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1. Modules in the Brain

It is a standard notion that a complex system may be analyzed
by being decomposed into a set of interacting subsystems. Such a
decomposition succeeds insofar as we can understand the relation
between the inputs and outputs of each individual subsystem, and
that the interactions between the subsystems can be explained via
suitable connections between various of their inputs and outputs,
without further analysis of variables internal to the subsystems.

Such a decomposition is structural to the extent that the subsystems

can be mapped onto physical substructures of a physical structure
embodying the overall system. In this section, I show that
neuroscientists have long sought structural decompositions of the
brain, and in some cases referred to the physical substructures as
modules. Recently, Fodor has popularized the wuse of the term
"module" to denote a unit in a functional decomposition of a
cognitive system, but a subsystem that meets constraints beyond
those specified above. I shall argue that Fodor's analysis of
cognitive systems is flawed and that the restrictions he introduces
are not useful. Consequently, I shall use the term "module" as a

synonym for the term "subsystem" defined above.

The work of the nineteenth century neurologists led us to think
of the brain in terms of large interacting regions each with a more
or less specified function, and this localization was reinforced by
the work of the anatomists at the turrn of the century who were able

to subdivide the cerebral cortex on the basis of cell
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characteristics, cytoarchitectonics. It was at this same time that
the discoveries of the neuroanatomist Ramon y Cajal and the
neurophysiologist Sherrington helped establish the neuron doctrine,
leading us to view the function of the brain in terms of the
interaction of discrete units, the neurons. The issue for the brain
theorist, then, is to map complex functions, behaviors, patterns of
thought, wupon the interactions of these rather large entities,
anatomically defined brain regions, or these very small and numerous
components, the neurons. This has led many neuroscientists to look
for structures intermediate in size and complexity between brain
regions and neurons to provide stepping stones in an analysis of how
neural structures subserve various functions. One early example was
the Scheibels' [1958] suggestion that the reticular formation could
be approximated by a stack of "poker chips" each incorporating a
large number of neurons receiving roughly the same input and
providing roughly the same output to their environments. This
modular decomposition of the reticular formation provided the basis
for the Kilmer and McCulloch model, RETIC (Kilmer, McCulloch and
Blum [1969)). 1In another direction, the theoretical ideas of Pitts
and McCulloch [1947) combined with the empirical observations of
Lettvin, Maturana, McCulloch and Pitts [1959] on the frog visual
system to suggest that one ﬁight think of important portions of the
brain in terms of interacting layers of neurons, with each layer

being retinotopic in that the position of neurons in the layer was

correlated with position on the retina, and thus in the visual
field. Powell and Mountcastle [1959] working 1in somatosensory
cortex, followed by Hubel and Wiesel [(1974)] working in visual

cortex, established the notion of the column as a "vertical"
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aggregate of cells in visual cortex, again working on a common set
of inputs to provide a well-defined set of outputs. With all these
considerations, the notion of the brain as an interconnected set of
modules -- intermediate in complexity between neurons and brain
regions -- was well established. For example, Szentagothai and

Arbib [1974], in their monograph on Conceptual Models of Neural

Organization, wrote that

The concept of a modular structure or arrangement of the
neuropil has two basic sources:

(1) a mere indirect one from the notion that neuronal
networks ought to be subdivided into distinct functional
units; and

(2) a direct one from observation of the neuropil...Recent
anatomical data on the cerebral cortex suggest the
existence of both a fine grain and coarse grain of modular
organization.

Subsequently, Mountcastle (1978], in an essay titled "An
Organizing Principle for Cerebral Function: The Unit Module and the

Distributed System", wrote that

The large entities of the brain we know as areas (or
nuclei) N are themselves composed of
replicated...modules...Each module processes information
from its input to its output and in that processing
imposes transforms determined by the general properties of
the entity and 1its extrinsic connections. ... Closely
linked ... subsets of modules ... form precisely
connected but distributed systems. ... A single module
of an entity may be a member of several (but not many)
such systems.

With this, it is clear that the concept of a "module" is well
established within neuroscience as a structural entity, but our task
in this paper is to confront it with the notion of a module as a

functional entity, as developed, for example, 1in the elegant
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monograph The Modularity of Mind by Jerry Fodor. To see this, it

will help to distinguish what has been called top-down brain theory
from bottom-up theory, and see how they are brought together in what
might be called "middle-out™ brain theory. Top-down theory is
essentially functional in nature, in that it starts with the
isolation of some overall function, such as some pattern of behavior
or linguistic performance or type of perception, and seeks to
explain it by decomposing it into the interaction of a number of
subsystems. What makes this exercise brain theory as distinct from
cognitive psychology 1is that the choice of subsystems is biased in
part by what we know about the function of different parts of the
brain, as obtained for example by analysis of the effects of brain
lesions, so that there is some attempt to map the subsystems onto

anatomical regions.

In bottom-up brain theory, the emphasis tends to be on neural
circuits. Given a specific set of neurons, the attempt is to use
them to implement a given function, or to analyze given circuitry to
determine what functions it can perform. Clearly, the primary
sources of data for such bottom-up brain theory come from both
neuroanatomy -- in 1looking at the detailed interconnections of
neurons -- and from neurophysiology -- in studying the behavior of

the network under varying conditions.

In its full development, brain theory incorporates a cycle of
both top-down and bottom-up modelling. An attempt is made to map
functional units onto brain regions, constrained for example by
lesion studies. But this map 1is not one to one, and a further

constraint is to try to implement regional functions via neural
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networks meeting anatomical and physiological constraints. New
information may not only yield different suggestions as to how
circuitry may subserve a given function, but -- as we shall see well
exemplified in section 4 -- may lead to changes in our ideas about
how functions are distributed around the regions of the brain. In
particular, we shall see that there is a continual tension between
functional decomposition and structural decomposition, and that in
general a given "functional module" may be subserved by the
interaction of several "brain modules", and that a given "brain
module™ may be involved 1in subserving a number of different

functions -- as was indeed suggested by the quote from Mountcastle

above.
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2. Fodor's Taxonomy of the Mind

For Fodor, a computational theory of cognitive science seeks a
set of mechanisms each of which provides a characteristic pattern of
transformations of mental representations [F13). ¥ For him, a
computational process 1is by definition syntactic [F40]. Motivated
by Gall's view of faculties, Fodor seeks cognitive mechanisms which

form modules in the sense that they are [F21, F37]
(i) Domain-specific;
(ii) Innately specified;
(iii) Associated with distinct neural structures; and

(iv) Computationally autonomous.
In the present paper, I shall not address claims (ii) and (iii), but
shall restrict myself to setting forth my argument that cognitive
écienee will not be served by an emphasis on modules which are

domain-specific and computationally autonomous.

