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ABSTRACT

Developers and maintainers of large systems need extensive support for describing, ana-
lyzing, organizing, and managing the numerous modules in those systems—that is, they need
an environment for “programming-in-the-large®. We are developing such an environment,
based upon Ada®, that relies upon a small number of specialized language features and an
integrated set of tools. The language features facilitate flexible and precise descriptions of
interface control and also complement the modularization capabilities already found in Ada.
The tools support incremental development, analysis, and management throughout the soft-
ware lifecycle. The focus of this paper is on the environment’s language features. A brief
overview of the support to be provided by the environment’s tools is also given. A realistic
example demonstrating use of the language features and analysis tools during design of a
software system is presented.



Specialized language features
and an integrated set of tools
can help developers of a large
software system describe,
analyze, organize, and manage
’ its many modules.
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he Ada programming language is

intended for the implementation
of large and complex software sys-
tems. Such systems often exceed a
half-million lines of code; if their de-
velopers adhere to the software engi-
neering maxim that no module should
contain more than 50 lines of code,
then the number of modules in such
systems will exceed 10,000! As De-
Remer and Kron point out, dealing
with ‘“a large collection of modules to
form a ‘system’ is an essentially dis-
tinct and different intellectual activity
from that of constructing the indi-
vidual modules.**! Thus, developers
and maintainers of large Ada systems
will require tools beyond the syntax-
directed editors, compilers, debuggers
and so on needed for *'programming-
in-the-small."* 24 They will need exten-
sive support for describing, analyzing,
organizing, and managing the mod-
ules in a system—that is, an environ-
ment for “‘programming-in-the-arge.”

Programming-in-the-large

In essence, programming-in-the-
large involves the two complementary
activities of modularization and inter-
Jace control. Modularization is the
identification of the major system
modules and the entities those modules
comain, where entities are language
clements that are given names, such as
subprograms, daia objects, and types.
Interface comtrol as the speaihcanon
and control of the interactions among
entines in different modutes.

To properly support modulariza-
tion and interface control, an environ-
ment for programming-in-the-large
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should address a number of software
development concerns. These include:

* Life<cycle support. Support for
modularization and interface con-
trol is of primary importance dur-
ing every phase of the software life
cycle. For example, generating a
description of the major modules
and their interactions is one ol the
first activities undertaken during
the early phases of sofiware de-
velopment, while ensuring that
those interactions remain correct
and consistent is primary dui-
ing implementation and mainte-
nance. Providing such suppori
during the pre-implementation
stages of development requires
that the environment deal explicit-
ly with incompleteness in repre-
sentations,

* Precise interface control. Mod-
ules are, essentially, producers
and consumers of resources. As
producers, they make themselves
and, perhaps, their internaliy
defined entities available for use
by entities in other modules. As
consumers, they or their inter-
nally defined entities use entitics
made available by other modules.
The environment should provide
means for preascly specilying
these relationships among mod-
ules. Ideally, such specifications
should include both the producer
and consumer points of view,

* Analysis support. For large sys-
lems, the ability 10 specify rela-
tionships among modules is of
limited value without tools 10 aid
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m analyzing that information.
IFeedback about the consistency of
the interactions among modules
must be automatically and readily
available. Furthermore, it should
be possible 1o begin analysis dur-
ing the carliest stages of develop-
ment and continue through main-
tenance.

* Version control. Many systems
must be configured for a number
of different operating environ-
ments (for example, operating
systems, machines, and peripher-
als) and developers often must
maintain running versions of a
system while developing new,
extended versions. Thus, an en-
vironment for programming-in-
the-large must facilitate descrip-
tion and configuration of these
system families.

* Managerial support. Usually,
teams of individuals produce large
software systems; typically, dif-
ferent team members develop
different modules. Thus, pro-
gramming-in-the-large is a man-
agement aclivity involving such
malters as organization and inter-
action. The environment should
provide project leaders means for
controlling the modularization
and interface-control activities
while supporting a variety of man-
agerial disciplines.

Method independence. Various
methods have been proposed for
guiding the modularization pro-
cess.’ The environment should
be general enough and powerful
enough to work with any of these
methods, since none can realisti-
cally be expected to be appro-
priate for all applications.

We are developing an environment,
based upon Ada, for programming-
in-the-large. The environment is to
provide capabilitics meeting the re-
quirements outlined above. This en-
vironment relies upon a small number
ol specialized language features and an
integrated set of tools; both have been
carefully tailored to support incre-
mental development and apply to all
phases in the software life cycle.
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We believe that Ada alrcady sub.
stantially supports Nexible representa-
tion of module decomposition, but is
very limited in its support of interface
control. Therefore, our Ada-bascd en-
vironment's language features consist
primarily of constructs for preciscly
describing entity interaction. We refer
to this environment as PIC, since
precise interface control is the central
concern. The PIC language features,
combined with modularization capa-
bilities such as those in Ada, resultin a
uniform framework facilitating pro-

This framework supports
many of the major proposed
design methods, including
those most closely
associated with Ada.

gramming-in-the-large. This frame-
work supports many of the major pro-
posed design methods, including those
most closely associated with Ada.
Moreover, it supports both graphical
and textual representation of the ar-
chitectural structure of a sysiem, as
well as easy movement between these
two forms. The environment enhances
the descriptive capabilities of the
language features by providing an in-

legrated set of tools for analyzing and
managing the interface control aspects
of a software system. Though the en-
vironment currently does not contain
specialized support for version con-
trol, it is compatible with a number of
recent proposals®’ for version-control
mechanisms,

The PIC environment is intended 10
significantly extend the capabilities of
Ada development systems, 4.8 A}
modularization and interface-conirol
decisions made throughout the devel-
opment and maintenance process are
10 be recorded in languages that in-
corporate the PIC language features.
These decisions will then be organized,
managed, and analyzed with the aid of
the support tools. This implies that
during pre-implementation phases the
language features and support tools
will be used in conjunction with speci-
fication and design languages, while
during implementation and mainte-
nance they will be used in conjunction
with the Ada programming language.
Figure | depicts this organization,
showing various kinds of support tools
applied 10 a variety of PIC-oriented
languages: PIC/PDL, an Ada-like
textual pre-implementation language;
PIC/Ada, a texiual implementation
language that is an enhanced version
of Ada; and PIC/Graphics, a graphi-
cal language.

