A COMPARISON OF
DATA FLOW PATH SELECTION CRITERIA

Lori A. Clarke
Andy Podgurski
Debra J. Richardson
Steven J. Zeil

COINS Technical Report 85-16
August 1985

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

Appeared in Proceedings of the Eighth International Conference
on Software Engineering, August 1985, pp.244-251.

A Comparison of Data Flow Path Sclection Criteria !

Lori A. Clarke, Andy Podgurski, Debra J. Richardson, Steven J. Zeil

Software Development Laboratory
Department of Computer and Information Science
Ambherst, Massachusetts 01003

Abstract

A number of path selection testing criteris have been pro-
pooed throughout the years. Unfortunately, little work has been
done on comparing these criteris. To determine what would be
an effective path selection criterion for revealing errors in pro-
grams, we have undertaken an evaluation of these criteria. This
paper reports on the results of our evaluation for those path se-
lection criteris based on data flow relationships. We show how
these criteria relate to each other, thereby demonstrating some
of their strengths and weaknesses.

1. INTRODUCTION

Ever since Stucki experimentally showed that programmers
select test data that provide very poor coverage of their code
[Stuc73), researchers have been concerned with developing effec-
tive coverage criteria. A coverage criterion is usually satisfied
by a set of paths through a program, where a path is a sequence
of statements. An effective criterion requires paths with a high
probability of revealing errors — that is, when the program is
run with test data that causes the selected paths to be exe-
cuted, there is a high probability that errors, if they exist, will
be exposed by those test runs, Of course, the effectiveness of
such a criterion depends not only on the selected paths but also
on the test data for those paths. In this paper, we assume that
a reascnable test data selection criterion exists and look only
at the path selection problem.

Testing all the paths in a program is often impossible, be-
cause programs with loops may contain an infinite number of
paths. Thus, a path selection eriterion should specify only a
subeet of a program’s paths. It is generally agreed that, at »
minimum, this subset should require that every branch, and
thus every statement, in a program be executed at Jeast once.
Other factors, such as loop coverage and data relationshipo,
should also be considered. A number of path selection criteria
have been proposed [Lask83,Ntaf84,Rapp3S]. Unfortunately,
there has been little work done on comparing or evaluating the
different criteria. We are currently undertaking a study of path
selection criteria, working toward the formulation of a more ef-
fective criterion that builds upon the strengths of existing ones.

In this paper we formally compare data flow path selection
criteria [Lask83, Ntaf84,Rapp85]. To facilitate this comparison,
we define all the criteria using a single set of termo, rather than
using the terminology of the criterin's originators. Although

"This work waa supported ia part by NSF Grants MCS-3303320 and DCR-
8404217,

CH2139-4/85/0000/0244 © IEEE 1985

244

our definiticas are usually equivalent in meaning to those given
by the criteria’s originators, some are not. This occurs for two
ressons. First, some of the original definitions are ambiguous.
Second, as originally defined, some of the criteria differ from
the stated intent of their authors. In both cases we have tried
to redefine the criteria in ways that strengthen them yet seem
consistent with the intent of their criginator.

The next section of this paper presents our terminology.
Section 3 defines the criteria using the terminology presented in
Section 2. In Section 4 we compare each criterion to the others
and present & subsumption graph showing their relationships.
The conclusion discusses issues that must be considered in order
to evaluate these criteria more meaningfully. This paper lays
the foundation for such future research.

2. TERMINOLOGY

Our evaluation considers the application of a path selection
criterion to & module. To simplify the discussion, we assume a
module is either a main program or a single subprogram and
bas only one entry and one exit point. In applying a path
selection criterion, a module is represented by a directed graph
that describes the possible flow of control through the module.
A control flow graphof a module M is a directed graph G(M) =
(N, B, Nyt ngast), where N is the (finite) set of nodes, B G
N x N is the set of edges, nget € N is called the start node, and
Ngaa € N is colled the final nods. Bach node in N except the
start node and the final node represents a statement fragment
in M, where a statement fragment can be a part of a statement
or a whole statement. We assume the control Sow graphs are
defined s0 that each assignment statement is represented by
s node, as is the predicate from each conditional statement.
For each pair of distinct nodes m and n in N for which there
is a possible transfer of control from the statement fragment
represented by m to that represented by n, there is a single
edge (m,n) in 5. We assume that E contains no edges of the
form (n,n). There is also an edge in E from the start node to
the entry point of M and an edge in B from the exit point to
the final node.

The control Bow graph defines the paths within a mod-
ule. Let G(M) = (N, E,nuewt,npaa) be a control flow graph.
A subpath in G(M) is a finite, possibly empty, sequence of
nodes p = (ny,ny,...,n),) 2 such that for all 4, 1 < ¢ < [p),
(ni,n:41) € B. A subpath formed by the concatenation of two
subpaths p; and p; is denoted by p; - pa. An initial subpath
is & subpath whose first node is the start node nuws. A path
is ap initial subpath whose last node is the final node, ngy.

We denots the length of (the numbes of elements in) a sequence 8 by |o].

The set of all paths in G(M) is denoted by PATHS(M). The
graph G(M) is wcll-formed iff every node in N occurs along
gome path in PATHS(M). In this paper, we consider only well-
formed control Bow graphs.

