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ABSTRACT

Advanced, flexible robotic systems require multiple sensors to successfully
perform tasks in changing or unfamiliar environments. The data from these sensors
must be integrated dynamically, in a coherent fashion, if the robot is to respond

promptly and appropriately and complete its assigned task.

This paper describes a methodology for the integration of two robotic senses —
vision and touch. Integration is performed by augmenting the usual structural models
of the object in the robot's world with functional information. These functional
attributes, which describe how an object relates to other objects in the world,
facilitates the process of inferring from multiple sensors and thus in controlling the
robot’s motions.
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¢ 1.0 Introduction

Our research on the dynamic integration of data from multiple sensors into the
control of a complex robot manipulator is based upon three principles: that systematic
integration of multiple sensors can be achieved by dealing with task-related features
extracted from the sensors, rather than with the raw seasor data; that this integration
requires object models of a novel sort, incorporating functional knowledge of the way
the objects in the robot’s world (including the manipulator) can interact with each
other, as well as standard structural (geometric) knowledge; and that incorporation of
multiple sensors proceeds best by using focus-of-attention strategies to accomplish the
robotic task.

The methodology described below is applicable to integration of many different
kinds of sensors; its feasibility is being tested by concentrating upon visual, tactile,
and force sensors. These sensors are chosen because they are sufficiently distinct as
to present interesting problems in integration, and yet techniques for dealing with
them scparately are already well established. Described in turn are our general
approach to the problem of multisensor integration, the issues which must be
addressed by any system that integrates multiple sensors, and a brief analysis of some
of the problems which arise in multisensor integration.
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§ 20 Integration of Sensory Information

Multisensor integration is the result of inferring a low-level feature, or an item
of higher-level knowledge, which cannot be reliably and efficiently inferred from the
data provided by a single sensor. Multisensor integration thus includes low-level
combination of information from sensors; using several sensors simultaneously to
achieve a goal; and the successive use of several sensors to achieve a goal.

Two dimensions of the problem are the level of abstraction at which the
inference is conducted (in the present case, “low” and high” are all that are
distin;juished), and whether sensors are used simultaneously or successively in various
combinations. Four simple examples which display various kinds of integration are:

® Low-level, simultaneous use of joint-angle position and tactile analysis to
locate a tactile feature, e.g.,, an object edge, at a particular position and
orientation in three-dimensional coordinates.

® Low-level, successive use of vision and touch to roughly locate an edge and
verify its properties, e.g., finding the radius of the edge in addition to
locating it.

® High-level, simultaneous use of vision and touch to detect slippage of a part
during a transfer operation.

® High-level, successive use of vision and touch to locate a hole and then
compliantly insert a peg into it.

The distinct issues to be addressed depend upon the level of integration proposed.

In general, low-level (or feature-level) integration requires special-purpose
algorithms that often must be sensor-dependent. In particular, successive feature-level
integration may require knowledge not only of the sensors but of the manipulator or
even of the object being sensed. In the above examples, simultaneous integration
requires a model of the manipulator and of the tactile sensor, while successive
integration requires that the kind of information (in this case, an edge) be definable
and verifiable in both sensor domains. Such requirements are not always easy to

meet.

High-level (or knowledge-level) integration employs methods that are of more
general use than does feature-level integration. In order for information from several

sensors to be successfully integrated, it must be available to algorithms in a form that
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can be readily accessed. The present research concentrates upon knowledge-level sensor
integration, and a modified object model is proposed as a data structure that
facilitates the transfer and integration of multisensor information.

In order to accomplish a robotics task, models of the world and the objects in
it must be used. What are proposed here are unified models: they involve not only
structural information (e.g., the planar faces of an object’s surface), but also functional
information (e.g., how the object may be picked up and fit into another object). An
example of the overlap and interchangeability of the two representations is a threaded
fastener. A bolt may be described as a solid helix with an octahedral head, or as an
object which may be put in a wrench, fit in a hole, twisted, and is then not
extractable by translatory motion. Exactly which representation is used is a pragmatic
decision, because a sufficiently powerful reasoning system might be able deduce one
from the other, given certain facts about forces and shapes; but once provided with a
unified object model, it becomes very easy to monitor the execution of many tasks.