PIC/POL
PIC/Ada

F N

PIC/Qraphics ———p-

Analysis 100ls

Processing tools

Central
reposiary

Managemen l0ols

Preprocessor

Library lools

Figure 1. Conceptual organization of the PIC environment.
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Compilation of PIC/Ada will be a
two-step process. The first is essential-
ly a preprocessing step, in which the in-
terface control information is incorpo-
rated, as far as possible, into standard
Ada code. The second is a normal Ada
compilation. Since the design of the
language features is in harmony with
the design philosophy underlying Ada,
much of the incorporation process is
straightforward. Interface control in-
formation that cannot be directly cap-
tured in Ada can siill be enforced
through the environment’s analysis
tools prior to the preprocessing step.

Any changes made to the Ada im-
plementation, including those resuli-
ing from maintenance activities, will
be performed in the PIC-oriented
languages and processed by the sup-
port tools. As a result, the environ-
ment, with all its descriptive, analyti-
cal, organizational, and managerial
capabilities, will be actively involved in
all phases of development and mainte-
nance. Thus, it represents a genuinely
integrated approach to programming-
in-the-large.

This article focuses on the PIC lan-
guage features—the basic concepts un-
derlying them and examples of their
use—but also briefly describes the sup-
port the tools will provide and possible
extensions to the environment.

Background

A general view of interface con-
trol—which offers a richer conceptual
foundation than views based solely on
the traditional visibility concepts of
declaration, scope, and binding—
arises from an important distinction
between two aspects of visibility: reg-
uisition of access and provision of
access.

Access to an entity is the right 1o
refer 1o or use that entity in declara-
tions and statements. Requisition of
access occurs when an entity implicitly
or explicitly requests the right (o refer
10 some set of entities. Thus, in most
programming languages a subpro-
gram typically requests access 1o itself
and any locally declared entities, as
well as to certain nonlocal entities.
Provision of access occurs when an en-

tity implicitly or explicitly offers some
60

st of entities the right to refer (o that
entity. Again, in most programming
languages a subprogram typically pro-
vides access (that is, the right to invoke
that subprogram) to itself and, in lan-
guages that support nesting, to the
subprogram’s parent, siblings, and de-
scendents. Under this view, an actual
reference by an entity £; 10 an entity

the desire for greater control over in-
terfaces has resulted in mechanisms
that address requisition and provision
in separate, but often unequal, ways.
These languages have relied, (o
greater or lesser degrees, on the con-
cepts of encapsulation and explicit
import/export control both to de-
scribe the accesses that are requested

— ——

Precise interface control would permit requisition
and provision of exactly those accesses desired in a system
and disallow others.

———

E; is only possible if E; requests access
to £; and E; provides access to E;. (In
the remainder of this article, the word
‘‘access’’ is dropped from certain
phrases involving the terms *‘requisi-
tion’* and *‘provision’’ when the
meaning is clear. Thus, a *‘requested
entity’’ is one to which access is re-
quested, and the *‘requisition of an en-
tity"’ refers to the requisition of access
to the entity. Similarly, a *‘provided
entity"" is one for which access is pro-
vided, and the **provision of an entj-
ty"’ refers to the provision of access to
the entity.)

Specifying requisition and provi-
sion; typical strategles. An interface
control mechanism is the means for
specifying requisition and provision.
Programming languages have, histori-
cally, differed in their approaches to
this specification, In languages such as
Algol60 and Pascal, the nesting inter-
face control melchanism results in req-
uisition and provision that are essen-
tially mirror images; access requested
by an entity is always also provided
to that entity and vice versa. In the
designs of more recent languages,
particularly those intended for the
construction of large and complex
software systems (such as the im-
plementation languages Ada,® GTEL
Pascal,'® Mesa," and Modula-2,"*
the program specification language
Special," various program design lan-
Buages based on Ada,'!$ and the
module interconnection languages
MIL7S,! C/Mesa,!' and Intercol®),

and the accesses that are provided by
the entities in a module of a software
system. In its most general form—
which is not exactly the way it is used in
all of these languages—an encapsula-
tion groups related subprograms, ob-
jects, types, and other encapsulations.
Explicit import/export control fur-
nishes the means by which a module
requests and provides access Lo exter-
nal entities for its constituent entities.

Ada. In Ada, the encapsulation
construct is the package and im-
port/export control can be effected
through a combination of features, in-
cluding with clauses, visible and
private paris, and nesting. Unfor-
tunately, neither Ada nor any of the
languages mentioned above supports
precise and flexible control over both
the accesses an entity can request and
the accesses an entity can provide, 6.7
For instance, Ada’s with clause only
permits requisition of access to either
no entities or all entities in the visible
part of a package, and Ada’s pri-
vate/visible mechanism only permits
provision of access to either no mod-
ules or all modules in the scope of a
package. These and other shortcom-
ings of modularization and interface
control in Ada are discussed in greater
detailin our trcatment of languace fea-
tures below.

The value of precision. We contend
that precise interface control mecha-
nisms are of great potential value to
developers and maintainers of large
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software systems.'® Such precision
would permit requisition and provi-
sion of exactly those accesses desired in
a system and disallow others. In addi-
tion, support for both precise requisi-
tion and precise provision encourages
redundancy, which in turn can facili-
tate more rigorous analysis of the in-
terface relationships of a system's
components. For example, with this
approach it is possible to formulate
complementary descriptions of exactly
how two modules are supposed to in-
teract, giving one description from the
perspective of each of the modules,
and then analyze those interactions by
checking the two descriptions for con-
sistency. :

The language features and support
tools discussed below exploit the con-
cepts outlined here to build upon
Ada’s basic encapsulation and im-
port/export concepts. Thereby, they
provide mechanisms capable of de-
scribing, analyzing, and managing the
interface control aspects of large
systems precisely and flexibly. While
this article focuses on use of the
mechanisms in conjunction with Ada,
the basic language features and 100ls
could be used with most modern pro-
gramming languages.

Language features

The language features of the PIC
environment have two aspects. First,
they provide a system structure that
strictly separates the interface control
information from the algorithmic de-
tails of how a module uses that infor-
mation locally. Second, they include
constructs that, in conjunction with
this system structure, provide for
precise interface control. Thus, the
language features in effect constitute a
module interconnection language for
Ada systems; the interface control
component of a system can be viewed
as a description in this language.

Packages and subprograms. The en-
vironment recognizes two kinds of
modules: packages and subprograms,
which correspond (o their Ada name-
sakes. (To simplify the presentation,
Ada tasks and generics are not con-
sidered in this article.) To realize the

March 1985

scparation of interface control infor-
mation from algorithmic detail, a
module always consists of 1wo physi-
cally distinct pans: a specification sub-
module and a body submodule. A
package’s specification submodule de-
scribes the entities the package encap-
sulates; a subprogram's specification
submodule simply describes the infor-
mation needed to invoke the subpro-
gram. In both packages and subpro-
grames, a specification submodule also
completely describes a module’s req-
uisition of access, through one or more
request clauses, and provision of ac-
cess, through one or more provide
clauses. The body submodule for both
packages and subprograms contains
ihe actual code sections that realize the
module. During the pre-implementa-
tion phases, the body takes the form of
an Ada-based PDL description; in
later phases, it consists of standard
Ada code.

