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L. Abstract

Speakers have expectations about listeners that enable them to produce coherent
discourse. These expectatations should be incorporated into machine tutors so that they too
can gencrate expectations about their student users. We intend to show how expectations
can be used to anticipate a user’s choice of responses based upon the dynamics of the
speaker/listener interaction. The paper describes a way to formalize the constraints and
operations in discourse and how to use these constraints to transform interpretation and
speech act knowledge into computational elemeants, such as plans and rules.

2. Discourse copventions

One of the largest theoretical stumbling blocks in the design of effective machine
discourse systems is the lack of an adequate representation or understanding of discourse
conventions. Human speakers employ subtle linguistic cues to shift topics or provide
supplementary knowledge. Listeners use these cues to set Up expectations about the
underlying structure of the discourse and to relate current utterances to preceding ones.
The listener’s expectations are what the speaker tries to anticipate and to deliberately
control.

The aim is to build a machine speaker that represents these conventions and responds
toitsuserbasedoninferencesaboutamodeloftheuserorthediscouuehistory.ﬂaﬂy
computer discourse systems controlled the flow of discourse producing canned texts that
were typically the same regardless of the user’s knowledge or the discourse history.l'z
More recent interface systems have begun to tailor their responses to the user and discourse
context34 The basic problem in designing machine discourse is how to make inferences
about the user and how to have these inferences govern the form of the text produced”?

For instance, the adjustments that a computer tutor would make are dependent upon
its specific experience with a student and a variety of experiences would lead to a variety
of responses. Thus we would want a computer tutor to interact with a knowledgeable
student in a way that is fundamentally different, both in style and conteat, from the way
it would engage a confused one. It is not intended that the computer simply produce
correct answers in response to a student’s wrong answers; rather before responding to a
wrong answer, the machine should sesolve issues such as:

* *We recognize that & machine cannot know with certainty what a listener knows, neither can a
listener know what a machine knows; a machine cannot be cmnicient or clairvoyant. However, the
machine can deduce, on the basis of cvidence, something about what the listener assumes. These
assumptions can be used to govern the form of the text gencrated.



>> whea and how to stop to explain the wrong answer;

>> whether it is preferable to explain the error or to start a lengthy
exploration of the student’s knowledge;

>> whether to allow uncertainty about the student’s knowledge to persist
temporarily while it explores a potential misconception; and

>> how bard it should work to understand why a student answered a question
incorrectly or how much effort should be exerted to resolve questions about the
student’s presumed knowledge or misconceptions.

Though many areas of research on understanding discourse conventions are interesting
and several problems are ripe for a solution, we have focused on the role of the speaker
* because 'we want to study discourse in the context of tutoring. In tutoring, perhaps more
than in other types of discourse, the speaker (the tutor) chooses conversational moves based
on the responses of the student. There are many occasions in which a tutor will interpret
what a student says and “read into” the answer additional material to update his current
model of the student’s knowledge. Based on these considerations, a human tutor would
adjust the discourse; a machine tutor should do the same. Tutoring provides us with a rich,
well-contained field in which to study discourse conventions from a speaker’s point of view.

A second reason to work in tutoring is because of the wealth of research on
language and tutoring in our eavironment at UMass. One research effort has focused on
natural language oomprehension,s’s generation,7 discourse eontrol,8 and legal msoning.9
Ancther effort has focused on tutoring discoursel0 and a related effort at Yale has focused
on studeat errors!! and the learning and teaching of Pascal looping constructs.1213 As a
result of this extended rescarch environment we have been able to formalize knowledge
about human tutoring protocols, understand the epistemology of Pascal looping constructs
and have a realistic way to accumulate a rich model of the user. Therefore, we have a
domain where the system can select the appropriate content to discuss with the student
based on an understanding of its audience, in addition to in-depth knowledge of language
and tutoring.