The term "domain-specific" seems to refer to gross modalities
like ‘'vision' or ‘'language' rather than Gall's faculties or the
"domains" or "microworlds" of current AI research. The key concept

is that of computational autonomy: modules "do not share, and hence

do not compete for, such horizontal resources as memory, attention,

#% A reference like [F13] refers to page 13 of Fodor's The
Modularity of Mind, while [FIII.5] refers to Section III.5 of that
volume.
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judgement, intelligence, etc." [F21]. More generally, the modules

considered by Fodor are informationally encapsulated [FIII.5], which

means that, while there may be internal feedback between the
representations within the module, these internal representations
are not involved in paths to or from external modules. Moreover,
Fodor argues that there is no external feedback path whereby the

output of the module can affect its input (Figure 1).

Fodor argues for an exclusive but not exhaustive functional
taxonomy of the mind as divided into transducers, input systems, and
central processors [F41]. He views the input systems as delivering
representations that are most naturally interpreted as
characterizing the arrangement of things in the world [F42)}, and
then 1lumps perceptual systems with language as constituting the
input systems, with the note [F45]) that what underwrites the
correspondence between, say, visual stimuli and distal layouts are
(roughly) the laws of light reflectance, whereas what underlies the
correspondence between token utterances and distal layouts 1is
(roughly) a convention of truth-telling which makes it possible to

infer from what one hears to the way that the world is.

Fodor's central hypothesis about the mind 1is that the 1irput
systems (perceptual systems and language) are precisely the modules
of the mind, "domain-specific computational systems characterized by
informational encapsulation, high speed, restricted access, and
neural specificity (F1011]1". "The input systems being
informationally encapsulated compute representations of the distal
layout on the basis of less information about the distant layout

than the organism has available. Such representations want
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correction in the 1light of backgroud knowledge and of the
simultaneous results of analysis in other domains. Call the process
of arriving at such corrected representations 'the fixation of

preceptual belief' [F102]".

Fodor then argues [F103] that an interface between perception
and wutilities must take place somewhere if we are to use the
information that input systems deliver in order to determine how we
ought to act. Fodor then argues that these central processes for
thought and problem solving are unencapsulated and so are not
plausibly viewed as modular [F103]. Although Fodor gives no
diagrams in his book, his theory of the mind is, I think fairly,

captured in Figure 2.

Some comments are in order. First, we reiterate that Fodor's
use of "domain" seems to refer to "language or a sensory modality".
Second, Fodor gives no analysis of action and motor control, so it
is open as to whether or not he would regard these as modular, e.g.,
with modules for locomotion, manipulation, and speech. But third,
and this provides the starting point for our critique, Fodor is
silent about which transducers feed the language module. Ignoring
braille, I have arbitrarily shown auditory and visual transducers
providing this input. But once we insist that, e.g., the visual
transducers deliver input to vision, audition and language without

cross-~talk between these modules (for such cross-talk would
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OUTPUT MENTAL REPRESENTATIONS

NO
MODULE EXTERNAL

FEEDBACK

INPUT MENTAL REPRESENTATION

Figure 1. A key property of a module is that it be computationally
avtonomous and informationally encapsulated. Moreover, its input

cannot depend upon its output via paths internal +to the cognitive
system in which it is embedded.
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Figure 2. Fodor’s Taxonomy of the Mind. The arrows 1linking ¢the
central processes have no significance other than to indicate the
promiscuity of data-flow which renders the central processes

non-modular. By contrast, the lack of feedback paths around each
input process is crucial to Fodor’s theory.
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break the posited informational encapsulation), the transducers no
longer '"merely" transduce sensory signals, but carry out some
moderately sophisticated transformations of their own, as sketched
in Figure 3. For example, since the visual recognition of curves is
helpful both in seeing objects and in recognrizing letters, we must
either make this curve analysis part of the visual transducer or we
must see it as constituting an input module which is not
domain-specific, In either case, the distinction between
transducers and input processes now seems less comfortable, and will
become more so if we try to refine the language, vision, and touch
modules in a way that will accommodate the learning of Braille and
sign language, for now the intermixing of language with touch and
motor control makes claims for the informational encapsulation of

the modules of Figure 2 well-nigh untenable.

However, my fundamental point is that Fodor's modules are too
large. It is <clear from Figure 3 that a computational theory of
cognition must use a far finer grain of analysis than that offered
by Fodor (Figure 2). Fodor offers big modules, argues vociferously
that they are computationally autonomous, and despairs at the
problem of explaining the central processes, since they are not
informationally encapsulated (more of this in section 6). By
contrast, my approach 1is to analyze the brain in terms of smaller
components. Since the interactions between these components play a
vital role in my models, the case for autonomy of large modules

becomes less plausible -- a useful measure of parsimony, rather than
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In the next three sections I shall try to exemplify this
approach to the study of modularity and interaction of brain regions
by looking at a number of models of visual perception and of
visuomotor coordination. In the first two and one half of these
sections, I will be guided by the slogan set forth in The

Metaphorical Brain [Arbib 1972] that "The brain should be modelled

in terms of distributed action-oriented computation in layered
somatotopically organized machines." The term "distributed"
emphasizes the notion that the brain is made up of many different
systems which are simultaneously active, and so is not to be
modelled in terms of serial computation, in which one localized
operation is conducted at a time. Secondly, the notion that the
brain is "action-oriented" emphasizes that we should not think of,
for example, vision purely in terms of rendering some sort of
objective representation of the visual world within the brain, but
rather should ask how that visual representation can provide
information that is relevant to the activity of that particular
organism. For example, we shall see that the visual system of a
frog is quite different from the visual system of a human, even
though we shall at the same time strive to find general principles
which will help us understand what is involved in the structure of
these systems. Finally, the slogan that the brain is "a layered
somatotopically organized machine" will correspond to the claim,
made in section 1, that many parts of the brain can be analyzed in
terms of the interaction of layers of similar components. However,

in the last part of my discussion of vision in section 5, I will
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point out that there are processes that do not seem to be naturally
thought of in terms of somatotopic or retinotopic computation in a
layered structure. This will serve to introduce the notion of
schema as a fine-grained functional module, corresponding for
example to the knowledge required to recognize a house or to grasp a
mug . In this paper, I shall offer no data on the extent to which
schemas may be considered as psychologically or neurophysiologically
verifiable, but simply show their computational role in a model of
high-level vision. In other writings, I have presented the notion
in the context of general visuomotor coordination [Arbib 1981],
developed its use for explaining skilled manual behavior [1985], and
explored with my colleagues the use of schemas in developing various

models of language [Arbib, Conklin and Hill, in press].
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3. Depth Perception

