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Abastract,

We describe the development of a task-level model of distributed computation specifically designed
for complex robot systems. We start by describing two fundamental problems which characterize
the complex robot domain, and then describe four examples by which our model can be judged.
Emphasizing that the formal exploration of behavior is as important as the specification of behav-
ior, we describe the syntax and semantics of our model. Noting that our emphasis in this paper
is on representation, we detail the implementation of each of the four examples introduced earlier.
We conclude by analysing our implementations and outlining future work on this model.
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1. Introduction

We are developing a computational model for task-level, distributed robot control. By tusk-level
is meant that actions can be described by their effects on objects [9). By distributed is meant that
concurrent entities in the model cooperate and compete [12], generating a decentralized control
architecture. Such a model would allow the specification of behavior for complez robot systems
working in dynamic environments. We define a complex robot system as a robot with many degrees
of Jreedom (possibly highly redundant) and multiple sensory capabslities [3]. Our interest in these
robots stems from their potential for versatile behavior far outstripping current industrial robots.

Using existing methods for the specification of robot behavior, it is difficult to realize the
full capabilities of complex robot systems. We wish to develop a model which not only allows
the specification of complex behavior patterns for robots, but also allows the examination and
exploration of this behavior formally.

In general, robot programming languages, both robot-leveland task-level (9], are simply general
purpose programming languages with special procedures for interfacing to the robot mechanism.
Motor control and sensory input are essentially represented as output and input from peripheral
devices. Some recent robot languages have followed a new approach; that motor control and
gensory input are not just specific examples of the peripheral write and read operations, but highly
important characteristics of the whole robot programming problem. An important example of this
is Geschke’s RSS [5). In order to command the robot to do some action, the RSS programmer
initiates a computing agent, called a Servo Process. Each such servo process is a combination of
a sensory event and a motor action. SMS [17] defines action in terms of the cooperative activity
of a sense-process and a motor-process, called a Junction. It differs from RSS in that it defines
8 sensory-motor hierarchy and associates a judge process with each function to determine if the
function has achieved its objective.

Arbib (1] defines the perceptual schema as the unit of sensing and the motor schema as the unit
of motor behavior. Motor and perceptual schemas are closly coupled in that a motor schema may be
triggered by a perceptual schema and a motor schema may trigger task-specific perceptual schemas
to analyse sensory information in a task context. In Overton’s [13] tactile sensing robot system,
a8 schema is an abstract type which monitors certain aspects of the current situation and becomes
active when the situation matches the expected state. Both [1] and [13] represent a complex task
or perceptual event as an assemblage of schemas.

2. Complex Robots

There are two fundamental difficulties in dealing with complex robot systems. The first is the
coherent control of many separate degrees of freedom. Examples are the fingers of a dextrous hand
or the legs of a multi-legged robot. The second is the sntegration of sensory snformation snto motor
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behavior. The only way to deal with a dynamic environment is to parameterize motor behavior with
dynamic sensory information, sensory information which is on-line description of the surrounding
environment.

A solution to the first problem would entail some versatile mechanism for linking degrees of
freedom with each other. Since this problem will become more important as more and more complex
systems are built, a solution must be general and not based on a particular robot mechanism. A
golution to the second problem must address two areas: A robot system which lacks a focusing
mechanism derived from task context is degraded by having to consider all sensory information, as
is a robot system which receives appropriate information but in a non-task-oriented manner.

We use these two problems as the cornerstones of our model, and from them develop a number
of particular examples. We shall judge our model by the facility with which it implements these
examples, and hence, solves the fundamental problems.

To make our analysis more concrete we have chosen to work in the dextrous hand domain. Once
we have suitably developed our model in simulation, we plan to implement it on a network of pro-
cessors controlling a Salisbury hand [11]. Our previous work in this area {2, [7), [10] hasapproached
the problems of grasping from the task-level, not from the mechanism level. Thus we have not con-
strained ourselves to a particular hand model as does much of the literature, and we attempt to
integrate grasping and manipulation into an overall task-context. While such integration has been
formulated in the context of the two-fingered gripper [8], both versatility and problems increase
when a dextrous hand is employed.