Unified models are especially useful in multisensor integration because they are
a place in which all of the attributes of an object — structural, sensor-based,
action-oriented, procedural, or otherwise — can be represented in a readily accessible
manner. For example, the final torque to be applied to a bolt in a fastening
procedure is both an attribute needed to act (twist), and a feature to sense for
purposes of feedback; the unified model provides a mechanism for expressing the
disparate pieces of information in a manner useful to other parts of the system.

Described below are examples of sensors, features, and actions; what a task plan
looks like; what an object model is; and a few example task plans to indicate the
power and limitations of this approach to integration of multiple sensors into the

control of robot motion.
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§ 3.0 Sensors, Features, Actions, and Tasks

During task execution, features and actions are the basic units by which
information about the environment comes to the control system, and by which the
environment is changed by the control system. These are abstract units in that they
are ways of describing what is happening, but are not physical devices (as are sensors
and actuators).

A sensor system, usually abbreviated as just ‘sensor’, is the hardware needed to
transduce from an environmental property to computer-readable form. A sensor is thus
a combination of a transducer and some sort of hardware interface. Examples of
sensors are interfaced cameras, rangefinders, tactile and force sensors, thermal sensors,
arm position and velocity sensors, and even simple limit switches on a gripper.

A feature is a property inferred from the information provided by one or more
sensors that may be used to reason about the environment. (In order to reduce
ambiguity, ‘extract’ will be used heareafter in place of ‘infer’; the latter term will be
used in talking about models and how one may reason about them.) Examples of
features are reflectivity of a patch, a visual edge, a tactile corner, the radius of a
tactile edge, the baryceatre of an object that is being gripped, or the position and
orientation of a link of a robot arm. Some of these, such as the edge radius, can be
best acquired from dynamic sensing by multiple sensors; others, such as the visual
edge, can be extracted from a single sensing incident by a single sensor. Features thus
may be specifically associated with a particular sensor or sensor type; or they may be
the result of integration of several sensors, or of the data from a single sensor over
time.

An actoator is a physical, computer-controllable device which can produce some
change in the eavironment. Obvious examples are the motors or hydraulic cylinders on
a robot arm; less obvious ones are the mechanisms used to focus or move a camera.
The robot itself can be viewed as an object in the environment that can be sensed
and moved, and that has further effects on the environment. An action is an
operation that may be performed on the environment. These can map in a simple

manner onto actuator changes, ¢.g. movement of a single link of an arm; or they can



be quite complex, eg. insertion of a peg into a hole, where the peg is held in a
gripper via a remote~centre compliance wrist.

Features, then, are useful ways of dealing with information from multiple
sensors, especially when the properties of some particular sensor are irrelevant to the
accomplishing of the task. The “logical sensors” of [Henderson et al., 1984] are similar
in concept; indeed, both approaches are basically aspects of sound systems design, in
which clean interfacing of modules is an aid to abstraction, and eases production and

maintenance of software.

§ 31 Task Plans

A task plan is a set of instructions (including those for sensory monitoring of
the environment) for accomplishing a higher-level goal. When multiple sensors are
available in a robot system, a framework for integrating them is needed. Task plans
provide such a framework by specifying when and bow the information derived from
a sensor is needed, and how it is to be used.

Execution of a task plan occurs within some limited context. For example, if
the task is to move the robot ann from one configuration to another, the execution
module does not necessarily know what else is in the workspace; if a failure occurs,
the current task plan may no longer be applicable, and some error-recovery procedure
(such as re-planning the task) will have to be performed. This view is proposed in
order to circumscribe the problem of monitoring the execution of the task plan; the
planner has considerable knowledge of the environment, and attempting to control the
execution and simultaneously attend to great detail is computationally expensive. Tasks
can often be broken into distinct, clean sub-tasks, and the execution stage is a

convenient place to implement such a breakdown.

The applicability of a task plan is delimited by parameters and envelopes. A
parameter is simply something which varies, and the variations of which can be
sensed. Examples are the position or velocity of a robot arm joint; the presence of a
tactile feature; and the spatial distance between the centroid of two world objects.

Associated with the parameters are envelopes, which are abstract surfaces that




partition the parameter space into two equivalence classes: acceptable and
unacceptable. Examples are positional limits of the robot joints, or the
visually-extracted distance between a part and the gripper.