Figure 2 presents a simple example
illustrating several aspects of the
language features as they appear in
PIC/PDL. The example shows the
specification submodule of a print
queue package implemented with
linked lists. The package prcvides a
type for print jobs, Job, a type for
print queues, Queue, and two subpro-
grams, Bnqueue and Dequeue. En-
queue and Dequeue realize the abstract
operations of adding and removing a

job from a print queue. A more realis-
tic example, showing the specification
and analysis of a system during the
high-level and low-level design phases,
appears in the appendix. That example
arises from our initial work on the pro-
totype PIC environment we are devel-
oping.

The specification submodule. In
this notation, a specification sub-
module is essentially an Ada program
unit specification plus a small number
of powerful features for enhancing in-
terface control. The request clause at
the top of the submodule in Figure 2,
for instance, indicates that all the en-
tities in package PrintQueue request
access to the entities ListElement and
List, defined in package LinkedList.
Only procedure Enqueue can refer to
the entity Append, also defined in
package LinkedList, since Enqueuc is
the only entity in PrintQueue with an
attached reguest clause mentioning
Append. Similarly, the request clauses
attached to procedures Dequeue and
Util indicate that only these sub-
programs may refer to the entities
Delete and Statistics, respectively,
defined in package LinkedList. (Al-
though it is not shown in this article, a
complete subprogram header, includ-
ing the subprogram's name and for-
mal parameters, can be given in a re-
quest clause or a provide clause 10

package PrintGueue Is

type Job

type Queus

request LinkedList.Delete
provide to Printer;

private
procedure Util { ... )

‘e

end PrintQueue;

request LinkedList.( ListElement, List );
Is now LinkedList.ListEtement provids to Reorder;

Is new LinkedList.List provide to Reorder;

procadure Enqueue ( J : in Job: O : in out Quaue )
request LinkedList.Append,

procedure Dequeue ( J : out Job; O : In out Queue )

.
D]

request LinkedList. Statistics, . .,

Figure 2. Specification submodule of a print queue packsage.
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clarify requested and provided access
to an overloaded subprogram.)

The request clause in this notation is
more flexible than its counterparts in
most other languages, including Ada’s
with clause, in at least two ways. First,
it does not necessarily import all the
provided entities of a package, but can
import subsets of those entities. Sec-
ond, a request clause can be attached
to an individual packaged entity, as
well as (o the package itself, so that
requisitions by the entities within a
package can be differentiated.

Figure 2 also illustrates the language
features’ support for provision. In
Ada, provision of packaged entities is
controlled through constructs that tex-
tually separate a package's provided
entities from its hidden entities. (The
language features presented here do
not permit subprograms to provide
their internally defined entities (0 other

.

modules, as do nested languages. In
fact, subprograms can provide noth-
ing but themselves; packages are the
only modules that can provide access
o their internally defined entities.)
Both the provided and hidden entities
arc available 10 all other entities in the
defining package. but only the pro-
vided entities are available outside the
package. In Ada, provision is con-
trolled on an all-or-nothing basis; ac-
cess Lo an entity is provided to either
every module (in a given scope) or 10
no module, and so the entity is hidden.
While these two extremes are useful (as
in describing the global provision of a
library module, such as a package of
trigonometric functions, or the hiding
of a low-level utility subprogram with-
in the package needed to implement
the trigonometric functions), the in-
tended provision of a particular entity
often lies somewhere in between !®

3) typsa
Is privats;
--name:
--fepresentation:

(4) type A provide to X

ls 8;
--pame:
--representation:

(5) typs A provideto X, Y
is B provide to X;
--name:
--representation:

(6) typs A provide 1o Y
is private;
--name;
--representation;

(1) typeAlsB:
~-Name: no restriction
--representation: no restriction
--name and representation provided 1o all
(2) typsA
is B provide to X;
--name: no restriction
--representation; reslriction

== name provided to ali; representation provided only to X

no restriction
complete restriction
== name provided to all; representation provided

restriction
Same reslriction as name
== Rname and representation provided only to X

testriction
restriction
-+ hame provided only to X and Y: representation provided only to X

restriction
complete resiriction
~-name provided only to Y; representation not provided

Figure 3. Basic levels of control over provided packaged type definitions.

62

Therefore, our notation exiends
Ada by including the provide clunse,
which can be appended 10 any of a
package’s provided entitics to sclee-
tively limit their provision to ¢xiernal
modules. The absence of a provide
clause on a provided entily is inter-
preted to mean that access 10 the entity
is provided 1o **all.”’ (This choice was
made to keep within the spirit of Ada.
The alternative, which is 10 interpret
an absent provide clause as meaning
provided to ‘‘none,” might be preler-
able for some languages.) For exam-
ple, access to procedure Enqueuc is
provided to all, but the provide clause
attached to procedure Dequeue in-
dicates that it is provided only to mod-
ule Printer. Thus, while any module in
the system is allowed to add a job to a
print queue, Printer is the only module
permitted Lo remove a job. The pro-
vide clause can also be applied 10 an
unpackaged subprogram. An ap-
pended provide clause for such a sub-
program limits its provision 10 other
modules and avoids the need 10 create
a superfluous package to encapsulate
the subprogram and control its avail-
ability,

Distinction between name and rep-
resentation. Another aspect of our ap-
proach is that it can be used to distin-
guish between the provision of the
name of atype and the provision of ihe
representation of that type. Hence, a
provided type can be associated with
two provide clauses, one referring (o
the provision of the name, the other 1o
the provision of the represenation.
Access to the name of the type is, of
course, necessary for any use ol the
type. Therefore, a provide cluuse
associated with the representaiion is a
restriction on the represcniation
beyond the restrictions inherited from
the name. As in Ada, the keyword pri-
vate, in place of the representation, de-
notes the case of a type's representan-
tion being completely hidden within
the defining package. The representa
Hon ol thian type is then given i the
package's private purr. Iy might be
preferable in some languages, par-
ticularly those that do not alrcady 1ex-
tually separate provided and hidden
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citites, to instead attach the clause
provide to none (0 the representation
in the type definition.