We base our grasping on a general model of the human hand having a number of multi-jointed
fingers based on a rigid palm, in turn mounted on a 6-degree of freedom (DOF) wrist. We define
a grasp as characterizing a domain of interaction between the dextrous hand and objects in the
world. Each grasp is defined as a triplet consisting of; a preshape configuration, some acqussition
snformation, and some manspulation information. All grasp information is described in terms of
logical units, Virtual Fingers, which are mapped to physical fingers on the basis of hand and object
characteristics.

3. Test Examples

We outline here four test examples which embody much of the difficulties of representation in
the complex robot domain. We shall judge our model on how well it implements specific instances
of these examples in the hand domain.

ExamEle I

The guarded move, a motor command with a sensory termination, has emerged as a powerful
robot-level programming construct. Our model must be able to represent the classicial guarded
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move for n sensors and m limbs.

Example 11

The concep: of the guarded move is as valid at the task-level as at the robot-level, but the
classical form of the construct is robot-level. Object parameterization of motor commands is the
task-level concept of which the sensory termination condition of the guarded move is the robot-level
projection. Important aspects of this cxample are determining the nature of object representation
and its relationship to sensor data.

Example III

Basic to a task-level formulation is a representation of an object; however it is really only
relevant to the robot controller in that it triggers or parameterizes some task process. Our model
must be able to represent two situations: A task process which when active, searches for some given
object and is then parameterized by that object’s properties; and a task process to be triggered by
the recognition of some object and then grossly parameterized by that object’s properties.

Example IV

A logical aggregation mechanism is a highly important tool in specifying the behavior of com-
plex robots. Although the concept of the Virtual Finger (VF) [2] is hand specific, the notion of
representing actions in terms of logical rather than physical units is equally valid in any robot
domain, e.g. Virtual Legs [14]. We must be able to group an arbitrary number of fingers together
to form a VF, and be able to issue common commands to all the members by issuing the command
to the VF. We extend this by demanding that we be able to use the VF concept to specify similar
but not identical conditions for each member of the VF. Consider ¢losing «ll the fingers of a hand
on an object. Depending on the local geometry some fingers may come to meet the object sooner
that others. However, all the fingers are essentially carrying out the same command — moving
until they grip the object surface.

4. Model

We use the Port Automata model of Steenstrup et al.[15] to provide the semantics of distributed
computation. Essentially a port automaton (PA) is a formal machine equipped with a set of ports
through which all communication with the environment takes place. Communication is achieved
by connecting together ports on separate PA using a port connection map. Such a network may be
considered as a single PA, its port set being composed of those ports which have not been connected
by the port connection map. All communication is synchronous{16); that is, a PA writing to a port
will suspend exccution (i.e. will not proceed to its next state) until some port connected to that
port has been read. In similar fashion, a PA reading a port will suspend execution until some value
is written to a port connected to that port.
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We have constructed a programming environment based on our model on a VAX 11/780. The
environment consists of a compiler which accepts programs in the notation introduced here, and
produces code for a network of stack machines; an emulator for the network of stack machines; and
a robot simulator{2] which accepts motor commands from the network, produces graphical output
of the robot mechanism, and feeds back simulated sensory input to the network.