A chapter in ©brain theory usually starts by ¢trying to
characterize some overall function which one thinks might constitute
a "brain module" in that one might hope to find specific brain
circuitry devoted to its implementation. For example, it seems
reasonable to think that "solving differential equations” would not
be a suitable module for such a study, and that our eventual
understanding of its brain implementation will come by seeing how
cerebral circuitry capable of implementing many different human
skills can be tuned by experience and instruction to subserve this
particular mathematical ability. By contrast, we have every reason
to think of vision as having special circuitry, from the retina of
the eye to the tectum of the midbrain and the lateral geniculate
nucleus of the thalamus up to a number of regions designated as
visual cortex. In fact, the work of the last twenty years has taken
us from beyond this conception, and we now talk of the "many visual
systems" finding that there are now tens of anatomically distinct
brain regions each subserving distinctive functions of wvision.
Within this context, then, we may seek to find natural functional
modules which subserve part of the task of vision, thus focusing our
attention on a more restricted system of neural circuitry. One such

natural candidate 1is depth perception -- which enables us to

determine the world in terms of objects located at various distances
from us. This is clearly very important from an action-oriented
perspective, since the way in which we will interact with objects

will depend crucially on how near or far they may be.
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It is a familiar experience from using stereo viewers that the
view of a three dimensional scene presented at the left eye differs
from that presented to the right eye, and that the disparity or
displacement between these two images provides the crucial cue as to
the distance in space from which they come. A key concern from the
nineteenth century was whether depth perception comes before or
after pattern recognition. Is it that the brain takes the 1image
from each eye separately to recognize, for example, a house therein,
and then wuses the disparity between the two house 1images ¢to
recognize the depth of the house in space; or is it that our visual
system matches local stimuli presented to both eyes, thus building
up a depth map of surfaces and small objects in space which provides
the input for perceptual recognition? It was the great achievement
of Bela Julesz to invent the method of random dot sterograms,
providing stereo pairs each of which contains only visual noise, but
so designed that the visual noise was correlated. Patches of random
light and dark presented to one retina were identical to, but at
varying disparities from, patches of light and dark presented to the
other retina. Julesz found that people were in fact able to carry
out the appropriate matching to see surfaces stippled with random
patterning at varying depths in space. In other words, without
precluding that some depth perception could follow pattern
recognition, he did establish that the forming of a depth map of
space could precede the recognition of pattern. He offered a model
of this process in terms of cooperative computation involving a
somewhat Heath Robinson array of magnetic dipoles connected by

springs.
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For the brain theorist the issue was thus raised: "could the
depth map be computed by a cooperative process involving realistic
neurons?", and the data on what constituted realistic neurons was
provided by the work of Barlow and various co-workers. One of the
first papers to address this issue was that by Arbib, Boylls and Dev
[1974]), who built a neural net cooperative computation model for
building the depth map "guided by the plausible hypothesis that our
visual world is made up of relatively few connected regions". The
neural manifold of this model had cells whose firing level
represented a degree of confidence that a point was located at a
corresponding position in three dimensional space. The neurons were
so connected via inhibitory interneurons as to embody the principle
that cells which coded for nearby direction in space and similar
depth should excite each other, whereas cells which corresponded to
nearby direction in space and dissimilar depth should inhibit each
other. It was shown by computer simulation by Dev [1975] and later
established by mathematical analysis by Amari and Arbib [1977] that
this system did indeed yield a segregation of the visual input into
connected regions. Later, a variant of this model was published by
Marr and Poggio [1976], and in subsequent writings Marr took the
"plausible hypothesis that our visual world is made up of relatively
few connected regions" and showed how it could be developed into an
elegant mathematical theorem relating the structure of a depth
perception algorithm to the nature of surfaces in the physical

world.
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With this work, then, it was established that the perception of
depth maps could be constructed by a method of computation that was
guided by the hypothesis that the world was made up of surfaces, and
that the algorithm could involve some form of cooperative
computation. However, the cooperative computation algorithms
discussed above exhibited the problem of false minima. Consider,
for example, a picket fence. Suppose by pure randomness that the
system starts by matching a number of fence posts presented to one
eye with the images of their neighbors one to the left presented to
the other eye. In the cooperative computation model, this initial
mismatch could co-opt the possible choices of neighbors, and end wup
with a high confidence estimate that the fence was at a different
depth from that at which it actually occurred. This provides a
local ‘'"energy minimum" for the algorithm. The question then arises
of how one could come up with an algorithm that would avoid some at
least of these false minima. The answer provided by Marr and Poggio
[1979] can be seen as rooted in two contributions, one from machine
vision, and one from psychophysics. Within the machine vision
community, such workers as Rosenfeld and Hanson and Riseman had put
forward the 1idea of pyramids or processing cones; the notion that
one could look at a visual image at different scales of resolution,
and that for some problems a blurred image would allow one to
quickly extract a first approximation to needed information about
the 1image, information that would in fact be costly and time
consuming to extract when working at the full detail of the original
image. Meanwhile, the Cambridge school of psychophysists headed by
Fergus Campbell had discovered that the brain itself appeared to

employ a form of multiple levels of resolution -- that there were
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cells tuned to different spatial frequencies, and that these spatial
frequencies tended to fall inte four or perhaps five different
channels. This led Marr and Poggio to develop a system in which,
with hardly any cooperative computaticn, a fairly confident rough
depth estimate for different surfaces could be made using the low
spatial frequency channels, and then a more detailed spatial map
could be sculpted on the first approximation through the more
detailed disparity information provided via channels of higher
spatial frequency. Subseguent psychophysical studies by Frisby and
Mayhew have shown that there is much to be said for this model as a
model of human depth perception, although they have provided data
which refined the model, and show that some measure of cooperativity
is required. Prazdny has come up with further material for

modifying and changing the model.

