SIS

Coherent Cooperation Among Communicating
Problem Solvers

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill
Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

= September 30, 1985

This research was sponsored, in part, by the National Science Foundation under Grant MCS-8306327 and
by the Defense Advanced Research Projects Agency (DOD), monitored by the Office of Naval Research
under Contract NR049-041.

Coherent Cooperation Among Communicating Problem Solvers 2
Abstract

When two or more computing agents work on interacting tasks, their activities should
be coordinated so that they cooperate coherently. Coherence is particularly problematic in
domains where each agent has only a limited view of the overall task, where communication
between agents is limited, and where there is no “controller” to coordinate the agents.
Our approach to coherent cooperation in such troublesome domains has been developed
and implemented in a distributed problem solving network. This approach stresses the
importance of sophisticated local control by which each problem solving node integrates
knowledge of the problem domain with (meta-level) knowledge about network coordination.
This allows nodes to make rapid, intelligent local decisions based on changing problem
characteristics with only a limited amount of conferring with each other to coordinate
these decisions.

In this article, we describe three mechanisms that improve local control decisions and
enable nodes to cooperate coherently. These mechanisms are an organizational structure
which provides a long-term framework for network coordination to guide each node’s local
control decisions, a planner at each node which develops sequences of problem solving
activities based on the current situation, and meta-level communication about the current
state of local problem solving which enables nodes to dynamically make short-term refine-
ments to the long-term organization. We provide empirical results showing the benefits
and limitations of these mechanisms in a variety of problem solving situations. Moreover,
these mechanisms are not without cost, and we provide performance results showing the
mechanisms to be particularly cost-effective in complex problem solving gituations. Fi-
nally, we describe how these mechanisms might be of more general use in other distributed
computing applications.

Coherent Cooperation Among Communicating Problem Solvers 3
1. Introduction

Cooperation in a distributed computing environment requires two types of control
decisions. One type is network control: tasks and responsibilities must be assigned to each
of the computing agents. Typically, network control attempts to equally distribute the
computing load among agents to maximize parallel computation. The other type is local
control: each computing agent must choose a task to execute next from among its assigned
tasks.

Much research in distributed computing systems has concentrated on network control
algorithms that exchange tasks among agents based on protocols such as bidding {22,25].
These systems tend to have unsophisticated local control; a simple scheduling algorithm
(for example, based on task reception times or on task deadlines) is used. Since tasks
are usually assumed to be independent, the local control component of one agent can be
unaware of the local control decisions being made elsewhere.

As distributed computation is used in more diverse applications, however, the task
independence assumption becomes invalid. Examples of how interactions among tasks
affect local control decisions include:

o If tasks have precedence constraints, the local control decisions of agents with suc-
ceeding tasks depend on the decisions of the agents with the preceding tasks.

o Toimprove reliability, equivalent tasks may be assigned to several agents. If one agent
successfully executes a task, the other agents should avoid redundantly executing
equivalent tasks. -

e In a distributed programming environment, each agent may have pieces of several
distributed programs. Because the pieces of a distributed program may need to
synchronize or exchange information, the local control components of agents must
consider how the timing of their local decisions will affect activity on other agents.

In this article, we enable agents with interacting tasks to cooperate effectively by giving
each agent knowledge about the actions and intentions of the other agents. Achieving such
network awareness is difficult in a distributed environment because of communication de-
lays and bandwidth limitations. We explore mechanisms for improving network awareness
without excessive computation and communication overhead. Since full network aware-
ness is seldom possible in large networks, we develop mechanisms that allow an agent to
make local control decisions despite potentially incomplete, inaccurate, and inconsistent
knowledge about other agents. We have implemented and experimentally tested these
mechanisms in a simulated distributed problem solving network.

In a distributed problem solving network, each agent is a semi-autonomous problem
solving node that can communicate with other nodes. Nodes work together to solve a single
problem by individually solving interacting subproblems and integrating their subproblem
solutions into an overall solution. These networks are typically used in applications such as
distributed sensor networks [17,25], distributed air traffic control [1], and distributed robot
systems [11], where there is a natural spatial distribution of information but where each

Coherent Cooperation Among Communicating Problem Solvers 4

node has insufficient local information to completely and accurately solve its subproblems.
To improve their local information, nodes must share subproblem solutions; cooperation
thus requires intelligent local control decisions so that each node performs tasks which
generate useful subproblem solutions. The use of a global “controller” to make these
decisions for the nodes is not an option because it would be a severe communication and
computational bottleneck and would make the network susceptible to complete collapse if
it fails. Because nodes must make these decisions based only on their local information,
well-coordinated or cokerent cooperation is difficult to achieve [7,18].

In the functionally-accurate, cooperative (FA/C) approach to distributed problem solv-
ing (18], nodes cooperate by generating and exchanging tentative, partial solutions based
on their local views. By iteratively exchanging their potentially incomplete, inaccurate,
and inconsistent partial solutions, the nodes eventually converge on an overall network
solution. Coherent cooperation thus requires that, at any given time, each node performs
a sequence of tasks to generate a tentative partial solution that is compatible with the
solutions being generated at other nodes. The nodes often have overlapping views of the
problem and alternative methods for forming partial solutions to insure both that problem
golving can occur despite significant amounts of error in local data and that network per-
formance will degrade gracefully if a subset of the nodes fail. Coherent cooperation among
these overlapping nodes is particularly troublesome, requiring the nodes to work together
to cover the overlapping area without duplicating each other’s work.

A distributed problem solving network therefore involves issues in precedence among
tasks (smaller partial solutions must precede larger, subsuming partial solutions), in redun-
dancy among tasks (overlapping nodes may redundantly generate identical partial solu-
tions), and in timing of tasks (a timely generation and exchange of certain partial solutions
may guide nodes into behaving more effectively). Sophisticated local control at each node
is thus paramount if nodes are to cooperate coherently. This article describes how such lo-
cal control can be implemented; examines its costs, benefits, and limitations; and suggests
how it might be introduced in other distributed computing systems.

In the next section, we present the conceptual issues in coherent cooperation among
problem solvers, and in Section 3 we describe our experimental testbed. Section 4 intro-
duces the first of three mechanisms to increase coherence through improved local control—a
coordination strategy that provides each node with a general view of network responsibil-
ities (including its own) to guide its problem solving and communication decisions (Fig-
ure 1a). In Section 5, the second mechanism, a local planner, is described. The planner
increases the node’s awarenessof its local state and problem solving activities, and therefore
allows it o make small, dynamic refinements to its copy of the coordination strategy (Fig-
ure 1b). Section 6 presents mechanisms that enable nodes to make more informed commu-
nication decisions and that allow nodes to exchange meta-level information—information
specifically intended to increase coherence (Figure 1c). In Section 7, we examine experi-
mental results from complex environments, citing the costs as well as the benefits of our
mechanisms. Section 8 is devoted to a discussion of how our approach might be incorpo-
rated in other distributed computing systems. Finally, Section 9 summarizes our current
ideas about coherent cooperation and describes our plans for future research.

Coherent Cooperation Among Communicating Problem Solvers 5

Coordination Strategy Coordination Strategy

Communi- Communi-
Pé o}) lem cation Péo}) lem cation
olver Interface olver Interface
@ | ® |
hypothesis and Aypothesis and
goal messages goal messages
Coordination Strategy

e Communi- Aypothesis, goal
Planner) cation [~* and meta-level

S Interface messages

Solver

()

The three new mechanisms we have developed are illustrated. Initially, a node has a problem
solver and a communication interface for exchanging hypotheses (partial problem solutions)
and goals (intentions to form partial problem solutions). In (a), a coordination strategy is
added to guide problem solving and communication decisions. In (b), a local planner and a
meta-level state representation are added to increase a node’s problem solving and coordi-
nation awareness. Finally, in (c), meta-level messages (high-level views of node activities)
can be exchanged through the communication interface to increase network awareness.

Pigure 1: Evolutionary Phases of Sophisticated Local Control.

Coherent Cooperation Among Communicating Problem Solvers 6
2. Problem Solving and Coherent Cooperation

A distributed problem solving network requires individual agents that are effective at
problem solving and are able to cooperate as a coherent team. In this section, we present
our ideas on problem solving and coherent cooperation. With this framework, we can
begin to recognize the issues that must be addressed to achieve coherent cooperation in a
distributed problem solving network.

2.1 Effective Problem Solving

Artificial intelligence researchers typically view problem solving as a search of the space
of possible solutions to find the best one [27]. For example, given the problem of finding the
shortest route between two cities, the solution space would consist of all possible routes,
and problem solving would involve searching for the shortest of these. Solution spaces for
non-trivial problems are extremely large and can neither be completely enumerated nor
searched exhaustively. One way to make the search tractable is to transform the space
of possible solutions into a space of partial solutions. A partsal solution represents all
complete solutions which contain it. Through the judicious selection of problem solving
tasks, an effective problem solver controls the incremental construction of alternative par-
tial solutions so that that one or more satisfactory complete solutions are found within a
reasonable amount of time.

How search in this space of partial solutions should be controlled depends on what
constitutes a satisfactory solution and how long a reasonable time is. If only_the best solu-
tion will do, the control must be conservative so that it does not overlook any potentially
optimal portions of the space. If the control must find a solution in a short amount of time,
it may limit the search to a small part of the space without the guarantee that the best (or
any) solution is in that part. When time is limited, therefore, a problem solver must have
a sophisticated control structure to decide what part of the space should be searched. The
decisions must often be based on potentially inaccurate or incomplete problem knowledge.
As a result, the control decisions are uncertain because their full ramifications cannot be
predicted. This control uncertasnty can be reduced only by providing the problem solver
with more accurate and complete problem information.

The control structure becomes significantly more complex in a distributed environment
because a problem solver must then consider how its local searching actions complement
those of the other nodes. More effective problem solving can occur if each node explores a
different part of the space concurrently—within the same amount of time, the network more
thoroughly searches the space, and 80, can find more satisfactory solutions. Furthermore,
a partial solution received from another node can provide additional information with
which a node may generate partial solutions that it previously had been incapable of
developing, or at least could narrow the part of the space that the node might search
to find a compatible partial solution to combine with it. This subtask interdependence
means that nodes must work together to generate an overall solution; effective distributed
problem solving cannot be achieved without cooperation.

Coherent Cooperation Among Communicating Problem Solvers 7

2.2 Coherent Cooperation

Achieving cooperation in a distributed problem solving network is a difficult problem.
Although the individual nodes are predisposed to work together toward network goals, they
may compete or conflict with each other because each must locally interpret the network
goals. Since the nodes may have different local views, incompatible local interpretations of
network goals may be created. Even if nodes have compatible goals, network performance
depends on how coherently the nodes work together as a team.

Global coherence means that the activities of the nodes should make sense given overall
network goals. Nodes should avoid unnecessarily duplicating the work of others, sitting idle
while others are swamped with work, or transmitting information that will not improve
overall network performance. Because network coordination must be decentralized to
improve reliability and responsiveness, the amount of global coherence in the network
depends on the degree to which each node makes coherent local decisions based on its
local view of network problem solving. In particular, local control decisions about what
part of the partial solution space to search and how to search it (breadth-first, depth-first,
etc.) must make sense when compared to the search occurring at other nodes.

At any given time, a node may be capable of searching several parts of the solution
space. Since search at one node can form partial solutions that influence search at another
node, a node ranks its pending, interacting search tasks based on how it believes each will
improve network problem solving. A node’s decision to execute its top ranked task is thus
more or less coherent depending on how highly ranked the task would have been if the
node had complete network awareness. We can guarantee full global coherence only if each
node has a complete and accurate view of the problem solving activities and intentions
of all other nodes. One way to achieve this would be to globally predefine a schedule of
activities for each node at network creation, but such a network would be inflexible to
changing problem solving situations and network characteristics. Another way to achieve
a global view would require nodes to broadcast all changes to their states, an infeasible
scheme because of bandwidth limitations and communication delays. Therefore, we have no
practical means to insure full global coherence. The FA/C approach develops a framework
which tolerates incorrect control decisions, so that network goals can be achieved with
only partial global coherence. However, less than full coherence can waste resources and
therefore can degrade performance.

