Chen and Yeh [6] have developed event-based models that rely on explicit
partial orderings of events. A system’s behavior is represented by a set of events, along with
certain partial order relations. A relation expresses a time order or enabling relationship
between events. Events which are not comparable in the partial orders are considered
concurrent. As explained above, this model is entirely compatible with the representation
of system behaviors as sets of sequences of events.

The constrained expression formalism has a number of advantages that make it an
especially appropriate vehicle for adding analysis capabilities to design methods for con-
current software systems. Its major advantages are its generality and broad applicability.
Most related approaches, such as those enumerated above, are either inextricably bound
to a single, sometimes obscure or idiosyncratic, notation for describing concurrent sys-
tems or else exist solely as abstract formalisms with no ties to any congenial, practical
notation whatsoever. The constrained expression approach, on the other hand, supports
the introduction of an analysis component into a generic paradigm for design of concur-
rent software systems, as we show in section 4. Its suitability for use in conjunction with
a wide variety of practical, real world notations for concurrent systems has been firmly
established [9,10]. Its value in performing useful analysis on realistic problems has been
demonstrated {3]. Moreover, its independence from any specific programming language
or design notation gives the constrained expression formalism the potential to provide
uniform, powerful analysis capabilities during not just one but all phases of concurrent

software system development.

8. The Constrained Expression Formalism

The constrained expression formalism was first introduced as part of a generalization
of the DREAM system [37], which was an early attempt to provide automated support for
the design of concurrent systems. DREAM included a design language, called DDN {28},
and procedures for deriving event expressions representing certain features of the behav-
ior of the system being being designed {39]. These event expressions!, basically regular
expressions with additional operators corresponding to aspects of concurrency, provided
closed-form descriptions of the sequences of certain events occurring in behaviors of the
system. Special symbols were introduced to express constraints on the order of events
having to do with the transmission of messages between parts of the system. Sequences in
which pairs of these symbols did not properly correspond were considered to represent ille-
gal behaviors and thus eliminated. The system designer could then compare the intended
behavior of the system with the derived event expression description.)

DREAM could only describe systems in which the set of constituent processes and the
communication paths connecting them remained static. The Dynamic Process Modelling
Scheme (DPMS) (38] was developed by Wileden to extend the DREAM approach to sys-
tems with dynamic structure. The constrained expression formalism introduced as part
of DPMS greatly extended the power and flexibility of the event expressions of DREAM
by providing a new mechanism for specifying which strings of event symbols represent
illegal behaviors.? Dillon {9] subsequently gave a revised formulation of constrained ex-
pressions that provides better support for analysis and is easier 4o use with different design
languages. It is this version of the formalism that we now describe.

The constrained expression representation of a distributed system consists of a system
ezpression and a collection of cénstrm'm. The eystem expression is a regular expression
over an alphabet of symbols called the augmented alphabet, and can be derived from a
description of the system in a suitable notation (such as a design language or a program-
ming language) through the use of a set of translation rules. This augmented alphabet

consists of symbols representing events in the system, together with some additional sym-

! Event expressions were a descendent of message transfer ezpressions [29).

3 Constrained expressions were a generalization of counter expressions {35}, which in turn were an alter-
native formulation of DREAM's event expressions.

. 6

bols needed to express certain aspects of the semantics of the notation. The usual regular
expression operators, concatenation (denoted by juxtaposition), alternation (written V),
and Kleene star (written °), are used in the representation of the activity of the sequential
components of a system. As a general rule, concatenation represents the sequencing of
events, alternation represents a choice from among a number of different activities (the
result, for example, of branches in control flow), and Kleene star represents an arbitrary
finite number of iterations of an activity (the result of loops). In order to efficiently ex-
press the interleaving of strings representing concurrent activity, we also use a ®shuffe”
operator, written A. Thus, for example, the regular expression ab A cd represents the
set { abcd,acbd, acdb, cabd, cadb,cdab}. The shuffie operator has been shown to preserve
regularity (11] and is used only as a notational convenience. The relative precedence of
these operators, from highest to lowest, is as follows: Kleene star, concatenation, shuffle,
and finally, alternation.

The translation rules used to derive a system expression from a description of the sys-
tem in some design notation capture part of the semantics of that notation. Thus, the
prefixes of the regular language associated with the system expression represent event se-
quences that include all the possible behaviors of the system. (We consider prefixes, rather
than complete strings in the language of the system expression, in order to represent be-
haviors in which parts of the system terminate abnormally.) Some of the semantics of a
notation for describing distributed systems are not easily captured by translation rules,
partly because of the problem with interleaving event sequences from diﬁe.rent processes
noted earlier. Thus, some of the prefixes may represent event sequences that cannot be
behaviors. The prefixes of the language associated with the system expression, therefore,
can be viewed as representing “candidate” event sequences. The constraints of the con-
strained expreasion representation are used to eliminate those prefixes that do not represent
legitimate system behaviors.

The constraints are also expressions over the augmented alphabet, formed using the
regular expression operators and one additional operator, denoted by t. The t represents
the shuffle of zero or more copies of its argument, and is used in constraints to ensure,
for example, that at least as many messages have been sent as have been received. (Note

that constraints containing this operator may not be regular expressions.) The constraints

7

define legal patterns of event symbols and embody that part of the semantics of the dis-
tributed system development notation not expressed by the translation rules. They are
used to “filter” the prefixes of the language of the system expression to eliminate those
prefixes that do not correspond to possible system behaviors, in the following manner.

Each constraint is in fact associated with a subalphabet of the augmented alphabet,
called a constraint alphabet. The expression defining the constraint describes a language
which consists of precisely the legal patterns over that subalphabet. We determine whether
a prefix of a string in the language of the system expression satisfics a constraint by erasing
from it all symbols except those in the constraint alphabet and then seeing whether the
resulting string is in the language of the constraint. If not, we say that the prefix violates
the constraint. Repeating this process for each constraint in the constrained expression’s
constraint set, and eliminating any prefix that violates any constraint, reduces the set of
prefixes generated from the system expression to a set of constrained prefizes that abide
by all of the constraints.

The constraints may be thought of as imposing requirements on a sequence of events
that must be satisfied if the sequence is to occur in a behavior of the system. Thus, the
constrained prefixes correspond to the system behaviors that are actually possible when
all aspects of the semantics of the distributed system development notation are taken
into account. Symbols representing events that are not of interest when describing the
final system behaviors are then erased from the constrained prefixes. The resulting set of
strings is the interpreted language of the constrained expression. The interpreted language
thus represents exactly the possible behaviors of the system. It is important {o note
that it is never necessary to actually generate this (possibly infinite) language. Analysis
techniques operate on the constrained expression itself, rather than on individual strings
in the interpreted language.

To make this filtering process clearer, consider a gituation in which a process P starves
waiting for a particular communijcation to take place. This starvation might be represented
by, say, a starve(P) symbol. In an actual behavior in which the process starves, no further
events involving activity of that process can occur. Thus, we must ensure that there are
no constrained prefixes in which a atarve(P) is followed by a symbol representing activity

of the process P.