As shown in Figure 3, six basic levels
of control result from distinguishing
between the names and representa-
tions of types. This allows a high
degree of flexibility in controlling the
use of a \ype definition. In contrast,
Ada provides the first and third levels
in Figure 3. (Although in some cases
the other levels can be approximated
with careful nesting of packages, nest-
ing is not general enough to capture
these levels in every situation.) Associ-
ating two provide clauses with a type
definition allows abstract data typesto
be easily defined and solves the prob-
lem of sharing the representation of an
abstract type among different mod-
ules2® The print queue example il-
lustrates this sharing; here, access to
the names of the types Job and Queue
are provided without restriction, but
provision of access to their representa-
tion is limited to the defining package
PrintQueue and module Reorder.

The incompleteness construct. Fig-
ure 2 suggests another aspect of the
language features, their applicability
to high-level, incomplete descriptions
of a system's components and their in-
teractions. The incompleleness con-
struct, denoted with an ellipsis, is
useful for explicitly indicating where
details to be supplied later have been
omitted from a description. It com-
plements other constructs, not illus-
trated in this example, that facilitate
the formulation of abstract, pre-im-
plementation descriptions, such as
notations to formally specify a mod-
ule's external behavior or to describe
intended algorithms. Used in conjunc-
tion with such constructs, the language
features are well suited to expressing
modularization and interface proper-
ties during early stages of a system's
development.

The specification stub submodule.
In addition to specification and body
submodules, the language features in-
clude a third kind of submodule, the
specification stub. This kind of sub-
module is supplied in response to the

March 1985

fact that interacting modules of large
software systems are often developed
independently—perhaps cven al dif-
ferent times. H, at some point before
development is complete, a group of
modules requires access to entities
from a module for which no specili-
cation submodule is yet available, a
specification stub submodule can be
constructed.

A specification stub usually con-
tains only some of the information
that would eventually be described in
the specification submodule. In par-
ticular, the specification stub need not
contain any information about the
module's requisitions. It only needs to
describe what that moduleis providing
to the modules in the requesting group.
A number of different specification
stub submodules of a module can ex-
ist, 1o accommodate various uses dif-
ferent development groups might have
for that module. The specification
stub mechanism provides a means for
the various groups of users of a mod-
ule to document’ these views of the
module before the module is available.

Figure 4 shows 1wo examples of
specification stub submodules of a
linked list package. The two sub-
modules partially describe the two
slightly different views of package

packsge stub LinkedList i3
used by PrintQueue;

type ListElement;
type List;

procedure Append { ... ):
procedure Delete ( ... ).
procedure Statistics { ... ).

end LinkedList;
package stub LinkedList Is
used by Stack;

type ListElement;
type List;

procedure Insert ( ... );
procedure Detete ( ).

and LinkedList;

Figure 4. Two specification stub sub-
" modules of a linked list package.

LinkedList that have been defined by
the developers of the print queuc
package of Figure 2 and of a stack
package. The used-by clauses, appear-
ing at the top of the specification stub
submodules, indicate the intended
users of those stubs. When a module’s
specification submodule is available
(in a library) or completely known, it
can be used for processing instead of
the stub. )
The environment provides tools to
assure consistency among the stubs, 10
generate an accumulated view, and (o
check that the specification submod-
ule, when submitted, is consistent with
any existing stubs of that module. The
appendix further illustrates use of
specification stub submodules.

Benefits of the PI1C language fea-
tures. The PIC language features have
a number of benefits; onc is improved
readability. Language features expli-
citly and clearly state which accesses
can be requested and provided; we
contend that these features enhance
the readability of software and thus
make it easier to discern the relation-
ships among the modules. Thisin turn
makes systems easier to change and
therefore easier to develop and main-
tain.

Other benefits accrue from con-
solidating interface contro! informa-
tion into the specification submodules
and separating a module’s interface
specification from its body. While
languages such as Ada, Mesa, and
Modula-2 support “‘specifications’’ of
modules separate from their bodies,
these specifications do not completely
define the interfaces to modules. In
Ada, for instance, a body might im-
port entities by using an attached with
clause. In our approach, the request
clauses, which can only appear in a
specification submodule, completely
constrain the external entities 10 which
a module’s body can refer. Because of
this complete separation of concerns,
the language features constitute a
genuine module interconncection lan-
guage; specification and specitica.
tion stub submodules written in this
language fully describe the interface
control component of a system. By en-
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forcing a complete separation of con-
cerns, the language features facitituce
incremental development, managerial
control, and information hiding.

As Ada and other modern lan-
guages have demonstratcd, the separa-
tion of specification and implementa-
tion concerns incremental develop-
ment (that is, incremental analysis and
separate compilation) of large soft-
ware systems. By refining this scpara-
tion and adding precise interface
control, the module interconnection
language based on the PIC language
features enhances incremental devel-
opment—it permits more meaningful
and detailed interface consistency
analysis to be performed and allows
this analysis to be done early and
throughout the software life cycle. In
particular, the interface control com-
ponent of a system can be created and
analyzed separately from the bodies
(implementations) of the modules in
that system. In fact, interface control
components need be combined with
the bodies only to facilitate further
analysis or to support separate com-
pilation. Moreover, the specification
submodule of a given module can be
associaled with more than one version
of the body submodule of that mod-
ule; the actual implementation of the
module can be chosen as late as link
time. Support for incremental devel-
opment is further enhanced by the
language features’ treatment of in-
completeness, which, among other
things, permits module development
o proceed in any desired order. This
contrasts strongly with Ada’s rigid
method for incremental development
of library units. That method enforces
bottom-up development, primarily for
code-generation reasons.

With PIC’s separate interface con-
trol component, managerial control
over modularization and module in-
terfaces reduces to control over crea-
tion and modification of specification
and specification stub submodules.
Centralized control can be achicved by
permitting only a project leader to
create or modifly these submodules.
Under a more decentralized discipline,
implementors can construct specifica-
tion stub submodules of the modules
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they expectiouse. A project leader can
then deade (or negotiate!) the finad
form of the speafication submodule
after reviewing those stubs. The tan-
guage features also support an auton-
omous discipline for cases in which
managerial control is not desired, since
implementors of modules can assume
the role of project leader and construct
their own specification submodules.

tae such development and assure con-
sistency of the software system.

Analysis tools. The features a lan-
guage provides influence not only the
precision possible in interface descrip-
tion, but also the complexity of analy.-
ing interface relationships. For in-
stance, analysis techniques developed
for systems described in newied lan-

The language incorporates capabilities
distilled from many previous attempts.
The resulting framework is relatively simple and
straightforward, yet surpasses previous attempts.

Finally, the separation of concerns
supported by the module interconnec-
tion. language facilitates information
hiding, because a developer working
on a module that refers to entities from
another module only needs 0 see the
specifications of the provided entities
of the referred module, and because
each such specification only needs (o
contain information relevant to the
referring module. The provide clauses
in a specification submodule actually
define the different views particular
external modules have of a package’s
provided entities.