Our research in distributed problem solving is focused on the effective use of all com-
putation and communication resources. By increasing node sophistication, we improve
communication resource usage since nodes make more intelligent communication decisions.
We also improve computation resource usage: although better local control decisions add
computation overhead, they may focus search so that better partial solutions can be found
with less search. Our approach has thus been directed toward increasing the coherence
of local control decisions by using sophisticated local processing and selective communi-
cation to reduce control uncertainty. We have implemented and tested our approach in a
(simulated) distributed problem solving network.

Coherent Cooperation Among Comm unicating Problem Solvers 8
3. The Distributed Vehicle Monitoring Testbed

By simulating a network of problem solving nodes, the Distributed Vehicle Monitoring
Testbed (DVMT) provides a framework where general approaches for distributed problem
solving can be developed and evaluated [19,20]. Each simulated node applies simplified
signal processing knowledge to acoustically sensed data in an attempt to identify, locate,
and track patterns of vehicles moving through a two-dimensional space. By varying pa-
rameters in the DVMT that specify the accuracy and range of the acoustic sensors, the
acoustic signals that are to be grouped together to form Patterns of vehicles, the power and
distribution of knowledge among the nodes in the network, and the node and communica-
tion topology, a wide variety of cooperative distributed problem solving situations can be
modeled. Furthermore, using simplified signal Processing knowledge reduces the Processing
complexity and knowledge engineering effort required in the DVMT without significantly
changing the fundamental network coordination characteristics of the distributed vehicle
monitoring task.

3.1 The DVMT Nodes

potheses (partial golutions). A hypothesis is characterized by one or more time-locations
(where the vehicle was at certain times), by an event-class (classifying the frequency or
vehicle type), and by a belief (the confidence in the accuracy of the hypothesis).

The hypotheses are organized on a blackboard with four levels of abstraction: signal
(for low-level analyses of the 8ensory data), group (for collections of harmonically related
signals), vehicle (for collections of groups that correspond to given vehicle types), and
pattern (for collections of spatially related vehicle types such as vehicles moving in a
formation). Each of these levels is split into a level for location hypotheses (which have one

A knowledge source snstantsation (KSI) represents the potential application of a par-
ticular KS to specific hypotheses. Each node maintains a queue of pending KSIs and, at
any given time, must rank the KSIs to decide which one to invoke next. To improve these
decisions, we have extended the Hearsay-II architecture (Figure 3) so that nodes can reason
more fully about the intentions or goals of the KSIs (3,4]. As explicit representations of the
node’s intentions to abstract and extend hypotheses, goals are stored on a separate goal
blackboard and are given importance ratings. A goal processing component recognizes
interactions between goals and adjusts their ratings appropriately (for example, subgoals
of an important goal might have their ratings boosted). The scheduler ranks a KSI baged
both on the estimated beliefs of the hypotheses it may produce and on the ratings of the

Coherent Cooperation Among Communicating Problem Solvers

solution
&P l_pi m:gt:pt
pattern location (__ pattern track
\ —
a:ol:pl I:pl:pt s:ot:pt
e:vtﬁ '."‘J" of
vehicle location C_ vehicle track
\ —
a:gl:ol f:v{:0t s:gt:vt
g m:gt:gt
group location (_ group track
‘ —
oel:d I:ol:gt o:8d:gt
e:al.;ai 2_1_:_1!:0!
signal location <_ signal track)
I sensors Ief:at

acoustic data

KSs combine hypotheses to form more encompassing hypotheses on the same or higher
levels. Synthesis (s:) KSs generate higher level hypotheses out of compatible lower level
hypotheses. Formation (f:) KSs form a track hypothesis from two combinable location
hypotheses. Extension (e:) KSs combine a track hypothesis with a compatible location
hypothesis to extend the track. Merge (m:) KSs combine two shorter track hypotheses that
are compatible into a single longer track. The sensors KS creates signal location hypotheses
out of sensed data. Communication KSs are not shown.

FPigure 2: Levels of Abstraction and Knowledge Sources.

Coherent Cooperation Among Communicating Problem Solvers 10

goals it is expected to satisfy. Appropriate goal processing can therefore alter KSI rankings
to improve local control decisions.

A goal’s rating may also be modified based on its source. Nodes have communication
KSs and (simulated) communication hardware so that they can exchange hypotheses and
goals (Figure 3). Received hypotheses and goals trigger the same activities that locally
generated hypotheses and goals do, so that a node is responsive both to internally generated
information and to externally-directed suggestions or requests for work received from other
nodes. However, a node may modify the ratings of received goals or goals stimulated by
received hypotheses: if the ratings of these goals are increased, the node is said to be
ezternally-biased and is essentially subservient to others; if the ratings of these goals are
decreased, the node is locally-biased and prefers its own activities over the suggestions of
others; and if the ratings of these goals are not modified at all, the node is unbsased.

3.2 DVMT Problem Solving Activity

A node that makes better local control decisions searches the solution space more
effectively by invoking fewer inappropriate KSIs as it works towards generating important
hypotheses. To evaluate an approach for improving local control decisions, therefore, we
use the DVMT to simulate problem solving environments and measure the number of
local control decisions required to generate the solution. We explore the strengths and
limitations of an approach by developing a set of environments that cover a range of
problem solving situations. For example, we might make problem solving more difficult by
altering the distribution of sensed data among the nodes or by giving a node “noisy” data
along with the actual vehicle data. These modifications can complicate problem solving
so that issues in cooperation among nodes become more pronounced.

Given a particular problem solving environment, the DVMT simulates the nodes’ ac-
tivities as follows.! Each node begins by transforming its sensed data into a set of signal
location hypotheses (using the sensors KS).? With each new hypothesis, the node generates
goals to improve upon it and forms KSIs to achieve these goals. After it has created all
of its signal hypotheses, a node then chooses a KSI to invoke. The KSI invocation may
cause the creation of new hypotheses, which stimulate the generation of more goals, which
in turn may cause more KSIs to be formed. The node then chooses another KSI and the
cycle repeats. In our environments, each cycle requires one time unit.

By limiting the KSs available to nodes in our environments, we allow them to form
tracks from locations only at the vehicle level. Nodes thus perform both low-level problem
solving activities (creating group location and vehicle location hypotheses), and high-level
activities (forming, extending, and merging vehicle track and pattern track hypotheses).
Initially, the node will drive up its most promising signal data to form tracks. Through goal
processing, the goals to extend these tracks boost the importance of low-level processing

'More detailed descriptions can be found elsewhere [5,20].

2Although we have been exploring scenarios where sensor data is incorporated over time, the less compli-

cated environments where all sensor data is incorporated at once illustrate the issues we address in this
article.

Coherent Cooperation Among Communicating Problem Solvers

Qfl{sges ———————————— L
‘ Scheduler)

|
|
|
|
|
|
Knowledge |
|
|
]
|
|

Source
Instances

Goal Sub- Goal Data Knowledge
Processor / goals Blackboard Blackboard Sources

-

Communi-
Goal — cation
KS Table Goals Events Hardware
Bla.cklgoard
Goal —s Monitor
Subgoal
Table Event —» Data
Goal
Table Control <« — — —

Figure 3: DVMT Node Architecture

Coherent Cooperation Among Communicating Problem Solvers 12

that may eventually allow the tracks to be extended. This form of problem solving is called
tsland-driven because it uses islands of high belief to guide further low-level processing.
This problem solving is also opportunistic because nodes can react to highly-rated new
data (perhaps received from another node) to form alternative islands of high belief.

When any node generates, through its own uncertain decisions, a hypothesis that
“matches” the correct (predefined) solution, the network has solved the problem.®> As
soon as a node finds this solution, it broadcasts its success to the other nodes and then
ceases its activity. In turn, the other nodes cease their activity when either they receive
this message (which is subject to communication delays) or they generate the solution
themselves, whichever is earlier. Network activity thus stops within a finite amount of
time (usually a few time units) after any node first finds the solution.

In our environments, low-level processing requires a minimum of three time units to
generate a fully supported vehicle location hypothesis (two KSIs to generate two group
hypotheses and one KSI to combine these at the vehicle level). With n sequential vehicle
locations, high-level processing requires a minimum of n time units to generate a pattern
track hypothesis (n-1 to generate the full vehicle track and one to synthesize it to the
pattern track level). This analysis provides the framework for an algorithm that has been
implemented to calculate a benchmark value for optimal performance. Optimal perfor-
mance corresponds to the minimum amount of time that the network would require if each
node had no control uncertainty, and so, made only correct control decisions. But because
nodes cannot always be expected to make only correct decisions, we have developed a more
subjective benchmark which we call reasonable performance. When highly rated noise is
present in an environment, a node should temporarily prefer to process it rather than less
highly rated but true data. For environments with such noise, reasonable time is computed
by adding to the calculation of optimal time an estimate of the amount of time needed to

process and dismiss the noise. We shall refer to the optimal and reasonable performance
benchmarks throughout this article.

3The solution is thus specified before problem solving begins, but a node cannot use this information to
guide its processing. Without the availability of such an “oracle”, termination of problem solving is much
more difficult, requiring nodes to determine whether further problem solving is likely to improve upon
a possible solution which it has already generated or will cause it to generate another potentially better
solution. In effect, the termination decision depends on the criteria for deciding whether network goals
have been satisfied [5]. An effort is underway to address these issues.

Coherent Cooperation Among Communicating Problem Solvers 13

4. Organizational Structuring To Increase Coherent Coopera-
tion

Consider the simple two-sensor and data configuration in Figure 4. We might connect
both sensors to a single problem solving node and allow it to develop the entire solution.
The performance of this environment, as simulated by the DVMT, is shown in Table 1,
experiment E1.1. The node required 29 time units (hence 29 KSIs) to generate the solution,
5 more than optimal (E1.2). Despite having had all of the data, the node still had control
uncertainty and could not determine an optimal sequence of KSIs. It made 5 incorrect local
control decisions to form pattern tracks out of short vehicle tracks; an optimal sequence
would have formed the complete vehicle track first.

Eztent of Sensor. 1

Sensor. 1 Sensor. 2

Eztent
of

Sensor. 1

@ = strongly sensed
® = weakly sensed

The data points and their associated times are given. Data at times 3 and 4 fall in the
overlapping area. The data points are connected to indicate the vehicle track, the vehicle
moving from left to right.

FPigure 4: Simple Two-Sensor Configuration and Data.

Next, we connect each sensor to a separate node, each just like the single node in
the first case except that they also have the ability to exchange all partial results (with
a communication delay of one time unit).* The resulting performance (E1.3) is actually

4All of the two-node environments in this article use a communication delay of one time unit. A node can
perform one KSI in the time it takes to transmit a message.

Coherent Cooperation Among Communicating Problem Solvers 14

Experiment Nodes Organlsation Time

ElL.1l 1 - 29

E1.2 optimal(1) - 24

E1.3 2 none 32

El4 2 unbiased 22

El.5 2 loc-bias 17

El.6 optimal(2) - 14

Legend

Nodes: Number of nodes in network (optimalfn) = optimal solution time for n nodes)
Organisation: Bias of nodes
Time: Earliest time at which a solution was found

Table 1: Initial Multi-node Experiments.

worse than the single node case! This is because the two nodes, although they exchanged
information, were not organized to work together coherently. Since they exchanged all
partial results, they completely duplicated each other’s work, so that each derived the
entire solution the same way the single node did. In fact, because of communication delays,
each node occasionally performed additional unnecessary KSIs because the partial results
needed to continue developing the correct solution had not yet been received from the
other node. The unnecessary KSIs constructed less credible partial results along unlikely
alternative solution paths. This resulted in performance that was actually worse than in
the single node case. What the network needs to improve performance is organigation.