A loop of a control flow graph G(M) is the subgraph of
G(M) corresponding to a looping construct in module M. An
entry node of s loop Lisanode nin L such that there is an
edge (m,n) in G(M), where m is not in L. An esit node for
L is s node n outside L such that there is an edge (m,n) in
G(M), where m is in L. We assume that all loops have single
entry and single exit nodes.

We will frequently need to distinguish between several types
of subpaths that visit loops. A cyele is a subpath that begins
and ends with the same node and that contains at least two
edges. A cycle (n) -9+ (n) such that the nodes of p are distinet
and do not include n is called a simple cyele. Subpaths through
loops need not contain cycles. A traversalof o loop L is & sub-
path within L that begins with the entry node of L, does not
return to that node, and ends with a predecessor of either the
entry node or the exit node of L. A traversal of s loop repre-
sents a single iteration of the loop, or possibly & “fall through®
execution of the loop. A subpath is said to traverse a loop L if
the subpath contains a traversal of L. Finally, consider a com-
bination of cycles and traversals encountered during s complete
execution of a loop. A complete loop-subpathor cl-subpsthfor s
loop L is & subpath (m)-p-(n) such thet m and n occur outside
L, while p is a nonempty subpath lying entirely within L.

The path selection criteria described in this paper are based
on data Bow annlysis and thus are concerned with definitions
and uses of variables. Let £ be & variable in & module M. A
definition of z is associated with each node n in G(M) that
represents a statement fragment that can assign o value to 2;
this definition is denoted by da(z). The set of variables for
which there is a definition associsted with » particular node n
is denoted by DEFINED(n). A wic of z is sssocisted with each
node n in G(M) that represents o statement fragment that can
access the value of z; this use is denoted by ua(z). 3 The set of
variables for which there is & use associated with a pasticular
node n is denoted by USED(n).

A use un(z) is called & predicote use iff node n represents
the predicate from a conditional branch statement; otherwise
un(z) is called & computation use. Note that a predicate use
is associated with any node having two or more successors. A
node representing a predicate is assumed to have at least one
varisble use but no definitions associated with it.

Dats Bow analysis is concerned not simply with the def-
initions and uses of variables, but also with subpaths from
definitions to statements where those definitions are used. A
definition-clear subpath with respect to (wrt) a variable £ is a
subpath p such that for all nodes n in p, = ¢ DEFINED(n)
and £ does not become undefined st n. A definition du(z)
reaches & use un(z) iff there is & subpath (m) -p - (n) such that
p is deBinition-clear wrt z. It is possible that s given defini-
tiocn might oot reach any use or that a given use might not
be reached by any definitions. Since anomalies like these are
normally considered to be errors, and since they are easily de-
tectable vin static analysis, we assume that every definition of
s variable z reaches at least one use of 3 and that every use of
£ is reached by st least one definition of 2.

SWhes nodes are subacripted, as in m;, we abbreviate the notation to
d.(¢) and o, (x).

When a module receives information from s calling module
vis parameters or global variables, we add a node, ng, to the
control Bow graph and associste with it definitions of thooe vari-
ables importing information. The edge (nuwr,m), where m is
the node representing the entry point of the module, is replaced
by the edges (Ruas,Nia) a0d (0, m). We assume that there is
at least one definition sssociated with a control flow graph, al-
though this definition may be associated with n,. Similarly,
when a module returns information via paraineters or global
variables, we add & node, neu, to the control flow graph and
associate with it uscs of those variables exporting information
from the module. The edge (m,ng.a), where m is the node
representing the exit point of the module, is replaced by the
edges (m, nou) 804 (Reuts Ngad).

A path selection criterion, or simply » criterion, is o pred-
jcate that assigns a truth value to any pair (M, P), where M
is « module and P is a subset of PATHS(M). A pair (M, P)
satisfice o criterion C il C(M,P) = true. A path selection
criterion C; subsumes a criterion Cy iff every pair (M, P) that
satisies C; also satisfies C3. Two criteris are cguivalent iff each
subsumes the other. A criterion C atrictly subsumesa eritericn
C; iff G, subsumes C3, but Cy does not subsume C;. Two cri-
teria are incomparable if neither criterion subsumes the other.
Note that the subsumption relation defines s partial order on
any set of path selection criteris.

s. DEFINITIONS OF THE CRITERIA

In this secticn we define the family of path selection cri-
teria proposed by Rapps and Weyuker, the Required k-Tuples
criteris proposed by Ntafos, and the three criteria proposed
by Laski and Korel. We remind the reader that the following
sesumptions have been made:

1. There ore no edges of the form (n,n);

£. Every control flow graph @ well-formed;

3. Evary control flow graph contains at lcast one ‘definition;

4. Boery definition veaches ot least one wae;

S. Bocry wae is reached by ot loast one definition;

6. At least one wac is associated with each node representing
a predicate;

7. No definitions are associated with o node representing
predicate.

3.1 The Rapps and Weyuker Family of Criteria

Rapps and Weyuker define & family of path selection crite-
ris and analyze these criteria in an attempt to specify the sub-
sumption relationships that exist among the members of the
family [Ropp82,Rapp85,Weyusd]. This family includes three
well-established control flow criteria and some new path selec-
tion criteris based on the concepts of data flow analysis.

The control flow criteria considered by Rappe and Weyuker
are All-Paths (path coverage), All-Edges (branch coverage), and
All-Nodes (statement coverage).