However, it must be noted that the fact that a brain mechanism
is employed to implement a particular functional module by the brain
of ore animal does not imply that this is the mechanism used by a
different species. It is known that frog and toad can snap with
moderate accuracy at prey located in the monocular visual field, and
this led Ingle to hypothesize that for the frog it was
accommodation, focal length information for the lens, that subserved
depth perception. More detailed experiments by Collett, involving
placing on the nose of the toad spectacles which used either prisms
or lenses, showed that the story was more complex. Collett was able
to show that the monocular animal did indeed wuse accommodation as
the depth cue, but that in an animal with prey in the binocular

field, the major depth cue was disparity, with accommodation cues
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exerting perhaps a six percent bias on the depth judgement based on
disparity. This led Donald House [1982] in my laboratory to suggest
that another route to solving the problem of false minima was to use
accommodation cues to bias disparity. This is exemplified by Figure
4 in which we see two depth maps corresponding to two "worms"
presented as visual targets to the simulated toad. In the
accommodation map, the 1level of activity at a particular position
and depth corresponds to how sharp an image was obtained at that
position when the lens was focused at the given depth. We thus see
that the activity has one peak for each worm, but that the peak is
rather broad, giving poor localization information. By contrast,
the disparity map of depth gained by pairing stimuli on the two eyes
has the problem that, although it gives precise localization of the
two worms, it also gives precise localization of the "ghost worms"
got by matching a stimulus on one eye with the wrong stimulus on the
other eye. The key observation here is that the two sources of
depth information provide complementary information., House's model
uses a variant of the Dev model to refine the depth estimates within
each depth field, but adds mutual coupling between the models so
that activity localized within one map helps increase activity at
the corresponding 1locus on the other map. Simply looking at the
figure, without knowing any further details, it is clear that this
interaction can yield both a sharpening of the peaks in the
accommodation map and a suppression of the "ghost peaks" in the
disparity map, finally converging on a state in which both maps

agree and present a sharp accurate localization of the targets.
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In concluding this section, we make several points. Firstly,
that there is no unique algorithm for solving a given problem, in
part because many different sources of information can be employed.
Secondly, any one source of information will be incomplete, and it
will often take the skillful deployment of several sources of
information -- whether it be disparity information at several levels
of resolution, or disparity and accommodation information in
conjunction -~ to yield a far better estimate than could be gained
by using one source alone. And thirdly, we have seen how these
considerations 1lead us to a far finer modular decomposition than

that offered by Fodor (and which we have diagrammed in Figure 3).
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Figure 4, Time Course of the Model -- Base Case: The time course
of the depth model from its initially-inert state (a) to a
satisfactory depth segmentation (f) is shown here. The full
monocular/binocular model was used with two input planes: one for
accommodation and one for disparity. All figures are in the retinal
angle vs. disparity coordinate system. Successive figures are
temporally spaced 1-1/3 field time-constants apart. Thus, the
elapsed simulation time represented is nearly 7 time-constants. The
two-dimensional grids show the level of excitation of the various
fields, and the line-graphs under the grids indicate the intensity
and localization along the retinal angle axis of excitation in the
inhibitory pools. (House, 1982)
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4, Visuomotor Coordination in Frog and Toad

In this section, we will return to the action-oriented view of
visual perception by looking at something of the behavioral
repertoire of frog and toad, and asking what type of wvisual system
could make the appropriate information available. 1In other words,
in the title of Lettvin, Maturana, McCulloch and Pitts [1959], we
seek to determine "What the Frog's Eye tells the Frog's Brain". The
key to the Lettvin, et al. paper was to use naturalistic stimuli
such as small moving objects similar to the frog's prey of flies and
worms. Indeed, extending the results of Barlow [1953], they found
that there were cells in the retina that seem to serve as "bug
detectors", sending information back retinotopically to the tectum,
the visual midbrain. They found that the retina not only sends back
a map of where the bugs might be, but also sent back other maps 1in
spatial register, including a map of where there were large dark
moving objects in the visual field. It was also known that an
animal without a tectum would not engage in prey-acquisition
behavior. This led to the first model of prey-acquisition which
involved two modules, the retina was the prey recognition module,
the tectum was the module subserving motor control for

prey-acquisition,

Peter Ewert conducted a number of experiments which led to a
somewhat more subtle view of the situation. Firstly, he observed
that removing the pretectum, a small brain region just in front of
the brair tectum, yielded a toad that would snap even at large

moving objects. This immediately leads to a different functional
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decomposition of the brain into modules. Where before we had a
module for recognizing prey, now it would seem that we have two
distincet modules -- one for recognizing moving objects, and one for
recognizing large moving objects. It is inhibition of
prey-acquisition by the latter that yields the appearance of a
module for the detection of small moving objects per se . Further
work reviewed by Ewert [1976] replaced the use of naturalistic
stimuli with precise patterns to quantify the animal's response. He
found that rectangles elongated in their direction of movement
(worms) were stimuli of increasing effectiveness with increasing
length; but an anti-worm (a rectangle moving orthogonally to its
long axis) quickly became an ineffective stimulus as it was
elongated; while a square had an intermediate effect, with bigger
squares being more effective stimuli until a certain critical size
after which they became less effective stimuli. On the basis of
this, Ewert and von Seelen came up with the model of Figure 5 in
which the retina was seen as a preprocessor of visual stimuli, the
pretectum was a module for anti-worm recognition supplying
inhibition to the motor output system, while the tectum was seen as
comprising two modules, one for worm recognition and one for motor
control for prey-acquisition. This motor control module was excited
by the worm recognition module and inhibited by the anti-worm

recognition module.

Cervantes, Lara and Arbib ([1985) carried this work further by
going from the modules defined purely by an overall linear response
function to modules defined by the detailed interaction of neurons.

Lara, Arbib and Cromarty [1982] had built on the neuroanatomical
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observations of Szekely and Lazar [1976] to define the "tectal
column" as a basic cluster of cells working together at one locus in
the tectal layers. Cervantes, et al. then modeled the tectum as in
Figure 6, as an array of such columns, interfaced with an array of
pretectal "anti-worm dectector"™ neurons, all driven by suitable
classes of retinal input, and then showed that this model could
explain the spatial and temporal properties of prey-predator

discrimination in terms of neural interactions.

Ir this 1last model, the process of prey acquisition is
subserved by three anatomically defined modules -- the retina, the
tectum, and the pretectum -- but 1is composed of four different
functional modules, at least. The tectum is not separable into
distinct anatomical subsystems for its two functions of '"worm
filtering" and "motor control", although we can certainly
discriminate the contributions that different cells make to both
these functions. Moreover, we see that the interaction between
these three regions 1is retinotopiec, and mediated by different
cellular pathways, so that -- for instance -- the tectum receives
three classes of retinal input as well as a class of tectal input,
and these inputs are not all provided to one common input layer for
the tectum, but are in fact systematically distributed in layers of
termination segregated at different depths and thus making contact

with different cell types within the tectum.

Now let us try to embed this set of modules in a functional
account for a more complex behavior., Collett has shown that there
is a sense in which the toad builds a spatial map of its world. If

the toad is confronted by a fence through which it can see a worm,
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then it will under some circumstances advance directly to snap at
the worm, but in many other cases will sidestep. When it sidesteps
around the fence, the direction in which it turns after sidestepping
will be correlated closely with the position of the worm, even if
the experimentalist has taken care to ensure that the worm 1is no
longer wvisible at this time. We thus see that the animal must make
a depth map which includes the position of the worm and the position
of the fence, that it must use this to control a variety of motor
behaviors including sidestepping, orienting and snapping. Moreover,
David Ingle has provided data that shows that snapping and orienting
can be dissociated by suitable lesions, so that processes to control

these behaviors must be localized in different parts of the brain.