Organization can improve performance by reducing the responsibilities of each node.
In our simple case, we might make each node responsible for low-level processing only on
data it gets from its own sensor®(for example, node-1 processes only low-level data from
sensor-1). We might also make better use of the communication resources by insisting
that only high-level partial results, such as vehicle tracks, are exchanged. Making these
modifications, network performance is significantly improved (E1.4) although still not op-
timal (E1.6)—the nodes still make incorrect local decisions. This improved performance
also requires much less communication, reducing the number of communicated hypotheses
from 172 in E1.3 to only 4 in E1.4.

Organization can also improve performance by forming authority relationships between
nodes—by making nodes externally-biased, locally-biased, or unbiased. Authority relation-
ships determine how one node’s local view of problem solving will affect the view of another
node. For example, if one node has a more accurate or complete view of the problem than
another (as in the hierarchical network organizations discussed later), it will be to the
network’s advantage to let that node’s view of the problem (as communicated through

SWe assume in our environments that overlapping sensors sense the same data in the area of overlap:
confidence in data is independent of the number of sensors which observe it. If two nodes independently
derive the same partial solution based on independent observations, one of these derivations is redundant
(unnecessary). Situations where independent derivation increases confidence are not addressed in this
article.

Coherent Cooperation Among Communicating Problem Solvers 15

hypotheses and goals) guide the activities of a less informed node. Examination of the
simulation results for E1.4 indicates that nodes incorrectly decide to perform significant
amounts of redundant work in the overlapping area. Due to the organization, each node
first builds a short track based on its uniquely received highly-sensed data, and these tracks
are then exchanged. Because each frack stimulates work on a different weakly-sensed data
point, each node works on both of these points sn parallel. Hence, in their overlapping
area, each node does low-level processing on both data points, resulting in redundant work
and less than completely coherent cooperation. If we modify the organization further so
that the nodes are more locally-biased, then each will prefer extending its local track first.
Since the extended tracks are also exchanged, each node can avoid the incorrect decisions
to perform redundant low-level processing on the other weak data and performance is
improved still further (E1.5).

Is it possible to improve the performance even more? As we shall see later, the answer
is yes, but improvement is limited. Even with optimal coherent cooperation between
nodes—if the nodes always did the best possible activity—two nodes cannot solve the
problem in half the time it takes one node. In this environment, optimal solution time
for one node is 24 (E1.2), for two nodes is 14 (E1.6), and for three nodes is 11 time
units. Cooperating nodes incur processing overhead when they integrate their partial
solutions. For example, when one node is generating the overall network solution, either
the other nodes are simultaneously generating the same solution (unnecessarily), or they
are generating tentative partial solutions that cannot possibly be of use. In either case, we
postulate that, for that interval of time, we are only using one-nth of our n-node network.
Hence, as the size of the network increases, the effective use of the network over this
interval decreases.® The processing resources unused during integration are attributed to
cooperation overhead.

An effective problem solving network balances cooperation overhead and problem solv-
ing parallelism to achieve acceptable network performance. In a small network, cooperation
overhead is low (there are fewer partial solutions to exchange and integrate) but network
problem solving may be unacceptably slow because each node has too many problem solv-
ing tasks. In a large network, each node has fewer tasks, but more partial solutions must
be exchanged and integrated; network performance may be degraded by excessive cooper-
ation overhead. An effective problem solving network therefore must have an appropriate
number of nodes, and acceptable network performance depends on coherent cooperation
among these nodes. In our simple example above, we saw that coherence could be increased
by statically allocating task responsibilities, communication paths, and authority relation-

ships. Expanding on these ideas has led to the concept of organizational structuring in
distributed problem solving networks.

6This analysis holds for these distributed problem solving experiments because the network only develops
a single solution and then stops. In continsous systems, this may not be the case.

Cobherent Cooperation Among Communicating Problem Solvers 16

4.1 Organizational Structuring

An organisational structure specifies a set of long-term responsibilities and inter-
action patterns for the nodes. This information guides the local control decisions of each
node and increases the likelihood that the nodes will behave coherently by providing a
global strategy for network problem solving. The construction and maintenance of the
organizational structure is a network control problem, and we postpone its discussion un-
til later in this article. For the present, we assume that the organizational structure is
established at network creation and is never altered.

The organizational structure is implemented in the DVMT as a set of data structures
called interest areas. Asimplied by its name, an interest area specifies the node’s interest
(represented as a set of parameters) in a particular area of the partial solution space
(characterized by blackboard levels, times, locations, and event-classes). The scheduler
uses the interest area to modify the ratings of goals; goals to generate hypotheses in
desirable areas of the blackboard would have their ratings increased. Goals to transmit
or receive information similarly have their ratings modified based on the interest areas of
both the sending and receiving nodes. Since the goal rating is a factor in ranking KSIs, the
interest areas can influence node activity; but because there are other factors in ranking
KSIs (such as the expected beliefs of the output hypotheses), a node still preserves a
certain level of flexibility in its local control decisions. The organizational structure thus
provides guidance without dictating local decisions, and can be used to control the amount
of overlap and problem solving redundancy among nodes, the problem solving roles of the
nodes (such as “integrator”, “specialist”, and “middle manager®), the authority relations
between nodes, and the potential problem solving paths in the network [6].”

4.2 Further Experiments with Organizational Structuring

In this section, we briefly explore the effects of organizational structuring on some
simple two-node environments (Figure 5). Our intent is to show that overly specialized
organizational structures allow effective network performance in particular problem solving
situations, but that no such organization is appropriate in all situations. We continue
using two-node environments to keep the explanations uncomplicated. Experiments on
environments composed of larger networks are discussed later in this paper and elsewhere
(5,6].

Each of the six two-node environments (A-F) was devised to illustrate a specific prob-
lem solving situation. Environment A (which we have previously studied) illustrates the
situation where each node develops its own local hypotheses that guide activity in the
overlapping area. Environment B illustrates the situation where nodes will process data
in the overlapping area first. Environment C illustrates the situation where one of the
nodes (node 1, the left node) could potentially derive the solution alone. When the re-
ception of information causes a node to shift its problem solving focus, we say that the
node is distracted [17]. In Environment D, we illustrate a situation with posstive (bene-
ficial) distraction: when node 1 sends a highly rated track hypothesis to node 2, node 2
will stop working on its moderately sensed noise and attempt to extend the track with its

Coherent Cooperation Among Communicating Problem Solvers 17

overlap

L an 4

1 2

optimal(1) = 24

optimal(2) = 14

@
®; ot

2
5...
l..5
3

optimal(1) = 16

C

optimal(2) = 10

reasonable(2) = 16

1 2

4 56 78

optimal(l) = 32

E

optimal(2) = 18

4 5 6

optimal(1) = 24

optimal(2) = 14

123 4

5

2
5.0

[)
1095
3

[2 2 2 = = 2 o)

6 78

optimal(l) = 32 D

optimal(2) = 18
reasonable(2) = 26

1 2

4 56

optimal(1) = 24

reasonable(1) = 32

@ = strongly sensed
= moderately sensed
= weakly sensed

optimal(2) = 14
reasonable(2) = 18

For each configuration, the optimal solution time for a one-node network (optimal(1)) and
for a two-node network (optimal(2)) is given. For cases where reasonable performance differs
from optimal performance, reasonable solution time is also given. The sensed time is given
near each data point. Note that noise in C and D cannot be correlated into tracks—data at

sequential times are too far apart to be combined into a track.

Figure 5: Six Simple Two-Sensor Configurations.

Coherent Cooperation Among Communicating Problem Solvers 18

weakly sensed vehicle data. Environment E illustrates negative (detrimental) distraction:
when node 2 receives the strongly believed partial track from node 1, it may be tempted
to work on the weakly sensed data in the overlapping area (work that node 1 is already
doing), delaying important work on the moderate data. Finally, Environment F illustrates
a complex problem solving situation where a moderately sensed “ghost” track” now runs
parallel to the true track. Intelligent local control decisions are crucial in this situation to
avoid generating many unnecessary tracks that combine ghost data with true vehicle data.

The experimental results are summarized in Table 2. The results from Environment A
are included for completeness (E2.1 - E2.4). Bias will not affect redundancy in Environ-
ment B since nodes process data in the overlapping area first. Splitting the overlapping
area down the middle and assigning half to each node, however, does improve performance
(E2.5, E2.6). In Environment C, such splitting will degrade performance since node 1 can-
not complete the solution track by itself and must try to distract node 2 into completing
it instead (E2.7, E2.8). Hence, the static division of responsibility in an overlapping area
might backfire.

Similarly, a static authority relationship between nodes, determined by their bias, will
be more or less useful depending on the problem solving situation. In situations with
positive distraction (Environment D), making nodes locally-biased will decrease their re-
sponsiveness to received hypotheses and will thus degrade network performance (E2.9,
E2.10). However, locally-biased nodes will perform better in situations with negative dis-
traction (Environment E, experiments E2.11, E2.12) because of their “skepticism” [5,23).
Confusion caused by ghost data (Environment F) results in poor network performance
regardless of organization (E2.13, E2.14). Mechanisms to help rectify this situation are
presented in the next section.

Finally, one-node or centralized experiments for Environments B through F are provided
(E2.15-E2.19). These help to further illustrate how important the proper organization is in
decentralized experiments, as again we see evidence that improper organigations can reduce
(or completely negate) the performance improvements achievable through parallelism (for
example, compare E2.17 with E2.9).

In summary, we have recognized the strengths and limitations of organigational struc-
turing. By providing even a simple network with some organization, better use of com-
munication and computation resources can be achieved. An organizational structure that
appropriately balances the amount of interest that nodes have in various problem solving
activities and the degree to which they may be externally biased (based on the relative
completeness of their views) can result in consistently acceptable network problem solving
behavior over the long term. However, an organization that is specialized for one short-
term situation may be inappropriate for another. Because network reorganization may
be costly and time consuming (see Section 8), and since specific problem characteristics
cannot be predicted beforehand, an organizational structure should thus be chosen which
can achieve acceptable and consistent performance in the long-term rather than being very
good in a limited range of situations and very bad in others.

7Ghost tracks are sequences of noisy data points which mimic (and often parallel) an actual vehicle track.

Cobherent Cooperation Among Communicating Problem Solvers

Experiment Environment Nodes Organisation Overlap Time

E2.1 A 1 - - 29
E2.2 A 2 none all 32
E2.3 A 2 unbiased all 22
E2.4 A 2 loc-bias all 17
E2.5 B 2 unbiased all 26
E2.6 B 2 unbiased split 20
E2.7 C 2 unbiased all 21
E2.8 C 2 unbiased split 25
E2.9 D 2 loc-bias all 45
E2.10 D 2 unbiased all 38
E2.11 E 2 unbiased all 31
E2.12 E 2 loc-bias all 28
E2.13 F 2 unbiased all 75
E2.14 F 2 unbiased split 71
E2.15 B 1 - - 28
E2.16 C 1 - - 33
E2.17 D 1 - - 41
E2.18 E 1 - - 34
E2.19 F 1 - - 92
Legend

Environment: Configuration from Figure 4

Nodes: Number of nodes in network

Organisation: Bias of nodes

Overlap: Whether each node is responsible for all of

overlap or if overlap is split between them
Time: Earliest time at which a solution was found

Table 2: Experiments with Organisational Structuring

Coherent Cooperation Among Communicating Problem Solvers 20

5. Planning and Dynamic Refinement to Organizational Struc-
ture

To dynamically tailor an “all-purpose® organizational structure for specific network
needs, we introduce the second mechanism to increase coherence: a planner. Our planner
allows nodes to represent and reason about sequences of related actions. For example,
given a highly rated hypothesis, a node typically executes a sequence of KSIs that drive
up low level data to extend the hypothesis. However, the entire sequence of KSIs is never
on the queue at once because a KSI is only created when the hypotheses it will use have
been created, which in turn require the execution of the previous KSI in the sequence. We
have therefore developed a structure, called a plan, to explicitly represent a KSI sequence.