4.1 Schemas

Our syntactic unit of distributed computation is the schema. Semantically a schemais a genersc
port automaton description augmented with snstantiation and deinstantiation operations. A schema
description consists of: A list of input and output ports, which we associate with the ports of an
equivalent PA; an internal variable list and a behavior section, which we associate with the state
transition and output maps of the equivalent PA. The snstantiation operation takes as input a
schema and some snstantiation parameters, and produces a computing agent, referred to as a
schema snstantiation or SI. The snstantiation parameters consist of initial values for the internal
variables, and a connection map specifying connections of the ports on this schema to ports on other
S1. The behavior section is a program which cycles continuously until the SI is deinstantiated. These
instructions can synchronously read from or write to the ports, access internal variables, instantiate
other schemas, or deinstantiate other SIs. We use the following syntax to define a schema:

[N (ip) (op) (v) (b)), (1)
where,
e N is an identifying name for the schema
e ip,op are lists of input and output port names respectively
e v is a list of internal variable names
o b is a specification of behavior

All five components of the schema description must be present, however components other than the
name may be empty, which we indicate by empty parenthesis (). We define the behavior section
by the following syntax:

< behaviorsection > ;=< Stat >*

< Stat > u=< Assign >|< If >|< Instn >|< Dinstn >
|< For >|< Forall >
< Assign > =< Var > := < Ezpreasion >|

< OutputPort > := < Ezpression >
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We embed reading and writing into the syntax of < Assign >; an input portname occuring in
< Ezpression > is a read to that port, and an output portname on the left hand side of
an < Assign > is a write to that port. Apart from this we assume standard syntax for an
< Ezpression >. -

<Instn> =< Schemaname >pny {Vo}{Co}
< Dinstn > ::=STOP{< Schemaname >4}

The Vo parameter for the instantiation operation is a list of initial variable values of Schem-
aname; these are assigned by posstion to the internal variables of Schemaname as they are specified
in its v list (the same syntax as is usual for procedure parameters). The C, parameter specifies
connections for the ports of schemaname to ports on other SI, and is a list:

Co = (< Couplets >*)
< Couplets > = Ipname «— SIPname | SIPname ~— Opname
SIPname = Schemanamey,(port)

where Ipname and Opname are names of input and output ports of schemaname , and SIPname
identifies a port on an SI.

<If > u=IF <condition> THEN < Stat >*
ELSE < Stat>* ENDIF
< For >:=FOR < indez >=1...n DO < Stat >* ENDFOR

We assume standard syntax for < Condition >, and constrain < Indez > to be an internal
variable for simplicity. Apart from this IF and FOR are as one would expect. We extend the
syntax to < Instn > to allow the FORALL statement.

< Forall > :=FORALL Schemaname DO < Instn >* ENDFOR

This statement uses a schema name as an indez for definite iteration. The < Instn >°* com-
mands in the loop body will be executed once for each snstantiation of schemaname which currently
czists. Consider the following example of schema definition:

[TClosejoint (Tin Pin) (Pout) ;mame and port definitions.
(Del) ;;internal variable, step increment

(IF Tin=0 THEN Pour:=P;p+Del ;;increment current position
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ELSE Pout:=P;n ;;stay at this position
ENDIF)]

The internal variable Del must be initialized when T'Closejoint is instantiated, and corinections
made to its ports. If T;, was a tactile input and P;, and P,y were actual and desired position
respectively, then T'Closejoint would continually increment the position of some joint until the
tactile input was non-zero. Although we can specify robot programs at this level, we have not
constructed anything in our model yet to facilitate their representation. It is for this purpose we
present the following structure.

4.2 Assemblages

An assemblage SI is a computing agent in which the behavior is defined as the behavior of a
number of other communicating Sls. The port connection automaton of Steenstrup et al. provides
the semantics for our assemblage construct. This aggregate SI can be considered the instantiation
of a single schema, an assemblage schema, which must contain information on how the individual
SI are created and connected, and how the ports of the component Sls appear as the ports of the
assemblage SI.