This paper discusses scveral rescarch areas being pursued, including problems to be
solved, recent research in the area, and conclusions that might be drawn about discourse
conventions as a result of our studies. It also presents an example of how this
computational mode! is being used to build a robust tutor for Pascal programming. Some
of the research areas to be discussed are

o discourse control - how to focus on appropriate topics, errors or examples;
o knowledge representation - how to create a data structure for the

codification and interpretation of utterances; and

o patu angua eneration - how to produce appropriate text for the
situation,



3. it nin

Discourse is often described in qualitative terms:

“the speaker was [helpful] [abrupt] [angry]”
“the student was [confused] [unprepared] [sharp]”
“the topic was [important] [understood] [trivial]”

Awareness of the effect of an utterance on the overall interpretation of the discourse is
also described in qualitative terms such as:

“the example was useful”
“the argument was weak”

Figure 1 contains other analyses of discourses from a psychologist, computational linguist
and psychiatrist. In each case, the researchers have teased out implicit rules of discourse
based on how a speaker should interpret his listener’s level of knowledge or understanding.
The impact of these rules suggests that people would be better speakers or tutors if they
followed implicit rules. To represent these rules in the machine tutor and to enable it to
demonstrate the same aspects of good discourse conventions alluded to in the analyses, is
the present goal of our research.

Toward this end, we have begun to capture several of the features we recognized in
the analyses of Figure 1. For example, the analyses refer to inferences (in italics) about
the student’s prior knowledge, or the “mutual” knowledge of the two conversants. Our
system will recognize qualitative inferences such as when a *topic is generally known,
*student has background information, or *student is confused.

Also represented in the analyses are qualitative inferences about knowledge,
particularly mutual knowledge:

“what the student already knows,”

“deeper level of analysis,”
“shared focus of attention.”

These inferences are not defined or explained in the analyses and their casual use suggests
a degree of subjectivity about quantities such as “knowledge”, “confusion”, or “atteation”.
In addition, to understand these metrics the reader is expected to understand processes such
as “building on what a studeat knows”, “raising issues”, and “establishing a shared focus of

attention.”

Representing these complex discourse conventions and metrics requires using qualitative
expressions of knowledge. There is evidence from other ficlds that qualitative reasoning
and representations are useful: eg., waching,r’ Atrtificial Intelligence (Al),18 and the domain
of phy:ies.19 Tracing qualitative inferences in a discourse model will be relatively
intractable, compaired with, for example, tracing speech acts. Qualitative inferences will be
multiplexed between and within other streams of inferences, some being initiated or
continued while others are simultaneously being started. The result is that the intent of a
particular stream of inferences can become confounded. Yet, we suggest that it is worth the



From Apalysis and Synthesis of Tutoring Discourse:4
[A tutor] builds on what the student already knows [and] can question him about his
previous knowledge. Then he can teach new material by relating it to that previous
knowledge (pg 50).

[A tutor] can respond directly to student errors, . . . question him to diagnose the
confusion and can provide relevant information to straighten him owt. [pg 50]. :

The question raised the issue of . . . moving [the discourse] to a deeper level of analysis
than made so far [pg 67].

From Plain Speaking: A Theory and Grammar of Spontancous Discourse:lS

Much of the implicit Anowledge speakers and listener s share is knowledge of the
particular components of various conversational moves — what kinds of utterances must
be made in order to fulfill varicus discourse functions ([chapter 3, pg 1).

From Mm%l Communication Deviance and Schizophrenia; A Cognitive-Developmenta]
Analysiz:!
A failure on the part of the speaker to establish and maintain a shared focus of attention
with one’s listener [pg 68].

A teadency to equivocate concerning ome commitment to one’s  statements and a
tendency to vacillate concerning the content of one’s statement [pg 68].

A lack of specificity with regard to the referent, unexplained contradictions . . .
inappropriate responses suggestive of a failure to grasp the infent of a question by the
interlocutor [pg 62).

[A failure] to take into account the cognitive needs of the listener [pg 62].

Figure 1: Analyses of discourse conventions from the literature.

effort to try to make qualitative inferences because they provide a more powerful
teprelentationoftheintentionofthespeaketthando:peechacu.lnparﬁmlar,theym
more predictive of subsequeat utterances and can be used to propose and elucidate a
speaker’s inteat or the direction of the discourse. We suggest that tracing implications to
evaluate the effect or goal of a discoure provides a sound framework for understanding
discourse.
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4. Maxims of twforing

We suggest that tutoring consists of following certain maxims of discourse conventions
(inthesameanaeusedbyGﬁcezo)andwcanalyzemrchmchasthatin["igumlto
identify these maxims. We expect to be able to evaluate the reasonableness the tutoring
discourse we produce by recognizing whether the maxims arc satisfied. In this section we
define some tutoring maxims and outline how we intend to monitor discourse based on a
notion of maxim satisfaction.

