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Abstract. In highly parallel computation, where a large number of closely coupled
processors cooperate on a single task, communication overhead is often the dominant
factor in efficiency. We report here on parallel code optimizations designed to reduce
this overhead. Our optimigations are targeted for synchronous machines. Because
we have found such machines to be difficult to program, we start with high-level
asynchronous code which we automatically convert for synchronous execution before
applying our optimizations. Using relatively simple transformations, we are able to
demonstrate significant performance improvements for many programs.



In highly parallel computation, where a large pumber of closely coupled processors
cooperate on a single problem, communication overhead is often the dominant factor in
efficiency. This is particularly true for nonshared memory machines where processors
communicate entirely through message transmission. Message transmission may be either
asynchronous or synchronous. I it is asynchronous, the overhead includes the execution of
handshaking protocols and idling (“busy waits”) introduced by the underlying system to
delay a process attempting a read before the corresponding data is available or a writeto a
full buffer. If it is synchronous, the overhead includes idling explicitly inserted by the pro-
grammer to insure that corresponding reads and writes occur simultaneously (handshaking
is not needed). In eil_;her case, a program’s runtime performance can be significantly de-
graded. We report here on optimizations aimed at reducing communication overhead for

architectures with synchronous capabilities.

Our optimigations have been implemented as part of the Poker Parallel Programming
Environment [1] which was designed to provide access to highly parallel machines in the
Blue CHiP family of architectures [2]; specifically, Poker was designed as the front end
for the Pringle, a 64 processor CHiP prototype[3]. Processors in the CHIP architecture
interact through message transmission which, as currently implemented for the Pringle, is
asynchronous. That is, message values are buffered with writing processors automatically
delayed until buffer epace is available and reading processors automatically delayed until
data is available. CHiP processors, however, have access to a common clock and so it would
also have been possible to implement truly synchronous communication in which processors

are never delayed and corresponding 1/O operations are timed to occur simultaneously

without any handshaking.

In cases where processes have large, runtime variations in their relative rates of 1/0
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. (because for example of conditional branches in which the parallel clauses do not contain
the same number or type of I/O operations), asynchronous execution is preferrable. For
the cases without such variation, however, synchronous execution often leads to perfor-
mance improvementsboth because I/O operations do not require handshaking and because
synchronous programs have a predictability which permits a number of program restruc-
turing optimizations. At the same time, we have found that it is difficult to capitalize
on this potential efficiency because synchronous programming is extremely difficult. The
programmer must consider the relative progress of all processes simultaneously; if this is
done at a low level, he is inundated with details andl his code is often machine and problem
size dependent; if it is done at a high level, he must make worst case assumptions about the
timing of corresponding blocks of code which introduces unacceptable delays. In addition,
the optimal patterns of processor interactions are often complex and non-intuitive. .As.a
result, our approach is to allow the programmer to use the high-level, asynchronous com-
munication protocols of XX [1] (the programming language used within Poker to specify
gequential code) which we automatically convert for synchronous execution where practi-

cally possible.

We have previously reported on algorithms for accomplishing this conversion, a process
we called coordination [4]. In the next section, we discuss coordination as it is implemented
in the Poker Parallel Programming Environment and we demonstrate that coordination of-
ten achieves significant improvements in runtime performance. In the following section, we
use co;rdination as the basis for parallel code optimigations that result in further improve-
ments for many programs. Finally, we discuss areas for additional research including the
scheduling of multiple processes on a single processor and generaligations to architectures

in which processors are closely coupled but do not share a common clock.

2



COORDINATION ALGORITHMS

Within Poker, coordination occurs as the second phase of the XX compiler. In the first
phase, an intermediate assembly code is produced with annotations for the coordinator
(including the classification of each instruction - operation, read, write or branch - and
the time required for that instruction). The coordinator then restructures the assembly

code into synchronous code which is passed to the final assembly phase.

Although theoretically any program that runs with finite message buffer space can be
coordinated, it is not always practically advantageous to do so. For example, the simple
program pictured in Figure 1 can be converted to synchronous mode only if additional

communication is inserted to “inform® Process B of the branches taken by its neighbor.

PROCESS A PROCESS B
N ]
write compute read
compute compute compule |
E—

compute

Figure 1. A two process system that requires additional communication for syn-
chronigation.