An assemblage schema description consists of an input and output port list, an equivalencelist of
assemblage port names with component SI port names, a list of component SI and an initialization
behavior section to set up the SI network, and a network inap detailing the connections of SI within
the assemblage only. An assemblage SI terminates when all its component SIs terminate. We
further strengthen modularity by defining instantiation numbering to be local to the assemblage
in which the SI is a component. Also we now define the instantiation number to be an optional
but unambiguous parameter to the instantiation operation; this paves the way for our definition of
seusing in our model. We use the following syntax for assemblage definition:

[N (ip) (op) (s) (ib) (p) (n)], ()
where,
e N,ip, and op are the assemblage name and its input and output ports lists respectively,

e s and ¢b are a list of component schemas, and the commands to set up the network of
component Sls, respectively,

o p defines the way in which the ports of the component SIs appear as the ports of the assemblage
SI, a list of the form
P u= (< Equivalence >*)
< Egqusvalence > ::= assemblage port name = component port name

o n defines the port connection mappings between component. Sls,
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In an smplementation of the assemblage construct we would expect that all the component Sls
are close together in communication epace; this is a process distribution criterion for a distributed
computer system. We would also expect that an assemblage can be started and stopped as if it
were a single SI and that all the component Sls of the assemblage are treated equally with respect
to resource access.

Fan-in occurs if an input port on an SI is connected to more than one output port; fan-out
occurs if an output port is connected to more than one input port. If a port a on A is connected to
ports b on B and ¢ on C, then any value written by A to its port a will be simultaneously passed
to both b on B and c on C. After a write to g, SI A can only proceed if at least one SI reads a port
connected to a. The semantics of fan-in is important to effectively implement parallel searches. If
an SI A instantiates B and C to search some range in parallel, and connects its port a to result
ports on B and C, then A would like any read on a to terminate if either of B or C produce a
value first, since this makes most effective use of the parallelism. In general a read to some port a
will terminate if any port connected to that port is written to; if more than one connected port is
written to, then all written values will eventually be readable at a.

4.3 Sensing

We represent sensation in our model by predefining a list of special schemas. The sth instance
of the Jmotor schema accepts input through its input port desired and has an implementation
defined effect on the sth joint of the robot mechanism for some defined physical numbering system.
For a stepper motor Jmotor might control the number of steps to take, for a DC-servo motor it
might control torque. An important point to grasp is that to control the ith joint, make a local
ith instance of the schema Jmotor. To disambiguate this situation we let the actual value of the
controlled variable fed to the ith joint is the average of all Jmotor; values. Tiotor is sketched as:

[Jmotor(desired)(actual) - -- < implementation dependent > - -] (3)

In a similar fashion a schema Jposition is predefined, the ith instance of which reports on the
position of the ith joint for some numbering of the physical mechanisms. We consider two other
robot senses, a tactile sense and a visual sense. An SI Tactile; reports on the status of the sth
tactile sensor, for some numbering of the tactile sensors.

[Tactile()(Contact) - -+ < implementation dependent > -] (4)

Vision is a more difficult sense to deal with in the fashion in which we have developed position
and touch. The SEF schema is predefined (Separable Environmental Facet); an instance of the
SEF schema is created automatically by the visual interface for each separable bunch of features
detected. We demand that SEF; always represent the same set of features; this we refer to as
visual continuity. One way to implement such visual continuity is to define it in terms of continuity
of the features measured by an SEF Sl. SEF is defined to have no input ports, and one output
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port per feature measured. It can then be described as an assemblage of Feature Sls, each of
which measures one feature, and provides one port on the assemblage. Thus S EF has ports which
can most extensibly be described as a port array; we denote this by aubscnptmg the ports in the
assemblage definition.

[SEF()(Fi...Fn)--+ < implementation dependent > - -] ()

Object continuity is not, of course, so simply related to feature continuity. However for the time
being let us accept this approximation to proceed with model development. Note that SEF; is
essentially a logical sensor for a distinct physical set of features under some numbering system [6].
Also we assume SEF Sls local to all assemblages.