In order to model the qualitative effect of utterances we first define conversational
moveclasses as groups of utterances that have. the same rhetorical effect, such as question
topic, summarize toplc, acknowledge correct answer and provide example. We suggest that
a tutor’s choice of conversational move indicates his (its) “intention” in the sense that a
move sets up expectations in a listener. For instance, a conversational move such as make
accusation typically would elicit negative responses from a listener. For instance, consider
some queries a tutor might pose to a student about loop execution in a Pascal program, as
suggested in Figure 2.

(provide-example)
(question-kypo)
If the input is 10, how many times would your loop execute?

(question-topic-value)
Do you know how many times your loop would execute?

(make-a-claim)
I bet you don’t know how many times your loop will iterate.

(make-an-accusation)
You couldn’t possibly understand loop execution.

Figure 2: Reading implications from utterances.

Each seatence has a similar locutionary force, yet each conveys a different intention on the
part of the speaker. Further, there is a continuum such that a tutor may couch his
statements at any place along the higher ead. The implication drawn would be of close
attention, evea commitment, to the student. On the other band, a statement at the lower
end would imply non-commitmeat, non-involvement and possibly antagonism. Relative to
the four utterances above, we say that use of a phrase representing a certain point on the
scale implies that the tutor chose pot to phrase the utterance by another expression lower
onthelist.‘mismsoningonthepanofthelistcnetislicensedbytheGﬁmnzomaxim
of manner. Grice has defined very general maxims for discourse, that are evocative, yet
not detailed enough to provide a basis for a computational theory of discourse by
themselves.



Our goal is s propose a computational model of tutoring discourse that elucidates
and refines these maxims and links them with specific conversation moves. Ultimately
inferences about cosversational moves will be used to guide the system’s choice of
uttcrances. The tmtoring maxims that we propose are derived from Gricean maxims for
discourse and are taffored for tutoring. They include:

Quality: be committed and interested in the student’s knowledge;
be sepportive and co-operative;
do not take the role of “antagonist”

Quantity: be specific and perspicious;
use a minimum of attributes to describe a known concept;

Relation: be relevant;
find a student’s threshold of knowledge;

bring up new topics and viewpoints as appropriate

Manner: be in control;
allow a student to determine a new topic;
allow context to determine a new topic.

Figure 3 further discriminates these maxims in terms of move-classes that support
cach one. Maxims are listed on the left and the sequence of move-classes that supports
them on the right. By being attentive to moves during discourse, a system can monitor
its own behavior and guide subsequent moves 50 as to be consistent with the maxims of
good tutoring. The system can identify maxims on the left, and invoke the move-class
on the right that are associated with them. For instance, if the system plans to be more
organized, it can outline toplcs, Introduce topics, terminate toples, and then review
toplcs. Alteratively, if the system needs to record the “effect” of its actions on the
listener, it can list the actions taken by the tutor and determine if its own actions are
consistent with certain maxims. For instance, if the interaction with the student could
be described as an ordered set of utterances, such as question student, acknowledge
answer, propose misconception, and provide example, the overall effect of the actions
could be to determine the student’s threshold of knowledge. Whether or not that
threshold was determined is a non trivial, and as yet unanswerable, question.

ThetableinFigure3canbereadintwodirections:&omlefttorigbtitallows
the system to select a maxim and plan subsequent tutoring discourse by invoking the
associated sequence of moveclass; from right to left it provides an abstraction of the
system’s activities so that the effect of the system, interms of the expectation of the
listener and the maxims of good tutoring, can be expressed.




Maxims

Be co-operative:
~work with studeat

Be committed:
~ghow interest

—~support student

Be relevant:
~find student’s threshold

~teach at threshold

Be organized:
~structure domain

-~complete information

Be in control:
~strictly guide discourse

Conversational
move-classes

explain topics

summarize topics

clearly terminate topics
review or repeat topics
release control of dialogue

acknowledge answer
explain topics

outline topics
introduce topics

question student
evaluate student hypotheses

propose and verifymisconceptions

provide analogy example
summarize topic

outline topics
introduce topics
terminate topics
review topics

clearly terminate topics
teach subtopics after topic
teach attributes after topic
teach subgoals after goal

introduce topic
describe topic
question student

Figore 3: Tutoring Maxims supported by move-classes.