In some, many existing specifica-
tion, design, programming, and mod-
ule interconnection languages support
some of the desired capabilities, but
none supports all. The language fea-
tures outlined here incorporate capa-
bilities distilled from many of thesc
previous attempts. The resulting lan-
guage framework is relatively simple
and straightforward, yet surpasses
previous attempts by supporting pre-
cise interface control as well as the
comprehensive colleclion of benefits
outlined above.

Support tools

Despite the simplicity of the tan.
guige Teimures, develonmenm ol the
propers iterface refagonships tor large
software systems remains a complex
task. An integrated toolset, consisting
of analysis, library, management, and
general processing tools would facili-

guages such as Algol60 and Pascal are
relatively straightforward, largely be-
cause those systems are monolithic and
the controls they provide are quite
limited. More recent nested languages,
such as Modula-2 and Euclid,? fur-
nish additional interface control fea-
tures in an attempt to compensate for
the inadequate controls of nesting.
Some new nested languages, such as
Ada and GTEL Pascal, supply stitl
other features 10 support incremental
development. Unfortunately, the com-
bination of nesting and these addi-
tional interface control and incremen-
tal development features complicates
the analysis techniques applicable to
those languages. 22 The absence of
nesting in languages such as Gypsy*
and CLU.2® which also support in-
cremental development, allows for
simpler, but no less powerful, analysis
techniques.

Our approach 1o interface control
has its own ramifications for the de-
sign of analysis techniques. First, the
language fcatures' added expressive
power makes possible the precise de-
scription of intended interface rela-
tionships and hence raises the prospect
of more revealing analyses. Sceond.,
the language features” explicit sapport
lor incompleteness causes i re-enami-
nation of the traditional meaning of
consistency in interface relationships.
Third, we want the approach to be ap-
plicable and integrated across the
phases in the software life cycle; there-
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fare, the analysis tools must be flexible
cnough to permit their operation upon
distinctly different forms of represen-
1ation. We now consider each of these
three points in more detail.

Expressive power. We have iden-
tificd a basic set of analyses that ex-
ploits the expressive power of the lan-
guage features. If analysis is viewed as
pair-wise comparison of submodules,
1wo distinct classes of analysis arisc:
Intramodule analyses focus on the in-
terface relationships between two sub-
modules of the same module; inter-
module analyses focus on the interface
relationships between two submodules
of different modules. An example-of
an intramodule analysis is one that
compares a specification submoduleto
its corresponding body submodule, in
order to check, among other things,
that the body refers only to those exter-
nal entities the specification requested.
An example of an intermodule analy-
sis is one that compares two specifica-
tion submodules of different modules,
in order to check, among other things.
that the entities defined in the second
module (1o which the first module re-
quesls access) are in fact specified as
provided by the second to the first. A
rigorous evaluation of the consistency
of the interface relationships results
from composing various basic analy-
ses in these two classes.

Incompleteness. Ana!ysis tech-
niques for the early stages of the soft-
ware life cycle must be able to deal with
incompleteness. Existing analysis
techniques for even those languagcs
that permit the explicit expression of
incompleteness do not appear to pro-
vide this support. When a software
system under analysis is complete or
assumed to be complete for the sake of
analysis, it is essentially straightfor-
ward to define what it means for two
submodules to be consistent. If, how-
ever, a submodule is incomplete (for
example, contains incompleteness
constructs), then questions arise as 10
how consistency should be defined
and what information the analysis
tools in the support enviropnment
should provide to the user. To address
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these issues, we define consistency be-
tween (wo submodules as a state in
which the interface relationship can-
not be shown to be incorrect.
Consider the example in Figure 5. A
package Pac provides objects Objl
and Obj2. Access 10 Objl is provided
without restriction, while provision of
access 10 Obj2 is limited through an
anlached provide clause. In that pro-
vide clause, along with the name of an
entity Procl, is an ellipsis indicating 2
place where the definition of the pack-
age is incomplete. (Of course, no sub-
module in a developing system can
ever really be considered complete,
whether or not it contains any PDL
constructs (such as cllipses), since it
can be updated at any time. The pres-
ence of PDL constructs, iiowever,
gives the support tools explicit infor-
mation, which they can exploit, re-
garding incompleteness.) Thus, wecan
assume Obj2 might be provided to en-
tities in addition to Procl. The request
clause in the specification submodule
of procedure Procl indicates that
Procl requests access to entities Objl
and Obj2 of package Pac. This is cer-
tainly consistent with the specification
for Pac, since Objl is provide:l to all
entities and Procl appears in the pro-
vide clause of Obj2. As is the case for
procedure Procl, the specification
submodule of procedure Proc2 indi-
cates that Proc2 requests access {0 €n-
tities Obj1 and Obj2 of package Pac.
But unlike that case, Pac docs not ex-
plicitly provide Proc2 with access to
Obj2, since Proc2 docs not appear in

package Pac Is
ovj1 : Typ?:
0bj2 : Typ2
provide to Proct, .. ..
ond Pac;

procedure Procl
request Pac.( Obj1. Obj2 ).

procedure Proc2
request Pac.{ Obj1, Obj2 ).

Figure 5. Consistency in the presence
of incompleteness.

the provide clause attached 10 Obj2.
Under ous detinition, however, Proxc2’s
interface is still considered consistent
with the interface of Pac because the
presence of the ellipsis in the provide
clause allows the possibility that Obj2
will at some time be provided 10 Proc2
and therefore no inconsistency be-
tween the interfaces can be shown to
exist.

Clearly, the consistency of Pac and
Proc! and the consistency of Pac and
Proc2 differ qualitatively. The fact
that consistency between two submod-
ules depends only upon the consistency
of those portions of the submodules
that actually interact leads to the
definition of two levels of consistency
between submodules. A pair of sub-
modules is consistent if (1) the rela-
tionship between the two submodules
cannot be shown incorrect, and (2) the
portions of the submodules relevant to
their interaction are complete. Two
submodules are said to be condition-
ally consistent if (1) holds but (2) does
not. In the examplein Figure 5, Pacand
Procl are consistent, but Pac and
Proc2 are only conditionally consistent.

Applicable and integrated. Our goal
of providing analysis suppon that is
applicable and integrated across a
range of software life-cycle phases is
closely related to support for incom-
pleteness. Indeed, once the handling of
incompleteness is incorporated into
the basic analysis techniques, the uni-
form application of these techniques
to descriptions for different sofiware
life-cycle phases hinges onthe develop-
ment of a consistent internal represen-
1ation of those descriptions.