4.4 Task-Unit

The assemblage construct is used to build the basic unit of task representation. In this we follow
RSS and SMS in tightly coupling a sensory oriented process and a motor oriented process; where
a sensory Sl is primarily concerned with reading and processing sensor information and a motor
Sl is primarily concerned with motor control. We extend this structure by the addition of a third,
linking, process between sensing and action. “Robotics is the intelligent connection of perception
to action” 4], this third process provides the intelligent link. The special assemblage constructed
in this way is referred to as a task-unit assemblage.

To specify a task-unit it is necessary to specify the sensory and motor components and the details
of the linking process, which we will refer to as the r-schema. A task-unit has the same semantics
as an assemblage, with the exception that the task-unit terminates if the r-schema terminates (this
is necessary because of the way in which sensing and action were defined as special schemas).

[N (ip) (op) (el) (ml) (ib) (var)(b)] (6)
where,
e N, ip, and op are the name and port lists of the task-unit and r-schema

o &l and ml are the list of sensory components and motor components respectively, and b is
the instructions which initialize this network,

e var and b are the internal variables and behavior section of the r-schema.

It is easy to sce how this can be rewritten as an assemblage definition (2). Although definition (6)
characterizea a task-unit schema completely, it is advantageous sometimes to be able to abbreviate
n task-unit, to leave implicit the linking process and detail only the sensory and motor SIs. For
example we indicate a task unit assemblage Joint; consisting of Jposition; as a sensory SI and
J motor; as n motor SI as:

Joint; = [Jpoaition; — Jmotor,| (7)
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This task-unit specifies some form of position servo. When instantiated it position servos the
ith physical joint for some numbering of the physical mechanism. The internals of Joint; are
abbreviated to ‘—’. In a similar fashion we can define a force servo.

Jointf; = [J force; — Jmotor] (8)

Depending which of (7) or (8) are instantiated per physical joint we can specify a particular hybred
position/force controller. We can describe the guarded move which was the subject of our earlier
schema example as:

Closcjoint; = [Tactile; — Joint;) (9)

This ‘shorthand’ notation allows us to briefly explain our notation of a precondition. We can op-
tionally associate a preconditionwith each task unit. In implementation terms a precondition is an
SI which will test for some defined conditions before making an instance of the task unit. The pre-
condition is not constrained to terminate when the assemblage has been created; it may terminate,
or it may continue to be active, creating assemblages whenever it is satisfied. For example, if Mug?
is an SI which recognises a mug from sensory input, then we denote the precondition relationship
of Mug? to some task-unit for grasping the mug by:

Mug? : [Mug — Graspmuyg) (10)

5. Implementation of examplcs

Example |

Consider the following much simplified problem: A dextrous hand has been placed in such a
configuration around an object that evenly closing the joints on each finger will succeed in stably
acquiring the object. Let us assume a numbering of the physical mechanism and sensors as in fig.
1. A task-unit schema can be described in terms of definition (6) as:

[ Closejoint (Tin Pin) (Pout) ;mame and port definitions
(Tactile) (Joint) ;;sensory, motor components
( Tactilequi() (Tin — Tactile(contact)) ;;jone instance of Tactile

Joint;()(Pin +Joint(actual), Joint(desired)« Poy) )  ;;and one of Joint

(i del) ;;internal variables
( IF Tin =0 THEN P,y :=P;,+del ;; no contact so move in
ELSE Pous :=P;n ;; otherwise stay here

ENDIF) |
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When Closcjoint is instantiated § and del must be appropriately parameterized. Notice that
the r-schema degenerates to a simple IF statement; as long as Closcjoint; exists this IF continually
executes — the guarded move.

Having specified the required action for a single joint we now need to apply this to all the joints
which need to be controlled. We could just go ahead and instantiate Closcjoint for each necessary
joint. However each Closejoint; is a locally tightly-coupled group of processes, left on their own,
they will each proceed at varying paces depending on the physical mechanism and the processor
scheduling algorithms. One explicit solution to this is to change our task-unit specifications so that
each instance of Glosejoint is synchronized with every other instance.