Task plans are goal-directed to a significant degree. Many robot tasks are
well-constrained, with reasonably accurate models of parts and their approximate place
in the environment. This permits execution of the task to be interspersed with sensing
checkpoints, at which various features are expected and whose absence indicates
deviation from the plan. Provided that the parameter envelope has not been exceeded,
the task then specifies actions that may be performed to ensure proper execution.
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§ 40 Object Models

A broad distinction in object modelling can be made between structural models,
which describe the object’s physical structure, and functiona! models, which describe
bow the object interacts with the environment (including a robot system). Our system
combines these structural and functional descriptions into a single, wnified object
model. Unitied models simplify the integration of information from multiple sensors by
providing an intermediate representation, in which multisensor reasoning pertaining to
a particular object in the world can be readily expressed.

§ 41 Structoral Models

Structural models are those which provide a description of the geometry of the
object. [Requicha, 1980] gives an excellent discussion of solid modelling methods for
rigid objects. Some of the methodologies that might be used to represent objects in
robotics are: constructive solid geometry; boundary methods, such as surface patches
[Faugeras, 1984); sweep methods, including generalised cones [Brooks, 1981]; and spatial
occupancy enumeration, particularly octrees [Connolly, 1984).

The preferred structural modelling methodology depends upon the task domain,
and upon how the model will be used. Our initial requirements have been rapid and
convenient identification of surface and volume properties (local surface normals, axes
of symmetry, etc.), and ease of matching incoming features to the model, Uniqueness,
verification, and 3-D rotation for graphics display purposes are of much less
importance. After evaluating various structural modelling styles by these criteria, a
simple boundary model was selected as best meeting our needs.

Our structural model of an object is a set of polygonal faces, edge segments,
and vertices. The main advantage of this representation, for our purposes, is that an
interpretation/verification scheme can be used with tactile, visual, or direct range data.
This facilitates testing of all combinations of low-level and high-level sensor

integration, both simultaneous and successive.




Our system is an extension of [Grimson and Lozano-Perez, 1984]. Their system
represents objects as a set of convex polygonal faces, and recognizes objects by
employing 3-D sense data and applying simple, local geometric constraints. We have
extended their work by representing objects in terms of linear edges, vertices, and
texture patches in addition to polygonal faces. Edges and vertices provide elegant and
powerful geometric constraints to the recognition and localization procedures; because
our tactile algorithms extract the 3-D features by distinguishing among planar, edge,
and point contact, little additional computational overhead is required. Preliminary
analysis indicates that the combinatorics of recognition are not worse than, and are
usually much better than, those of a model employing only faces.

The model can be readily modified to represent other sorts of data. For
example, a patch of visually or tactilely observable texture can be hierarchically
attached to a face, or to a set of faces, and thus be used to either verify that a
given face is in a particular position and orientation, or to recognise that several
points must be constrained to lie on the same face.

This model does not require that the boundary primitives form a closed surface.
For instance, if a face is not observable — such as the interior face of an open but
opaque bottle — then there might be no need to include it in the model instance. It
is not possible to deduce volumetric information from this kind of model, so such
information would have to be separately; but parsimony is, in this case, secondary to
convenient access to the information.

§ 42 Fonctional Models

Functional models represent the object in a very different way, and are much
less explored. An example from psychology is Piaget’s description of children’s models
as practical; in these, the object in question seems to be known more by how it may
be felt and moved than by how it appears. Computational examples of functional
modelling include those of [Winston et al., 1983], where ‘cup’ is partly defined as a
liftable thing that holds certain other things; [Weymouth, 1985] also has a
partly-functional model in that part of the definition of ‘house’ includes procedures for

recognising a house, i.e. the way that a house interacts with a computer vision system.



It might be argued that many robotics systems already have limited, implicit
functional models of objects. For example, a description of how to torque a bolt into
a casting is also a description of one aspect of how a bolt can interact with certain
other objects (in this case, appropriately threaded holes). The limitation of this is that
generality and systematisation of the representation are lacking, and so it is hard to
build up a coherent description. Some schemes are slightly more explicit, eg., in
[Arbib er al., 1984), the grasp is shaped according to the type of handle of a mug, so
that their schemas include both sensory parameters passed by vision and touch and
task-related parameters for the coatrol of movement.

§ 43 Unifted Object Models

A unified object model is one in which both structural and functional attributes
are present. It is entirely possible that a system with sufficient reasoning power and
a sufficiently large knowledge base could deduce structural information from
functional, and vice versa. This, however, seems impractical. A unified mod:l is
proposed not on the criterion of conceptual parsimony, but rather on the criterion of
pragmatism.  Deductiors from thread descriptions to torques -happen to be
well-explored; such is not the case for grasping, which is still an open area of

research.