S. Maxims gapd move-classes

In order to computationally associate maxims with sequences of move-class, we
need to make inferences about the qualitative effect of each move-class on the discourse.
To do this, we suggest the effect that each move<class has on discourse eatities, such as
topics or a student’s knowledge. Each conversational move is defined as a data
structure and two inferences are made from it. The first inference or unplwmon'm' is
linked directly to a move-class. It represents an assesment made about the move-class
itself and is fixed and non-pegotiable. The second kind of inference or global
implication is linked to Indirectly on sequences of move-classes. It represents an inference
made about the effect of several moveclasses and is volatile over the life of the
dialogue. Global inferences are dynamically modified by the sequeace of move-classes.
Each inference type is discussed below.

2 _Implications

Implications are bound to the move<class itself. They exist independent of the
“truth® or “meaning™ of the utterance and define what the listener receives in addition
to the spoken words. In our model, a qualitative implication bound to the move<lass is
placed on a stack whenever its move-class is invoked.

Typical objects in our ontology
(define-move~class QUESTION-TOPIC
Evidence:
Q-+ topic is important
Q+ topic is within threshold of knowledge
Q+ topic is learnable through discourse)

(define-move-class PRESENT-TOPIC
Bvidence:
Q+ topic is generally known
Q+ rtopic is background information
Q++ topic is less important
Q++ topic is impact material)

Figare 4: Implications bound to move-classes.

Figure 4 lists the implications bound to two move-classes, question topic and present
tople. For instance, if a tutor questions a student about a topic, the implications of this

! *An implication was originally called an implicature by Grice and was attached to specific words,
not to groups of words.




are that the tutor 1) knows (or is trying to leamn) the student’s threshold of knowledge,
2) assumes the student can answer the question, 3) thinks the topic is important or is
learnable through the discourse. These implications can be assumed by a listener
independent of the content of the query.

We speak of implications in the same sense as Grice’s implications, but in
reference to sequences of words perceived as a single conversational move. Grice’s
implications originally referred to inferences made over single words. For example, the
italicized words in Figure S bave explicit implicatures. The word and in the first
seatence carries an implication that the activity of going to jail preceeded, and possibly
caused the second activity, that George became a criminal. The use of the word fried in
the second sentence cagries with it an entailment that Millie failed to swim the English
channel, and the use of the phrase one leg in the third sentence, implies that the
speaker does not in fact have two legs.

1) George went to jail and became a criminal.
2) Millie sried to swim the English channel.
3) I have one leg.

Figure 5: Implicatures In text.

Implications, as we use them, define each participant’s common-sense reasoning
about a conversational move. They include the desiderata normally accepted by a
rational discourser. We would like to think that implications embody a speaker’s
motivation, intention, and involvement in the discourse.

5:2 Global implications

Global _implications are based on extended reasoning about sequences of
move-classes. They include assesments such as *student Is confused, ®toplc Is known or
*misconception is resolved and are modified with each new tutor/student interactions.
Global implications are uncertain and represent the system’s best estimate about the
state of affairs of knowledge of the student or topic at the current time. Whereas,
implications were known with certainty at the time a move<class was invoked, global
implications require reasoning under uncertainty to deduce which one a number of
competing global implications might take effect. Reasoning with uncertainty must allow
for the accumulation of support for or against a number of global implications.

Figure 6 presents an example of how global implications can be inferred over the
course of a tutoring dialogue. In the example, the tutor’s goal is to determine the
breadth of the studeat’s understanding of primitive topics about Pascal loops. Three
questions are preseated that might be asked of a student who had submitted an
incorrect Pascal program. After the first correct responsc certain immediate inferences
can be made; the student has definitional knowledge of the topic, the topic is generally
learnable through other efforts (i.e., textbooks or lectures), and the topic was studied as

-



Tutor: Do you know that GRADE in line 8 is a control variable?
Student: Yes

s IMPLICATIONS

; “studeat has_definitional knowledge
; “topic_iz_generally_known

; ‘topic_is_learnable_elsewhere

; “topic_is_background_material

Tutor: Good. What is the value of grade before leaving the loop in line 13?
Student: 9999

: IMPLICATIONS

; *topic_is_generally_known

; “topic_is_learnable_elsewhere
; “topic_is_background_material

; GLOBAL IMPLICATIONS
; “student/domain_agreement
; “student_knows_the._topic

Tutor: That's right. What is the value of grade after leaving the WHILE loop, in line 13?
Student: 1 don’t know.

s IMPLICATIONS

; ‘tell_tale_signs_lack of knowledge
; “student_does_not_know._the_topic

s GLOBAL IMPLICATIONS

; “topic_is_on_student’s_threshold
; “student/domain_disagreement

; “student_is_confused

Figure 6: Analysis In a tutoring Interaction.

background material. After two correct answers, the tutor has reinforced its initial
cvaluation of the student’s knowledge but now is licenced to make more exteasive
inferences about the student or the topic. In this case, the global implication might be
that there is some agreement between the student’s information and the domain
knowledge basc. This inference is possible because evidence from the additional correct
answer provides support for the global implication.