This provides complete synchronization at the expense of parallelism. If we weaken synchro-
nization to say that all Closejoint; will be treated equally with respect to the resources they use,
both computational and physical, then we can use our assemblage construct. We define all the
instances of Closejoint to be components of some assemblage Grip:

[Grip ()() ;MO ports necessary
(Closejoint) ;;jonly one component schema

(FORs=1...n DO sifor joints 1 ton
Closejoint (s, 10)() ;;8et up local networks of Si
ENDFOR)

00l ;o port maps

This assemblage instantiates n Closejoint SI in a tightly-coupled bundle. Although Closejoint
SI do not communicate with each other, they are scheduled with equally fair resource allocations;
an implicit synchronization. In addition effects due to setting up or stopping the network are
eliminated, since by definition all components of an assemblage are treated as a single SI. If we
use the concept of a port array, as used to specify the SEF (5), the task-unit generalizes easily to
control any number of joints based on one sensor, or one joint on any number of sensors.

Examgle II

In the preshape phase of grasping, a dextrous hand must be configured to facilitate object
acquisition and subsequent manipulation, and also conveyed to the object location. For reaching,
an object model should provide a location and orientation for the object; however for preshaping,
object shape and size are the important characteristics. The object model therefore, depends on the
task to be accomplished, and consists of designated sensor readings or data computed from sensor
readings. Let us assume the feature ports on an SEF, F ... Fy, provide position, orientation, shape,
and size respectively, and that we know S EF}, represents an object we wish to grasp. We write two
task units reach and preshape:

Reach = [RObject — (MoucW rist, OrientW rist)) (11)
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Figure 2: Graphic Output of Simulation of
Closejoirﬂ:i Task=-Unit for Salisbury Hand Model.
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Clo.-;ejointi

Figure 3: The Closejoint Task-Unit Schema.

Where parentheses are used to group motor Sls together. MoveW rist is an assemblage of Joint Sls
which control the base position of the wrist, and in similar fashion OrientWrist is an assemblage
of Joint SI which control the wrist orientation. The exact nature of these two assemblages will
depend on the nature of the physical mechanism. The object model RObject filters general position
and orientation to provide task oriented information:

[RObject (Pn On)(Pt Ot)  ;; Name and Ports

(handlength grotate) ;; internal variables, set up on instantiation
(Pt:=Pn-handlength +; Decrement target location by hand size
Ot:=grotate-On)) ;; Rotate object coordinate frame to suit task

This allows for some static hand offset handlength, and rotates the object coordinate system
(grasp dependent) by grotate. Initialization of Reach must of course set these filtering variables
up. We can define Reach more fully as:
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Reach,
i

RObject

Figure 4: The Reach Task-Unit Schema.

[Reach (Mp Mg Op Op) (Pos Omt)

( RObject SEF)
( MoveWrist Orient Wrist)

( RObject(hlength,GRot)
(Op «—RObject(Pt), Op —RObject(Ot),
RObject(Pn)—SEF:(Fy),
RObject(On)+«SEF;(F2))

MoveWrist ()
(Mp «—MoveWrist(actual), Move Wrist(desired) —Pos)
Orient Wrist ()

(Mo +Orient Wrist{actual), Orient Wrist(desired)+Ormnt)

!

(hlength GRot Ptemp Otemp del)

(ptemp:= Mp

Otemp:= Mo

IF Ptemp#0Op THEN Pos:=Ptemp+Del ENDIF
IF Otemp#0op THEN Ornt:=Otemp+Del ENDIF

IF (Ptemp=0p)AND(Otemp=0o) THEN STOP ENDIF)] .