To accomplish this, we include a special “non-event” symbol ne(P) in the augmented
alphabet and define the system expression eo that no symbol representing activity of
process P occurs after a starve(P) without an intervening ne(P). (The translation rules
described in section 4.2 illustrate how this is done.) Then a constraint with alphabet
{ne(P)} and expression A (we use A to represent the empty string) imposes the desired
restriction. This is because any prefix containing a starve(P) and a symbol representing
activity of process P after the starvation must also contain an ne(P), but when we project
such a prefix onto the constraint alphabet by erasing all symbols except the ne(P), the
result is not in the language of the constraint. Hence, such a prefix violates the constraint.
This constraint thus eliminates all prefixes with symbols representing activity of the process
after starvation.

The ne(P) symbol is an example of the type of symbol added to the augmented alphabet
in order to express some aspect of the semantics of the design notation. Other symbols
which do not correspond to observable system events may be necessary to express such
things as appropriate requirements for synchronigation of communication or consistent use
of variables. A few of these symbols appear in the example of section 4. These symbols
are generally erased from the constrained prefixes as part of the process of forming the
interpreted language.

This formulation of constrained expressions, while equivalent to Wileden’s original one,
uses a “cleaner” and more intuitive set of definitions. In general, it also allows simpler
constrained expressions for representing a concurrent system’s behaviors. As a result, this
version of constrained expressions has been applied to a wider range of languages and
phases in concurrent software development than was the original version. The most recent
of these is the Ada ® .like design language illustrated in the next section. The cleaner
and more intuitive definitions also mean that the procedures for translating each of these
languages into constrained expressions are more easily automated.

The major difference between the constrained expression formalism and its ancestors
(message transfer expressions, event expressions, and counter expressions) is the use of

constraints to explicitly specify the conditions under which strings are to be eliminated

® Adaisa registered trademark of the U.S. Government (Ada Joint Program Office).

9

from the set of possible behaviors described by an expression. The filtering procedures
used with the earlier notations are equivalent, in the more general constrained expression
formalism, to using a fixed, pre-defined set of constraints expressing synchronization re-
quirements between communicating processes. As mentioned above, for example, special
symbols are associated with the transmission of messages in an event expression, and a
cancellation rule eliminates strings in which these symbols do not properly correspond.
The same effect can be achieved, using constrained expressions, with a single constraint
over these special symbols. Additional rules may also be provided in a constrained expres-
gion description of a system by constraints over other symbols in the augmented alphabet.
Constraints in a constrained expression description of a system, therefore, may express
more general requirements than simply those involving synchronization. For instance, as
the example above shows, constraints can be provided to eliminate strings in which a
process is represented as having starved, and then, at some later point in time, as again
participating in some system event.

Like these earlier notations, flow expressions use pre-defined mechanisms for expressing
constraints, and thus lack much of the flexibility and generality of constrained expressions.
Flow expressions, however, are also distinguished by the use of an additional operator, an
infinite repetition operator, to permit the representation of infinite behaviors, and by a
different interpretation of events in the resulting expressions. These differences result in
differences in descriptive power, ease of use for both description and analysis, and range
of application {32,33).

The COSY notation {21] closely resembles constrained expressions (although the dra-
matically different syntax of these notations obscures their underlying similarity). Dif-
ferences in the two notations are primarily the result of a difference in their intended
use. COSY was intended to be used directly by software developers for specifying con-
current software systems, not indirectly through a translation process like constrained
expressions. The events in a COSY description, therefore, correspond to operations or
procedures, rather than arbitrary system events. Path expressions, the COSY analogue
of constraints, specify the order in which operations can be invoked. A COSY description
thus provides a non-algorithmic specification of the intended system behaviors, presum-

ably for use in verification of a design or implementation. A constrained expression, on the

10

other hand, is not taken as defining the intended observable behaviors of a system, but is
used for exploring properties of a particular design. Moreover, of course, the constrained
expression formalism permits the use of a wide variety of notations, while COSY, itself

intended for expressing specifications, admits no such generality.

S.1. Algebraic Analysis of Constrained Expression Descriptions

The constrained expression formalism supports a useful, general-purpose technique,
based on elementary algebra, for analyzing event-based descriptions of the behavior of
concurrent systems {2,3]. This technique provides a basis for arguments concerning the
order and number of events that occur in the behaviors of a system. Such arguments play
an important role in the analysis of distributed systems, and they have been widely, if
informally, applied (see, for example, {5,13,18,19,20,22]). Behavioral properties such as
mutual exclusion, deadlock, and starvation, which involve interactions among the parts
of a distributed system, are most naturally analyzed in terms of the order and number
of event occurrences. Because a constrained expression description of a system explicitly
encodes the order and number of event symbols in sequences representing the behaviors of
the system, it is well-suited for use in arguments of this nature.

The fundamental approach of the algebraic analysis techniques is to determine whether
a particular event, or {sub)sequence of events, appears in any possible system behavior.
This can be viewed as a generalization of the technique employed by Habermann in an-
alysing a semaphore solution to a producer-consumer problem {13]. In the case of a
constrained expression representation, this approach corresponds to asking whether some
particular event symbol, or pattern of event symbols, occurs in any string described by
the constrained expression.

The analysis technique is based on iterative generation of inequalities that characterise
properties of a system’s possible behaviors. These inequalities are generated in the follow-
ing way. Certain fundamental properties of any event-based model of computation {many
of which are expressed by constraints in a constrained expression formulation of the model)
can be regarded as conditions on the collection of events preceding the occurrence of a given
event. In terms of behavior strings, these conditions produce a set of inequalities involving

the numbers of occurrences of various symbols in the segment of the string preceding a

11

given symbol. To determine whether there is a behavior containing a specified pattern of
events, we begin by assuming that these events do occur in the string, then generate the
inequalities for the segments that would precede them. These relations in turn involve
occurrences of other symbols, and we generate new inequalities on the segments preceding
these. Continuing in this fashion, we attempt to determine whether the inequalities are
inconsistent, in which case no behavior contains the specified pattern. If the relations are
congistent, we use them in an attempt to produce a behavior containing the pattern. This
focused approach reduces the combinatorial problems incurred by exhaustive analysis of
all possible system behaviors. We illustrate the approach in the following section and the

appendix.

4. Constrained Expressions and System Designs

In this section we show how constrained expressionscan be used during the design phase
of software development. In general, our approach is to use the constrained expression
formalism to augment any of a variety of concurrent system design methods by adding
important analysis capabilities. The augmented design method can then be viewed as
progressing through the following stages, which we describe and illustrate below.

e design formulation

o constrained expression generation

e analysis
Our approach permits the designer to formulate the design in a congenial notation. The
design is then mechanically translated into a constrained expression which describes exactly
the possible behaviors of the system. The constrained expression is subsequently analyzed
to determine whether the system behaves as intended.

This approach permits a developer to determine if a design is satisfactory before using
it to produce a more elaborate design or an implementation. (Of course, the analysis may
be performed by someone other than the original system designer.) It may in fact be
necessary to modify the design to correct some problem revealed by analysis. A design is
thus used as the basis for further system development only after it has been determined
to display the intended behavior. The above three stages, therefore, are repeated, first,
as the design is modified, and then again, as the design is elaborated. In practice, the

12

analysis results obtained using an early design can often be used with a later design, so

that unnecessary duplication of effort is avoided.

4.1. Design formulation

To illustrate the approach, we consider Dijkstra’s dining philosophers problem. This
problem has been widely studied because, despite its relative simplicity, a solution requires
that the following questions be addressed.

(1) Are resources in the system used in a mutually exclusive fashion?

(2) Can the system deadlock?

These questions are typical of the types of questions that concern designers of concurrent
systems.