The student’s third response is wrong and the tutor now is forced to reverse its
curreat evaluation. After a single wrong answer, several immediate implications are
available since they are bound to the conversational move: either the student does not
know the material in question or he made a careless error. If we assume the former
and recognize that the wrong answer came on the heels of two correct answers, we
have a more complex implication: now it is possible to say that the topic might lie on
the student’s threshold of knowledge. This is because the student knows some attributes
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‘Studeat-has-tell tale-signs-of-knowledge - assume student has indirectly used the topic.
*Student-has-definitional-knowledge - assume student knows the definition of the topic.
*Student-has-background-information - assume student knows topic through prior experience.
‘Studentis-actively-forming-knowledge - assume student is forming a model of the information.
‘Studeat-is-confused - assume student is confused.

*Student-knows-the-topic - assume student has used topic correctly.

‘Student-understands - assume studeat understands the topic.

“Student/domain-agreement - assume agreement between student’s knowledge and domain knowledge.
‘Student s-knowledge-threshold-known - assume student’s threshold of knowledge is known.

Figure 7: Global implications about a student.

*Toplc-isimportant - assume topic is important.

*Toplc-s-generally-known ~ assume topic is generally known.

*Topic-islearnable-elsewhere ~ assume topic hassume been learned at another time.
*Topic-{slearnable-through-dialogune — assume topic can be learned during the dialogue.
*Toplc-is-on-student-threshold — assume topic lies on the student threshold of knowledge.
*Topicis-background-material ~ assume topic wassume learned before the discourse.
*Toplc-s{essimportant - assume topic is less important.

*Topicdsdrrelevant - assume topic is irrelevant.

*Toplc-was-complete — assume topic was fully developed.

*Topic-has-been-popped ~ assume topic lies at a higher level in knowledge base.

Figore 8: Global Implications about topic.

about the topic, control variables, e.g., its definition and value before loop exit, yet he
does pot know at least one attribute eg., its value after loop exit.

The example shows how the system can infer more general knowledge about the
student and the topic by using global implications. Since global interpretations are made
over several interactions, additional evidence brought from earlier responses, can be
weighed along with current implications to generate a more global view. In this way
the system can achieve a broader view of student knowledge and topic complexity.

Additional global inferences that we expect the machine to make are preseated in
Figures 7 and 8. In cach figure, global implications are listed on the left and the
assessments of which they are a “gloss™ are on the right.
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One of the primary objectives of this model is to use support for global
implications to influeace discourse behavior. Discourse management is handled by an
ATN-like mechanism that allows both default and exceptional behavior.l0 Default
behavior is based on traversal of the arcs of the ATN; exceptional behavior is achieved
by activated meta-rules that move the system from one set of discourse states to a new
set of states. Transitions within discourse states define the system’s default behavior. For
instance, the default response to a wrong answer might be a two state sequence:
explicitly acknowledge incorrect answer, followed by teach toplc attribute. This sequence
can be abandoned if a meta-rule fires and replaces it with a sequence such as provide
example and question topic. A meta-rule is a structure defined by preconditions, prior
states, actions, and post-processing actions (see Appendix 1). Preconditions are largely
built from global implications. Once a global implication passes threshold and triggers a
meta-rule, the discourse manager will move to a new state sequence by a method
described in detail by Woolf and McDonald10.

Discourse behavior is determined by meta-rules, which in turn are enabled by
global implications reaching threshold. Global implications will reach threshold as a
result of support from the on-going discourse. The system supports global implications
in a process that is amalogous to the read-eval-print cycle of LISP. The top-level
“thinking™ of the machine is suggested in Figure 9.

STEP1: Tutor behaves according to default state sequence (consistent with
curreat implications).
A) generate text
B) parse student’s response

STEP2: Tutor identifies implications of student’s utterance and endorses
evidence for global implications

STEP3: Some endorsed global implications may reach threshold.