;;Ports
;;Sensory Components
;iMotor Components

;isetup object model

;;connect to SEF,;

;iSet up Movewrist
;connect motor o/p
7i1Set up Orientwrist

;iconnect motor o/p

;)local var of reach

;ivead current pos
;;and orientation
;;move to object
;;and orient
;;terminate reach

I4
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Example III

Now we consider the problem of triggering some task-unit T; when a certain object, or object
configuration, is perceived. In our example we shall just use visual sensing, and indicate how this
can be extended easily for any sensory description. The object is characterized as a set of visual
features; values of the feature ports of an S EF (5). We define a precondition Objeet? whose function
is to search in parallel all SEF instances for one whose feature port values correspond to values of
internal variables of Object?. Object? is structured to search all SEF instances in parallel using
the FORALL statement. Object? creates one instance of another SI Objtest for each instance
of SEF, the internal variables of Objtest are initialized to describe the desired object, and the
ports of Objtest are connected to ports on the corresponding SEF instance. Each Objtest; also
has a result output port connected to the input port result on Obsects? (a fan-in situation). Each
Objtest; simply tests the values it receives on its input ports against the values stored in its internal
variables; if they match, a one is written to the result port, otherwise a zero is written to the result
port. In either case Objtest; terminates after testing SEF;. Having started all Objtest instance,
all Odject? need do is to wait for a one to be written to its input port result, and instantiate T;
when that happens. We can describe this as:

[Objtest (F;...F;) (judgement) "
(DF;...DFy) ;:desired feature vector of object
(IF (F; =DF,) AND ... (F¢ =DF,) ;;Object Test

THEN judgement:=1
ELSE judgement:=0

;;Object matches description
;iNo match with Object

ENDIF "

STOP)) ;;terminate SI

[Object? (result) () ;

(T s ;;task unit specification
DF,...DFy) ;ifeature vector of desired object

(FORALL SEF; DO
Objtest; (DF,...DFy)
(Objtest(Fy ... Fs) «— SEFy(Fy...Fs), Object(result) «— Objtest;(judgement))

ENDFOR

;;start all Objtest SI

IF result=1 THEN
(... )...)
STOP

ENDIF)]

;;wait for a match
;;if matched, setup and
;;start the task-unit

Essentially this is an example of the parallel search problem we discussed earlier on. Note
that Object? will cycle through its behavior section continually ¢reating Objtest processes. The
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Figure 5: The parallel search. initiated by Object?

unnecessary proliferation of Objtest processes is stopped since Object? specifies the instantiation
number of Objtest. In this way if Object? tries to create more than one SI to examine some SEF;,
we can recognise the case.

To connect the instanced task-unit to the triggering S EF requires a different precondition: we
can do with by a minor modification to the previous example. Object? creates one instance of
Objtest for each instance of SEF and then dies. Each Objtest tests its SEF: If it fails the test
the Objtest SI dies; otherwise the Objtest SI creates the task unit. Since every particular instance
of Objtest is connected to only one SEF, the task-unit can be connected to the triggering SEF.
We can combine both of these preconditions and have a precondition which waits around for some
object to exist and when it does, creates an instance of some task unit T' connected to the SEF
describing the object. It is easy to generalize the nature of Objtest so that it tests not only some
SEF, but also a combination of tactile or position data etc.

ExamEle v

Up to now we have been describing networks in terms of motor actions such as the control of

a particular joint or finger. However logical grouping is also useful for motor specifications. For

example, the virtual finger mechanism allows us to specify motor actions in terms of some logical

unit, the VF, which will later be mapped on to a real mechanism. Assume we have some task unit
N,

N =[T; - F] ' (12)
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written in general terms of some finger control SI F;, where ¢ indicates which physical finger
(according to some numbering of the robot mechanism) is being controlled, and is represented by
some internal variable in N. The allotment of physical fingers to virtual fingers is a fupction of
object and hand characteristics. The task to be accomplished is described in terms of VFs, which
are mapped to appropriate physical fingers when the task is executed for a particular object(s). So
if N describes a task to be done, then the function of the virtual finger mechanism is to instantiate
N for each finger F; which is included in some designated virtual finger V Fj.