The poir (M, P) satisfics the All-Paths eriterion iff P =
PATHS(M).

The pair (M, P) satisfica the All-Edges criterion iff for all
edges ¢, there i ot least one path in P along which ¢ occurs.

The pair (M, P) satisfics the All-Nodes criterion iff for oll
nodes n, there ia at least one path in P olong which n occura.

It is well-known that (for well-formed graphs) All-Paths sub-
sumes All-Edges, which subsumes All-Nodes. For most modules
M, the only pairs (M, P) that eatisfy the All-Paths criterion are
those whose path set P is infinite. Thus, All-Paths is not useful
for such modules. On the other hand, important combinations
of nodes and/or edges might not be required by either All-Edges
or All-Nodes. The data Bow criteria developed by Rapps and
Weyuker distinguish combinations that are important in terms
of the flow of data through a module.

Rappe and Weyuker first define a criterion that requires a
poth set to contain at least one definition-clear subpath from a
definition to some use reached by that definition.

TAe pair (M, P) satisfics the Ali-Dafs criterion iff for all def.
snitiona, dm(x), there ia ot least one subpath (m) -p - (n) in P
such that p s definition-clear ort x and there is o wie up(x)
associated with node n.

Next, Rapps and Weyuker define a criterion that requires »
path set to contain at least one definition-clear subpath from
each definition to each use reached by that definition and each
successor of the use. The significance of the successor nodes is
that they force all branches to be taken following a predicate.

TAe pair (M, P) satisfics the All-Uses criterion iff for all def-
initions dm(x), all vacs ua(2) reached by du(s), and all sucees-
sore ' of node n, P contains at leaat one subpath (m)-p-(n,n')
such that p ia definition-clcar ort 2.

Rapps and Weyuker define three criteria that are similar
to All-Uses but that distinguish between computation uses and

predicate uses.

The pair (M, P) satisfics the All-C-Uses/Some-P-Uses cri-
terion iff for all definitions dw(s):

1. For all computation uscs tn(s) reached by dum(z), P con-
tains at least one subpath (m)-p-(n) sueh that p is definition-
clear ort .

2. [f there s no computation wse of s reached by du(z), then
Jor at least one predicate wac ua(z), P contains e subpath
(m) - p - (n) such that p is definition-clear wrt 3.

The pair (M, P) sotisfics the All-P-Uses/Some-C-Uses ¢ri-
terion ¢ff for oll definitions du(3):

1. Por all predicate wacs un(z) reached by dm(x) ond all suc-
cessora n' of node n, P containe ot least one subpath (m) -
P (n,n') such that p és definition-clear ort z.

2. If there is no predicate wse of x reached by du(z), then for
ot least one computation wee un(x), P contains o subpath
(m)-p - (n) such that p is definition-clear wrt 2.

The pair (M, P) satisfics the All-P-Uses criterion iff for all
definitions da,(2), oll predicate wacs un(z) reached by du(s),
and all successorsn' of node n, P contains at least one subpath
(m) - p+(m,n') such that p is definition-clear wrt =.

The final criterion, All-DU-Paths (DU stands for definition-
use), goes a step further than All-Uses; rather than requiring
one definition-clear subpath from every definition to all the suc-
cessor nodes of each use reached by that definition, All-DU-
Paths requires every such definition-clear subpath that is a sim-
ple cycle or cycle-free. This limitation on cycles is included to
ensure that the path set is finite.

246

The pair (M, P) satisfies the All-DU-Paths criterion iff Jor
oll definitions dm(2), all uscs un(z), and oll successor nodes n'
of n, P contains every subpath (m)-p-(n, n') such that (m)-p-{n)
ts o simple cycle or cycle-free and p is definition.clear wrt 3.

3.2 Ntafos’s Required k-Tuples Criteria

Ntafos also uses data Bow information to overcome the short-
comings of using control fow information alone to select paths.
He defines a class of path selection criteris, based on data Bow
analysis, called Required k-Tuples [Ntaf81,Ntaf84). These crite-
nis require that a path set cover chains of alternating definitions
and uses, called k-dr interactions. The sth definition of a k-dr
interaction reaches the sth use, which occurs at the same node
as the (v + 1)st definition. Thus & k-dr interaction propagates
information along a subpath, which is called an interaction sub-
path for the k-dr interaction.

The Required k-Tuples criteria are cnly defined for & > 3.
A 2.dr interaction is simply pair [du(z),un(z)] such that
dm(2) resches uqa(z) and m ¢ n. An interaction subpath for
this 2-dr interaction is a subpath (m) - p - (n) such that p is
definition-clear wrt . For &k > 3, a k-dr interaction is & se-
quence & = dy(g1), ua(21),da(x3),...,da—s(Za—1), us(2a-4)] of
k — 1 definitions and k — 1 uses associated with & distinct nodes
ny,ng,...,n, where for all 4, 1 € ¢ < &k, the sth definition
di(2;) reaches the sth use uiyy(sg). Note that the variables
81,%3,...,%)-3 Deed not be distinet. An interaction subpath
for x is & subpath p = (ny) -2 < (ng) -p3 - -+ - Pa-1 - (ns) such
that for all 4, 1 S § < &, subpath p; is definition-clear wit x;.