STEP4: Global implications at threshold may trigger meta-rules taking
the system to a new state sequence.

STEPS: Go to 1.

Figure 9: Steps to manage discourse.

Aftcrastudentmponds,implicationsfmmhisrwponsewillbeplaoedonastackand
certain global implications will be activiated. Global implications that gain support from
the newly activated implications are endorsed, i.e., given reasons to be believed or
disbelicved! The endorsements are associated with an applicability condition: “correct
answer indicates correct information”, is always possible whea the response is correct;
~“correct answer indicates a quess” is applicable when the response is correct but earlier
responses were wrong; and “could be a mistake” is applicable for any response. Global
implications that pass beyond a threhold level are viable assesments of the topic or
student; they can be used to activate changes in the system’s discourse behavior. Some




endorsemeats are positive, meaning they support the interpretation with which they are
associated. Others arc negative, meaning they provide reasons to disbelieve their

In sum, the state of affairs of the discourse is given by support for or against
global implications. When evidence for a change in interpretation exceeds threshold and
the system has reason to endorse a new interpretation, it takes action and changes its
teaching strategy. Customized tutoring behavior is achieved through recognition of the
effects of these global implications.

6. Proposed Tutoring Discourse

As an example of the kind ‘of high-performance tutoring system we intend to
build using interpretation knowledge, we present a scenario of how our program would
tutor a studeat in Pascal. Figure 10 shows the kind of problem students receive in our
department’s introductory Pascal course. Below the problem statement is a program
actually written by a studeat.

PROBLEM: Write a program that finds the average grade for a student who types his
grades in at the keyboard. After the last grade is typed in the student will type 9999.
Please print out the average grade.

1 Program Student29 (input, output);
2 Var
3 sum, num, grade, ave : integer;

4 Begin

5 sum := 0;

6 num := 1;

7 read (grade);

8 while grade <> 9999 do
9 begin

10 read (grade);

11 sum := sum -+ grade;
12 aum := num + 1

13 end;

14 while grade = 9999 do
5 begin

16 ave := sum/num;

17 writeln (ave)

18 end;

19 end.

Figure 10: A Student Program.




The program is syntactically correct but does not produce the desired result. i
reveals at least four underlying misconceptions about control variables, looping constructs,
and flow of control. Cognitive studies of programminng22 suggest for instance, that the
student may believe that:

>> the order of operations inside the loop should be READ/PROCESS (a
Pascal WHILE loop is designed to be PROCESS/READ);

>> the value of a variable inside the loop is distinct from its value
outside the loop;

>> the loop construct does not test the last value of the control variable;
and

>> a single iteration of a sequence of commands requires a looping
construct.

There is evidence for each misconcepﬁon.“’ The task of the discourse that the

tutor engages in is to resolve the ambiguity among the possible misconceptions and to
focus the discourse on the repair of a single misconception. The discourse in Figure 11
is an example of what we expect our tutor to do and how it might unravel the
student’s misunderstandings and make him “verbalize” his malformed ideas. In order to

generate that discourse, the tutor:

focused on several topics in succession (e.g., control variables and while
loops);

bandled several errors (e.g., value the control variable and the number of
loop iterations); and

customized new examples to present to the student (e.g., hypothetical
program and a new problem).

! The program is flawed in several ways. The value of the “read” command in line 7 will not be
processed, because the “read” command in line 10 immediately replaces it with a new value. The
second loop will never terminate because the control variable “grade” is never modified inside the
loop body. We also suggest, that the student assumes that the second loop will execute only once
since its only action is to print out the average. We call such a loop an “if-loop” and suggest
that the student has confused the “if” conditional construct with the family of looping constructs.

3 For instance, the fact that “read (grade)” in line 10 precceds the processing of grade in line 11 is
evidence for the first misconception. In addition, the use of two loops, both controlled by the

© same variable, “grade”, is evidence for the second and third misconceptions since they suggest that
the student docs not realize that the value of “grade™ will be available at the end of the first loop
and therefore does not have to be retested.
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1. Tutor:

Student:

2. Tutor:

Student:

3. Tutor:

Student:

4. Tutor:

Student:

5. Tutor:

Student:

6. Tutor:

14

Do you know that GRADE in line 8 is a control variable?
Yes

OXK. What is the value of GRADE immediately before leaving the
loop in line 137
9999

Right, and what is its value immediately after leaving the WHILE
loop, in line 13?
I don’t know.