The dining philosophers problem can be described as follows. Five philosophers share
a common dining room containing a circular table surrounded by five chairs and set with
five forks. Each philosopher requires two forks in order to eat dinner, which is always
a tangled mess of spaghetti. The only forks available to a philosopher are those on the
immediate right and left of his/her place. The problem is to design a system that models
the activities of the five philosophers as they periodically think and then eat.

As 2 first step, a developer must come up with a preliminary design for the system
under development. This design could be developed using any of a variety of methods
and expressed in any design notation for which a translation procedure into constrained
expressions has been formulated. A design focusing on interprocess communication and
synchronigation, for instance, might be written in DDN. For the example in this section,
we use an Ada-like notation.

Our initial design contains ten processes, which are described as tasks in the Ada-
like notation. Five tasks, Py, Py, P2, Ps, and P, model the behavior of the five
philosophers, and five tasks, Fo, F;, F2, Fy, and F¢, corresponding to the five forks
on the table, represent the philosophers’ use of the forks. The designs for these tasks are
shown in Figure 1. Two differences between Ada and the design notation used here are
apparent in these designs. First, the boolean expression internal_test in the while loop
of task P; is to be evaluated nondeterministically. This special expression is used in the
design notation to model some as yet unspecified computation. The second difference is

13

the use of ellipses in place of the bodies of the procedures Think and Eat, leaving the
computations performed by these procedures unspecified. (Arithmetic in this figure and

the rest of the discussion pertaining to this example is performed modulo 5.)

4.2. Constrained expression generation

Given the design for a system, a constrained expression whose interpreted language
describes all the possible behaviors of the system is then produced. This is done in two
steps. A constrained expression is first derived from the design. This is essentially a
compilation step, being completely algorithmic and based on a set of translation rules,
and produces an appropriate internal form for subsequent simplification and analysis. The
derived constrained expression is then “gimplified”, yielding a constrained expression with
the same interpreted language. This simplified constrained expression therefore describes
the same set of behaviors as the derived constrained expression, but is easier {o analyze.
The simplification of the derived constrained expression is analogous to an optimization
phase following compilation. This two step approach to producing constrained expressions
from designs allows us to associate {airly straightforward derivation procedures with the
various design notations without regard for efficiency of analysis. Once a constrained
expression description for a system has been produced, general simplification procedures
can be applied to facilitate subsequent analysis. Here we illustrate part of this process for
producing a constrained expression from the design of Figure 1. Simplification procedures

and analysis are discussed more completely in the appendix.

As described in section 3, the constrained expression representation of a system has
two components: a system expression and a set of constraints. The system expression
represents the unconstrained activity of the individual components of the system. The
constraints impose appropriate restrictions on their activity. For example, constraints are
used to assure that two tasks are synchronized when communicating by rendezvous, and
that, if a task starves waiting to accept a call on one of its entries, that task does not

participate in any subsequent system events.

The system expression for the design presented above is obtained by interleaving reg-
ular expressions, called task ezpressions, describing the sequential activity of the tasks

in the system. The task expressions are obtained from the designs of the tasks through

14

task F; is task P;;
entry U;
entry D; task body P; is
end F;; begin
while ¢nternal_test loop
task body F; is Think;
begin Fis1.U; - -left fork up
loop F;.U; - -right fork up
accept U; - -fork is picked up Eat;
accept D; - -fork is put down Fi.D; - -right fork down
end loop; Fir1.D; - -left fork down
end F;; end loop;
end P.';

procedure Think is ..;

procedure Fat is ..;

Figure 1
Designs for the fork task F;, the philosopher task P;
and the Think and Eat procedures

15

the statement-by-statement application of a set of translation rules. The translation rules
are determined by the semantics of the design notation. (Thus, different translation rules
are required for different design notations. Examples of translation rules for three very
different concurrent systems descriptive notations appear in [10}.)

The translations of the statements “accept U” and “F;.U”, appearing, respectively,
in the designs of the tasks F; and P;, are shown in Figure 2, where the event symbols used
in this figure are defined in Figure 3. Given these definitions, the translation rules are easy
to understand. The “accept U® statement, for example, translates into three alternatives:
the first two represent the possibility that execution of this statement eventually results
in a rendezvous with one of the tasks P; or P;_; (the only tasks that call the entry
F;.U) and the third represents the possibility that no task ever calls F;.U after this point
(as described earlier, the non-event symbol ne(F;) is used in a constraint to assure that
there are no constrained prefixes in which a starves(F;.U) symbol is followed by a symbol
representing an activity of the task F;.)

Applying the appropriate translation rules to the designs of the tasks F; and P;, for
0 < § < 4, produces the task expressions shown in Figure 4. Given the interpretation of
the event symbols shown in Figure 3, it is apparent that the task expressions represent the
sequential activity of the individual tasks in the system.

The task expressions are interleaved when forming the system expression in order
to represent the concurrency in the system. This produces a regular expression whose
language of prefixes contains a string representing each possible behavior of the system.
As pointed out in section 2, however, some interleavings of strings from the languages of
the task expressions may produce prefixes representing event sequences that violate the
semantics of the design notation. Thus, for example, the resume symbol generated by the
translation of the first call statement in the design of the task P; can be interleaved before
the beg.rend symbol generated by the translation of the corresponding accept statement
in the body of the task F2, as in the prefix

in(P;; Think)call(Py; F2.U)resume(Py; F2.U)beg-rend(P; F2.U)end_rend(Py; F2.U).

The constraints are used to filter out any such prefixes that do not represent possible
behaviors of the system.

16

e in the body of task F;:
accept U =
beg.rend(P;; F;.U) end_rend(P;; F;.U)
V beg.rend(P;_,; F;.U)end_rend(P;_,; F;.U)
V starve(F;.U)ne(F;)

e in the body of task P;:
F;.U =
call(P;; F;.U)resume(P;; F;.U) V starve (P;; F;.U)ne(P;)

Figure 2
Sample translation rules

17

Symbol Associated Event
cal(T1; T2.E) Task T1 calls T2.E

resume(T1; T2.E)
starve,(T1; T2.E)
beg-rend(T1; T2.E)
end.rend(T1; T2.E)
starve,(T1.E)
in((T1; P)
begloop(T1)
end.loop(T1)
comp(T1)

ne(T'1)

Execution of task T'1 can resume after rendezvous on T2.E
Task T'1 starves waiting for call on T2.E to be accepted
Begin rendegvous between tasks T'l and T2 on T2.E

End rendegvous between tasks T'1 and T2 on T2.E

Task T'1 starves waiting to accept a callon T1.E

Task T'1 invokes the procedure P

Task T'1 begins execution of loop statement

Task T'1 completes execution of loop statement

Task T1 completes execution

Non-event symbol for task T'1

Figure 3

Some event symbols and associated events

18

Task expression for F;:

[(Beg-rend(P;; Fi.U)end_rend(P;; Fi.U) V beg_rend(P;_y; F;.U)end-rend(P;-; F:.U)
v stam.(F.-.U)nc(F.-))
((beg-rend(Py; F:.D)end.rend(P;; F:.D) V beg.rend(P;-y; F;.D)end_rend(P;_y; F;.D)

V starves(F;.D)ne(F .))]) ne(F;)comp(F;)

Task expression for P;:

[s’m(P.-; Think) (call(P.-; Fiy1.U)resume(P;; F;1.U) v starve(P;; Fiy1.U) nc(P.-))
(<cali(Py; F:.U)resume(P;; F:.U) V atarveo(P;; F;.U)nc(P.-)) ino(P; Eat)
(<cali(P;; F:.D)resume(P;; F:.D) V starve (P; F,.D)ne(P))

(cali(P;; Fiy1.D)resume(Pi; Fiy1.D) V starve(P;; Fi41.D)ne(P:)) | comp(P:)

Figure 4

Task expressions derived from the designs of F; and P;

19

The constraints express that part of the semantics of the design notation not captured
by the translation rules. For a particular design notation we identify a set of constraint
templates which, when instantiated for any particular design, produces the set of con-
straints required for that design. For example, a single template is used to ensure that
tasks are properly synchronized during a rendezvous. Instantiating this template for the
task P; and for the entry F2.U, we obtain the constraint,

(call(Py; F3.U)beg-rend(P1; Fs.U)end.rend(Py; Fy.U)reoume(P1; F2.0)),
describing the legal patterns of cali(Py;F2.U), beg-rend(Py; F2.U), end_rend(P,; F2.U),
and resume(Py; F2.U) symbols that can appear in strings representing behaviors of the
gystem.! Note that this constraint would prevent the prefix containing the premature
resume(Py; F2.U), cited in the preceding example, from surviving the filtering process and
being included in the set of constrained prefixes. Note also that while this constraint forces
a %all” event to always precede the corresponding “begin rendezvous® event, it does not
impose any ordering on the occurrence of an entry call and the corresponding accept. (In a
design notation in which this order was significant, additional symbols would be included
in the constrained expression representation to make those events visible.) Similarly,
although this constraint requires that an end_rend(P); F2.U) precede the corresponding
resume(P;; F2.U), it does not stipulate whether the calling task or the acceptingtask will
be the first to actually execute an instruction following the completion of the rendesvous.

In general, we have kept the derivation procedure as transparent as possible by using
simple and understandable translation rules and constraints. Consequently, the expression
obtained is often not as simple as it could be. The next step in producing a constrained
expression representation for a system, therefore, is to take advantage of specific features of
the system to simplify the expression derived from the design. Thus, for example, certain
symbols and constraints may be superfluous, due to the form of the system expression and
other constraints. These would be eliminated. Individual alternatives within the system
expression or a constraint might also be eliminated. Many of these simplifications are

routine and can be done automatically, in the same way that certain optimizations can be

! This is the constraint that is used with a simplified version of the design notation which, for example,
does not permit nested rendezvous.

20

done automatically as part of a compilation. Part of the routine simplification process for

the constrained expression derived for the example of figure 1 is illustrated in the appendix.

Other simplifications use the message flow analysis algorithmas {9). These algorithms
take into account the manner in which data flows between the tasks in the system to
simplify the task expressions. They resemble standard data flow analysis algorithms and,
once the designer has identified a set of entries to monitor, can be applied in a purely

mechanical fashion.

4.3. Analysis
The fundamental approach to constrained expression-based analysis of designs is to

determine whether a particular symbol or pattern of symbols appears in a string in the in-
terpreted language of the constrained expression. The symbols in question may correspond
to some desirable property of the system, such as mutually exclusive use of some shared
resource, or graceful degradation and continued operation following the failure of one
or more system components. Alternatively, they might represent pathological behaviors
such as deadlocks. For example, to determine if the philosopher tasks are appropriately
synchroniged in the above design (i.e., if the philosophers use the forks in a mutually
exclusive fashion), one could ask if there are any strings in the interpreted language of
a constrained expression representation for the system containing beg_rend(P;; F;.U) and
beg_rend(P;_,; F;.U) symbols (representing adjacent philosophers picking up the same fork)
with no intervening end.rend(P;; F;.D) or end.rend(P;_;;F;.D) symbols (representing a
philosopher putting down the fork). Similarly, the situation in which a philosopher be-
comes permanently unable to pick up a fork is represented by a string in the interpreted
language containing a starve.(P;; F;.U) or a starve,(P;; Fi4;.U) symbol.

A central technique for the analysis of constrained expressions is based on the algebraic
methods described in section 3.1. A particular pattern of event symbols is assumed to
appear in a string from the interpreted language of the constrained expression. Of course
this pattern must also appear in a constrained prefix of the constrained expression. The
system expression and the constraints are then used to generate inequalities involving the
numbers of occurrences of particular event symbols in various segments of the hypothesized

constrained prefix.

21

For example, to determine if a philosopher, as modeled in the above design, can starve
trying to pick up his/her right fork, we need to determine if a starve (P;; F;.U) sym-
bol appears in any string representing a behavior of the system. We therefore assume
that there is some constrained prefix containing a starve(P;; F;.U) symbol and exam-
ine the system expression and various constraints to produce inequalities relating the
pumber of occurrences of different symbols in this constrained prefix. One of the con-
straints relating to the starve.(P;; F;.U) symbol, for instance, implies that there are no
starveo(F;.U) symbols in the hypothesized constrained prefix. (This constraint is given
in the appendix.) Examination of the system expression in a simplified constrained ex-
pression representation for the system (also given in the appendix) then shows that the
number of beg.rend(P;..;; F;.U) symbols in this constrained prefix is one more than the
number of begrend(P;_;;F;.D) symbols. Additionally, the synchronization constraints
described above imply that the number of beg.rend(P;_;; F;.U) symbols is equal to the
number of cal{P;_;;F;.U) symbols, while the number of beg.rend(P;_;; F;.D) symbols
is equal to the number of cal{P;_; F;.D) symbols. It must be the case, therefore, that
the number of cal{{P;..;; F;.U) symbols in the hypothesized constrained prefix is one more
than the number of cal{P;..,; F;.D) symbols. But examination of the system expression
in the simplified constrained expression reveals that for this latter equality to hold the
constrained prefix must also contain a starve(P;—1; Fi—1.U) symbol. Hence a constrained
prefix contains a starve(P;; F;.U) symbol only if it also contains a starve,(Pi—y; Fi—1.U)
symbol. In terms of the modeled system, this means that a philosopher can starve trying
to pick up his/her right fork only if the philosopher on his/her right does also. All the
philosophers must therefore starve trying to pick up their right forks. The above analysis
is described more rigorously in the appendix.

Given the information revealed by this analysis, it is not difficult to generate the
constrained prefix shown in figure 5. Clearly, this constrained prefix corresponds to a
behavior in which the philosophers all first think, then pick up the forks on their left sides,
and finally starve trying to pick up the forks on their right sides.

For the analysis above, it was sufficient to consider the number of event occurrences in
the hypothesized constrained prefix. To establish certain other properties, however, it is

also necessary to determine the order of various event occurrences in a hypothesized con-

22

in(Po; Think)énu(P;; Think)iny(P; Think)iny(Ps; Think)ine(Pq; Think)
cali(Po; F1.U)call(Py; F2.U)call(Py; Fs.U)call(Ps; F.U)call(Py; Fo.U)
beg.rend(Po; F1.U)begrend(Py; F2.U)beg_rend(P2; Fs.U)beg.rend(Ps; F¢.U)beg-rend(P; Fo.U)
end_rend(Po; F1.U)endrend(Py; F3.U)end_rend(Po; F3.U) end. rend(Ps; Fy.U)end_rend(Py; Fo.U)
reaﬁme(Po; F1.U)resume(Py; F3.U)resume(Pz; Fs.U) resume(Py; Fy.U)resume(Py; Fo.U)
starvec(Po; Fo.U)starve(Py; Fy.U)starve (Py; F2.U)starve (Ps; F3.U)starve (Py; F(.U)
starveq(Fo.D)starves(Fy.D)starve,(F2.D)starve o(F3.D)starve, (F¢.D)

Figure §
A constrained prefix demonstrating the potential for deadlock

strained prefix. To show that the forks, as modeled in the design above, are used properly,
for example, it is necessary to determine how symbols from different task expressions (i.e.,
the symbols associated with a philosopher picking up a fork and the symbols associated
with a philosopher putting down a fork) are interleaved to form constrained prefixes. This
is accomplished by using the system expression and constraints to reason about the num-
ber of occurrences of certain event symbols in various initial segments of a hypothesized

constrained prefix.