A plan, as a representation of some sequence of related (and sequential) activities,
indicates the specific role that a node will be playing in the organization over a certain
time interval. A node can use this additional information to improve its coordination
knowledge by dynamically refining its interest areas. For example, consider a node that
is responsible both for low-level synthesis activity in a small region and for integrating
partial tracks over a much larger region. At a given time, the node might develop and
begin to execute a plan to perform synthesis. Given this plan, the node could recognige
that it is not integrating partial tracks, and therefore knows that any locally generated or
received tracks should be forwarded to other nodes for integration. On the other hand, if
the node were executing a plan to integrate partial tracks, it might decide that it should
pot transmit the larger tracks that it forms because this might occupy bandwidth that
could better be used by other nodes to send additional partial tracks to it for integration.

5.1 Implementation of the Planner

Each plan represents a desire to achieve a high-level goal by performing a sequence of
activities. To identify plans, the node needs to recognize these high-level goals. Inferring
high-level goals based on pending KSIs is an inappropriate approach; it is like attempting
to guess a chess opponents strategy after seeing a single move. Furthermore, the hypothesis
and goal blackboards provide information at too detailed a level to efficiently infer these
high-level goals. What is required is a structure similar to the blackboards where related
hypotheses and goals are grouped together. We have developed a preliminary version of
this structure which we call the abstracted blackboard, a structure reminiscent of the focus-
of-control database first used in the Hearsay-II speech understanding system [10,13]. Our
implementation of the abstracted blackboard is incomplete because it does not adequately
incorporate the information from the goal blackboard. However, for the type of processing
performed in these environments, hypothesis abstraction is usually effective.

Hypotheses with similar level, time, and region characteristics are grouped together on
the abstracted blackboard. This grouping acts as a smoothing operator, obscuring details
about individual hypothesis interactions so that broader, long-term interactions between
areas of the solution space can be discerned. By transforming the data blackboard into
the abstracted blackboard, we explicitly generate a state representation that is uniquely

Coherent Cooperation Among Communicating Problem Solvers 21

appropriate for planning at a higher level of abstraction.

The implementation, which is more completely outlined elsewhere [9], clusters hypothe-
ses and summarizes their attributes into a set of values that are stored on the abstracted
blackboard. A situation recognszer scans the abstracted blackboard to develop a higher
level view of the problem solving occurring at the node. Based on this view, it generates
higher level goals and passes them to the planner. A goal might be to extend a highly
believed portion of the blackboard into a new area or to improve credibility in another
area. The planner in turn creates a plan to satisfy the higher level goal, and associates
with the plan a set of KSIs that represent potential steps in the plan. This set is updated
as the plan is carried out and appropriate new KSIs are formed.

At any given time, a node will work on its most highly rated plan; problem solving
remains opportunistic because plans are interruptable. The plan rating reflects the im-
portance of achieving the higher level goal, the expected performance of the plan’s KSIs
(reflected by their ratings), and the interest area specifications. We have therefore made im-
portant modifications to the control structure of a node (Figure 6). As the figure indicates,
the creation and ranking of plans requires the planner to integrate the influences of the
long-term strategy of the organizational structure (the interest areas), the medium-term
higher-level view of the current situation (the abstracted blackboard), and the short-term
KSI input indicating actions that can be achieved immediately (the KSI queue). Hence,
decisions in a plan-based node are more informed than those in a KSI-based node (a node
without plans).

5.2 Experiments with Plan-based Nodes °

A planner increases a node’s self-awareness, and the problem solving of a node is
improved. In this section, we illustrate this improvement using some simple one and two
node environments, all based on the configurations from Figure 4. The results for these
experiments are summarized in Table 3. Further experiments on larger networks will be
presented later in this article.

We begin by considering centralized environments. Comparing the performance when
nodes are plan-based (E3.1-E3.6) to when they are KSI-based (Table 2, E2.1 and E2.15-
E2.19), we see that performance is improved. Indeed, in Experiments E3.1 through E3.5,
the centralized performance is optimal. When there is significant distraction due to the
ghost track (Environment F), distraction affects both types of nodes (neither finds the
solution in optimal time), but the high-level view of a plan-based node helps it quickly
recognize that the distracting data will not satisfy the high-level goal which drives the plan.
For example, the high-level goal may be to create a hypothesis which extends a hypothesis
with two time-locations to three time-locations. Distracting data that initially looks like it
might satisfy this goal is developed to the point where the system can determine that, in
fact, further work along this line will not contribute to achieving the goal. At this point,
a plan to develop other data which could satisfy the high-level goal becomes the highest
rated plan. Hence, the time spent deviating from the correct solution path is reduced, and
the plan-based node can generate the solution faster.

Coherent Cooperation Among Communicating Problem Solvers

e G A ;

Plans VA

Org | b () i .s Abstracted
rg | term erm itu stracte
Struc |strategy Planner tactics BB

KSIs
short-term Clusterer
actions

/ \
1

Goa Sub- Goal Data Knowledge
Processor / goals Blackboard Blackboard ~ Sources

\\ Communi-

Goal — cation
KS Table Goals Events Hardware
Blackboard
Monitor

Goal —
Subgoal
Table Event — Data ~————
Goal
Table Control = — — —

Figure 6: The Modified Problem Solving Architecture of a Node.

Coherent Cooperation Among Communicating Problem Solvers

Experiment Environment Nodes Organisation Overlap Time

E3.1 A 1 - - 24
E3.2 B 1 - - 24
E3.3 C 1 - - 16
E3.4 D 1 - - 32
E3.5 E 1 - - 32
E3.6 F 1 - - 32
E3.7 A 2 unbiased all 14
E3.8 A 2 loc-bias all 14
E3.9 B 2 unbiased all 19
E3.10 B 2 unbiased split 16
E3.11 C 2 unbiased all 16
E3.12 C 2 unbiased split 16
E3.13 D 2 loc-bias all 35
E3.14 D 2 unbiased all 27
E3.15 E 2 loc-bias all 18
E3.16 E 2 unbiased all 25
E3.17 F 2 unbiased all 18
E3.18 F 2 unbiased split 18
Legend

Environment: Configuration from Figure 4

Nodes: Number of nodes in network

Organisation: Bias of nodes

Overlap: Whether each node is responsible for all of

overlap or if overlap is split between them
Time: Earliest time at which a solution was found

Table 3: Experiments with the Planner

Coherent Cooperation Among Communicating Problem Solvers 24

We now examine the two-node cases, where each node has a limited local view of
network problem solving. Having established that the problem solving behavior of a plan-
based node is more effective than that of a KSI-based node, we expect that a network of
such nodes might have improved performance, not because they display better “teamwork”
(their global knowledge does not increase), but rather because each is a better “player”.

These expectations were empirically verified on the environments. In Environment A,
the solution is found at optimal time whether or not the plan-based nodes are locally-biased
(E3.7, E3.8). Each node will complete its plan to extend its locally created track before it
begins extending the received track since the plan to extend the local hypothesis is formed
first. In Environment B, dividing the overlapping area into separate regions of preference
still has a positive effect, as would be expected (E3.9, E3.10). However, in Environment
C, the division no longer has deleterious effects (E3.11, E3.12), because the new planner
places greater emphasis on extending existing tracks rather than developing new tracks
from signal data. Note that, since node 1 must generate the entire solution, performance
in the two-node networks is the same as in the centralized experiment (E3.3).

The degree of local-bias in a node, and hence its susceptibility to distraction, still has
important consequences in plan-based nodes. In Environment D, locally-biased plan-based
nodes, while performing better than their KSI-based counterparts, still have performance
far from optimal (E3.13). Unbiased plan-based nodes, on the other hand, have performance
which is very nearly optimal (E3.14). Alternatively, in the environment featuring negative
distraction (Environment E), the locally-biased plan-based nodes give optimal performance
(E3.15), while the unbiased nodes once again display the negative distraction (E3.16).
Hence, these environments serve to illustrate that improving the planner of each node is
not enough to insure coherent cooperation—even though the nodes are better “players”,
dealing with distraction often requires nodes to have more knowledge about each other’s
activities.

The ghost track in Environment F can be more effectively handled by plan-based nodes,
as we saw in the centralized case. Network performance is still not optimal—the node
still requires time to examine and rule out the noisy data—but performance is reasonable
(E3.17). Furthermore, note that division of the overlapping area does not make a difference
(E3.18), for the same reasons that it did not affect Environment C with plan-based nodes.

In conclusion, the increased self-awareness afforded by the new planning mechanisms
significantly improves problem solving performance. Similar results are found in exper-
iments with the larger networks described later in the article. The experiments thus
emphasize the importance of sophisticated local control that recognizes and reacts appro-
priately to various problem solving situations. Our future work will include expanding
the repertoire of situations that can be dealt with so that plans can be developed in more
complex environments.

Coherent Cooperation Among Communicating Problem Solvers 25
6. Communication and Increasing Global Awareness

In the previous two sections, we outlined two mechanisms for increasing coherence in
distributed problem solving networks by increasing the knowledge available to the node,
both in terms of its general network responsibilities (organizational structure) and un-
derstanding how its current state can refine this view (planning). Unfortunately, even
with this added sophistication, the nodes still may not always be completely coherent.
Although the control uncertainty based on its own state has been reduced, a node will still
be uncertain about the organizational role being played by each of the other nodes. The
organizational structure limits the possibilities, but to retain network flexibility, each node
will not be overly limited. To dynamically refine their views of the roles being played by
the other nodes, nodes must exchange information.

There are three major characteristics of the information communicated among nodes
that affects coherence: relevance, timeliness and completeness. Relevance measures, for
a given message, the amount of information that is consistent with the solution derived
by the network. Irrelevant messages may distract the receiving node into wasting its pro-
cessing resources on attempts to integrate inconsistent information, so higher relevance
of communicated information can result in more global coherence (since this information
stimulates work along the solution path). Tsimeliness measures the extent to which a
transmitted message will influence the current activity of the receiving node. Since timeli-
ness depends not only on the content of the message but also on the state of the nodes, a
message’s timeliness can vary as node activity progresses. If the transmitted information
will have no effect on the node’s current activity, there is no point in sending it; however,
if the transmitted information will distract the receiving node to work in a more promis-
ing area, or if the node needs the information to continue developing a promising partial
golution, then it is important that the information be sent promptly. Finally, completeness
of a message measures the fraction of a complete solution that the message represents.
Completeness affects coherence by reducing the number of partially or fully redundant
messages communicated between nodes—messages which negatively distract nodes into
performing redundant activity. Furthermore, as the completeness of received messages
increases, the number of ways that the messages can be combined with local partial re-
sults decreases due to their larger context. Finally, achieving completeness is important
to minimige communication requirements in our loosely-coupled distributed system.

It is important to note that these three characteristics of communicated information
are not independent. For example, higher completeness leads to higher relevance but also a
potential decrease in timeliness. Communication policies that guide decisions about what
information should be sent, to what nodes, and when, often involve tradeoffs among the
three characteristics. With increased self-awareness, a node can be more informed about
the relevance and completeness of its local hypotheses and can make more intelligent
predictions both about how a hypothesis will affect its local decisions and about whether
the timely transmission of the hypothesis is therefore likely to lead to positive or negative
distraction. These decisions will be based on the node’s communication policy.