As defined by Ntafos, each Required k-Tuples criterion re-
quires ounly that a path set contain at least one interaction sub-
path for every k-dr interaction in a module's control flow graph,
and some additional subpaths if the first definition or last use
of & k-dr interaction occurs in a loop or if the last use is a predi-
cate use, This means that the Required &-Tuples criterion does
not necessarily subsume the Required (& ~ 1)-Tuples criterion
for a fixed &k > 2, since for any module there exists a constant
n such that there are no k-dr interactions for k > n. It is
clear from Ntafos’ examples, however, that he did intend the
Required A-Tuples criterion to subsume the Required (k - 1)-
Tuples criterion for k > 2. Our definition of the criteria sssures
this,

In Ntafos’ definition of the Required k-Tuples criteris, defi-
nitions and uses of all the variables in a module are associated
with & “source” and “sink® mode, respectively. This is appar-
ently done to detect data flow anomalies. To achieve the same
effect, we require that: (1) the ecatrol flow graphs to which
Ntafos’ criteria are spplied alwoys contain the nodes ng and
fout, (3) definitions of all variables (not just those that import
information) are associated with ng,, and (3) uses of all vani-
ables (Dot just those that export information) are associated
'ith [PR

We now formally define the Required &-Tuples criteria. Let
ibenﬁxedintetﬂ'.kzz.

The pair (M, P) satisfics the Required k-Tuples criterion iff
Jor all I-dr interactions X in G(M), 2 S I < &, cach of the
Jollowing conditions holds:

1. For all sucecasorsm of the node ny associated ovth the lagt
wie in X, P contains a subpath p - (m) such that p is an
interaction subpath for A.

2. If the node ny associoted with the ficet definition in A oc-
curs in a loop, then P contains aubpaths p = py+(n1)-pa-ps
andp' = py-(ny)-p} Py such that: (ny)-pa-ps and (m1)-p3-p}
begin with interaetion subpaths for A, py + (my) - p2 1o a cl-
subpath for the loop L immediately condaining ny ¢ that
traverses L a minimal number of times, and p - (n1) - P
4 o cl-subpath for L thet traversce L some larger number
of times,

3. If the node n; associated with the last wae in A occurs in
a loop, then P contains subpaths p = py - py - () - pa and
P = P Fy-(ne)-Fy such that: py-pa-(ny) and p)-py-(mi) end
with interaction aubpathe for A, p3 - (ny) - ps @ o cl-aubpath
for the loop L immediately containing ny that traverscs L
& minimal number of times, and p} - (n1) -p} 2 o cl-oubpath
Jor L that traverscs L some larger number of times.

3.3 The Lask! and Korel Criteria

Laski and Xorel define three path selection criteria based
on data Bow analysis [Lask83). We refer to these as the Reach
Coverage criterion (Strategy), the Context Coverage crite-
rion (Strategy M), snd the Ordered Context Coverage criterion
(modified Strategy).

The Reach Coverage criterion was criginally defined by Her-

man [Herm76). It requires that s path set contain at least one
subpath between esch definition and each use reached by that
definition.
The pair (M, P) satisfics the Reach Coverage ersterion <ff
Jor all definitions dus(x) and all vace ua(z) reached by dm(z), P
contains of least one subpath (m)-p-(n) such thatp is definition-
elear vrt .

Before defining the remaining two criteria, some sdditicnal
terminology must be introduced. Let n be & node in & con-
trol flow graph G(Af), and let {24,23,...,%s) be & nonempty
subset of USED(n). An ordered definition contest of node n is
s sequence of definitions ODC(n) = (di(=z;),da(za), da(=s)]
for which there exists a subpath p - (n), called sn red con-
test subpath, with the following property: forall s, 1 S 1Sk
p = pi - (n) * gi, where qu is definition-clear wet 2y and for all
j,i(jsk.eitherm-n‘,ormommdw;m. Thus, an
ordered definition context of s node is s sequence of definitions
that occur along the same subpath and that reach uses at the
pode. The order of the definitions in the sequence is the same
as their order along the subpath.

Again, let n be 8 node in s control Bow graph G(M), and
let {£5,%3,....2a} be a nouempty subset of USED(n). A def-
inition contest of & node n is » set of definitions DC(n) =
{di(21),d2(21), ..., ds(xs)} for which there exists & subpath
p - (n), called s contest aubpath, with the following property:
forall §, 1 S ¢ <k, p=pi- () qi, where g; is definition-clear
wrt 2;. Thus, a definition context of a node is a set of defini-
tions of variables used at the node, which reach the node along
some initisl subpath. Note that for any node n, a definition
context DC(n) is the set of definitions in at least one sequence
QDC(n), and sn ordered context subpath for sny such ODC(n)
is a context subpath for DC{n).

The Context Coverage and Ordered Context Coverage cri-
teria defined here differ somewhat from those originally defined
by Laski and Korel, who require o definition context or or-
dered dcfinition context of a pode to include definitions of all

‘A loop L smmedintely containe n node i L costalas the node aad therv
s no subloop of L that also contains It.