Building on these and other observations, Arbib and House
[1983] have advanced a model of the interactions in the brain that
subserve this, and House [1984] has further refined the models of
depth perception mechanisms that are involved,. The overall
structure of the model is shown in Figure 7, and we will not go into
any detailed exposition of it here. What we do want to stress is
that there are two distinct modules for depth perception. One
provides a map of the position and depth of the barriers in front of
the frog. It is our hypothesis that this depth map is created based
on the principles discussed in the previous section -- namely the
constraint that if the world is made up of surfaces, the depth
mapping algorithm can exploit this within its gtructure. However,
when it comes to locating the position of small moving objects in
space, this surface constraint is no longer viable, and in fact

lesion studies have 1led House [1985] to come up with a very
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different model for prey localization, which essentially has each
side of the brain select a prey target, and then wuse triangulation
to fix its position in space. Pathways linking the two sides of the
brain and involving the control of the accommodation of the eyes
provide the measure of coherence that will in most circumstances
ensure that each half of the brain picks the same target. What we
have established here 1is that the output from the two eyes is
incorporated not in one low-level visual representation but in two.
When we consider how intimately these two are linked with the
particular problems of depth and detour behavior, there is no reason
to exclude the discovery of yet other visual maps driving the
computation of appropriate behavior for the animal. The one other
comment we make is that Figure 7 decomposes into two quite distinct
parts. The retina, the depth perception maps, and the target
selector all function as layered retinotopically organized
stuctures. However, the motor schemas for sidestepping, orienting,
snapping, etc., are no longer to be thought of as retinotopically
coded. Yes, at some point the target of those movements is encoded
retinotopically, but the brain stem and the spinal cord must then
translate that retinotopic coordinate specification into parameters
of motor neuron firing. In some sense, the motor schema is then
embedded in a neural circuit which must use patterns of firing to
represent parameters in a way quite distinct from the use of
location of firing to specify a parameter in a retinotopic or

somatopically structured layer.
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With this section, then, we have not only established that
cognitive science needs a modular decomposition finer than that of
Fodor's, but that the choice of modules can be constrained by the
data of neuroscience. Since my examples are taken from visuomotor
coordination they are specific to the domain of vision, but they do
violate Fodor's argument that modules have no external feedback path

whereby the output of the module can affect its input.
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Figure 5. A lumped model of prey—predator discrimination: a worm
filter provides excitatory input to an output cell which also
receives inhibitory input from an antiworm cell. The result is that
(B) a worm provides a potent response; (C) a square provides an
intermediate response; while (D) an antiworm yields little or no
Tespanse. (Ewert and von Seelen. 1974)
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Figure 6. Interactions among retina, optic tectum and pretectum.
The retina sends fibres in a retinotopical fashion to both optic
tectum (class R2, R3 and R4), and pretectum (class R3 and R4). A)
TH3 neurons also project retinotopically to the optic tectum. For
simplicity we only show the projection of three rows of TH3 cells
projecting uvpon the tectal columns. B A closer 1look of the
interactions among retinal, tectal and pretectal cells. The TH3
cell of the pretectal column inhibits LP, SP and PY of the tectal

column corresponding to its retinotopic projection. (From
Cervantes—Perez, Lara and Arbib (198%5))



Page 32

visual input

'BARRIER'
DEPTH MAPPING

'WORM'
DEPTH MAPPING

(6,d)map (6,d)map

TARGET TeBxl +WxE
SELECTOR
8 (od) A(0) w(e.d)

COORDINATED MOTOR SCHEMAS:
SNAP, SIDESTEP, ORIENT, JUMP, ....

N

motor output

Figure 7. Conceptual Schematic of Visual/Motor Pathway:
Assumptions made in this diagram are 1) thuat separate depth maps are
maintained for prey and barrier stimuli, 2) direction for an
orientation turn is obtained by combining information from these two
depth maps, and 3) information on preferred orientation and depth of
prey and barriers is available simultaneously to motor schemas.
These schemas are capable of integrating this information to produce
a coordinated motor—output. (Arbib and House, 1985)
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5. The Structure of Visual Systems

In the field of mechine vision, it has become commonplace to
distinguish "low-level vision" from "high-level vision", Basically,

low-level vision takes the retinal input and codes it into a form

suitable for interpretation of, or interaction with, the world but
does not depend upon knowledge of what particular objects are in the
world -- though it may well depend on general properties of the
world such as the hypothesis that the world is "made up of
relatively few connected regions" (Section 3). By contrast,

high-level vision 1is the process whereby this intermediate

representation is wused to guide the actual interpretation of the
world in terms of objects, or to determine patterns of interaction

with, or navigation through, the world.

In the last two sections we have given some sense of what can
be done in the way of layered computation in the early stages of
visual processing. In this section, I will expand our analysis' of
modular decomposition by showing how the module for low-level vision
may be decomposed into a small number of layered submodules, while
high-level vision 1is decomposed into the interaction of a vast
number of small modules called schemas. Such schema networks
embody, though I shall not argue this explicitly here, many of the
Quinean and isotropic properties (see Section 6 for a definition)
that Fodor holds to be a characteristic of central processes which

distinguishes them from input modules.
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It was J.J. Gibson who, perhaps more than anyone else, drew our
attention to the immense amount of information about the structure
of the world that could be inferred from the properties of surfaces
and the way in which they reflected and transformed environmental
energy as it passed to our receptors. However, the full impact of
this work was delayed because the Gibsonians talked of "direct
perception", without addressing what to most of us would seem the
self-evident fact that some mechanisms within the brain must be
required to carry out the inference back from those environmental
energies to the distal objects which transformed them. The sort of
work reviewed in section 3 marked the beginning of using the
insights of Gibson but embodying it in the computational framework
that he himself rejected. David Marr, as we have already mentioned,
has been in the vanguard of those who would create a computational
Gibsonainism, but his school has paid pehaps too little attention to
the lessons that Gibson taught wus. For example, Shimon Ullman,
whose work on motion detection can be seen as giving computational
expression to Gibsonian principles, 1in fact wrote a well-known
article "Against Direct Perception" which perhaps 1let the debates

against Gibson's anti-computationalism obscure the debt to him.