Since communication costs are usually significant, it would be more efficient to leave this
program for asynchronous execution. Consequently, we do not coordinate all programs but

limit our attention to those that can be converted without the addition of communication.
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This restricts us to programs with very simple control structures: we can allow only
unnested loops and conditionals with balanced I/O (a conditional has balanced 1/0 if
both of its clauses contain the same number and type of 1/O operations; they do not have
to be in the same order). It should be noted that almost of the programs written for the
CHiP architecture that we have encountered meet these constraints. This is because CHiP
programs are written in “phases” corresponding to different interconnection structures and
we coordinate only a single phase at a time. Within a phase, we encounter only very simple
control structures. More general programs will have to be decomposed into appropriate
segments before our techniques can be used. In any case, programs that we can not convert
are not altered in the coordination phase; programs that we can convert are coordinated

with one of two algorithms (previously described in detail [4]).

Our first algorithm works on any input program subject to the above restrictions on
control structure. It forces all processors to execute their loop iterations in lock step by
simulating a single iteration and replacing busy waits with explicit idle operations, as in
the example shown in Figure 2. This results in a performance improvement if the cost
of the original, asynchronous I/O plus waits is greater than that of the new, synchronous

I/0 plus inserted idles.

Table 1 gives the results of coordination with this algorithm for a variety of parallel pro-
grams. Since the conversion algorithms do not change the computation of the programs*,
they can only reduce communication overhead , the time required for handshaking pro-
tocols, explicit idles, and busy waits. We therefore express our results in terms of the

percentage reduction in communication overhead. The table gives the computation time

* We do not, at this time, do any dependency analysis, and therefore, we re-order 1/O operations (saving
and later restroing the appropriate values); we do not re-order any other operations.
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Figure 2a. An asynchronous system and its communications graph. Blank boxes
denote computation; subscripts indicate the destinations of read and write opera-

tions.
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Figure 2b. The synchronous version of the above program as produced by our first
coordination algorithm. Blank boxes denote either computation or inserted idles.

Figure 2.



Program Base Asynchronous Synchronous Overhead
Time Loop Time Loop Time Reduction
Grid Sort [5]
4x4 2782 6508 4754 47.1
8x8 2782 6508 4754 47.1
LU Decomposition [6]
4x4 1377 2014 2488 10.2
8x8 1377 2936 2788 9.5
Matrix Multiplication [6]
(cyclic) 4x 4 1325 2509 2069 371.2
(cyclic) 8x 8 1325 2605 2262 26.8
Multigrid (7]
4x4 4420 10157 10109 0.8
8x8 4420 11017 10872 2.2
Ring Maximum
10 nodes 823 1439 976 75.2
20 nodes 823 1446 1326 10.3
30 nodes 823 1448 1326 19.5
40 nodes 823 1464 1328 21.5
Transitive Closure [8)
4x4 3802 7252 §903 30.1
8x8 7210 15486 11314 50.4
Tridiagonal Linear
System Solver [9)]
4 nodes 1619 3040 1778 89.0
8 nodes 1619 3007 1966 75.0
Vector/Matrix Multiplication [6]
4 nodes 1232 2645 1966 48.1
8 nodes 1232 2627 2009 443
Dynamic Programming (8]
4x4 3584 5844 6727 -39.1
8x8 8200 15240 26058 -153.7
Fast Fourier Transform {10}
4x3 1708 2483 3149 -85.9
8x4 ’ 1708 2507 4487 -247.8
Matrix Multiplication
(acyclic) 4 x 4 1325 2799 2064 49.9
(aeyelic) 8 x 8 1325 3021 2168 50.3
Tree Summation
15 nodes gél 1442 2758 -228.5
63 nodes 861 1434 4308 -501.6

Table 1: Communication overhead reduction achieved by coordination with Algorithm 1. The tested pro-
grams are listed in the first column with annotations giving the number of processors and their configuration.
The computation time for a single iteration is listed in the second column in microseconds. Asynchronous
and synchronous loop times are given in the third and fourth columns, also in microseconds. Reduction in
communication overhead is given in the final column in percentages.