After analysing the design presented in Figure 1, a developer might modify it to elim-
inate the potential for deadlock revealed by the analysis. For instance, a task can be
introduced to limit the number of philosopher tasks within their critical sections (i.e., be-
tween the calls to the U and D entries of the left-hand fork task) at any point during
a behavior to four. (This models the solution suggested in [16], whereby an attendant
guards the entrance to the dining room and never allows more than four philosophers to

be in the room at the same time.)

Analysis of this new design would need to address the same questions as analysis of the
original design. If certain relationships between the constrained expression representations
of the original and modified designs are maintained, however, there is no need to repeat the
analysis performed with the original design, as it can be shown to apply equally well with
the modified constrained expression. This approach to the modularization of constrained

expression-based analysis is illustrated in {9].

Of course, analysis of the modified design would also need to address some additional
questions regarding the behavior of the modified system. The newly introduced task, for
example, might maintain a variable whose value is intended to indicate the number of
philosopher tasks within their critical sections at any point during a behavior. In this
case, we use the sort of reasoning described above to show that the desired relationship
between the value of this variable and the state of the philosopher tasks is actually realized
and that the value of this variable is never greater than four. This information, together
with the characterization of deadlocking behaviors obtained earlier, then assures that the

gystem is free from deadlock.

24

6. Experience

A variety of experience with the constrained expression approach and related event-
based methods for designing concurrent systems reinforces our belief that this approach
can be of significant value to developers of concurrent software. In this section we provide
a brief overview of that experience.]

An early version of event-based design was explored in {30]. This version of the ap-
proach, tailored for use with DREAM, focused primarily on the description of a concurrent
system’s organisation and included few of the analysis capabilities found in the later con-
strained expression formulation. Nevertheless, several experiments with this early version
{8,27,31,34,36] demonstrated that this approach was well-suited for application to concur-
rent software development problems. In particular, its orientation toward high-level de-
scription of process activities and process interactions, as provided through DDN, proved
to be extremely natural for the formulation of a wide range of concurrent system designs.

Our experience with analysis techniques associated with the constrained expression
formaliem is also encouraging. Such analysis based on the number and order of event
occurrences is an apt and powerful tool for assessing designs of concurrent systems. A good
example of the merits of this approach appears in {3]. In that paper a complex design for
a solution to the distributed mutual exclusion problem, due to Ricart and Agrawala {25],
was subjected to the algebraic analysis techniques outlined in section 3.1. A subtle flaw in
the originally published version of the design (which Ricart and Agrawala had corrected
in {26]) was rapidly pinpointed by the algebraic analysis techniques. When that flaw had
been repaired, the techniques permitted rigorous proof that the corrected version of the
design exhibited precisely the intended behavior.

The generality of the constrained expression approach has also been convincingly
demonstrated. In Dillon’s thesis [9], it is employed in conjunction with several quite
different design languages for concurrent systems. One of those languages is a dialect of
DYMOL {38], a descendent of DDN that utilizes asynchronous message transmission as its
interprocess communication medium. Dillon {9] developed detailed translation rules and
analysis techniques for the constrained expressions corresponding to this DYMOL dialect
and also a derivation procedure for a dialect of CSP [16]. Like the Ada-based design lan-
guage used in the examples of section 4, this CSP dialect uses synchronous interchange

25

as its interprocess communication medium. Dillon [9] also gave translation rules for use
with Petri nets [24], the classic model of concurrent computation which has been exten-
gively investigated during the past 25 years. In this application, the constrained expression

formalism provided a novel, closed form representation for Petri net languages {14,23).

Finally, our experience with automating this approach has been encouraging. A partial
prototype implementation of the DREAM system provided the first experience with tools
supporting this approach. More recently, a prototype tool for translating DYMOL into
constrained expressions has been implemented (15] and a simulator for DYMOL has been
built {40]. Exploration of tool support for the analysis techniques associated with event-
based design has led to a prototype tool for event sequence generation from a constrained
expression representation {1]. Although other analysis tools will be more complex, requiring
more powerful reasoning and heuristic capabilities than the prototype tools developed to
date, this experience with automated support for the approach substantiates our belief

that it is amenable to automation. Our future plans along these lines are described in the

next section.

The focus of our work on the constrained expression approach has been on establishing
its practical utility and generality. Thus, rather than determining the formal, theoretical
properties and limitations of our description and analysis techniques, we have concentrated
on applying them ¢o different types of design notations and experimenting with their capa-
bilities for establishing important synchronigation properties of concurrent system designs.
Initially, we have intentionally avoided language constructs that might unduly complicate
the derivation and analysis techniques. The translation rules and constraint {emplates
used with the Ada-like designs described above, for example, rely on certain simplifying
assumptions regarding the nature of these designs. Most notably, we require that the
tasks in a system are neither created nor destroyed during execution, but are known stati-
cally and activated simultaneously. Similarly, a limited set of primitive types are assumed
{essentially enumeration types, which are easily represented and are appropriate for the
high-level expression of control flow dependencies). The extent to which these and other
restrictions can be relaxed and their effect on analysis is a topic for future research. Expe-

rience indicates, however, that language features requiring dynamic identification, such as

26

W - 0

access types and subscripts, will present many of the same sorts of problems for constrained

expression-based analysis-as they do for symbolic execution.

6. Conclusions and Future Directions

Our highest priority for continued development of our approach is implementation of
additional and improved tools to support its use. Specifically, we believe that an appro-
priate toolset would consist of a constrained expression deriver, a behavior generator, a
constrained expression simplifier and an analyzer.

The constrained expression deriver is a tool for creating a constrained expression rep-
resentation corresponding to a description expressed in some design language. Our imme-
diate goal is to complete a deriver specifically applicable to our Ada-based design notation.
A table-driven implementation, however, will make the deriver easily adaptable for appli-

cation to other design languages.
The behavior generator is a tool for producing example behaviors from a constrained

expression representation. As mentioned above, a simple prototype behavior generator
has already been implemented. This version is capable of producing an arbitrary element
of the language of behaviors described by a given constrained expression, and can also
be interactively guided in a search for a behavior possessing specific properties. The
capabilities offered by a behavior generator are extremely important for effective use of
the event-based approach. First, it allows a designer to interactively explore properties of
the system. Such exploration can provide important insights, leading to improvements in
the design, as well as allowing the immediate detection of certain kinds of errors. Second,
and perhaps even more important, when our algebraic analysis technique is unable to
determine that a particular pattern of events does not occur in behaviors of a designed
system (because the system of inequalities is consistent), the analysis produces a great deal
of information about the behaviors containing that pattern. The system developer must
then use this information 4o try to produce an example behavior containing the pattern in
order to further understand how it can arise. For systems of realistic sige, this can involve

a vast amount of bookkeeping, and the use of a tool such as the generator will be essential.