The internal representation we have
developed is founded on a formal mod-
el of imerface control, which is also
used for describing and evaluating in-
terface control mechanisms.!™ Briefly,
the formal model is based on a directed
graph model of module imerfaces,
which is used 10 uniquely represent a
particular set of interface relation-
ships. The nodes of the praph corre:
spond 10 entities, while two separae
sets of arcs denote the requisnion and
provision relationships among those
entities. The interface control aspects
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of the various languages for spevilica-
tion, design, and implementation are
translated into this internal representa-
tion. The analysis tools are then ap-
plied to that representation.

Library tools. It is common 10 break
large software systems into more man-
ageable libraries, each consisting of
several logically related modules. His-
torically, these libraries were viewed
simply as repositories for compiled
code—the end product of the develop-
ment effort. The linker was given the
job of checking the interfaces among
the modules in the library; hence, the
opportunity for discovering interface
errors arose at link time.

More recently, the concept of the
program library has emerged.?
Through the program library, the
compiler can incrementally perform
the interface checking the linker
formerly did en masse. It does this by
saving, within the program library and
in addition to the compiled code, cer-
tain pieces of relevant information
discovered during the compilation
process. The compiler can then use the
information gained from previous
compilations to check the interface
consistency of subsequently compiled
modules. Within a single program
library, therefore, consistency can be
maintained.

For large software systems involv-
ing numerous developers, the program
library as a simple repository for the
compilation information of an entire
program is not an adequate tool. In-
cremental development involves more
than incremental compilation; it in-
volves incremental analysis during all
phases of the sofiware sysiem’s devel-
opment. Moreover, projects involving
many people require separate work
areas, for individuals and for various
working groups. We have found that
what is truly required 1o support in-
cremental development in such a set-
ting is a synthesis of the capabilities of
a program library and those of an
operating system's file manager. We
call this synthesis a development
library.

The development library. The de-
velopment library resembles. 2 pro-
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gram library, in that it maintains
information about the submodules n
contains. Beyond compiled code and
interface information, the develop-
ment library can store various forms of
the source code. More important, the
development library maintains the re-
sults of analyses of its submodules. As

The cost of sharing
information among
development libraries is added
complexity in the designs of
the analysis and library tools.

a further generalization of the pro-
gram library concept, a development
library can even contain other devel-
opment libraries; here, the capabilities
of a file manager come in to play. File
systems, such as the one in the Unix
operating system, provide a simple
mechanism for partitioning a work
area. In addition, they provide the
means for sharing among work areas;
a Unix file or directory can be a
member of more than one directory.
Incorporating this file-system model
into the structure of the development
library makes it possible to conceive of
using multiple libraries in the devel-
opment of a system and sharing infor-
mation, particularly interface and
analysis information, among those li-
braries in a fairly general way.

The cost of sharing information
among development libraries is added
complexity in the designs of the analy-
sis and library tools. Indeed, sharing
information among development Ii-
braries is much more complicated than
simply sharing a pointer, as is done for
files in operating systems. For in-
stance, activities in one development
library, such as changes to module in-
terfaces, can affect other libraries that
composc the system; the analysis and
library tools are thus responsible for
deciding where and how (o propagate
those effects. However, this sharing of
interface and analysis information fa-
cilitates sharing and reuse of software
in ways not possible when the sharing
is only at the level of source code files;
this offsets the added complexity.

Management tools. Onc of the
ncvessary capabilities of an environ-
ment for programming-in-the-large is
support for managerial control. i
must have management tools with
mechanisms to control establishment
and modification of a system’s inter-
face relationships. Since in PIC the
specification and specificalion stub
submodules completely determine
those relationships, the management
tools can operate by controlling pro-
grammer access to these submodules.
The management tools, therefore,
cooperate closely with the library
tools.

These tools should enforce any
managerial discipline chosen for the
project. In particular, if the project
leader is given sole responsibility for
determining interface relationships,
then only that person should be per-
mitted to enter or replace specification
and specification stub submodules in
the development library. Under a
more decentralized discipline, im-
plementors should be permitted to
enter or replace specification submod-
ules, but only the project leader should
be permitted 10 enter or replace the
**official’’ specification submodules.
An autonomous managerial discipline
would permit all project members 10
enter or replace specification sub-
modules for the modules they are de-
veloping or maintaining in the devel-
opment library.

Processing tools. A number of
general processing tools must be avail-
able in the PIC environment for such
tasks as creating and modifying sub-
modules, generating specification sub-
modules from sets of specification
stub submodules, generating views of
modules from their interfaces, report-
ing on the effects of updates on inter-
face relationships, and reporiing on
submodule interactions from both the
requisition and provision perspectives.
Like the analysis 100ls. these tools jire
designed 1o use the consistent internal
representation and handle incompleie-
ness appropriately. Thus, they too can
be uniformly applied throughout the
software development and mainte-
nance process. The common intemnal
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representation also facilitates casy
movement from the graphical repre-
sentations of a system 1o correspond-
ing textual representations and vice
versa. It permits further developmen
of the system to be recorded through
refinements in either or both represen-
1ations.

PICt1Ada preprocessor. One very
important processing tool is the
PIC/Ada preprocessor. The design of
the language features makes the trans-
fation of PIC/Ada into Ada relatively
straightforward. For instance the spec-
ification submodule closely resembles
an Ada program unit specification.

Certain translation situations, how-
cver, require special care. For exam-
ple, under our approach, requisition
of access can only be described in spec-
ification submodules. In cases of mu-
tual recursion among subprograms,
this leads to a conflict with Ada’s
elaboration rules. We have developed
techniques to deal with this and other
such situations—such as cases in which
cycles are detected in subprograms’ in-
terface relationships and are *broken"
with appropriate use of with clauses
attached 1o program unit bodies.

The information in PIC/Ada not so
readily translated into Ada is, primar-
ily, the precise specification, made
possible by request and provide
clauses, of the interface relationships
among modules. The translated Ada
implementation, while not as precise
as the PIC/Ada version, can at least be
made to allow the desired references
and, in some cases, deny the undesired
ones. An Ada with clause for a pro-
gram unit specification derived from
some module’s specification submod-
ule, for example, can be created by
gathering just the module names (that
is, names of other program units)
found in the request clauses of that
module’s specification submodule.
The resulting with clause approx-
imates the effect of those request
chuses. The information sacrificed, of
cowrse, is the identification of the
specific subsct of entities within those
external modules to which access is
desired.
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A similar circumistance arises with
Ada’s concepts of library unit and
visible part, which the environment's
provide clause refincs.