_for a single iteration of the algorithm excluding all I/O overhead, a value we call the
base computation time,the asynchronous iteration time (averaged over ten iterations), the
synchroniged iteration time, and the percentage reduction that we have achieved. Where
the values differ from processor to processor, the percentage is based on the processor with
the smallest, initial overhead. It should also be noted that in some cases — such as the
LU decomposition and the cyclic matrix multiplication - our performance improvement
decreases as the number of processors goes from 16 to 64. While we have not been able
to run larger simulations, we believe that this is due to ®edge effects® in the smaller
configurations unduly influencing timings. We expect that this effect will level off, making
the 64 processor results more representative of the improvements that we would see on

larger machines.

As can be seen, our first algorithm does well on programs such as matrix multiplication

and the tridiagonal linear system solver which have cyclic communication graphs as shown
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Figure 3. Cyclic communications graphs for Matrix Multiplication (left) and Tridi-
agonal System Solver (right). Nodes represent processes and edges their intercon-
nections.




in Figure 3. It does not do as well on programs with acyclic communications graphs such
as the FFT or the Tree Summation pictured in Figure 4. This is in part because the
asynchronous execution of programs with acyclic communication patterns results in the
pipelining of iterations. The second of our coordination algorithms, which works only for

programs with acyclic communications graphs, incorporates pipelining. The loop

A 4

Figure 4. Acyclic communications graphs for FFT (left) and tree summation
(right).
iterations are “unrolled” (starting with the code for “source” processes and queuing 1/0
where necessary), until all processes are executing together. This saturates the pipeline as
shown in Figure 5. This second coordination algorithm achieves the performance improve-
ments shown in Table 2. Notice that while the improvements are not unifbrmly good, they

are considerably better than in the case of Algorithm 1.

In either case, the improvements in runtime performance that we have been able to

achieve with coordination alone are limited. To some extent this is because of the char-



Process A:
Process B:
Process C:

Process D:

(@

(

TATD ]

wp, wWo >‘

Figure 5a. An asynchronous system.
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Figure 5b. The synchronous version of the above program as produced by our first
coordination algorithm.
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Figure 5c. The synchronous version of the above program as produced by our
second coordination algorithm.

Figure 5.



Program Base Asynehronons Synchronous Overhead
Time Loop Time Loop Time Reduction
Dynamic Programming (8]
4x4 3584 5844 4644 53.1
8x8 8200 15240 11503 53.1
Fast Fourier Transform [10]
3x4 1708 2483 2590 -13.8
4%x8 1708 2507 3213 -88.4
Matrix Multiplication
(acyclic) 4x 4 1325 2799 2662 9.3
(acycl.ic) 8x8 1325 3021 2728 17.3
Tree Summation
15 nodes 861 1442 1461 -3.3
63 nodes 861 1434 1504 -12.2

Table 2: Communication overhead reduction achieved by coordination with second algorithm. Columns are
as in Table 1.

acteristics of Pringle prototype; in particular, much of its I/O protocol is implemented in
goftware and communication costs are dominated by the time spent moving data pointers
rather than by the time spent in data transmission. This may well be different on other
hardware. Even on the Pringle, however, the effects of coordination can be improved
because the synchronous programs it creates are amenable to a number of parallel program

optimizations.

COORDINATION AS THE BASIS FOR PARALLEL CODE OPTIMIZATIONS

Synchronous programs — whether they result from the coordination of asynchronous
code or from the direct, hand coding — usually contain explicit idles, inserted to maintain

synchronisation. For the simple control structures that we allow, this insertion occurs in

three places: before I/O operations (reads or writes) whose corresponding operation will
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not be ready to execute*; at the end of the shorter of the two clauses of a conditional
branch, padding them to the same length; and before the final branches of loops, insuring
that all processors exit their loops together. We have implemented two optimisations for
paralle], synchronous code that remove as much of this explicit idling as possible. The
first optimisation bubbles idles to the bottom of loops where they become candidates for
removal and the second optimigation reorsents loops so that synchronization is maintained

without idling.

The bubbler attempts to move idles to the end of loops where they can potentially be
eliminated. It scans the synchronous code for all processes from top to bottom; when an

idle is encountered it tries to move it toward end of the loop as follows:
- idles occurring before an operation other than an I/O or branch are moved over that
operation (Figure 6a)
and

- idles occurring before a read operation are matched with idles before the corresponding
write and equivalent portions of both idles (equal to the smaller of their lengths) are
moved over the read and write (Figure 6b).