Coherent Cooperation Among Communicating Problem Solvers 26

6.1 Communication Policies and Coherence

When a node receives a partial solution, it may be distracted into performing actions
intended to increase the completeness of this partial solution. But the node that sent the
partial solution might also be attempting to increase its completeness. Sending a partial
solution is therefore risky: it might positively distract the recipient node into extending
the partial solution into new areas, or it might negatively distract the recipient node into
duplicating the actions of the sending node. To avoid negative distraction, the sending node
might only transmit its most complete partial solutions, but this can reduce the timeliness
of sending positively distracting messages. Increasing coherent cooperation by selective
communication of partial results thus requires communication policies that consider the
tradeoffs between timeliness and completeness. The policies we have formed are extensions
to the ideas first described by Lesser and Erman [17].

In the most simple communication policy, any partial solution that could be of interest
to another node (according to the organizational structure) is sent as soon as possible.
This send-all policy allows a node to transmit small or irrelevant hypotheses even when
the node’s subsequent processing will immediately improve this data or recognize its ir-
relevance. These messages unnecessarily burden the communication channels and can
negatively distract the recipient node. For example, the recipient node may combine these
smaller hypotheses together into a larger hypothesis—a redundant activity, since the send-
ing node both generates and transmits this larger hypothesis as well.

With the locally-complete policy, a node transmits only its most complete hypotheses—
those hypotheses it cannot improve upon locally. This policy diminishes negative distrac-
tion at the potential cost of reducing timely positive distraction, and minimiges the number
of transmissions while maximizing the completeness and relevance of each message. For
example, in Environments D and E, node 1 quickly generates a highly believed, short,
locally-incomplete hypothesis. With the locally-complete policy, this hypothesis would
not be transmitted. In Environment D, we would expect this to degrade performance, but
in Environment E, we would expect performance to improve.

A third communication policy, called first-and-last, selectively transmits some locally-
incomplete hypotheses to avoid the degradation of positive distraction. It is essentially
the locally-complete policy with the added stipulation that hypotheses which do not in-
corporate any previously communicated information can be transmitted even if they are
locally-incomplete. Hence, the first partial hypothesis will be transmitted for predictive in-
formation, and the last (locally-complete) version will be sent for integration information,
but any intervening (locally-incomplete) versions will not be transmitted.

Because plans make predictions about activity in the near future, a node can determine
a hypothesis’ local completeness by comparing it to the current plan. If that plan does not
represent an intention to improve upon the hypothesis, then the hypothesis is considered
locally-complete. Thus, a node working on a low-level synthesis plan to extend a track will
transmit other tracks elsewhere for integration while a node planning to integrate partial
tracks will refrain from sending them elsewhere. As our understanding of problem solving
activities increases and our representations of plans improves, nodes will be better able to
determine local completeness for hypotheses that may be improved by plans “near” the

Coherent Cooperation Among Communicating Problem Solvers 27

top of the plan queue, and communication decisions will be further improved. Meta-level
communication (Section 6.3) can improve these decisions still further by allowing a node
to better predict the effects of a message on the recipient node(s).

6.2 Evaluating Communication Policies

We now investigate how the communication policies affect performance in some of our
simple two-node environments (Figure 4). The results are given in Table 4. Although our
discussion below focuses on the effects of the policies on coherent cooperation, it should
be noted that they also affect the communication resource use. Therefore, we indicate
the number of hypotheses exchanged in each case, and here note that the more selective
policies of locally-complete and first-and-last generally result in fewer transmissions (ex-
cept when these strategies degrade network performance, such as E4.2). In these small
environments, the reduction in communication due to these policies is not spectacular; in
larger environments, however, the results can be much more dramatic, as we describe in
Section 7.1.

The locally-complete and first-and-last policies degrade performance in Environment A
because nodes withhold the most useful hypotheses (consisting of three locations) causing
redundant processing in the overlapping area (E4.1-E4.3). In environment B, communica-
tion policy has no effect if the organization does not split the overlapping area (E4.4-E4.6);
since the nodes begin by working in the center of the solution and progress outward, the
tracks involving the end points are locally-complete and will be transmitted in all cases.
However, by splitting the overlapping area, locally-complete is once again the worst, with
first-and-last between it and send-all in terms of performance, because once again waiting
for completeness causes redundant processing in the overlapping area (E4.7-E4.9).

In both environments with distraction (Environment D and Environment E), the com-
munication policy does not make a significant difference if the nodes are locally-biased
because the reception of hypotheses (or lack thereof) does not affect local problem solving
decisions (E4.13-E4.15, E4.19-E4.21). With unbiased nodes, the locally-complete policy
degrades performance in situations with positive distraction (Environment D); as expected,
the first-and-last policy rectifies this (E4.10-E4.12). By withholding negatively distracting
hypotheses, the locally-complete policy improves performance in Environment E (E4.16-
E4.18). Finally, in Environment F, the locally-complete policy performs more poorly
(E4.22-E4.24) for the same reasons as in Environment A.

In summary, then, communication policies only substantially affect network perfor-
mance if nodes are unbiased because the policies depend on distraction. As expected, a
locally-complete policy handles negative distraction by holding back the distracting hy-
pothesis, while first-and-last is more appropriate for positive distraction because it sends
the predictive information earlier. The experimental results indicate that the judicious
exchange of partial results can increase coherent cooperation among nodes and decrease
communication resource requirements, but that no single static communication policy ap-
pears appropriate for all problem solving situations. Although it decreases communication
costs, therefore, selective communication of partial results does not represent a flexible

Coherent Cooperation Among Communicating Problem Solvers

Experiment Environment Policy Organisation Overlap Time Hyps

E4.1 A S unbiased all 14 4
E4.2 A L unbiased all 18 6
E4.3 A F unbiased all 17 2
E4.4 B S unbiased all 19 10
E4.5 B L unbiased all 19 6
E4.6 B F unbiased all 19 6
E4.7 B S unbiased split 16 8
E4.8 B L unbiased split 20 4
E4.9 B F unbiased split 18 8
E4.10 D S unbiased all 27 15
E4.11 D L unbiased all 33 8
E4.12 D F unbiased all 26 7
E4.13 D S loc-bias all 35 17
E4.14 D L loc-bias all 35 9
E4.15 D F loc-bias all 35]
E4.16 E S unbiased all 25 12
E4.17 E L unbiased all 18 5
E4.18 E F unbiased all 25 8 -
E4.19 E S loc-bias all 18 11
E4.20 E L loc-bias all 18 5
E4.21 E F loc-bias all 19 6
E4.22 F S unbiased all 18 8
E4.23 F L unbiased all 26 8
E4.24 F F unbiased all 18 4
Legend

Environment: Configuration from Figure 4

Pollcy: S is send-all, L is locally-complete, F is first-and-last

Organisation: Bias of nodes

Overlap: Whether each node is responsible for alf of

overlap or if overlap is split between them
Time: Earliest time at which a solution was found
Hyps: Number of exchanged hypotheses

Table 4: Two-node Experiments with Communication Policies

Coherent Cooperation Among Communicating Problem Solvers 29

approach to increasing coherent cooperation.

6.3 Meta-level Communication

An exchanged hypothesis implicitly provides details about the local problem solving
at its creating node. Given the additional capabilities of the modified, plan-based nodes
to make predictions about near-future activity, we might expect nodes to be better at
extracting useful coordination information from messages. However, the information con-
tained in these messages is targeted toward improving the problem solving activity of the
nodes, not toward improving the coordination between them. To improve coordination,
messages should contain less detailed information about specific actions and more general
information about the current and planned problem solving activities of the node. Hence,
we argue that communication between nodes should not be limited to domasn-level infor-
mation (partial solutions) but should also include the exchange of meta-level information—
information specifically intended to increase coherent cooperation in the network. Indeed,
it is likely that we will want to exchange information on any number of levels depending
on the intended use of that information.

Abstracted blackboard entries summarize a node’s hypotheses, and thus provide a
high-level view of where a node has searched. By exchanging portions of the abstracted
blackboards, nodes can reason about the past activities of their neighbors. Furthermore,
a node that knows the current plan of its neighbor can reason about its present actions.
Reasoning about the future actions of a node, however, is a complex problem. Not only
must estimations be made about the duration and effects of a node’s plans, but also about
what further information the node may receive (from another node or from its sensors)
that could affect these estimations. We are currently developing mechanisms to generate
such estimations and expectations.

Our current implementation assumes that a node can make completely accurate short-
term predictions about future activity based solely on the plan queue. We simulate this
best-case scenario by letting nodes access the abstracted blackboards and plan queues of
other nodes. In Section 7, we briefly explore what happens when a node must work with
out-of-date meta-level information because of channel delays. Eventually, nodes will have
to perform more complex reasoning about when to send meta-level information to each
other, and in doing so will have to consider relevance, timeliness and completeness issues.

When developing a plan, a node can use meta-level information to determine if the plan
will redundantly derive information that another node has either generated (present in the
abstracted blackboard) or is in the process of generating (the top plan). By avoiding
redundant activity, solution generation rate can improve because less highly rated but
potentially useful activities will be invoked earlier (rather than redundant invocation of
highly rated activities). Meta-level information also allows nodes to better predict the
effects a message will have on other nodes, thereby improving communication decisions.

Coherent Cooperation Among Communicating Problem Solvers 30

6.4 Evaluating Meta-level Communication Utility

To evaluate the benefits and costs of exchanging meta-level information, the improve-
ment in network computational performance (using the computation resources more ef-
fectively) must be weighed against the additional communication resource usage. In the
experiments in this section, we assume that there are sufficient communication resources
to accommodate both the exchange of hypotheses (nodes use the send-all policy) and the
additional meta-level messages. In the next section, we perform an empirical study of the
costs and benefits of the planning mechanisms and of meta-level communication.

The experimental results (Table 5) indicate that the distributed problem solving net-
works with organizational structuring, plan-based nodes, and meta-level communication
can often be completely coherent in their cooperation—they could not have acted as a
better team. In Environment A, the solution is found in optimal time regardless of bias
(E5.1, E5.2), as was the case without meta-level communication (Table 3, E3.7, E3.8).
Meta-level communication is advantageous in Environment B (E5.3, E5.4). Splitting the
overlapping area among the two nodes no longer has an effect because now nodes can avoid
redundancy dynamically. In essence, by communicating meta-level information, the nodes
are splitting the overlapping area, but they are doing so dynamically rather than due to
a static organizational decision.® The performance is slightly suboptimal because nodes
unnecessarily exchange and integrate short (locally-incomplete) hypotheses.

In Environment D, locally-biased nodes still perform more poorly (E5.5, E5.6). In En-
vironment E, however, it is no longer necessary to make nodes locally-biased to prevent
negative distraction because the exchange of meta-level information allows unbiased nodes
to dynamically assign responsibility in the overlapping area (E5.7, E5.8). Meta-level com-
munication does not improve performance in Environment F (compare E5.9 and E5.10
with Table 3, E3.17 and E3.18) because the performance in these earlier experiments was
already equal to what one could reasonably expect in a completely coherent network.

Based on these results, we can make several important conclusions. First, meta-level
communication will sometimes not improve performance, particularly if that performance
is already about as good as the network could reasonably achieve. The exchange of meta-
level information can thus increase communication without improving performance. There
are important cost and benefit tradeoffs to be considered in the use of meta-level commu-
nication, and we will explore this issue more fully in the next section.