In all these situations, the environ-
ment’s analysis tools, operating on
pre-translation descriptions, can be
used to check the correctness of the

The basic language features
are general enough, powerful
enough, and integrated enough
to apply to every phase
of the software life cycle.

relationships, so the imprecision re-
sulting from the translation process
does not actually diminish the value of
the PIC language features.

he PIC environment for pro-

gramming-in-the-large success-
fully addresses the software develop-
ment concerns outlined in the begin-
ning of this anticle. It does so through
the careful design of its language (ea-
tures and suppor tools. The basic in-
terface control, incompleteness, and
physical-separation concepis underly-
ing the language features are general
enough, powerful enough, and inte-
grated enough to apply to every phase
of the software life cycle without pre-
supposing any particular management,
modularization, or version-control
method. Moreover, the support tools
can be used to provide rigorous analysis
throughout the software development
and maintenance process.

Possible extensions. While our Ada-
based environment provides the fun-
damental capabilities necessary for
programming-in-the-large, various ex-
tensions might enrich its capabilities or
facilitate their use.

Among them are language features
and tools supporting higher-level or
more convenient descriptions of the
relationships among modules. These
would make it possible, for example,
10 provide shorthand notations for
identilying groups of modules and/or
entities when describing interface con-
trol relationships. These shorthand
notations might be based on a facil-

ity tor naming groups, for identifying
groups through a common atiributc
(such zs the name of a programuner'?),
or cven for giving a more abstract
semantic description (such as input/
output behavior?*),

Additional analysis tools could eval-
vate properties other than requisition
and provision relationships, such as
patterns of actual usc of catitics in a
software system. These tools could,
for cxample, check to see that a pro-
vided data object is assigned a value
before it is ever read, or ensure that
multiple users never simultaneously
reference shared entities intended for
mutually exclusive use.

Another possible extension is sup-
port for dynamic interface control
mechanisms. This would allow requi-
sition and/or provision relationships
within a software system to change
during the system's execution. In keep-
ing with the static nature of Ada’s
declaration and visibility rules, PIC
language features provide an entirely
static interface control mechanism.
The underlying framework of requisi-
tion and provision could, however, be
extended 1o encompass a dynamic
mechanism. Indeed, we believe that all
the extensions mentioned above are
compatible with the basic approach
taken in the PIC environment, and
that the environment comprises the
primitive capabilities required for pro-

_gramming-in-the-large.

Prototype. To evaluate our ideas
and to demonstrate the language fea-
tures and support tools, we are cur-
rently building a prototype implemen-
tation of the PIC environment. This
prototype will be very important in
demonstrating the power our ap-
proach adds 1o modularization and
interface control and in showing its
applicability throughout sofiware de-
velopment and maintenance. The pro-
totype is being designed and built in-
crementally, to give us an opportunity
to usc the 1ools constructed in carlier
versions and to help in the develop-
ment of tools for fater versions. Thus,
development of the software for the
prototype is a significant and realistic
initial test case for our ideas and is pro-
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viding uselul feedback. As the example
inthe appendix indicates, we have used
the language feawures described in this
articlein designing the prototype. (]
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Appendix: An example
specification and analysis of
an evolving system's
modules

To illustrate the capabilities of the PIC
environment’s language features and sup-
port tools, this appendix presents a simple,
yet realistic, example of the specification
and analysis of an evolving system's mod-
ules during the high-level and low-level
design phases. The example is drawn from
actual development work on the prototype
implementation of the environment.

In this example, two modules are being
designed: LowLcvelAnalysisTools, a pack-
age of low-level interface-analysis tools,
and ProcessingTools, a package of general
submodule processing 10ols. Both sets of
1ools are 1o operate on subimodules through
an abstract internal represeniation (airib-
uted graphs) reatized e a third package.
InternalReprosentation. For present pus-
posts, assume than package InternalRepre-
sentation is undergoing paraliel deselop-
ment at a separate site and has not ye1 been
delivered. (This was, in fact, the situation
in the development of compilers for Ada.
Tartan Laboratories was developing
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IIANAZ? an internal representation for
Ada programs, at the same time lntermet
vics ¥ and Softech ! were building compiless
that use DIANA.)

To allow development of the two tool
packages to proceed while still gaining a de-
gree of confidence in the interface con-
sistency of the sysiem, a specification stub
submodule for package InternalRepresen-
tation is created in graphical form (Figure
Al). The developer can choose to work fur-
ther on this submodule by using the graph-
ical representation or can automatically
translate it into a corresponding textual
representation. Figure A2 shows a refined
version of the submodule in textual form.
The used-by clause at the top of the sub-
module names the two users of the siub.

The specification stub submodule indi-
cates (a subset of) the entitics the package is
expected to provide. In particular, it defines
a data type Node for representing entities
and a function MakeNode for initializing
such representations. The remaining en-
tities defined in the stub submodule handle
the attributes associated with entity repre-
sentations. Type AttributeKind is an enu-
meration of the different kinds of attributes
that can be used 10 describe entities; type
Autribute defines a variant structure repre-
senting actual attribute values. A value of
the former type of object is a discriminant
for the structure of an object of the latter
type. Finally, subprograms PutAutribulc
and GetAttribute are used to store an at-
tribute value and retsieve an attribute value,
respectively.

Note that specifications of the entitics are
given at various levels of detail. For in-
stance, the descriptions of parameters 10
function MakeNode and the elements of
type AltributeKind are deferred through
use of the incompleteness construct (ellip-
sis), while the parameters (o subprograms
PutAttribute and GetAuribute are fully de-
scribed. Note also that although the im-
plemeniation of type Node is not yet
known, the presence of the keyword private
indicates that users will not be able (0
operate on Node's representation. Finally,
note that only entities in package Process.
ingTools can invoke the subprograms thai
créate or update objects of type Node; this
is specified by restricting the relevant sub-
programs to that package.

The first submodule 10 be submitied for
checking with 1he specification stub sub-
module of package InternalRepresentation
is the spevification submodule of package
1.owLevelAnalysisTools (Fipure AX). Spec-
ihcations for procedures realizing six basic
analvses appeas i this ssbimodule. The
three functions  EntitiesOF,  Unavailable,
and SemanticConllicy are wility subpro-
grams employed by the low-level analysis
tools and hidden within the package. At the
top of the package is a common request
clause, which imports a number of entitics

tlareh 1QRS

InternalRepresentation

LowlevelAnalysisTools

Processing Tools

[ ittt |
| i
4 { lype Node .. .: ] '
¢ tunction MakeNode . . .; | :
type AliributeKind .... ] }

]

type Attribute | )

Tunction PutAtlribule . ) :

function GelAttribute .. .. | i

|

L e e —————d

Figure Al. Initial specification stub submodule of internal representation

package (graphical form).

package stub Internalfepresentation Is
type Node ks privats;

provide to ProcessingTools;

is rocord
cass AK is
when NodeKind

when RequestedEntities
whan ProvidedEnlities

snd case;
ond record;

provide to ProcessingToals;