The simplifier will significantly enhance the usefulness and performance of the toolset.

This tool will perform simplifications on constrained expressions, with an effect similar

27

-

to that achieved by simplifying algebraic expressions. After simplification, it will be sub-
stantially easier to determine and reason about the possible behaviors represented by a
constrained expression. It will often be possible to see from the form of the simplified con-
strained expression that entire classes of behaviors are impossible. A variety of constrained
expression simplification techniques, many of them quite straightforward to implement, are
described in [9]. Some of these techniques and the manner in which they are used to reduce
the set of possible behaviors are illustrated in the appendix.

The constrained expression analyzer is a generic name for a collection of tools im-
plementing specific analysis techniques applicable to constrained expressions. The tools
composing the analyzer will benefit from the constrained expression simplifications per-
formed by the simplifier. While some aspects of the analyger can be implemented quite
directly, others require further research. In particular, appropriate methods and heuristics
must be developed for guiding the application of the rules for generating inequalities that
are the basis of the algebraic technique. It is clear, however, that even partially automated
support for constrained expression analysis will be an extremely valuable aid for developers
of concurrent software systems.

Another of our goals is to extend the constrained expression approach to encompass
other aspects of the software development process beyond design. We believe, for example,
that the constrained expression approach would be very well-suited for specifications of
concurrent software systems. Evidence for its broad applicability also comes from two other
projects currently underway at the University of Massachusetts. In one of these, an event-
based language closely related to the constrained expression formalism is being used as a
basis for high-level debugging of concurrent systems {4]. A prototype toolset supporting
this debugging method has been implemented and is currently being used in conjunction
with a distributed problem-solving testbed system by a research group at the University.
Essentially the same event-based language is being used by another research group in an
intelligent user interface system that is part of an office automation project (7]. Here the
. language is used to describe various office procedures to the interface system, which then
uses those descriptions to guide or assist users in carrying out the office procedures. We
plan to eventually incorporate this interface technology into our own event-based design

toolset.

Naturally, we also intend to continue expanding and improving our repertoire of con-
strained expression design capabilities and analysis techniques. For example, early work
on producing a deriver for our Ada-based design notation has resulted in a natural exten-
sion of the constrained expression formalism. The extended formalism was produced to
permit the description of the FIFO ordering of tasks in the queues associated with entries,
which we were not able to characterize using constraints describing permissible patterns
of event symbols. The extended formalism also allows more efficient representation of
certain other constraints on system behaviors and is compatible with existing constrained
expression-based analysis techniques. Another area of particular interest is the application
of the constrained expression approach to the design of real time concurrent systems. We
believe that the notions of events and sequences of events should be particularly natural
for designers of systems that are primarily coricerned with the timing and ordering of event
occurrences.

In sum, our research on and experience with event-based methods for concurrent soft-
ware design, especially as realized in the constrained expressions approach, encourage us
to believe that our approach can be of significant value to developers of concurrent sys-
tems. The constrained expression formalism provides a rigorous conceptual model for the
semantics of concurrent computations, which our approach exploits to produce rigorous
analysis of important system properties as part of the design process. At the same time, it
allows developers to use standard specification and design languages, rather than forcing
them ¢o deal with the formal model explicitly or directly. As a result, our approach of-
fers developers the benefits of formal rigor without the associated pain of using unnatural

concepts or notations to generate their designs.

7. Acknowledgments

We appreciate the helpful comments of the editor and referees on an earlier draft of
this paper. George Avrunin’s work has been supported in part by a Faculty Research
Grant from the University of Massachusetts. Laura Dillon’s work has been supported in
part by the IBM Graduate Fellowship Program.

29

References

(1] S. Avery, *Development of a Behavior Generator for Constrained Expressions,”
Dept. of Comp. and Info. Science, Univ. of Massachusetts, Amherst, SDLM/84-2,
June 1984.

[2] G. Avrunin and J. Wileden, “Algebraic Techniques for the Analysis of Concur-
rent Systems,” Proc. Sixteenth Annual Hawaii International Conference on System
Sciences, 51-57, 1983.

{3] G. Avrunin and J. Wileden, “Describing and Analyzing Distributed System De-
signs,” ACM Transactions on Programming Languages and Systems, to appear.

(4] P. Bates and J. Wileden, “High Level Debugging of Distributed Systems,” Journal
of Systems and Software, vol. 3, no. 4, 255-264, December 1983.

{5] R. Campbell and A. N. Habermann, “The Specification of Process Synchronization
by Path Expressions,” Lecture Notes in Computer Science, vol. 16, Springer-Verlag,
Heidelberg, 1974, 89-102.

[6] B. Chen and R. T. Yeh, “Formal Specification and Verification of Distributed Sys-
tems,” IEEE Trans. on Software Engineering, vol. SE-9, no. 6, 710-722, November
1983.

{7] W. Croft and L. Lefkowitg, “Task Support in an Office System,” ACM Trans. on
Office Info. Systems, vol. 2, no. 3, 197-212, July 1984.

(8] J. Cuny, “A Dream Model of the RC4000 Multiprogramming System,” Dept. of
Comp. and Comm. Sci., Univ. of Michigan, Ann Arbor, RSSM/48, July 1977.

[8) L. Dillon, “Analysis of Distributed Systems using Constrained Expressions,” Ph.D.
Dissertation, Dept. of Comp. and Info. Science, University of Massachusetts, Amherst.
Available as Dept. of Computer and Info. Science Technical Report TR 84-18,
September 1984.

{10] L. Dillon, G. Avrunin and J. Wileden, “Constrained Expressions: A General Tech-
nique for Describing Behavior of Concurrent Systems”, Dept. of Comp. and Info.
Science, University of Massachusetts, Amherst, Technical Report TR 85-17, July
1985.

{11] S. Ginsburg, The Mathematical Theory of Context-Free Languages. McGraw Hill,
New York, 1966.

{12} L Greif, *A Language for Formal Problem Specification,” Communications of the
ACM, vol. 20, no. 12, 931-935, December 1977.

{13] A. Habermann, “Synchronigation of Communicating Processes,” Communications
of the ACM, vol. 25, no. 3, 171-176, March 1972.

30

[14] M. Hack, “Petri Net Languages,” Computation Structures Group, Massachusetts
Institute of Technology, Cambridge, Memo 124, June 1975.

(15] P. Ho, “A DC DYMOL to DC Constrained Expressions Translator,” Master’s The-
gis, Dept. of Comp. and Info. Science, Univ. of Massachusetts, Amherst, November
1979.

[16] C. Hoare, “Communicating Sequential Processes,” Communications of the ACM,
vol. 21, no. 8, 666-677, August 1978.

{17] C. Hoare, “A Calculus of Total Correctness for Communicating Processes,” Oxford
University Computing Laboratory, Programming Research Group, Oxford, Eng-
land, Technical Monograph PRG-23, April 1981.

{18] C. Hoare, “Specifications, Programs and Implementations,” Oxford University Com-
puting Laboratory, Programming Research Group, Oxford, England, Technical Mono-
graph PRG-29, June 1982.