237

Al-Paths
Al-DU-Paths
All-Uses
o
S:ii-?-'l;:!n Stue:g-:;:i
efs All-P-Uses
AB-Edges
AB-Nodes

Figure 1: The Rappe and Weyuker Subsumption
Hilerarchy.

varisbles used at the node, instead of just a subset. Thus the
criteris we define require paths to a statement even when there
is no path that defines all the variables used at the statement
— u situation that might legitimately occur, for example, in o
call to & procedure that references some of its parameters con-
ditionally. We now formally define the Context Coverage and
Ordered Context Coverage eriteria:

The pair (M, P) satisfics the Conteaxt Coverage criterion iff
Jor all definition contests DC(n), P contains at least one con-
test aubpath for DC(n).

The pair (M, P) satisfies the Ordered Context Coverage
eriterion iff for all ordered definition contezts ODC(n), P con-
tains at least one ordered contest subpath for ODC(n).

4. ANALYSIS OF THE CRITERIA

4.1 Evaluating the Rapps and Weyuker Hierar
chy

The Rappe and Weyuker path selection criteria defined in
Section 3 are those presented in [Rapp8S). In that paper, Rappe
snd Weyuker propose a partial ordering of their critetia, as il-
lustrated in the subsumption graph of Figure 1. It is inter
esting to note that the definition of the All-DU-Paths crite-
rion presented in [Rapp8S) differs from the earlier definitions
in [Rapp82,WeyuBd]. The eaclier deGnitions of All-DU-Paths
required only cycle-free subpaths, while the newer definition
requires simple cycles as well. Without this change, it can
be shown that All-DU-Paths does not even subsume All-Defs
(Clar8SA).

In order to demonstrate that the position of the newer ver-
sion of the All-DU-Paths criterion in the subsumption bierarchy
of Figure 1 is correct, we prove that All-DU-Paths strictly sub-
sumes the All-Uses criterion,

Theorem 1 Thc All-DU-Paths criterion strictly subsumes the
All-Uses criterion.

mN— xn A4, (n) .0, ty)

gy dapat (x, y); - K," v
ny 1f x < O thea
ny x =4) e

ezd 1f; ‘ ‘?n,\ 9,10
ny 1f ¥y > 0 then oy)
ny Y i=0; 1 :‘ -I

ond it 1 ") sty
e outpst (x, y); fl'),_ ,\h‘? g imt,ug tyd

Figure 3: Module M, and its control flow graph G(M,).

Proof. We first prove that All-DU-Paths subsumes All-Uses,
by showing that any pair not satifying the All-Uses criterion
cannot satisfy the All-DU-Paths criterion either. Let (M, P) be
a pair not satisfying the All-Uses criterion. Then there exists a
definition dm(z), 8 use u,(z) reached by du(z), and a successor
n' of node n such that P contains no subpsth of the form (m)-
p-(n,n'), where p is definition-clear wrt z. Assume, by way of
contradiction, that (M, P) satisfies the All-DU-Paths criterion.
Because d(z) reaches uq(s), there exists s subpath (m).p-
(n,n') in G(M) such that p is definition-clear wrt z. It follows
{Clas85A) that G(M) also contains a subpath g = (m)-g’-(n,n')
such that (m)- g’ -(n) is cycle-free or is a simple cycle, and p’ is
definition-clear wrt 2. Because (M, P) satisfes All-DU-Paths,
P must contain ¢. But this is & contradiction, and we must
conclude that (M, P) cannot satisfy All-DU-Psths. Thus, All-
DU-Paths subsumes All-Uses.

We now show that All-Uses does not subsume All-DU-Paths.
Consider the module M; shown in Pigure 2. The pair (M;, P;)
satisfies All-Uses, where

P= «"‘ﬂv”h”’a"lr"hﬂ.“‘n”ﬂ)' (l)
‘”M'"h"’o ng,ne, “N)}-

It does not satisfy All-DU-Paths, however, because P does not
contain the subpath (n;s,n3,ny,ng,ne, ngag). Thus, All-Uses

does not subsume All-DU-Paths, a
4.3 Incorporating Ntafos’s Required k-Tuples Cri-
teria

In this section, we compare Ntafos's Required &-Tuples cri-
teris to the Rapps and Weyuker criteria. The All-Paths crite-
rion obviously subsumes each of the Required &-Tuples criteria.
None of the Required &-Tuples criteria subsume the All-Defs
criterion, because the Required k-Tuples eriteria do not require
that o variable definition be covered if its only use is at the
node where the definition oceurs. The All-DU:Paths eriterion
does not subsume any of the Required k-Tuples criteria, be-
cause All-DU-Paths does not require each loop containing a
definition or use to be tested with at least two cl-subpaths as
the Required k-Tuples criteria do. These last two facts imply
that the Required k-Tuples criteris are incomparable to all the
criteria that are subsumed by All-DU-Paths and that subsume
All-Defs. Because the Required k-Tuples criteria require that
both edges from a branch predicate be covered, they do sub-
sume the All-P-Uses criterion. We now formally state and prove
each of these relationships.

Theorem 3 There is no Required k- Tuples eriterion that sub-
sumes the All-Defs eriterion.

Prool. Consider the module Mz shown in Figure 3. The pro-
cedure fea called in M; implements a finite state automaton.

24K

state}, A {
‘I"‘l e} -I"‘u s}

("-)"‘ \-' .ll)‘

ny state := foitial;
"P'“ ! dmlanw)
ny tsput (cdar); s dyferaret
) it cdar ¢ Jd,(tary
{vlaak, cr) thea ‘S’ 4
n, fsa (state, ; o vy tonars
char, accopt); at a1)
ond 1f; Y ..:.x.‘:,,s,m.n
" satil char = cr; v, tchar)
ne outpat (accept);
! . g tacoape)
Vo 15tatal, ot \ ¢
Vot fchar)
th-caqn.)