A second conclusion concerns the use of bias to affect coherence. In the two-node
environments, neither node inherently has a better view of network problem solving than
the other—each is responsible for as much of the sensed area as the other. By exchanging
meta-level information, the nodes will have increased but still roughly equivalent views of
network activity. Since the nodes can use this meta-level information to make informed
decisions about how to react (if at all) to a received hypothesis, they may remain unbiased
and still avoid negative distraction (e.g. E5.8). Statically biasing these nodes, on the other

8The first node to work on some part of the overlapping area essentially claims that part: the meta-level
information reflects this work and causes other nodes to avoid redundantly working there. The overlapping
area is thus split as each node claims different portions of it.

Coherent Cooperation Among Communicating Problem Solvers 31

Experiment Environment Nodes Organisation Overlap Time

ES5.1 A 2 unbiased all 14
ES.2 A 2 loc-bias all 14
ES5.3 B 2 unbiased all 15
ES5.4 B 2 unbiased split 15
E5.5 D 2 Joc-bias all 36
E5.6 D 2 unbiased all 26
E5.7 E 2 loc-bias all 18
E5.8 E 2 unbiased all 18
ES5.9 F 2 unbiased all 18
E5.10 F 2 unbiased split 18
Legend

Environment: Conflguration from Figure 4

Nodes: Number of nodes in network

Organigation: Bias of nodes

Overlap: Whether each node is responsible for all of

overlap or if overlap is split between them
Time: Earliest time at which a solution was found

Table 5: Experiments with Meta-level Communication

hand, can result in poorer performance (e.g. E5.5). We therefore conclude that, when nodes
have equally complete views of the problem, limiting the choices of nodes by imposing a
static bias may be inappropriate. However, bias can still be useful if some nodes have more
complete views than others due to a hierarchical organization (see next section).

The final conclusion is that meta-level communication can significantly improve coher-
ent cooperation among overlapping nodes. By making small refinements to their organiza-
tional structures based on exchanged meta-level information, nodes can dynamically divide
responsibility in their overlapping areas as problem solving progresses. A specific, static
division of these areas may sometimes degrade network behavior since one node cannot
dynamically take on more responsibility in the area if its neighbor is working elsewhere.
However, to completely organize the nodes dynamically using meta-level information would
be infeasible due to the limited communication bandwidth, particularly in large, complex
networks where each node must coordinate with many others. Our approach to coher-
ent cooperation therefore stresses the use of both an organizational structure to act as a
general, long-term framework for coordination and of meta-level communication to make

small, short-term refinements to this framework based on the current problem solving
activities.

Coherent Cooperation Among Communicating Problem Solvers 32

7. Further Experiments in Coherent Cooperation

In this section, we attempt to achieve two goals. The first goal is to show that the
results obtained in the two-node environments are indicative of larger environments and
the conclusions we have drawn therefore carry over to more complex distributed problem
solving networks. The second goal is to to determine when the improvements in net-
work performance justify the additional computation and communication costs of our new
mechanisms.

7.1 Experiments with Larger Problem Solving Networks

As the number of nodes in distributed problem solving networks increases, it becomes
significantly more difficult to describe (much less explain) network behavior. Therefore, all
of our earlier discussions on experimental results were based on very simple one- or two-
node environments. However, most of our research has been devoted to larger networks
that display more interesting and complex behavior. Below, we briefly summarize these
experiments on larger networks, indicating how increased node sophistication and the use
of meta-level communication can improve performance.

The larger networks are based on two different sensor and data configurations. The
first of these is has 4 sensors and 16 data points (Figure 7), eight as part of the vehicle
track and the other eight running parallel to it as a ghost track (recall Environment F,
Figure 4). Note that the vehicle data is strongly sensed at each end and is weakly sensed
in the middle, while the ghost data is moderately sensed throughout.

overlap
G

sensor.l sensor.2

overlapI

Isensor.3 sensor.4

Figure 7: Four-Sensor Conflguration with Sensed Data.

Coherent Cooperation Among Communicating Problem Solvers 33

Upon this configuration we base three networks. The first is the single-node, centralized
case, where one node receives data from all four sensors. The second is a four-node network
where each node is attached to a different sensor. As in the two-node environments, the
nodes are organized laterally, meaning that they exchange information among themselves
and each attempts to form the network solution. The third network has five nodes. Once
again, four of the nodes are connected to their own sensors, but now they all communicate
only with the fifth node (which receives no sensor data). In this hierarckical organization,
the four nodes attached to the sensors perform low-level processing tasks on their received
sensor data, while the fifth node performs high-level integration tasks to form an overall
solution from the hypotheses it gets from the other nodes.

In hierarchical organigations, achieving authority relationships through the use of bias
becomes more important. For example, in the five node network the fifth node can have
a much more complete view of network problem solving than any of the four “low-level”
nodes, and thus should have more control over network problem solving. We achieve
this by making the low-level nodes externally-biased while the fifth node is locally-biased.
Problem solving in such hierarchical organizations will often seem more focused and, if the
top-level node has an appropriate view, network performance can improve [6].

The second sensor configuration has 10 sensors and 36 data points (Figure 8). Half
of the data corresponds to the vehicle track and the other half to a parallel ghost track.
The vehicle track is composed of four sections of strongly sensed data surrounding three
sections of weakly sensed data; the ghost track is moderately sensed throughout.

sensor.3

sensor.8 sensor.8

sensor.9

Figure 8: Ten-Sensor Configuration with Sensed Data.

Coherent Cooperation Among Communicating Problem Solvers 34

Once again, we have developed three networks based on this sensor configuration. The
first is the centralized case where all sensor data is processed by one node. The second
is a lateral ten-node network, where nodes with overlapping sensed areas may exchange
information and each node tries to generate the network solution. The third network
has thirteen nodes in a three level hierarchy. At the “base-level® are ten nodes, each
connected to a different sensor, that perform the low-level processing. Each of these nodes
communicates with one of the two “intermediate-level” nodes, each of which integrates
the data from its five subordinate nodes into larger, more complete hypotheses. These
hypotheses are then sent to the single “top-level” node, which combines them into an
overall network solution. Network problem solving can once again be more focused if this
top-level node can exert authority over the intermediate-level nodes, which in turn can
exert authority over the base-level nodes.

Ghost data can complicate network problem solving. In the centralized cases, the ghost
data can degrade performance because the node must examine it and discard it before
considering the weakly sensed vehicle data. In the lateral organizations, the exchange of
short tracks formed from ghost data can distract nodes from important low-level tasks. In
hierarchical organizations, the higher level nodes must examine and discard ghost data,
and the propagation of information around the hierarchy can slow down network problem
solving even though that problem solving can be more focused.

In Table 6, we summarize the effects of the three mechanisms to improve local control.
In the centralized cases (E6.1 — E6.8), the planner enables nodes to achieve reasonable
performance. Similarly, in both laterally and hierarchically organized networks, nodes
also benefit from the planner, and meta-level communication allows performance that is
generally as effective as is reasonable in a completely coherent network. This is true in
the four-node (E6.9 - E6.13), five-node (E6.14 — E6.18), ten-node (E6.19 — E6.23), and
thirteen-node (E6.24 — E6.28) networks. Finally, the experiments indicate that laterally
organized nodes can be as focused as hierarchically organized nodes when they have in-
creased self- and network-awareness (from the planner and meta-level communication).?

The intelligent use of the communication channels becomes increasingly important in
the larger environments for two reasons. First, because the number of partial tracks in-
creases quadratically with the number of data points, the blind exchange of all partial
tracks quickly becomes infeasible. Second, as partial tracks get longer in laterally orga-
nized environments, they will be of interest to more and more nodes, so a single partial
track might have to be propagated to many nodes in the network. Combining these rea-
sons, it becomes clear that a send-all policy will not be feasible in many large environments.
Unlike the two-node networks where the policy had little effect on the number of hypothe-
ses exchanged (Table 4), the policy becomes crucial in these larger networks. Indeed,
the ten-node and thirteen-node environments outlined above used the locally-complete
communication policy to reduce the combinatorial explosion of transmissions—simulating

9This requires all of the lateral nodes to be well informed, meaning that large amounts of meta-level
communication must be exchanged compared to the hierarchical case where few nodes have the better
view of network activity. Achieving more focused network activity may thus be more expensive in lateral
organizations (although such lateral organizations may be more tolerant of node failures).

Coherent Cooperation Among Communicating Problem Solvers

Experlment Nodes Sensors OS Planner MLC Other Time

E6.1 1 4 - no - - 102
E6.2 1 4 - yes - - 40
E6.3 1 4 - - - reasonable 40
E6.4 1 4 - - - optimal 32
E6.5 1 10 - no - - 262
E6.6 1 10 - yes - - 96
E6.7 1 10 - - ~— reasonable 06
E6.8 1 10 - - - optimal 72
E6.9 4 4 yes no no - 33
Eé6.10 4 4 yes yes no - 26
Eé.11 4 4 yes yes yes - 15
E6.12 4 4 - - - reasonable 15
E6.13 4 4 - - - optimal 15
E6.14 5 4 yes no no - 31
E6.15 s 4 yes yes no - 28
E6.16 5 4 yes yes yes - 17
E6.17 5 4 - - - reasonable 16
E6.18 5 4 - - - optimal 16
Eé6.19 10 10 yes no no - 46
E6.20 10 10 yes yes no - 28
E6.21 10 10 yes yes yes - 18
E6.22 10 10 - - - reasonable 18
E6.23 10 10 - - - optimal 18
E6.24 13 10 yes no no - 44
E6.25 13 10 yes yes no - 36
E6.26 13 10 yes yes yes - 23
E6.27 13 10 - - - reasonable 20
E6.28 13 10 - - - optimal 20
Legend

Nodes: Number of nodes in network
Sensors: Number of sensors in configuration

0S: Use of organizational structuring

Planner: Use of the planner

MLC: Nodes exchange meta-level information

Other: Indicates calculated time for reasonable or optimal performance
Time: Earliest time at which a solution was found

Table 6: Experiments with Larger Configurations

Coherent Cooperation Among Communicating Problem Solvers 36

these environments with the send-all policy has been infeasible because each node needs
excessive amounts of memory to store all of the exchanged hypotheses.

In conclusion, our mechanisms improve network performance in large as well as small
environments. Indeed, some of these mechanisms are vital in larger node networks, espe-
cially the mechanisms that allow more intelligent use of the communication resources.

7.2 The Costs of Increasing Coherent Cooperation

Throughout this article, our discussions have emphasized the issues in increasing co-
herent cooperation among overlapping nodes. By statically allocating different portions
of the overlapping area to the nodes, we reduced redundant processing in the area, but
risked delaying the timely coverage of the entire area. Through meta-level communication,
overlapping nodes can dynamically assign responsibility in the overlapping area, and thus
can cooperate more coherently. However, there is a cost associated with the increased
capabilities of nodes to make more informed local control decisions.

We investigate the costs of our mechanisms after first distinguishing between two rea-
sons for exchanging meta-level information. The first is to avoid immediate redundancy—
the local planner will use meta-level information to decide whether a potential plan repre-
sents redundant work. The second is to avoid future redundancy—the local planner will
use meta-level information to focus the node on areas that are least likely to eventually lead
to performing redundant work. For example, consider what might happen if two nodes
share four sequential data points and only exchange track hypotheses. If node-A begins
working on the first of these points, where should node-B work? To avoid immediate re-
dundancy, node-B will not work on the same data as node-A. Furthermore, if node-B works
on the second data point, it will force node-A into performing redundant work later on
since node-A must combine the first data point with the second to form an exchangeable
track hypothesis. Node-B should therefore avoid future redundancy, perhaps by working
as far away from where node-A is working as possible. Avoiding future redundancy will
require more meta-level messages to be exchanged because nodes will need to know about
their neighbors activities near the overlapping area as well as in it.

We study the costs and benefits of our mechanisms on a set of environments with
different amounts of overlap between nodes (Figure 9). The environments are variations
on the four-node laterally-organized networks described previously. Again, each node
receives data from one sensor, but we modify the amount of overlapping data nodes have
by altering the sensitivity of each sensor so that it picks up more or less data. In all
cases, each data point is received by at least one sensor; in Environment OV22, all data is
received by all four sensors so that each node has a complete view of the problem.