OK, suppose the values read in were 1 S5 9 10 9999.
How many times would your WHILE loop execute.
I don’t know. Maybe 5 times.

Well, what would be the value of GRADE immediately after leaving the
loop in line 13?
I don’t know.

You seem to have a misconception. The loop would execute 4 times.

Although 9999 would be read inside the loop during the fourth iteration and
tested at the top of the fifth iteration, the entrance test for that iteration
would fail since GRADE is now unequal to 9999. The fifth loop execution
would never occur and control would pass to line 14 immediately after the

loop.

You probably assumed that the value of the variable inside the loop was
different from its value outside the loop. In fact, whether inside or outside of
the loop, variables in a WHILE loop have the same value. If GRADE equals
9999 before the loop terminates, it will still equal 9999 after the loop
terminates. Testing the value of GRADE immediately after the WHILE loop is

superfluous.

Now, let me give you a new problem: Compute and print the average number
of hours worked ecach day by a student employed during a month if hours per
day is typed in and averaged by the program. Assume that hours per day are
typed on a single line and followed followed by -1.

Figure 11: Proposed tutoring discourse for the Program in Figure 9.

Note that in Figure 11 the tutor asks one question (line 1) to establish that both

it and the student share a common vocabulary about control variables. In the next two
questions (lines 2-3) the tutor asks emough questions concerning misconceptions about
variable values and control flow to establish that the student does, in fact believe that
the value of GRADES is pot available after the first loop terminates. In line 4 the
tutor presents some example input custom-tailored to the problem and the student’s
history in order to verify its hypothesis that the student did not realize that the value
of GRADES was available after the loop exited. Based on the student’s response thus
far the tutor (line 6) explains its diagnosis of the misconception in terms of



characteristics of the preseating program: GRADES had a value of 9999 whea the first
loop terminated and after it terminated GRADES will retain that value. Thus, GRADES is
available between the first and second loops.

7. Example Generation

Generating examples is a key feature of the proposed system and we will be
working closely with Rissland?3 to enrich explanations with examples. Generating
illuminating examples tailored to a student’s level of knowledge, requires knowing the
student’s activities, background and particularly his history of errors. Generation and
modification of examples is a powerful technique both to refine the model of the
student and as a tool for defining the student’s level of understanding of the domain24
We propose to extend and apply previous work on constrained example generation in
which new examples are generated from old primarily by domain-specific modifications
of existing examples. Some of these constraints are generated by geaeral principles such
as “Look at extreme cases,” “Look at a simpler case.” Other constraints will come from
specific knowledge of an individual student, his context, past history, cognitive style, etc.

8. Summary

We have suggested a way to represent the implications and inteations of a speaker
as distinct from representing actual utterances. In our model, a computer tutor makes
inferences about a student’s knowledge or domain topics based on counstraints about the
type of utterances spoken. Support for or against each implication is given by the type
of conversational move. The tutor’s control structure allows the systems to review or
redirect the discourse based on the system’s evalaution of implications it can make about
the student’s knowledge or the topic. We expect that evaluating implications will allow
us to make predictions about managing subsequent discourses and judgements about the
quality of the current discourse.
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10.



4

Global implications are written in bold font and prefaced with an asterisk (%)
Meta-rules are written in bold fent
Discourse states are prefaced with a dollar sign ($)

g
s

|

(FC-and *found-threshold-of-knowledge
Steach-at-threshold-of -knowledge

*confused-student
“tutor-is-co-operative

*toplc-is-important)
action ‘(setg next.state ‘(Spresent-example))
0

post_processing _

prior_state ‘(Squestion-model
$question-topic
$question-role-value)

make_Srule_struct PROBE-MISCONCEPTION

preconditioas
(FC-AND “*cvidence-of-misconception
*confused-student
*known-student-threshold)

action ‘(setg nextstate “$probe-miscoaception)

post_processing ()

prior_state ‘($teach)

make_Srule_struct ‘JETTISON
precondition *dialogue-is-ineffective
action “(setg next.state (find-parent state))
post-process ‘()
prior_state °($ all states)

make_Srule_struct “TEACH-TOPIC
preconditions “(*toplc-is-learnable-elsewhere)
not *known-student-threshold
*direct-sign-of -student-knowledge)
action ‘(setg next_state ‘(Steach-topic))
post_processing ()
prior_state ‘($explore-knowledge)

Figure 12: Meta-rules to generate exceptional discourse behavior.