In this way, the idles appear to “bubble” toward the end of the loop where they accumulate
as shown in Figures 7a and 7b. After all possible moves are made, the minimum pre-branch
idle time can be skimmed from each loop without changing either the synchronization

characteristics or the computation performed by the program, as shown in Figure 7c.

* In fact, our coordinator makes various decisions in scheduling I/O operations — such as whether to
enqueue or immediately transmit data that is to be written or whether to begin dequeing data prior to
the actual start of its read - that may result in idles being inserted into the code for both partners of
an 1/O operation.
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Figure 6a. Profile of two instances of code motion over a non-I/O operation. Code
profile on left before move; code profile on right after move.
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Figure 6b. Profile of a single instance of code motion over matching I/O operations.
Code profile on left before move; code profile on right after move.

Figure 6.
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Figure 7. Profiles of loops subject to bubble optimisation; (a) before optimisation,
(b) before the “skimming® process, and (c) after excess idles have been removed.
Loop boundaries remain synchronized.
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Bubbling can not eliminate all idle time but it does guarantee that I/O operations will

occur as early as possible within the schedule created by the coordinator.

To maintain synchronous execution, the loop times of all processors must be identical
which is usually achieved by forcing all processes to start and finish their iterations to-
gether. In reality this is not necessary - it is only necessary to insure that the loops are of
the same length. This distinction is important for many programs, especially those with
acyclic communications graphs where we can identify sources and sinks for the data. In

these cases, the computation of a particular processoris delayed with respect to the
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Figure 8. Profiles of loops subject to reorien:ation; (a) before optimization, (b)
before optimigation with loop computation lined up, (c) after reorientation before
“skimming® of excess idles and (d) after excess idles are skimmed. Loops are reori-
ented with idles at the end of the loop. Since boundaries are no longer synchronised
the loop initialization must also be modified (not shown).
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loop start, by a time proportional to its distance from the furthest source. The resulting
computation then is clustered between two idles whose total duration over all processors
is roughly constant; for some processors a substantial portion of this idling is trapped at
the top of the loop. Loop reorientation, as shown in Figure 8, allows the trapped idle time

to be relocated to the end of the loop where it again becomes a candidate for removal.

The results of these two optimigations are shown in Table 3 with the final column
showing our best runtime performance improvement. As can be seen the optimizations
result in further improvements over coordination, doing particularly well on the dynamic
programming, FFT, acyclic matrix multiplication, and tree summation algorithms. Code
produced by Algorithm 1 improves more with optimisation than that produced by Algo-
rithm 2. This is to be expected since Algorithm 1, in forcing all iterations into lock step,
tends to add more idles than Algorithm 2. Notice also that the code produced by Algo-
rithm 1 after optimization is almost always better than the code produced by Algorithm 2.
This is an artifact of the limitations on the size simulation that we can run; as the machine
gige increases, Algorithm 2 will win out on programs with acyclic graphs. (This implies
that our techniques may not always be beneficial since Algorithm 2 does not do well on
the FFT, for example. We are looking at characterizations of the class of algorithms that
we can successfully optimige. In the mean time, it is possible to compare our results to

sample runs in order to determine whether or not to utilize the synchronous version.)