For each of these five environments, we ran four experiments. In the first, the nodes
were given a lateral organization and were unbiased. In the second, the nodes were also
given the planner. In the third, nodes could furthermore exchange meta-level informa-
tion to avoid immediate redundancy, and in the fourth, nodes could exchange meta-level
information to avoid future redundancy as well. Measurements for each experiment in-
dicate network performance (as solution time) and the computation and communication

Coherent Cooperation Among Communicating Problem Solvers 37

4 4 Vi
oVvo ovz OVe
oVv1o ov22

Figure 9: Overlapping Configurations -

requirements of the nodes. Without the planner, the computational cost is the network
runtime, while with the planner, we increase the runtime by fifty-percent—sixty-percent
if meta-level communication is included as well. These increments are based on an es-
timate of the additional computation costs reflected by the DVMT. The communication
requirements are indicated by the number of hypotheses and meta-level messages (where
appropriate) exchanged, which are summed to indicate the total amount of communication
resource usage. Finally, statistics were accumulated to measure how many hypotheses were
abstracted in the meta-level messages exchanged.

The experimental results are summarized in Table 7. In the environments with little
or no overlap, the planner did not significantly alter the computation costs—although the
nodes with the planner ran fewer tasks, their increased overhead for planning tended to
balance this out. However, as overlap became much larger, having a planner became more
advantageous. We can conclude that, as a node becomes more uncertain about where
to apply its computation resources, the node’s computational overhead for planning (and
meta-level communication) becomes increasingly acceptable. It pays to have a planner in
complex problem solving situations, particularly when planning is relatively cheap com-
pared to problem solving actions.

Deciding when the extra communication overhead of meta-level communication is ac-
ceptable is more difficult because meta-level communication always increases the commu-

Coherent Cooperation Among Communicating Problem Solvers

Experiment Environment Planner MLC Time Comp.

no

none

yes none
yes part
yes full

no none
yes none
yes part
yes full

no none
yes none
yes part
yes full

no none
yes none
yes part
yes full

no none
yes none
yes part
yes full

Legend

Use of the planner

Nodes exchange meta-level information

Overlap environment tested

26
15
15
15

33
26
15
15

51
25
18
19

116
34
19
18

212
42
25
20

20
23
24
24

33
39
24
24

51
38
29
30

116
51
30
29

212
63
40
32

Earliest time at which a solution was found
Computational resources used for problem solving and planning

Number of hypotheses exchanged
Number of meta-level messages
Communication resources used

E7.1 ovo
E7.2 ovo
E73 ovo
E74 ovo
E15 ov2
E7.6 ov2
E1.7 ov2
E78 ov2
E7.9 Oove
E7.10 Ooveé
E7.11 ove
E7.12 Ove
E7.13 0oVv10
E7.14 OoVv10
E7.15 OV1o0
E7.16 OoVv1io
ET.17 ov22
E7.18 ov22
E7.19 ov22
E7.20 ov22

Environment:

Planner:

MLC:

Time:

Comp.:

Hyps:

MLM:

Comm.:

Equiv:

Number of hypotheses which would need to be exchanged to

38

Hyps MLM Comm. Equiv

8

10
10
10

18
25
24
24

27
30
40
48

51
40
42
42

336
48
57
59

equal amount of hypothesis and meta-level information

0

0
14
56

0
0
35
18

[)

0
0
61
169

8
10
24
66

18
25
59
142

27
30
101
217

51
40
120
222

336
48
192
268

Table 7: Experiments with Overlapping Configurations

8
10
28

133

18
25
101
271

27
30
177
421

51
40
266
436

336
48
396
463

Coherent Cooperation Among Communicating Problem Solvers 39

nication resource usage. If bandwidth is extremely limited, then meta-level communication
may be a luxury that cannot be afforded: even though it can increase network performance
significantly in highly overlapping environments, performance without it might be satis-
factory. Also, in environments with little or no overlap, meta-level communication has less
effect, and might be done without whether or not bandwidth was tight. However, if the
communication channels can handle the increased usage, meta-level communication can
nearly halve the time necessary to generate the solution in highly overlapping environments
(compare E7.14 to E7.16, E7.18 to E7.20). In applications where network performance is
at a premium, the increased overhead of meta-level communication might be acceptable.

Although these environments did not emphasize its positive aspects, overlap is ex-
tremely desirable. It insures reliable performance in distributed problem solving networks
by allowing the network to derive the solution despite errorful data and node failures.
Based on the empirical evidence, we conclude that our mechanisms are particularly effica-
cious in highly overlapping, hence reliable, distributed problem solving networks.

The experiments also indicate that, with no overlap, any meta-level exchange is unnec-
essary; with moderate overlap, it seems sufficient to exchange enough information to avoid
immediate redundancy; and with a high degree of overlap, using meta-level information
to avoid future redundancy becomes important to network performance. By exchanging
meta-level information, nodes use about half as much communication resources than if they
had exchanged enough hypotheses to convey the same information. Furthermore, the com-
putational requirements would be significantly increased if it were hypotheses that were
exchanged—by exchanging plans, nodes tell each other what they are going to be doing; by
exchanging hypotheses, nodes would have to duplicate each others planning-computations
to generate the same predictive information. In addition, nodes can reduce the amount of
meta-level communication by making intelligent predictions about the future activities of
other nodes based on information they already have, instead of exchanging more informa-
tion. We hope to provide nodes with this capability; currently, our nodes are unable to
make such predictions. We have run experiments where nodes receive obsolete meta-level
information. If overlap is small, this obsolescence does not significantly affect the utility
of the information because the nodes are unlikely to perform redundant activities any-
way. As overlap becomes larger, however, the effects become more dramatic. When nodes
completely overlap (OV22), the exchange of obsolete meta-level information caused the
network to find the solution in 54 time units—the network would have performed better
if there had been no meta-level communication at all (E7.18)!

Our research therefore indicates that, by organizing nodes, by providing them with
planners, and by allowing them to exchange meta-level information, distributed problem
solving networks can achieve enhanced performance. In fact, in the types of environments
we have outlined and with the assumptions we have made, these mechanisms can often
make network problem solving completely coherent. However, these mechanisms need more
work before they can become applicable in a wider range of environments with different
problem solving situations and network characteristics. In particular, our future work will
be directed toward improving the ability of nodes to reason about and make predictions
based on both locally-generated and received meta-level information.

Coherent Cooperation Among Communicating Problem Solvers 40

8. Coherent Cooperation in Other Domains

As the number of tasks a node may perform increases, choosing among them requires
increasingly sophisticated local control, particularly if the tasks are highly interdependent.
However, local control is not the whole story; any complete distributed computing system
requires network control as well. In this section, we briefly outline how network control
can be combined with the local control mechanisms presented. In our distributed problem
solving network, network control allows the nodes to organize (and reorganize) themselves if
network responsibilities are inappropriately assigned and to exchange tasks if the processing
load is poorly distributed. With network and local control united in a single framework,
we then look beyond distributed problem solving to explore how our approach might be
implemented in other distributed computing applications.

8.1 Network Control

In the preceding sections, we assumed that the organizational structure is established
during network initialization and that the inherent distribution of data sufficiently balances
the processing load among nodes. In situations where these assumptions are invalid, net-
work control must reallocate organizational responsibilities and problem solving tasks to
ensure both that each node has a set of important tasks to perform and that all important
tasks are assigned to one or more nodes.

One form of network control is task passing. A bidding algorithm allows an overloaded
node (a node with numerous highly rated tasks) to make informed decisions about where
it can send some of these tasks (7,22]. Task passing using bidding protocols is an elegant
mechanism for temporarily alleviating 2 poorly balanced situation. Unfortunately, its
efficacy is highly dependent on the delay, bandwidth, and error rate of the communication
channels:

e Bidding requires a sequence of message exchanges before a task is passed, and mes-
sages are subject to delays. If delays are substantially longer than task execution
times, an overloaded node may execute its tasks faster locally than if it had passed
them to idle nodes and waited for the results.!®

e A task message specifies not only actions to execute but also a context (hypotheses,
goals) for their execution. Channel bandwidth may limit the number of nodes that
can obtain a task’s context and might thus influence where a task is relocated [2].

e Since bidding requires mutual agreement among nodes, it may be inappropriate for
environments with errorful channels [12].

Task passing overhead and delays may be reduced if nodes have sufficient network
awareness to send tasks directly to one or more likely nodes using focused addressing

1%In our larger environments, for example, a node may perform two local KSIs in the time it takes a message
to be transmitted, so passing single KSIs would most likely be ineffective. Passing plans which represent
extended sequences of KSIs might prove more useful, but by accepting longer tasks a node may significantly
reduce its own responsiveness to local processing responsibilities.

Coherent Cooperation Among Communicating Problem Solvers 41

techniques [26]. Organizational knowledge and meta-level information can improve fo-
cused addressing decisions and lets nodes monitor network activity to detect whether a
passed task is actually being performed. However, even with these improvements, exces-
sive amounts of task passing can burden communication resources and degrade network
performance; task passing is generally effective only for remedying temporary, minor load
imbalances.

The other form of network control makes long-term changes to node activities by mod-
ifying the organigational structure. Rather than passing an idle node a series of (possibly
unrelated) tasks, it may be advantageous to change the role the node plays in the network.
For example, the node may become responsible for integrating hypotheses from a number
of other nodes. This change to the organization provides the node with a role that will keep
it busy doing important tasks for an extended period of time—tasks that are related and
likely to share context. Network control must also modify the organization to reallocate
network responsibilities when nodes fail.

The complex problem of network reorganization is the topic of a parallel research ef-
fort. We have been developing a knowledge-based fault-diagnosis component to detect
and locate inappropriate system behavior [14] and an organizational self-design compo-
nent [5,21]. The planner and meta-level communication, which increase a node’s self- and
network-awareness, are expected to prove useful in this research by helping to both detect
when an organization is inappropriate and to determine how to improve it. We specu-
late that network reorganization will require some form of negotiation among nodes (7).
However, in domains where communication is slow and uncertain, fully negotiated changes
may be impractical, so that nodes may have different views of the organisational struc-
ture. Although this should be minimized to improve coherence, the FA/C approach allows
network problem solving despite such inconsistencies.

In summary, network control can take the form of short-term task passing decisions or
long-term organizational structuring decisions. Task passing is useful for rectifying tempo-
rary, specific imbalances while organization modification reallocates network responsibility
to better balance the load over the long run. Network control must be integrated with
local control: local control decisions affect network activity, and network control decisions
influence what tasks a node has and how it ranks them. Coherent cooperation requires
that both types of control be sophisticated to insure that node activities and interactions
contribute to overall network performance.

8.2 Other Domains

Making intelligent local and network control decisions is the key to achieving coherent
cooperation. In this article, we have detailed mechanisms to improve local control decisions
in the DVMT, and have considered approaches for network control. We believe, however,
that our ideas are applicable in many other distributed computing systems.

Improving control decisions requires knowledge. Local control must know how a partic-
ular decision it makes will affect future activity both locally and at other nodes, and how
decisions at other nodes may affect it; network control must know about the current and

Coherent Cooperation Among Communicating Problem Solvers 42

expected future activities of the nodes and how decisions to move tasks or responsibilities
in the network will affect network performance. If tasks are nontrivial and interdependent,
all this knowledge is difficult and time consuming to generate and, since it continuously
changes, expensive to exchange. Our approach accepts that control decisions in realistic
gystems will not be made with complete knowledge. Instead, it concentrates on generat-
ing and exchanging high-level views of node and network activity that convey important
knowledge without details.