{19] G. Holgmann, A Theory for Protocol Validation,” IEEE Trans. on Computers,
730-738, August 1982,

[20] L. Lamport, “A New Approach to Proving the Correctness of Multiprocess Pro-
grams,® ACM Trans. on Programming Languages and Systems, 84-97, July 1979.

{21] P. Lauer, P. Torrigiani and M. Shields, * COSY: A System Specification Language
Based on Paths and Processes,” Acta Informatica, 451-503, 1979.

{22] J. Misra and K. Chandy, “Proofs of Networks of Processes,” IEEE Trans. on Soft-
ware Engineering, vol. SE-7, no. 4, 417-426, July 1981.

{23] J. Peterson, “Computation Sequence Sets,” Journal of Comp. and System Sciences,
vol. 13, no. 1, 1-24, August 1976.

{24] J. Peterson, “Petri Nets,” ACM Computing Surveys, vol. 9, no. 3, 223-252, Septem-
ber 1977.

[26] G. Ricart and A. Agrawala, “An Optimal Algorithm for Mutual Exclusion in Com-
puter Networks,” Communications of the ACM, vol. 24, no. 1, 9-17, January 1981.

{26] G. Ricart and A. Agrawala, Corrigendum Communications of the ACM, vol. 24,
no. 9, p. §78, September 1981.

{27] W. Riddle, “DREAM Design Notation Example: The T.H.E. Operating System,”
Dept. of Comp. Sci., Univ. of Colorado, Boulder, RSSM/50, April 1978.

{28] W. Riddle, J. Wileden, J. Sayler, A. Segal and A. Stavely, “Behavior Modeling
during Software Design,” IEEE Trans. on Software Engineering, vol. 4, no. 4, 283~
292, July 1978.

{29] W. Riddle, “An Approach to Software System Behavior Modeling,” Computer Lan-
guages, Vol. 4, 29-47, 1979.

31

[30) W. Riddle, *An Event-based Design Methodology Supported by DREAM,” in Schpei-
der (ed.), Formal models and Practical Tools for Information Systems Design.
North-Holland Pub. Co., Amsterdam, 1979.

[31] A. Segal, “DREAM Design Notation Example: A Multiprocessor Supervisor,” Dept.
of Comp. and Comm. Sci., Univ. of Michigan, Ann Arbor, RSSM/53, August 1977.

[32) A. Shaw, “Software Descriptions with Flow Epressions,” IEEE Trans. on Software
Engineering, vol. SE-4, no. 3, 242-254, May 1978.

{33] A.Shaw, “Software Specification Languages based on Regular Expressions,” Institut

" fiir Informatik, Eidgendssische Technische Hochschule, Ziirich, June 1979.

(34] A. Stavely, “DREAM Design Notation Example: An Aircraft Engine Monitoring
System,” Dept. of Comp. and Comm. Sci., Univ. of Michigan, Ann Arbor, RSSM /49,
July 1977.

(35] M. Welter, “Counter Expressions,” Dept. of Comp. Science, Univ. of Michigan, Ann
Arbor, RSSM/24, October 1976.

{36] J. Wileden, “DREAM Design Notation Example: Scheduler for a Multiprocessor
System,” Dept. of Comp. and Comm. Science, Univ. of Michigan, Ann Arbor,
RSSM/51, August 1977.

{37] J. Wileden, “DREAM - An Approach to Designing Large Scale, Concurrent Soft-
ware Systems,” Proc. 1979 National Conference of the ACM, 88-04, October 1979.

{38] J. Wileden, “Techniques for Modelling Parallel Systems with Dynamic Structure,”
Journal of Digital Systems, 177-197, Summer 1980.

{39) J. Wileden, J. Sayler, W. Riddle, A. Segal and A. Stavely, “Behavior Specification
in a Software Design System,” Journal of Comp. Systems and Software, vol. 3, no.
2, 123-135, June 1083.

{40] Y. Wong, “A DYMOL Simulation System,” Dept. of Comp. and Info. Science, Univ.
of Massachusetts, Amherst, SDLM/84-4, August 1984.

32

APPENDIX

In this appendix, we show how some of the analysis described in section 4 would be
carried out. Our intention is to convey the flavor of the process, rather than to present a
complete analysis of the system of section 4, and we therefore discuss only a few represen-
tative portions of the analysis in detail.

The constrained expression discussed in section 4 is derived directly from the design of
Figure 1. For the analysis that follows, however, we use a constrained expression that is
equivalent to the derived one, in the sense that it produces the same interpreted language.
The new constrained expression is obtained in a purely mechanical fashion from the derived
expression by applying the reduction algorithm described in [9]. The system expression for
this new constrained expression is the interleave of the task expressions shown in Figures
A-1 and A-2. The constraints required for this analysis are obtained by instantiating
the constraint templates shown in Figure A-3. The resulting constrained expression has
the property that every constrained prefix is a full string in the language of its eystem
expression. Producing this constrained expression is the first step in the simplification
process described in section 4.

We begin the analysis by identifying certain alternatives that can be deleted from
the task expressions of Figures A-1 and A-2 because the event sequences represented by
those alternatives cannot occur in system behaviors. At present, we do not know how to
automate this part of the process, although certain aspects of it could obviously benefit
from support by appropriate tools.

As an example, we show how the alternatives F;-2 and F;-3 in Figure A-1 can be
eliminated. The alternative F;-2 represents a sequence of events in which philosopher
P; picks up fork F; and then philosopher P;_; puts it down, while F;-3 represents a
sequence of events in which P;_; picks up the fork and P; puts it down.

We can write the task expression for F; as
(Fi-1v F;-2Vv F;-3V F;-4)*(F;-5 Vv F;-6 Vv F;-7).

Suppose that a sequence of symbols associated with F;-2 or F;-3 occurs in a constrained

prefix. Projecting such a constrained prefix onto the alphabet of the task expression F;

33

Task expression for Fy:

F¢-1 (beyml(Pg;FhU)end.rcud(P.-;Fi.U) beg-rend(Pi; Fi.D)end.rend(Pi; Fi.D)

F(-2

F¢-3

Fi-4

F;$

Fi-6

F¢-7

Vv begrend(P; Fi.U)end_rend(P;; Fi.U)begrend(Pi—y; Fi.D)endrend(P;_; F; D)
V begrend(Pi—y; Fi.U)end_rend(Pi_; F;.U)begrend(Py; Fi D) end_rend(P;; F; D)
V begrend(Pi—y; Fi.U)end_read(Pi_y;Fi.U)begrend(Pi—y; Fi.D)end_rend(Pi—y; F.‘.D)))
(cloroe.(F;.U)
V beg.rend(Pi; Fi.U) end_rend(P;; F;.U) starve, (Fi.D)

V beg_rend(Pi_y; F¢.U)endrend(Pi_y; F(.U).‘C"G.(F‘-D))

Figure A-1
Task expression for F; after reduction

34

A2 < aBESENS

Task expression for P;:

P;-1 (iu(Pg; Think)call{Py; Fiyy.U)ressme(Pi; Fiyy U)call{Py; Fi.U) ressme(P;; F;.U)

ino(P; Eat)cal{P; Fi.D)resume(P;; F;.D)call(Py; Fiyy D) resume(Pi; Fiyy .D))