The instantiated object model serves as a local blackboard for the integration of
features extracted from the multiple sensors. Some processes perform the specialized
reasoning from existing object attributes and incoming sensed features, and add or
modify the object attributes dynamically. These are complemented by other processes
which reason from existing attributes to srobot actions. The functional attributes of the
object model provide a clean interface between the sensor-based features and the
robot actions, facilitating the integration process. Invocation of the processes in this
system is guided by the goal-directed task plan.

Unified models have the advantages of generality and Iutility in control and
assembly regimes, and of providing a systematic way of adding new semsors or feature
extractors into a high-level controller. Their disadvantages are redundancy of

representation (with the consequent problems of maintaining consistency), and difficulty
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in_reasoning. about functional aspects.
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§ S0 Using Multiple Seasors in Robot Systems

The basic problem which we address is how visual, tactile, and other sensors
can be dynamically integrated into a robot system so that the system can perceive its
environment, and thus accomplish a task in the face of incomplete knowledge of, or
unexpected changes in, the environment. Qur claim is that by employing features
extracted from the multiple sensors in a goal-directed manner, and using these
features in conjunction with unified object models, a robot system can dynamically
update its world model and respond to the new information so as to accomplish its
task.

The focus of our research is on the problems of object identification, object
acquisition, slip detection, mating of parts, and recovery from detected errors. Initial
investigation of this approach has been done mostly with a fairly simple experimental
setup in which the parameters can be widely varied. Variations of “peg-in-hole”
problems can serve, if they include identifying, grasping, and (of course) mating the
parts. Although the peg-in-hole problem is an apparently simple one, it embodies the
important problems encountered in many industrial tasks, and the results from our
research into this problem should be directly applicable to more complex assembly

problems.

Our experimental setup consists of a plate with various sizes of square, round,
and hexagonal holes, and pegs of appropriate shapes, sizes, and fitting tolerances.
Varying the parameters of the setup permits investigation of a wide range of
problems, e.g., similarity in the pegs tests identification and acquisition techniques,
fitting tolerances of thepegs in the holes tests the insertion procedure, and changing
the surfaces of the gripper and pegs changes the nature of slip and its detection.

The research issues which we are addressing can be illuminated by examination
of a simple example. Consider the task of fitting a peg into,'say, an hexagonal hole
of known dimension, location, and orientation. The basic steps of the task might be:

1) Find all pegs which might fit the hole, using stereo vision.
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2) If more than one target remains, examine them in turn using touch until a
suitable one is found.

3) Grasp target peg for transfer and insertion, and verify the grasp.

4) Monitor the transfer for peg slippage or collision with obstacles, using vision,
touch and force.

5) Insert peg in hole; monitor using touch and force, according to the closeness
of fit of the peg.

This apparently modest example provides an excellent illustration of the above issues.
These issues are pervasive, and can best be examined by elaboration of each step of
our example (keeping in mind the relation between the steps of the example and the
issues).
1) Find all pegs which might fit the hole, using stereo vision. An algorithm for
scanning the workspace, segmenting the depth map into objects (which can be
simplified by knowing in advance what objects are being sought), and finding
the location and orientation, or pese, of each peg. The pegs must be measured
(within stated error bounds) to eliminate inappropriate sizes; measurement is a
function of sensor accuracy, the algorithm, and environmental parameters such
as distance from the sensor. This step is deemed to have failed if no pegs are
visible, or if nonec have been found to be the correct size (within the error
bounds). In the latter case, recovery could be cither to re-scan with another
algorithm (a peg may have been missed), or to attempt to measure the pegs
with another algorithm.

2) If more than one target remains, examine them in turn using touch until a
suitable one is found. Execution of this step is performed only if: vision has
been unable to measure and classify pegs with sufficient accuracy; the pose is
known and can be achieved by the robot arm; and a sensing location for
distinguishing the object is known or calculable. An excellent approach would be
to identify, in the object model, areas that are useful in such a task (such as
the peg end, which is unique for each peg type). There is a trade-off in the
quality of the sensor, the accuracy of the algorithm, and the part of the peg to
be touched; ecg., if the sensor is very dense and senmsitive, many more
distinguishing points might be available. Another trade-off is generality of the
algorithm, in which tactile features are matched against the instantiated
attributes of the object model, against a specific algorithm designed to
accomplish this particular task with these particular objects.