Pigure 31 Module M; and lte control flow graph G(AM).

It inputs state and char and outputs state and accept. The
3-dr interactions and 3-dr interactions associsted with G(M;)
are as follows:

dia(accept), ua(accept)], (dia(aceept), upu(aceept)),
dy(otate), us(atate)), [di(atate), uo(otatc)},

da(cAar), us(char)), [da{char), ui(char)],

dy(char), us(char)], [da(char), upm(char)),

dy(state), uou(state)},

de(acespt), us(accept)], [di(accept), u,u(aceept)),
di(state), ug(state), do(state), i o (otate)),

{di(state), uq(state), di(accept), ue(accept)),

{d1(state), ue(state), dy(accept), upm{accept)),

da(ehar), we(char), dy(otatc), upm(state)),

da(char), us(char),dy(accept), ug(accept)),

da(char), uq(char), de(aceept), upu(accept)].

There are no k-dr interactions associated with G(M;) for & >
3. The pair (Mj, P) satisfies each Required &-Tuples criterion,
where P = {’ll”l’)) and

| Rl ("M' R, Ny, N3, B3, Nigy Ng, N3, N3, N5, Ng, Nouy, "ﬁd)

| R (”Mo”ﬁﬁ Ny, N1, N3, N4, N, Ny, Neut, ﬂh‘)

Pr = (”Ml”'ﬂo Ny, N3, N3, Ng, Ne, Nout, 'l“).
However, (M3, P) does not satisfy the All-Defs criterion, be-
csuse P does not contain s definition-clear subpath wrt the
varisble state from the definition d¢(state) to a use of atate
(there is Do use U, associsted with G(M;) for AllDefs). (O]
Corollary 1 The All-Poths criterion atrictly subsumes cach of
the Reguired k-Tuples crileria.
Theorem 3 The All-DU-Paths eriterion does not subsume the
Reguired 3- Tuples eriterion.
Proof. Consider the module Mj shown in Figure 4. The pair
(M, P) satisfies the All-DU-Paths criterion, where

Pa= {(n‘.‘l 3, N2, N3, N2, Ny, Ny, ”“)).

It does not satisfy the Required 2-Tuples criterion, however,
because there is no subpath in P that covers the 2-dr interaction

ﬁ;} 4, tn)
n 1apat (0); ’
repeat i"2) ay0n1 uyta)
ny X e x e, C
Ny watil x > O; ™y uytn)
ny entpat (0); oyt = -

Figure 4: Module M; and its control flow graph G(A4).

[di(2), uz(z)] and contains a cl-subpath for the loop in G(Ms)
that traverses it 5 minimum number of times (in this case once).

O

Corollary 3 Each Required k-Tuples criterion s incompara-
ble to the the All-DU-Paths criterion, the All-Uses criterion,
the All.C-Uses/Some-P-Uses eriterion, the All-P-Uses/Some-
C-UVses ersterion, and the All-Defs criterion.

Theorem & Each Reguiredk-Tuples criterion subsumes the All-
P-Uses criterion.

The proof of this theorem is straightforward [Clar85A) and is
omitted here. O

Corollary 3 Each Requiredk- Tuples criterion strictly eubsumes
the All-P-Uses criterion, the All-Edges criterion, ond the
All-Nodes eriterion.

4.3 Incorporating the Laski and Korel Criteria

In this section we demonstrate the subsumption relation-
shipe that exist between the Laski and Korel eriteria and those
of Rapps and Weyuker and of Ntafos. We first show that Laski
and Korel's criteria form o hierarchy. The Ordered Context
Coverage criterion subsumes the Context Coverage criterion
because all ordered context subpaths for an ordered definition
context ODC(n) are context subpaths for any definition con-
text containing the same definitions as ODC(n). The subsump-
tion is strict because a context subpath for a definition context
DC(n) is not necessarily an ordered context subpath for all the
ordered definition contexts containing the same definitions as
DC(n). The Context Coverage criterion subsumes the Reach
Coverage criterion because every definition reaching s use at »
node must sppear in some definition context of that node. ®
This subsumption is strict because the Reach Coverage criterion
does not require paths exercising combinations of definitions as
the Context Coverage criterion does. We now formally state
and prove these relationshipe.

Theorem 5 The Contest Coverage criterion strictly subsumes
the Reach Coverage eriterion.

Proof. The proof that the Context Coversge criterion sub-
sumes the Reach Coverage criterion is straightforward {Clar85A)
and is omitted here. We show that Reach Coversge does not
subsume Context Coversge. Consider sgain the module M,
shown in Figure 2. The pair (M), P;) satisfics Reach Coverage,
where P, is defined by Equation (1). It does not satisfy Context
Coverage, however, because P, contains no context subpath for
the definition context DC(ng) = {di(z),ds(y)} O

Theorem 68 The Ordered Contest Coverape eriterion strictly
subsumes the Contest Coverage criterion.