In this section, I want to briefly look at the issue of what
representations the low-level vision can deliver, and what methods
are available for interpreting it. We have already seen one example
in the previous section where we discussed how low-level vision, in
the form of barrier-depth mapping and prey-depth mapping, could
deliver suitable information to the processes involved in detour

behavior and prey acquisition. 1In this section, I want to turn to
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two approaches which represent rather the sort of processing that a
human brain might go through in coming up with the recognition of
the specific objects within a visual scene. I shall contrast two
overall specifications, one due to David Marr, and one due to Hanson
and Riseman, In the upper half of Figure 8, we see that Marr
postulates a one-way flow from the primal sketch (a fancy name for
the sort of feature map that we have come to see as the result of
the earlier stages of visual processing, as in the bug detectors in
the retina of Lettvin, et al., or the edge detectors in the cortex
of Hubel and Weisel), Marr then sees the interface between
low-level vision and high-level vision given by the 2-1/2 D sketch
which specifies for each portion of the visual field the depth of
the corresponding distal object, and the local orientation of the
surface at that point. This then provides the input to the object
recognition process, and Marr and Nishihara (in a suggestion which
was not implemented on the computer) have suggested that many
objects can be represented in terms of the connection of a variety
of generalized cylinders, and have suggested how the 2-1/2 D sketch
might be processed to find such cylinders, whose description could

be used to key a database of known objects.

Where Marr's theory is offered as a theory of the way the human
visual system must work, Hanson and Riseman's work is offered as a
useful way to build a machine vision system. However, I will draw
lessons from both approaches for our understanding of the human
mind. First, their system has a process for extracting 1local
features, akin to the primal sketch, but since they are working with

the recognition of images provided by single <color photographs,



Page 36

their next level is not a depth map, but is rather a segmentation of
the scene into regions demarcated from each other by such cues as
color and texture (lower half of Figure 8). The resultant
description of the image in terms of regions of various shapes and
colors and textures then provides the input for high-level vision,
which through a process of cooperative excitation of various schemas
leads to the final interpretation of the image, through processes
which I will outline later in this section. As will I think be
clear from the discussion in the previous section, it is not my
intention to argue that Marr and Hanson are exclusively right in
what they offer as the output map from low-level vision to
high-level vision. In fact, the colleagues of each have also worked
on ways of using the Gibsonian notion of optic flow to map the world
in terms of its movement patterns of movement relative to the
observer, and such a movement map enriches the descriptions to be
offered by segmentation and depth maps. Thus, I think our correct
picture is that low-level vision provides not one, but several maps,
which can be used perhaps to different ends, by processes involved
in image wunderstanding or the determination of behavior. I have
suggested this in Figure 9 by showing that 1local organizing
processes and aggregation procedures can provide a symbolic
representation of the segemented image without a commitment as to
what that representation might be. As T have said, I think that in
fact it comprises several representations, and this certainly is
born out by the increasing discovery of the division of the brain
into "many visual systems", as alluded to above. In the remainder
of this section, I simply want to outline the approach that Hanson

and Riseman have offered for high-level vision in terms of the
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interaction of schemas, since this approach embodies some of my own
views about the sort of fine grain functional decomposition of the
brain's activity that we are not yet able to follow through to
detailed implementation in terms of neural networks [Arbib 1981]. I
see the reconcilation of the view of functional activity in terms of
schema interaction with our growing, but still limited knowledge of
detailed neurophysiology as the major challenge for brain theory in

the next fifteen years.

To complement the above general observations, we now present a
more concrete discussion of how Hanson and Riseman orchestrate
schemas in successful visual perception. Figure 10b shows the
result of running segmentation algorithms on the image of Figure
10a. The top and bottom of the roof are fairly well delineated, but
the 1left-hand edge 1is occluded while the right-hand edge "bleeds"
into the sky and foliage. The figure also illustrates that
highlighting or variation in texture may 1lead the algorithm to
subdivide a natural region into several segments, as we see for
several of the shutters. The problem, then, is to design algorithms
that can, on the one hand, take a region and split it into parts
that are to be seen as giving us information about different
objects, and on the other hand, will aggregate regions that together
characterize some distinctive portion of the image. The process of

image interpretation calls on ‘"high-level" information about

possible objects in the scene. For example, information about
houses would, amongst other things, 1initiate a search for a
near-parallelogram as candidate for the roof-image. However, the

program would not fail if there were no parallelogram in the image,
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but might pursue more subtle, possibilites, e.g. "if you find two
approximately parallel lines at top and bottom and portions of
approximately parallel 1lines on the 1left and right, join up the
lines, and explore the hypothesis that the resultant parallelogram
is a roof."™ Given a confident roof hypothesis, the system can
hypothesize that below the roof the image will contain shutters or
windows. Thus if regions there can be aggregated into a rectangle,
the program can indeed follow the hypothesis that there 1is a

rectangle.

Consider Figure 11. It is not at all «clear from inspection
what it 1is, wuntil one recognizes that it is an enlargement of the
portion outlined by a small white box in Figure 10a. It 1is then
clear that it is a bush -- we find it easy to recognize the bush in
context, but hard to recognize it out of context. This suggests
that, in designing a machine vision system, or in understanding the
human visual system, we must understand the representation of
knowledge -~ the interactions between schemas -- that make this use

of context possible.

Figure 12a shows a house set amongst trees, and Figure 12b
shows the initial segmentation offered by the low-level vision

system. A number of different schemas then work on the image to try
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Figure 11. What is it? Compare the small box in Figure 10(a).



Page 43

to find regions which can be assimilated to their corresponding
objects. For example, the sky-schema will look for regions which
are ‘high in the image and which have a color in the appropriatae
blue to gray range. 1In this case, the system comes up with a very
confident assessment that what is in fact the sky-region is sky, and
comes up with a lower confidence value that the roof -- which is in
the upper half of the image and which has somewaht sky-like color --
could be an instance of sky. The roof schema is able to come up
with a much more confident estimate that the roof region 1is indeed
roof; it has the contextual information that the roof-region is just
beneath a region which has been confidently estimated to be sky and
it also has geometric information which tells it that the roof does

indeed have the right shape of a partially occluded parallelogranm.

At this stage we should say something about the manner of
processing for the schemas. The logic is inherently parallel. Each
schema can have a separate instantiation, corresponding to each
region for which there 1is a non-trivial confidence level for the
object that the schema represents. All the active schema
instantiations can then communicate with each other. 1In the fashion
that we have seen before, the activity of a schema in one region may
lead to the instantiation of a schema in another region to check
context. If the newly activated schema does indeed find the
expected context, then the confidence level of the original schema
can be raised. Although research is under way on implementing
schemas on computer networks, most work is currently. done by

simulating the interaction of schemas on a serial computer. Thus, a
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number of scheduling strategies may be imposed upon the logical
parallelism of the schemas. However, in what follows, we will not
discuss these present implementation details, but rather stress a

number of the properties of schema-based interpretation.