P;-2 (l'uv(h; Think)starve (P; Fiyq.U)
P;-3 V ino(Py; Think)calf{P;; Fiy1.U)resume(P;; Fiyy.U)starve (P;; Fi.U)
P-4 V ino(P; Think) call(P;; Fi41.U) ressme(Py; Fiq1 . U) call(Py; F . U) resume(Py; F;.U)

ino(P;; Eat) sterse.(P;; F;.D)
P;-5 V ino(Py; Think)call(Py; Fi41.U) resume(P;; Fi41.U) call(Py; F(.U) ressme(P,; F,.U)
ino(P;; Eat) call(P;; F..D) ressme(P; F; D) starve.(P; Fi41 D)

P;-6 V comp{P;))

Figure A-2
Task expression for P, after reduction

35

For each task T':
xne(T) =2

For each entry 71.E and each task T3 that calls T}.E':
Kotarve(T3: T1.E) = starve(T3; Ty.E) V ataroes(Ty.E) V A

For each task T':
xcomp(T) = V staroe(T; T1.E) v V starve,(T.E) V comp(T)
T.E

TE
For each entry T).E and each task T; that calls T,.E:

"mnck(Tﬁ T| .E) =

(edt(T,; T,.E)begrend(Ty; Ty.E)endrend(T3; Ty E)resume(T3; T .E)).

where T°.E ranges over the entries called by T and T.E ranges over all entries of T, the constraint
alpbabet for Kxe(T) is the set { ne(T)}, and the constraint alphabets for kytarpe(T3:T1-E), Kcomp(T),
end K,M(Ta: T,.E) consist of the symbols that appear in the corresponding constraints.

Figure A-3
Constraint templates required for the analysis

by erasing all the symbols not occurring in the task expression, we obtain a string from

the language of
(F;-1v F;-4)*(F;-2Vv F;-3)(F;-1v F;-2v F;-3V F;-4)*(F;-8v Fi-6 vV F; 7).
We give the argument for the case in which this string lies in the language of
(F;-1v F;-4)° F;-2(F;-1Vv F;-2v F;-3v F;-4)°(F;-5v F;-6 vV F;-7).

The argument for the other case is similar.

If any such constrained prefix exists, one exists in which the end.rend and resume
symbols corresponding to the completion of the same rendegvous are adjacent. Hence, we
may assume without loss of generality that the constrained prefix under consideration has
this property. Consider the initial segment s of the constrained prefix ending with the
adjacent end.rend(P;_,; F;.D)- resume(P;_y; F;.D) pair coming from the first appearance
of F;-2.

Projecting s onto the union of the alphabets of the constraints &,ynch{Pi-1; Fi.D) and
Kegnch(Pi—1;Fi.U) gives a string in the language of

(beg_rend(Pi_y; F:.U)end_rend(P;_y; F;.U)beg-rend(P;_u; Fi.D) end_rend(P;—1; Fi.D))
beg_rend(P;_; F;.D)end_rend(P;_,; F;.D)
A
(call(P.-_l; F;.U)resume(P;_y; F;.U)call(P;_,; F;.D)resume(P;_;; F.-.D)) "

for some n,m > 0. (For a regular expression e, we use the notation e* to represent the
concatenation of k copies of e.)

Note that the constraint x,pnch(Pi—1; Fi.U) implies that there are the same number
of end.rend(P;_;1;F;.U) symbols as resume(P;_;; F;.U) symbols in any initial segment
of a constrained prefix ending in a resume(P;_; F;.U). Thus, we must have n = m.
Similarly, x,ymch(Pi—1;Fi.D) implies that n 4+ 1 = m. This contradiction shows that no
such constrained prefix exists. Hence alternatives F;-2 and F;-3 can be eliminated from
the task expression.

37

Arguments of a similar nature can be used to eliminate alternative F;-6 from the task
expression for fork F; and alternatives P;-2, P;-4, and P;-5 from the task expression
for philosopher P;, producing the task expressions shown in Figure A-4. This analysis
shows that, for example, a philospher holding both forks eventually puts them both down
(since P;-4 and P;-§ are eliminated) and that a philosopher can eventually pick up the
left fork (since P;-2 is eliminated). Thus, the only way philosopher P; can starve is while
trying to pick up fork F;.

As an example of the sort of additional analysis that would be carried out, we show
that philosopher P; starves only if philosopher P;_; does. (This implies, of course, that
one philosopher starves if and only if they all do.)

Suppose that there is a constrained prefix u containing a starve.(P;;F;.U) symbol.
Using K y¢qppe(Fi-U), we note that there is no starves(F;.U) symbol in the prefix u. Then
alternative F;-7 must contribute to u. Consider the projection of u on the union of the
alphabets of the constraints x,ynen(Pi-1;F:.U) and x,pnen(Pi-1; Fi.D). This projection
must lie in the language of

(cdl(P.-_;; F:.U)resume(P;_,; F;.U)call(P;_,; F;.D)resume(P;_;; F.-.D))j
(call(P;_l; F;.U)resume(P;_; F;.U) v A)
A
((u,.ma(p.._.;p,..mma_m(p,._,;F,..U)ug_m(p,._,;p,..n)mmnd(p,._,;p,..m)"
beg_rend(P;_,; F;.U)end_rend(P;_,; F;.U)

for some j,k > 0, where the first alternative in the line above the A corresponds to the
case when P;_;-3 contributes to u and the second corresponds to the case when P;_;-6
contributes to u. The constraint K,pnch(Pi—1; Fi.D) implies that j = k. The constraint
Koynch(Pi—1; Fi.U) implies that the number of call(Pi—y; F;.U) symbols must be equal to
the number of beg.rend(P;_;; F;.U) symbols. In the case where P;_, -6 contributes to u,
the former is j, while the latter is always k+1. Since j = k, this case is impossible. Hence
P;_;-3 contributes to u and u contains a starve,(P;—;;F;—1.U) symbol. Philosopher
P;_; thus starves attempting to pick up fork F;_;.

38

Task expression for F:

Fi-1 (bcg.rcud(P.-; Fi.U)endorend(Pi; Fi.U)begrend(Pi; Fi.D)end_rend(P;; Fi.D)

F ¢ -4 v beg.reud(P‘_ 1 F ¢.U) enl.rcud(P;-.; F‘.U) bq.reud(Pg_ 1 F‘.D) eul.rcud(?;- 't F(.D))
Fi-5 (ounc. (Fi.U)
Fi-7 V begrend(P;_y;F;.U)endorend(P;_,y;F;.U)starve, (F‘.D))

Task expression for P;:

P;-1 (t‘M(P;; Think)call(P; Fi41.U)ressme(Py; Fiyy U)callP;; Fi.U) resume(P;; F.U)
ino(Py; Eat)call(P; F(D) resume(P; Fi D) callP; Fiyq D) resume(Pg; Fy.s .D))
P;-3 (o‘nw(P‘; Think)esl¥(P; Fi41.U)resume(Py; Fiy1.U) otaroe(P;; Fi.U)

P;-6 v comp(P‘))

Figure A-4
Task expressions after further simplification

39

Similar arguments show that the forks are used by the philosophers in a mutually
exclusive fashion.

The analysis described here depends, of course, on features of the particular constrained
expression being analyzed, and therefore on features of the system represented by that
constrained expression and the semantics of the notation used to design that system. In
this example, we made heavy use of the constraints which ensure proper synchronigation
of rendesvous. If the dining philosophers system had been designed using a notation
employing buffered message transmission, the corresponding constraints would ensure that
the number of messages received from a communication channel is always less than or
equal to the number of messages sent. In this case, the corresponding analysis would have

involved inequalities rather than equations.

40