Proof. It is easy to see that the Ordered Context Coverage
criterion subsumes the Context Coverage criterion. We prove
here that Context Coverage does not subsume Ordered Context
Coverage. Conaider the module M, shown in shown in Figure 6.
The definition contexts associated with G(M,) are as {ollows:

DC(n3) = {di(2)}
DC\(ns) = {di(2),di(v)}
DCs(ns) = {ds(2).di(y)}

*Note that, as pointed out la Section 3.2, this s mot true for Laski aad

DCi1{n3) = {ds(s))
DC;(ns) = {dy(z),de(v))
DC(ns) = {ds(z), de(y)}

Korel's original deBaition of s defisition context.

4, (x) 'dl [12) 'dl (z)

(s

ny doput (x, ¥y, 3);
ny while ci(s) loop

ny s = 2(x,y): u,iz) g ixl.ugly)
"y 12 c2(s) then
s x :®E d,(2),uyx),
elee u;(y) %
ne yi=s
ad if; uy (2
ny end loop; :::’8 dgty) ugta)

ne ontpat (x, ¥);

Figure 5: Module M, and Its control flow graph C(My).

DCi(n¢) = {ds(s)}

Zagc

D = 3

DC:((::) = (‘:(3)-4101} DCi(ns) = {dr{2),da(v)}
DCsfns) = {ds(2).ds(v)} DCa(ne) = {ds(=), de(v))-

The pair (M,, P) satisies Context Coverage, where P = {p;, p1,
p‘o"} .Bd

4 Bd (nd-hnl0"2."Mn‘o”‘t"‘h“lu“St"h"‘o“hm.m!"“)

P1 = (Naart, 1, N2, N3, 4, N6, NY, N3, N3, 4, Ne,
"ﬁn’o":n"‘.".u"’oﬂl'"h"ﬁn‘)

p= ("Mn”h"2."ltn‘r“ﬁnh"3."3:“‘-".0"7v"’;"‘0”ﬂd)

Pe=. (”Mi"h"’n"h”ﬁd)-

This pair does not satisfy the Ordered Context Coverage cris
terion, however, because P does not contain an ordered con-
text subpath for the ordered definition context ODC(ns) =
[de(p), ds(=)].

Having shown how Laski and Korel's three criterin relate
to each other, we show how they relate to the other data fow
eriteris. The Ordered Context Coverage criterion does not sub-
eume the All-Nodes criterion, because Ordered Context Cover-
age does not require that both branches following a predicate
use be taken. The All.DU-Paths critericn does not subsume
the Context Coverage criterion, because the presence of s loop
between o defnition and a node may cause all the context sub-
paths for a definition context of the node to contain non-simple
cycles. None of the Required k-Tuples criteria subsumes Con-
text Coverage cither, because the definitions in a definition con-
text are not necessarily linked by an interaction subpath. These
three facts imply that Ordered Context Coverage and Con-
text Coverage are incomparable to all the criteria that are sub-
sumed by All-DU-Paths or the Required £-Tuples criteria and
that subsume All-Nodes. The All-Uses critericn is similar to
the Reach Coverage criterion, but strictly subsumes it because
Reach Coverage does not require that all branches following a
predicate use be covered as All-Uses does. Finally, Reach Cov-
erage strictly subsumes the All-C-Uses/Some-P-Uses criterion
because it requires that every use be exercised at least once.
It follows from this and the fact that the All-P-Uses/Some-
C-Uses criterion is incomparable to All-C-Uses/Some-P-Uses
that Reach Coverage is incomparable to the criteria that are
subsumed by All-P-Uses/Some-C-Use and that subsume All-
Nodes.

Theorem T The Ordered Contest Covcrage criterion does not
subsume the All-Nodes criterion.

Proof. Consider the module M shown in Figure 6. The only

ordered definition context associated with G(My) is ODC(n3) =
[d:(z)]. Tbus the pair (Mg, P) satisfies the Ordered Context

ny fapst () Q;}—- i g, (x}
ny if x = {1 thea)
ns sstpat (1); 2 uy tx}
olse
ng ostpat (0);
ead 1f;

v
Figure 8: Module M; and its control low graph G(Ms).

Coverage criterion, where
Pwm ((”M.”lp”’.”'v"ﬂ)}‘

It do.en not setisfy the All-Nodes criterion, however, because
node ng does not occur along the path in P. a

Corollary 4 The All-Paths eriterion strictly subsumes the Or-
dered Contest Coverage criterion.

Theorem 8 The All-DU-Paths eriterion does not subsume the
Contest Coverage criterion.

Proof. Consider again the module A, shown in Figure 5. The
pair (Ady, P) satisfies the All.DU-Paths criterion, where P =
‘Ph’l’”) and

P1 = (Rust, 11, N2, N3, Ny, Ng, N7, N3, By, N, Ny, N7, B3, By, Naed)
P2 = (Nuterr, 183,113, 189, Ngad).

This pair does not satisfy the Context Coverage criterion, how-
ever, because P does not contain a context subpath for the
definition context DC(ny) = {di(s),ds(s)). a

Theorem 9 There is no Reguired k-Tuples criterion that sub-
sumes the Contest Coserage criterion,

Proof. Consider again the module M; shown in Figure 3. The
pair (M, P;) satisfies each Required &-Tuples criterion, where
P, is defined by Equation (1). It does not satisfy the Context
Coverage criterion, however, because P, contains no context
subpath for the definition context DC(ng) = {ds(s),ds(y)}. (]

Corollary 5 The Contest Coverage and Ordered Contest Cov-
erage cniteria are incomparable to the All-DU-Paths, Reguired
k-Tuples, All-Uses, All-P-Uses/Some-C-Uses, All-P-Uses, All-
EBdges, ond All-Nodes eniteria. Co

Theorem 10 The All-Uses eriterion strictly subsumes the
Reach Coverage eriterion.