The knowledge needed to make informed control decisions depends on the tasks and in-
teractions in the network. In the DVMT, the important knowledge is about a node’s search
activities: organizational structuring constrains the possibilities, the planner predicts more
accurately where a node will search in the near future, and meta-level communication ex-
changes these predictions. Details about specific KSs to run and goals to satisfy would
not significantly improve control decisions. If a distributed system must provide real-time
response, details about what results a task will generate may be less important than task
deadlines and estimated runtimes. In distributed systems with severe resource limitations,
the expected resource needs of tasks is the important knowledge, while in systems where
tasks on different nodes must sometimes synchronize, knowledge about the synchroniza-
tion is crucial for smooth cooperation. In short, tasks may interact in any number of ways
(cooperate to solve a problem, compete for limited resources, synchronize); the mecha-
nisms that make control decisions and the knowledge used must be geared to the form
that interaction takes in a particular application.

Once task interactions for an application are characterized, mechanisms like those in
the DVMT can increase the coherence of cooperation. An organizational-structure can
broadly define network responsibilities—types of tasks a node may perform, resources
assigned to a node, other nodes with which a node may need to synchronize. By planning
task sequences, a node can make predictions about results it may generate, about when
it will be idle, about its expected resource requirements, or about exactly when it will
be executing specific tasks. Meta-level communication enables these predictions to be
exchanged, and cooperation can be more coherent as nodes work to generate compatible
results, maximize the number of tasks which meet their deadlines, avoid resource conflicts,
or synchronize task executions.

We therefore believe that the approach outlined in this article can be extended to many
other distributed computing applications where tasks interact. Indeed, we have used the
same approach in our distributed version of the DVMT [8]. To enable processes on separate
machines to cooperate coherently, we provide each with an organizational structure that
allocates tasks (in this case, simulated nodes) among them and establishes communication
links. Each machine may have several nodes to simulate and local control interleaves node
activities. Because nodes can exchange information, their activities must be sufficiently
synchronized to insure deterministic simulation results. Local control decisions about
when to allow a simulated node to continue its activities are therefore guided, in part, by
meta-level state information from other machines. Hence, even in this relatively simple
distributed application with interacting tasks, the approach we have outlined proves useful.

Coherent Cooperation Among Communicating Problem Solvers 43
9. Summary and Perspective

Coherent cooperation is the holy grail of distributed problem solving network research.
We have described an approach for achieving coherent cooperation that is responsive to
changes in network activity as problem solving progresses. Coherence is accomplished
without excessive communication because this approach combines the use of a static or-
ganizational structure with mechanisms that enable nodes to dynamically generate and
exchange minor refinements to this structure. This approach thus relies on the ability of
network problem solving nodes to integrate incomplete and inconsistent information about
the state of network problem solving, the availability of network resources (processors, com-
munication paths, sensors, and effectors), the organizational roles and responsibilities of
each node, and the potential future activities that each node can perform.

This view of distributed problem solving stresses the importance of sophisticated lo-
cal control that integrates knowledge of the problem domain with (meta-level) knowledge
about network coordination. Such control allows nodes to make rapid, intelligent local
decisions based on changing problem characteristics without the overhead of conferring
with each other to coordinate these decisions. Instead, coordination is based on an or-
ganizational view of individual node activity, so nodes need not have detailed models of
the problem solving activity of their compatriots. Dynamic improvements to this orga-
nizational view may be achieved with the exchange of meta-level messages which briefly
convey high-level coordination information. In short, the nodes initiate their own activities
and take advantage of all available local and network knowledge to form the best “team”
possible within the constraints of their environment. -

This approach to distributed problem solving is based on the characteristics and per-
formance criteria of a particular class of distributed applications. In contrast with others
[16], we assume that the network contains only a limited number (tens to hundreds) of
highly sophisticated, and loosely-coupled, problem solving nodes rather than thousands of
relatively simple processing elements. Therefore, we must coordinate our limited number
of nodes to make the most effective team possible. Since we assume that communication
between agents is potentially slow and unreliable, we regard coordination that requires
mutual agreement on contracts before action [1,7] to be insufficiently responsive to chang-
ing problem circumstances (indeed, mutual agreement might not even be possible [12]).
To insure reliability, we cannot accept centralized coordination [1]. The unpredictable
nature of the problem solving environment makes simple game theoretic models of agents
unrealizable [24], while more complete models of agent beliefs [15] might require nodes to
essentially duplicate each others reasoning.

In this article we have focused on one particular aspect of our overall network coordina-
tion framework: modifications to the blackboard architecture of the individual nodes that
enhance their ability to make predictions about their future activities. Network coherence
is increased by allowing a node to refine its organizational role based on these predictions.
Exchanging the predictions permits a node to refine its view of the organizational roles of
the other nodes. We empirically established that each of these improvements enhanced the
ability of nodes to cooperate coherently in a variety of problem solving situations. Fur-

Coberent Cooperation Among Communicating Problem Solvers 44

thermore, we studied the costs and benefits of using these improvements, and established
that they were particularly cost-effective in complex problem solving situations. Finally,
we outlined how our approach for improving local control decisions can be combined with
network control, and discussed how our approach might be used in other distributed com-
puting applications.

Our future plans to improve the organizational refinement process include augmenting
the abstracted blackboard to more appropriately represent both the current state of a
node (based on its data) and its potential future states (based on its goals), enhancing
the mechanisms to recognize problem solving situations, extending the plan structures to
incorporate more information, and improving the abilities of nodes to make predictions
about other nodes’ activities based on received meta-level information. We also plan
to implement and evaluate network control mechanisms, and we intend to more deeply
study the complex issue of achieving coherent cooperation in scenarios involving real-
time constraints, where the dynamic allocation of network responsibilities might include
the exchange of tasks between nodes. Our preliminary experiments indicate that these
developments should significantly improve the performance of distributed problem solving
networks.

Acknowledgments

We would like to thank Krithi Ramamritham, Jack Stankovic, and Lee Erman for their
comments on earlier drafts of this paper.

Coberent Cooperation Among Communicating Problem Solvers 45

[1]

(2]

[3]

[4]

[s]

[6]

[7]
(8]

(9]

(10]

[11]

[12]

(13]

REFERENCES

Stephanie Cammarata, David McArthur, and Randall Steeb. “Strategies of cooperation
in distributed problem solving.” Proceedings of the Esghth International Conference on
Artificial Intelligence, pages 767-770, August 1983.

L. Casey and N. Shelness. “A Domain Structure for Distributed Computer Systems.”
Proceedings of the Sizth ACM Symposium on Operating System Principles, pages 101-
108, November 1977.

Daniel D. Corkill and Victor R. Lesser. “A goal-directed Hearsay-II architecture: Unifying
data and goal directed control.” Technical Report 81-15, Department of Computer and
Information Science, University of Massachusetts, Amherst, Massachusetts, June 1981.

Daniel D. Corkill, Victor R. Lesser, and Eva Hudlicka. “Unifying data-directed and
goal-directed control: An example and experiments.” Proceedings of the Second National
Conference on Artificial Intelligence, pages 143-147, August 1982.

Daniel David Corkill. A Framework for Organizational Self-Design in Distrsbuted Prob-
lem Solving Networks. Ph.D. Dissertation, University of Massachusetts, February 1983.
(Available as Technical Report 82-33, Department of Computer and Information Science,
University of Massachusetts, Amherst, Massachusetts 01003, December 1982.)

Daniel D. Corkill and Victor R. Lesser. “The use of meta-level control for coordination in a
distributed problem solving network.” Proceedings of the Eighth International Conference
on Artificial Intelligence, pages T48-756, August 1983.

Randall Davis and Reid G. Smith. “Negotiation as a metaphor for distributed problem
solving.” Artificial Intelligence, 20(1983):63—109.

Edmund H. Durfee, Daniel D. Corkill, and Victor R. Lesser. “Distributing a Distributed
Problem Solving Network Simulator.” Proceedings of the Fifth Real-time Systems Sym-
possum, pages 237—246, December 1984.

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. “Increasing coherence in
distributed problem solving networks.” Proceedings of the Ninth International Conference
on Artificsal Intelligence, pages 1025—1030, August 1985.

Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, D. Raj Reddy. “The Hearsay-II

speech understanding system: Integrating knowledge to resolve uncertainty.” Computing
Surveys, 12(2):213—253, June 1980.

Michael Fehling and Lee Erman. “Report on the Third Annual Workshop on Distributed
Artificial Intelligence.” SIGART Neuwsletter, 84:3-12, April 1983.

Joseph Y. Halpern and Yoram Moses. “Knowledge and common knowledge in a dis-
tributed environment.” Proceedings of the Third ACM Conference on Principles of Dis-
tributed Computing

Frederick Hayes-Roth and Victor R. Lesser. “Focus of attention in the Hearsay-II speech
understanding system.” Proceedings of the Fifth International Conference on Artificial
Intelligence, pages 27-35, August 1977.

Coherent Cooperation Among Communicating Problem Solvers 46

[14] Eva Hudlicka and Victor Lesser. “Design of a knowledge-based fault detection and diag-
nosis system.” Proceedingsof the Seventeenth Hawass International Conference on System
Sciences, pages 224-230, January 1984.

[15] Kurt Konolige. “A deductive model of belief.” Proceedings of the Eighth International
Conference on Artificial Intelligence, pages 377-381, August 1983.

[16] William A. Kornfeld and Carl E. Hewitt. “The scientific community metaphor.” IEEE
Transactions on Man, Systems, and Cybernetics, SMC-11(1):24-33, January 1981.

[17) Victor R. Lesser and Lee D. Erman. “An experiment in distributed interpretation.” IEEE
Transactions on Computers, C-29(12):1144-1163, December 1980.

(18] Victor R. Lesser and Daniel D. Corkill. “Functionally accurate, cooperative distributed
systems.” IEEE Transactions on Man, Systems, and Cybernetics, SMC-11(1):81-96,
January 1981. '

[19] Victor Lesser, Daniel Corkill, Jasmina Pavlin, Larry Lefkowitz, Eva Hudlicka, Richard
Brooks, and Scott Reed. “A high-level simulation testbed for cooperative distributed
problem solving.” Proceedings of the Third International Conference on Distributed Com-
puter Systems, pages 341—349, October 1982.

[20] Victor R. Lesser and Daniel D. Corkill. “The Distributed Vehicle Monitoring Testbed: A
tool for investigating distributed problem solving networks.” AI Magazine, 4(3):15-33,
Fall 1983.

(21] H. Edward Pattison, Daniel D. Corkill, and Victor R. Lesser. “Instantiating descriptions
of organizational structures.” Technical Report, Department of Computé? and Informa-
tion Science, University of Massachusetts, Amherst, Massachusetts 01003, in preparation.

[22] Krithivasan Ramamritham and Jobn A. Stankovic. “Dynamic task scheduling in hard
real-time distributed systems.” IEEE Software, pages 65—75, July 1984.

(23] S. Reed and V. R. Lesser. “Division of labor in honey bees and distributed focus of
attention.” Technical Report 80-17, Department of Computer and Information Science,
University of Massachusetts, Amherst, Massachusetts 01003, September 1981.

[24] Jeffrey S. Rosenschein and Michael R. Genesereth, *Deals among rational agents.” Stan-
ford Heuristic Programming Project Report No. HPP-84-44, December 1984.

[25] Reid G. Smith. “The contract-net protocol: High-level communication and control in
a distributed problem solver.” IEEE Transactions on Computers, C-29(12):1104-1113,
December 1980.

[26] John A. Stankovic, Krithi Ramamritham and Sheng Chang Cheng. “Evaluation of a
flexible task scheduling algorithm for distributed hard real-time systems.” To appear in
IEEE Transactions on Computers, December 1985.

[27] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley 1977.