3) Grasp target peg for transfer and insertion, and verify the grasp. The grasp
points may already be known; however, if the model is only partially
instantiated and no grasp points have yet been identified, they could be
calculated and inserted during this step. The model would contain a pre-defined
parametrised procedure for grasping that leads to transport and insertion. The
grasp point is a functional attribute of the model which can be inferred from
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the model’s structure, the attributes of the gripper, and which can be examined
and verified by multiple sensors. Grasp can be verified by using touch and
vision concurrently; this is an instance of the perception being highly focussed
and goal-directed, Using the wrist sensor, a simple manipulation can establish
the mass and first moments of the mass distribution. Failure to grasp properly
might result either in another attempt to grasp or, if repeated often enough, to
aborting the task. Advanced error analysis could involve determining if the
grasp point was poor for this peg in this pose, and hence the selection of an
alternative grasp point.

4) Monitor the iransfer for peg slippage or collision with obstacles, using vision,
touch and force. Detection of slippage is, in itself, a major topic for the
proposed research; rather than attempting to design special-purpose slip sensors,
we will take a multi-sensor approach to its solution. We believe that slippage of
the peg can be deduced from orientation and position changes of the peg by
touch; sudden acceleration detected by a force sensor caa indicate slippage or
collision; and a bhighly-focussed vision procedure can observe slippage and
collision, because the manipulator path is known and the object well modelled.
(Real-time implementation of these monitoring techniques is dependent upon the
bardware available.) If the slippage is minor, the task can coatinue; if it is
moderate, improving the grasp (see step 3) may be the answer; and if slippage
is severe, the peg must be located and grasped again (steps 1 and 3, modified
by the knowledge that this is the correct peg).

5) Insert peg in hole; monitor using touch and force, according to the closeness of
Jit of the peg. The insertion procedure (parameterised by the closeness of fit)
will be a special-purpose procedure attached to the object model; the features it
uses are dependent on its algorithm. The insertion is not a general-purpose one
because object shape has an effect, e.g., the causes and cures for pmming of

round pegs and hexagonal pegs are different. There are significant problems
with using vision or direct-ranging sensors in this task; occlusion and accuracy
given likely values of distance and perspective parameters must be dealt with
for these sensors to be useful in controlling approach and insertion.

Initial testing of multisensor integration, using this experimental setup, has been with a
combination of our existing equipment and simulation.

The location and orieatation of the peg on the worktable is found from stereo
vision, using the method described in [Ellis, 1985} This method produces a sparse
depth map of points on the object; the map is sufficient for acquisition by a simple
gripper, and can be used to determine that the object is elongated, but in typical
viewing scenarios is not a dense enough map for identifying which of several pegs bas
been located. Hence, the object is grasped with a parallel-jpw gripper, which is
instrumented with a tactile array sensor developed in our Laboratory [Begej, 1985).



Once the object is touched, a great deal of information is available. As
described in [Ellis, 1984], we can extract vertices, lines, and face features (as well as
texture features, if the peg is in any way textured). Once the position of these
features on the array is known, their three-dimensional position and orientation can be
deduced from the kinematic structure of the gripper and arm.

These eclements can then be used to deduce the type, location, and orientation
of the peg (within symmetry classes) given errorful data. The pegs are simple in
geometry, so deducing an insertion grasp is not difficult; the grasp is verified by
extracting the orientation of the major axis of contact on the tactile array.

The transfer procedure is monitored by continuing to extract the major tactile
axis, and by watching the worktable to determine if a new object, i.e. the peg, has
been introduced. The insertion procedure is elementary — the principal problem has
been lack of adequate force sensors, so insertion is simulated rather than real.

This partly simulated system has shown that for simple tasks, multisensor
integration can be achieved with a unified object model. The task plan indicates
which features are necessary at each stage, which sensory processes are needed to
deduce structural or functional attributes of this instance of the object, and which
motor processes are required to produce the desired physical actions. Monitoring of

error conditions occurs throughout.

These experiments have shown that attachment of simple procedures and
functional features to a structural model permit ready development of goal-directed,
multisensor robot tasks. Our future work will be the improvement of these methods,
extension of the system to include other sensors, and further analysing the ways in
which high-level integration of multiple sensors can be achieved in robotics.
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