Let us define a schema VFE, where k indicates which virtual finger VFk will be used to represent.
Let VFk have no input or output ports, no internal variables, and have the behavior of a null process.

[V FE()O00] (13)

We indicate that some (not necessarily consecutive) set of fingers are to be included in VF}:
Ju = {s| F; is considered to be in V Fy for this task) (14)

by making a corresponding instance of V Fk for each ¢ € f3. The virtual finger to physical finger
mapping is accomplished by making appropriate localinstantiations of VFk. For example if VF2;,
VF2; and VF2, exist in some local context that indicates that for this context f; = {1,2,4}. The
FORALL statement can be used to make one instance of N for each instance of VFk:

(FORALL VFk; DO N(i)() ENDFOR) (15)

If for example k = 2 and f; = {1,2,4)}, then (15) will result in three instantiations of N with ¢
equal to 1,2 and 4 respectively. Since ¢ determines which finger N controls, (16) has the required
virtual to physical mapping behavior.

6. Conclusion

In analysing our solution of the test examples our criteria are how well the model brings out the
parallelism inherent in the task and in the robot mechanism, and how well the task is represented.
For the moment we are not interested in the brevity of our programs; if we are convinced that
our model captures the appropriate semantics for the robot domain we can introduce appropriate
syntax later.

In the first example our model representation correctly breaks down the problem into its most
concurrent form: a process to evaluate the sensory termination condition continuously and one to
persue the motor action continuously, linked by a monitoring process. The grouping constructs we
build into the model facilitate extension; with the use of a port array to abbreviate syntax we can
extend our first example to deal with any number of sensory process, and any number of motor
processes. .
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One advantage we see with our model is the way in which the task-level concept of object
naturally occurs. An object is defined only within a task context, and acts as a ‘filter’ on sensory
data; conversly each task has an implicit ‘expected’ object description. The concurrency inherent in
this is a simple extension of the previous example; the object process is continually active gathering
and fltering the most up to date sensory information, the motor process is then fed data in the
most appropriate form. We can, as for the previous example, extend the task-unit to any number
of objects and motor processes. However in addition we can suitably nest object representations;
the resultant object model (in the Al sense) is an active structure of linked Sls spanning a set of
task-units. Since the object model is incrementally constructed in this fashion we have no difficulty
in deciding what to put in an object representation. What a human may regard as the same
object however, may generate many different object models, depending on how it is to be used in
a task. This structure also simplifies somewhat the represention of multi-sensory object models;
our example deals with reaching, at the gripping stage however a task object model would include
tactile expectations as well.

Our third example starts to deal in areas discussed more usually with respect to Al systems;
searching for objects or types of objects. We feel this is the area where our model can best make
contact with Al models of behavior. Our search technique brings out all the inherent parallelism
of the problem. We can extend the object search to include any number of different (possibly
mult -modal) sensor readings, each of which we can check in parallel.

Our final example implements a crucial concept in our dextrous hand work, the virtual finger.
In it we use an active set notation to represent the members of a virtual finger; in this fashion we
create the process network for each finger in the VF in parallel. For our purposes here we define a
virtual finger to have the same degrees of freedom and structure as a physical finger, this simplifies
exposition. It is easy to see that we could make the logical unit as abstract as we wish.

Having satisfied ourself that our semantics is appropriate to represent the complex robot domain
our next step is the formal exploration of behavior. We were careful to construct our model with
formal semantics corresponding to the port automata model. For purposes of verification we shall
utilize this basis to represent programs in our model and associate axioms with each of the special
schema to reason about the effects of programs.

Our model represents the four test examples quite well. Currently the syntax of the model is
very verbose; this was intended, and provides the platform from which we will explore behavior
formally. However for specification of behavior, a less expansive notation would be favored. In
essence we feel our model captures the appropriate semantics for the robot domain.
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