The optimizations that we have implemented are very simple; in particular, we do not
do any analysis of program data dependencies and so we can accomplish only limited code
movement. Even our simple techniques, however, often result in impressive performance
improvements and we expect that the addition of more sophisticated dependency analysis
would allow us to do even better, perhaps reducing the time spent on computation as well as
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Program Algorithm 1 Algorithm 1 Algorithm 2 Algorithm 2 Best
Reduction Reduction Reduction Reduction Result
Optimized Optimized
Grid Sort (5]
4xd 471 411 N/A N/A 471
8x8 411 411 N/A N/A 411
LU Decomposition |6]
4x4 10.2 174 N/A N/A 174
8x8 9.5 9.5 N/A N/A 9.5
Matrix Multiplication [6]
(cyclic) 4 x 4 37.2 37.2 N/A N/A 37.2
(cyelic) 8 x 8 26.8 26.8 N/A N/A 26.8
Multigrid [7]
4x4 0.8 25 N/A N/A 2.5
8x8 2.2 4.4 N/A|  N/A 44
Ring Maximum
10 nodes 75.2 15.2 N/A N/A 75.2
20 nodes 19.3 19.3 N/A N/A 19.3
30 nodes 19.5 19.5 N/A N/A 19.5
40 nodes 215 21.5 N/A N/A 215
Transitive Closure (8]
4x4 39.1 45.2 N/A N/A 45.2
8x8 50.4 53.4 N/A N/A 53.4
Tridiagonal Linear
System Solver [10]
4 nodes 89.0 80.0 N/A N/A 89.0
8 nodes 75.0 785 N/A N/A 78.5
Vector/Matrix Multiplication [6]
4 nodes 48.1 515 N/A N/A 51.5
8 nodes 44.3 473 N/A N/A 413
Dynamic Programming (8]
4x4 -39.1 91.2 53.1 57.7 91.2
8x8 -153.7 17.0 §3.1 53.1 §3.1
Fast Fourier Transform [10]
4x3 -85.9 86.2 -13.8 -74 86.2
8x4 -247.8 86.6 -88.4 -26.2 86.6
Matrix Multiplication
(acyclic) 4 x 4 49.9 49.9 9.3 9.3 9.9
(acyclic) 8 x8 50.3 50.5 173 17.3 §0.5
Tree Summation
15 nodes -226.5 48.7 3.3 32.2 48.7
63 nodes -501.8 48.0 -12.2 58 48.0

Table 8. Results of optimization combined with coordination. All values in percentage reduction of commau-

nication overhead.
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that spent on communication overhead. It should also be noted that our results are, in
some cases, sensitive to the original order of I/O operations; we are investigating the

feasibility of automatic re-ordering of independent I/O operations for maximum efficiency.

AREAS FOR FURTHER RESEARCH

We are currently pursuing two areas for further research: the extension of coordination
to the scheduling of multiple logical processes on a single processor; and its generalization

to asynchronous architectures.

It is rarely the case that the logical process structure of an algorithm exactly matches
the physical structure of the target architecture. More often, the two structures differ
and frequently this difference is in cardinality [11], that is, the number of logical processes
exceeds the number of physical processors. When this happens, the logical structure is
mapped onto the physical structure in such a way that multiple processes execute on a
processor. In general, these processes must be multiplexed to avoid deadlock and thus incur
the substantial overhead of context switching. If the original program can be coordinated,
however, all of the processes on a processor can be combined into a single, sequential
process without introducing deadlock. These newly created processes can then be run
without context switching. As a simple example, Figure 9 shows a four process system

after coordination and its mapping onto a two processor system.

Another area for further consideration is the extension of these ideas to systems in
which processors do not share a common clock. Our techniques will not be useful for truly
distributed systems in which no assumptions can be made about the relative timing of

processors but we expect that they will be useful for many of the proposed highly parallel
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machines which are closely coupled and designed for single users (making it possible to
put bounds on the relative differences in execution speeds). We are investigating the use
of coordination as the basis for scheduling code across such processors, looking specifically

at the distribution of forall and doacross loops.

PROCESS A: writep readp | | |
PROCESS B: wrilep | |readp

PROCESS C: writep readp
PROCESS D: read, —I readg readc I compute | | writea |ﬂ“ teg fwrc’ tec

Figure 9a. Four Process System.

PROCESSOR 1: write; | (writes | | : read; | |reid,

PROCESSOR 2: ‘rcad. ] Ireadl l ILead I[computq wrile; I lwn‘te, J lread

Figure 9b. Mapping of Four Process System onto Two Processors.

Figure 9. Coordinated four process system and its mapping onto a two processor
architecture. Processes A and B have been mapped onto Processor 1 and Processes
C and D have been mapped onto Processor 2. Code shown is for a single iteration;
blank boxes denote idles ( computes are s own explicitly); subscripts indicate the
destinations of read and write operations. Note that the I/O between Processes C
and D has been removed (replaced by internal, unsubscripted reads).
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CONCLUSIONS

We have used coordination ~ a technique for converting programs from asynchronous
to synchronous execution mode — as the basis for several simple parallel code optimisations.
We have found that these optimisations achieve a significant reduction in communication
overhead and we expect that, as we incorporate more sophisticated dependency analysis,
these techniques will become even more valuable. In addition, we expect to be able to
extend these techniques to optimise parallel segments within more complex programs for

closely coupled (although not necessarily synchronous) architectures.
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