Returning to the present example, the high confidence level of
the roof-schema activates the house-schema then searches for walls
which, in both senses of the word, support the roof. The confidence
level for the wall-schema can be increased for a region which is not
only beneath the roof but also contains rectangular “"cutouts" which

could correspond to shutters, doors, or windows.

The foliage-schema is activated by finding regions which meet
certain color conditions; as 1is the grass-schema. The final
interpretation, shown in Figure 12¢c gives a fairly accurate
interpretation of the sky, foliage, roof, wall, some of the
shutters, and grass in the original scene. The system has no
information about the roadway, and so we see this region left
uncharacterized. A number of other regions are also missed by the

system.

It may be instructive, in trying to understand the use of
cooperative compuation in an expert system -- in this case for
schema interpretation -- to see what sort of krowledge would have to
be added to the system to make it more successful. Let us focus or
two aspects of the image in Figure 12a that went unnoticed when it
was analyzed by the system. The first is the mailbox -- the small
white rectangle atop a black post in the right-hand side of the

image, about half-way up. (The mailbox is in fact a good example of
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how much specific knowledge must be given to a successful
interpretationr system. The United States of America is one of the
relatively few countries in which it is common for mailboxes to be
Sset ouv near the road on a post in this fashion, thus the schema
that many people have for a mailbox will not include objects of this
kind.) Even if the knowledge base were augmented to include a schema
for mail box, it would not have been "seen" by the system as
currently constituted. This is because a small region is in danger
of getting "lost". This could be corrected for by having‘a measure
of region salience, which would score how strong the contrast is
between a region -- even if a small one -- and the surrounding
region. Thus the distinctive white of the region would focus
processing on it to find a schema which matches, rather than allow

it to be subsumed as part of the grass.

Perhaps even more interesting is that one of the uninterpreted
regions corresponds to a wall of the hcuse peeking through the
trees, separated from what has been interpreted as the house.
Again, this region can be lost unless a measure of salience were to
focus more schema activity upon it. Let us see what extra knowledge
would have to be included in the system for successful processing.
First, it would have to be recognized that the color of this region
matched the color of the house wall, thus causing the activation of

an instantiation of the wall schema to cover that region. This
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Figure 12. (a) A second house scene;

(b) its segmentation; and

(c) the image interpreted as a result of schema interaction.
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would then cause the activation of shutter schemas to 1look for
rectangular regions of the same color as the shutters already found
in the other wall. But an interesting feature of the present image
is that the color of the shutters matches so well the color of the
foliage that the shutters were in fact segmented as part of the
foliage. However, if a schema were looking for rectangular shape,
it would be able to pull out the shutters from the foliage, to come

up with a more subtle interpretation of the scene.

The second scene that we shall analyze is that we have already
seen in Figure 10a, which has a segmentation (Figure 10b) which
lacks a crucial edge, namely that which separates the left-hand wall
from the sky. Thus the sky-schema, looking for a region which is of
the right color and at the ¢top of the 1image, assigns a high
confidence level to the vregion which includes the sky and that
region of the wall; while the wall-schema -- assuming that the
roof-schema has already recognized the roof with high confidence --
will assign a high confidence level to regions which extend beneath
the roof and which have rectangular cut-outs -- thus assigning the
wall-hypothesis not only to the front wall, but to the region which
embraces the side wall and the sky. Our schemas are so designed
that when two different schemas are assigned a very high confidence
level to the same region, they then call for low-level processes to
resegment that region. It should be noted that the region of
contention (Figure 13a) 1is very large, and that resegmenting at a
greater level of detail, hopefully to find the missing edge, 1is a

very expensive process. Here, if the schemas had more knowledge,
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they would be able to economize. Recognizing that the contention is
between wall and sky, they would "know" that if there is a missing
edge, it should be near the roofline, and would thus be able to
concentrate the finer segmentation on a small regiorn of the image --
in much the way that humans achieve with their eye movements.
However, lacking this measure of "intelligence", the present
implementation of the system calls for the expensive segmentation of
the whole region. Subsequently, all the new sub-regions (Figure
13b), contained in what was earlier one 1large region will be
processed by the sky-schema and the wall-schema. This time there is
no problem -~ those regions which are at the top of the image and of
the right color become sky; while those regions which are below the
roofline and abut the rectangles become interpreted as wall. The

system then proceeds to the segmentation shown in Figure 13c.
This last example makes clear two important principles;

1. Cooperative computation is not a ore-way process. Although
some low-level processing may be required to initiate high-level
schema activity, once this schema activity is underway, it may call
for the 1low-level processing as appropriate. In fact, in some
cases, schema activity may precede low-level processing -- as when

we scan the room for some object that we need.

2. Intelligence can save a 1lot of work. In our specific
example, we saw that adding a rather small number of high-level
rules would allow us to avoid a great deal of expensive, highly

parallel, low-level processing.
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High-level vision involves the interleaving, then, of multiple
processes, a cooperative computation in which each is invoked where
appropriate, possibly many times, with hypotheses being generated
and discarded until the system converges on as good an
interpretation as it is able to give with the facilities available
to it. We claim that this style characterizes the perceptual
mechanisms of brains, but it also is a useful model for '"central"

processes.
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6. The Prospect for Modelling Central Processes

We may agree with the notion of a module within a cognitive
system as a subsystem which has a well-defined set of inputs and a
well-defined set of outputs, and with a well-defined relation
between inputs and outputs. This relation may involve the mediation
of state variables internal to the module but the values of these
state variables will only have an effect upon other modules to the
extent that they determine the output of the module. However, in

the preceding sections we have sought to establish the following:

a) Fodor's modules are only a subclass of modules in this

sense, and his defining conditions may even be inconsistent.

b) Fodor's modules are too big, in that he would view the
visual system as a single module, whereas cognitive science must
offer an analysis in which the grain of the modules is at least as

fine as that of the rectangles of Figure 3, 7 or 9.

c) In the light of (b)), we reject Fodor's claim that there 1is
no external feedback path whereby the output of the module can

affect its input.

d) The concept of module is not a new one initiated by Fodor,
but has a 1long history both in functional :analysis of cognitive
systems and in the structural analysis of ©brain mechanisms of
cognitive functions. The give-and-take between functional and

structural (neural) decompositions of cognitive systems provides an
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important tool for cognitive science.