Proof. It is clear that the All-Uses criterion subsumes the
Reach Coverage criterion. The Reach Coverage criterion can-
oot subsume the All-Uses criterion, because by Theorem § the
Context Coverage criterion subsumes Resch coverage and by
Corollary § Context Coverage does not subsume All-Uses. [

Theorem 11 The Reach Coverage criterion atrictly subsumes
the All-C-Usea/Some-P-Uses eriterion.

Proof. Clearly, the Reach Coverage criterion subsumes the All-
C-Uses/Some-P-Uses criterion. We prove here that the All-C-
Uses/Some-P-Uses criterion does not subsume the Reach Cor-
crage criterion. Consider the module A4 shown in Figure 7.
The palr (Mg, P) satisfies All-C-Uses/Some-P-Uses, where

P = ((nuet, 03,02, M4, nged)}.

250

n, faput ():
ny 12 x > 0 thea

ny if % > § then
"y entput (0);
olee
ny estpat (1);
ead if;
slee
ne entpat (2);
ead 1f;

Pigure 7: Module M, and its control flow graph G(A).

It does not satisfy Reach Coverage, however, because P does
pot contain the subpath (ny, n3,n;). O

Corollary 6 TAe Rcach Coverage criterion is incomparable to
the All-P-Usea/Some-C-Uses, All-P-Uscs, All-Edges, and All-
Nodes eriteria.

The final subsumption hierarchy, which includes all the esi-
teria considered, is shown in Figure 8.

CONCLUSION

This paper demonstrates the subsumption relstionships that
exist among the data fow path selection eriteria proposed by
Rapps and Weyuker, Ntafos, and Laski and Korel. Since these
criteria have related goals, we chose them first for evaluation.
Otker types of path selection criteria must also be considered
and their place in the subsumption hierarchy determined. Once
the subsumption relationships are clearly understood, s number
of important issues will still remain to be addressed. In par
ticular, we intend to continue this investigation by considering
the effect of minor enhancements to the existing criteria, the
difference between the criteria in terms of their error detection
capabilities, and the effect of infeasible paths as well as other
troublesome features of programming languages.

Our overall goal is to formulate an effective path selection
eriterion. We expect that this ctiterion will exploit the data
flow relationships used by the three families of data flow path
selection criteria considered in this psper. From this study, it
is clear that all three families of criteria have a unique contri-
butich to make, although there is substantial overlap among
them. Now that their relationships are better understood, we
intend to continue our investigation, focusing on the differences
in error detection capabilitics among the criteria and on fexi-
ble guidelines for replacing infeasible paths with executable ones

when appropriste.

Al-Paths

€«
Ordered Context Cov. Al-DU-Paths Required £-Tuples

Context Coverage All-Uses
Reach Coverage

M.I-O-Lha/ AU-P-Uses/
Some-P-Uses

AlDefs AB-P-Uses

Al-Edges

All-Nodes

Figure 8: The Final S8ubsumption Hlerarchy.

REFERENCES

[Clar8SA} L. A. Clarke, A. Podgurzki, D. 3. Richardson, and 8.

[Herm76]

[Lask8d)

[Ntaf81)

[Ntafsq)

[Rapps2)

[Rapp8s]

{StucT3)

[WeyuBd]

3. Zeil, *A Comparison of Data Flow Path Selection
Criteria,” COINS Tech. Rep. mo. 85-16, Dept. of
Comp. and Information Sci., University of Mass.,
Amberst, June 1985.

P. M. Herman, A Data Flow Analysis Approach to
Program Testing,” Thec Austrglian Computer Jour-
nal, vol. 8. no. 8, Nov. 1976.

J. W. Laski and B. Korel, “A Data Flow Oriented
Program Testing Strategy,” IEEE Trane. on Soft-
vare Eng., vol. SE-9, no. 3, pp. 347-354, May 1983.

S. C. Ntafos, “On Testing With Required Elements,’
Proc. IEEE COMPSAC 81, pp. 132-139, Nov. 1981.

8. C. Ntafos, *On Required Element Testing,” IEEE
Trans. on Softeare Eng., vol. SE-10, vo. 6, pp. 795~
803, Nov. 1984.

S. Repps and E. J. Weyuker, “Data Flow Analysis
Techniques {or Test Data Selection,” Proc. 6tA Int.
Con/. Software Eng., pp. 212-377, Sept. 1982.

S. Rapps and E, J. Weyuker, “Selecting Soltware Test
Data Using Dats Flow Information,” JEEE Tvans. on
Softeare Eng., vol, SE-11, 4, pp. 367-375, April 1985.

L. G. Stucki, *“Automatic Generation of Sell-Metric
Software,” Recordings 1073 IEEE Symp. Softeoare
Reliability, pp. 94-100, April 1973,

E. J. Weyuker, *The Complexity of Data Flow Crite-
ria for Test Data Selection,® Information Processing
Letters, vol. 19, pp. 103-109, North-Holland, August
1984.