In this last section, I turn to Fodor's views on central
processes. I could argue that the type of schema interactions
posited for high-level vision in the previous section constitutes a
viable model for the analysis of central processes, but I shall
restrict myself to a critique of three dichotomies offered by Fodor
as a grounding for his distinction Dbetween input processes and
central processes. Rather disarmingly, Fodor admits that "there is
practically no direct evidence, pro or con, on the question whether
central systems are modular.... When you run out of direct
evidence, you might just as well try arguing from analogies, and
that is what I propose to do. (Fio4]". He assumes that "the
typical function of central systems 1is the fixation of belief
(perceptual or otherwise) by nondemonstrative inference. Central
systems look at what the input systems deliver, and they look at
what is in memory, and they use this information to constrain the
computation of 'best hypotheses' about what the world is like
[F104). This leads Fodor to wuse scientific confirmation as the
analogy to structure his model of central processes. The key to his

argument is that scientific confirmation is:

Isotropic: facts relevant to the confirmation of
scientific hypotheses may be drawn from anywhere in

the field of previously established truths; and

Quineian: the degree of confirmation assigned to any
given hypothesis is sensitive to properties of the

entire belief system, e.g., based on a measure of
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simplicity, plausibility or conservation which is a
metric over global properties of belief systems

Having accepted the force of his analogy, Fodor concludes that
"Even if the flow of data is unconstrained within a module,
encapsulation implies constraints upon the access of intramodular
processes to extramodular information sources, [ whereas]
if...isotropic and Quineian considerations are especially pressing
in determining the course of the computations that central systems
perform, it should follow that these systems differ in their
computational character from the [modules]" (F110-11]. And on this
basis Fodor claims [F112) that the following three taxonomies are
co-extensive

FUNCTIONAL TAXONOMY: input analysis versus fixation
of belief.

TAXONOMY BY SUBJECT MATTER: domain specific versus
domain neutral.

TAXONOMY BY COMPUTATIONAL CHARACTER: encapsulated
versus quineian/isotropic.

He remarks that this co-extension, if it holds, is a deep fact about
the structure of the mind. I shall argue not only that it does not

hold, but that the individual taxonomies are not themselves useful.

Input Analysis vs. Fixation of Belief. Fodor rejects Marr's

primal, 2-1/2D and 3D sketches as defining the outputs of the visual
processor, since then the visual input module would not provide for
the recognition of objects and events. He argues [F94-95) that
basic perceptual categories constitute the output of the vision

module - these are the "middle 1levels" in implicational



Page 54

hierarchies, e.g., "dog" rather than "poodle" or "thing". 1In other
words, it follows from Fodor's own account that the visual input
module can, with appropriate visual stimulation, deliver to central
processes a confident report that the distal stimulus is a dog. But
in this case, no further central processing is required to fix the
belief "I see a dog". Though it is incontestable that there are
many beliefs whose fixation cannot be achieved by input analysis
alone, Fodor's own view of the vision module denies that input

analysis vs. fixation of belief constitutes a clear dichotomy.

Domain-Specific vs. Domain Neutral. Well, this has been a wuseful

taxonomy in AI, but Fodor's use of "domain" is different, since
"vision" and "language" are domains for him, but "bacterial
diagnosis" or "the blocks world" apparently serve only as objects of
ridicule. Fodor asserts [F103; F139, Note 43] that "Early AI tried
to treat central processes as though they were modular,
Intellectual capacities were divided into...arbitrary
subdepartments...and the attempted simulations proceeded Dby
supplying machines with very 1large amounts of more or less
disorganized, highly topic-specific facts and heuristics. ... What
emerged was a picture of the mind that looked embarassingly 1like a
Sears catalogue ... I take it that the bankruptcy of this sort of
Al is self-evident and constitutes a strong prima facie argument

that the organization of central processes is not modular".
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Howevef, it is not self-evident to me that this approach 1is
bankrupt. I think that many cognitive scientists would agree that
it is only by using a "microworld" to reduce problems of ambiguity
and to limit the amount of information to be represented in a model
that we can make the progress in analyzing process and
representation which <c¢an provide the 1i1nductive base for the
inference of more general mechanisms. However, a more telling point
in the context of Fodor's argument is that scientific confirmation,
his key analogue for central processes, itself "looks like a Sears
catalogue". There are scientific societies for the study of
physics, biology, chemistry, etc., and the volume of scientific
research has grown to such an extent that the work of most
scientists is confined to narrow subdisciplines with little
commuriication between them: within cognitive science, work in
linguistics is 1little affected by work in vision; within
linguistics, a researcher in language acquisition may pay little
heed to studies of historical phonology. We may decry this
specialization, but it is neither "embarassing" nor "self-evidence
of bankruptcy". If we accept AI usage, then the domain-specific
vs. domain-neutral dichotomy does not match Fodor's other
dichotomies, for an AI model of a central process will often span
the dichotomy, using a domain-neutral "inference engine" to process
facts from a "domain-specific" database -- and many of us would find
even this dichotomy to be mistaken, arguing that knowledge and
processes are often intertwined. If we insist on Fodor's wusage of
domain, we find it is not defined, but is given by a list "vision,
language,..." whose continuation is unclear. 1Is "reading" a domain,

or is. it to be regarded as "sort-of-domain-specific", involving
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language and vision but not certain other domains, or is it
"domain-neutral®™ since neurological studies show it to involve many
interacting submodules, including ones linked to vision, 1language
and hearing? In any case, the dichotomy has become a trichotomy.
But the situation is even worse than this. Lacking any clear
definition of domain other than "like an input module", Fodor's use
of his dichotomy is vacuous, and any claim that it is a deep fact
that "domain—specific vs. domain-neutral™ might match "input module

vs. central process" is reduced to empty tautology.

Encapsulated vs. Quineian/Isotropic. Now that we have confronted

the issue of scientific specialization, we sce that this dichotomy
does not usefully describe scientific confirmation. We may regard
science as organized into modules with relatively restricted flows
of data between them. To a first approximation, each specialty is
encapsulated. However, work within the discipline is certainly
Quineian and isotropic with respect to the facts and theories of the
discipline itself, and only secondarily and with much longer time
constants with respect to science as a whole. Since two can play at
the analogies game, we might suggest that input modules correspond
to scientific specialities while central processes correspond to the
integrative aspects of science,. If we accept this analogy,
encapsulation of the input processes 1is at best a first
approximation; if we reject it, we suggest that modularity provides
a good first approximation to the structure of the central
processes. In either case, we reject the claim that the
encapsulated vs. Quinean/isotropic dichotomy is coextensive with the

input process vs. modular process dichotomy. Moreover, we may now
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counter the profound pessimism with which Fodor concludes his
volume, when he argues [F137] that "...if central processes have the
sort of properties that I have ascribed to them, then they are bad
candidates for study". He ascribes what progress there has been in
cognitive science to the fact that we have been able to study
modular input systems. But if, as I argue, input processes are less
ercapsulated and some central processes are more encapsulated then
Fodor Dbelieves, then there is no reason to accept the input
process/central process taxonomy as setting a dispiriting 1limit to

the success of cognitive science.
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