Y}

ond InternalRepresentation;

used by LowLevelAnalysisTools, ProcessingToois;

Tunction MakeNode ( ... ) return Node

type AttributeKind s ( NodeKind, ..
RequestedEntities, ProvidedEntities, ... )

type Atiribute ( AK : AttributeKind )

procedurs PutAttribute ( N : In out Node; A : In Altribute )

function GetAttribute { N : Node; AK : AttributedKind ) retutn Attribute;

=>.
=> ...
=> ...,

Figure A2. Refined specification stub submodule of internal representation

package (textual form).

from package InternalRepresentation. The
list of requested entitics and the parameter
lists for the six procedures are only partially
specified, as indicaied by the cllipses. In-
voking the interface analysis 1ools at this
point tevealsihal package Lowl.cvelAnaly-
sivTooly requests e entity thar w not
avanlable. Specitically | the common reguaest
clnese contaims the ety PutAninbme
delined in package Internal Representanon,
which has been restricied 10 package Pro-
cessingTools (sec Figures At and A2). This
is immediately evident from Figure A4, a
2womed graphical representation of the

interface relationship between the two sub-
modules. When retrieved from the devel-
opment library, this represcniation shows a
requisition are (dotted arrow) without a
maiching provision arc (solid arrow).
Assuming the error lies with the interfice ol
I owlevelAnalysisTools, the inconsisteney
can be reatificd by appropristety editing
cither the graphic we 1estual representation
ol the specilication submodule and then
rechecking and replacing that submodule.
The next submodule submitted is the
specification submodule for package Pro-
cessing Tools (Figure AS). In addition to the
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package LowLevelAnalysisTools Is

AttributeKind,

procodure WeakinterfaceCheck (

procedure StubConsistencyCheck

privats
function EntitiesOf ( Submodule :

snd LowLevelAnalysisTools;

request InternalRepresentation.( Node, Altribute,

GelAltribule, AddAtiribute, . .. );

procedurs InterfaceCheck ( SpecSubmodulet, SpecSubmadule? :
in InternalRepresentation.Node; . . . );

procodure IntlraModuteBodyCheck ( . .. );
procedure InterModuleBodyCheck ( . .. );

A X

procedurs WeakinterModuleBodyCheck{ .. );

(... )

InternalRepresentation.Node ) return . . . ;

function Unavailable { EntityRequested, Entity :
InternalRepresentation.Node ) return Boclean;

function SemanticConllict { EntityRequested. Entily :
InternaiRepresentation. Node ) return Boolean;

... --Other hidden utility entities

Figure AJ. Specification submodule

of low-level analysis tools package.

oao"""“zﬂ ‘yp' Node ey

e — m e m e —— -y

InternalRepresentation

1

LowLevelAnalysisTools

e 0.

| tunction MakeNode . . ..

type AftributeKind ..

type Altribute .. ;

~tteeq,, 4..
oo,

—vee.. function GetAttribute . . ..
oh..‘.‘

function PutAttribute . . ;

- e e e - = . e e e

Figure A4. Erroneous Interface relationship between internal representation

and low-level analysis tools packages.

package ProcessingTools s
request InternalRepresentation.

procedure Recognize ( ... )
requast InternalRepresentation. (

procedure Edit ( ... )
request internalRepresentation. (

procedure Translate ( ... ):
procedure ProcessUpdate { ... );

procedure GenerateSpec { . )
request InternalRepresentation. (

ond ProcessingTools;

PutAttribute, ... );

PulAttribute, ).
tunctlon GenerateView ( ... ) return . :

Node. Attribute,

AttributeKind, GetAtiribute, .. );

MakeNode, -- node-update

. enlities

MakeNode., - node-update
PutAllribute, ... ); - entities
MakeNode, node-update
enlilies

Figure AS. Specification submodule

m

of processing tools package.

entiies the conman reguaest claise i the
1op of the package mports from Inteena
Representation, a Tew of the pachaged sub-
programs reguest certain other entitics -
fined in fiernalRepresentation. These ate
used ta create and update internal represen-
tations. The effevt is to limit thowe subpro-
grams, within package ProcessingTools,
that can alter an internal represciiation;
only subprograms Recognize, Edit, and
GenerateSpec can perform such opera-
tions. Invocation of the interface analysiy
tools at this stage ol development would
reveal no inconsisiencies berween the
specification submodule of Processing-
Tools and the specificaton stub submodule
of InternalRepresentation.

Low-level design of the bady submoduic
of package LowLevelAnalysisTools could
begin a1 anytime. Figure A6 shows this sub-
module a1 a stage in which the basic algo-
rithm of procedure InterfaceCheck has
been specified by using PDL construcis.
This algorithm involves checking. for each
entity £ defined in the first spevification
submodule, whether the entities defined in
the second specification submodule refer-
enced by £ are both provided 10 £ and re-
quested by £ in semantically consistent
ways.

With the corresponding specification
submodule of the package and the spevifi-
cation stub submodule of package Internal-
Representaiion already preseni, a substan-
tial amount of consistency cheching can he
performed on the body submodule of pack -
age LowLevelAnalysisTools, cven at this
carly stage. Invocation of the interfave
analysis 100ls in order 10 analyze the con-
sistency between the specification sub-
module of package LowLevelAnalysis-
Tools and its body submodule reveals no
errors. On the other hand, invocation ot
these tools 10 analyze the consisiency be
tween the body submodule and 1he spevifi-
cation stub submodule of package Internal-
Representation reveals that fupcrion
GetAutribute is being used improperly; the
parameters to the function are reversed.
The developer must then decide which sub-
module is in error. Assume it is devided th:
the body submaodule s incorsect Furthes
assume that the parameter dist iy ap-
propriately edited and thas the submodule
18 resubmitied and is lound consisient.

Eventually, an official version o) pah.
age InternatRepresentanion is defivered. in
general, the spevification submodule ol 4
uatility pachage such as ImernalRepresenta
tion (for example, IXANA}is delivereed i
TarEn ostmes apphaation speaitee miee:
e resticnions e el wispeailind 1
order 1o Buler 1he package 1o e parniicala
appheation under development imd tosier .
high degree o miertace control, the spws-
fication submodule mus be augmented to
include any desired restrictions on us
provided entitics. Significantly, such aug-
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function EntitiesOt ( Submodule :

begin . .. end EntitiesOf;

begin ... end Unavailable; ’

RequesiLIst e
Entity

fase internalRepresentation;

" begln

RecerdSemanticError ( . .
end if;
end If;
end loop;
end loop;
end InterfaceCheck;

end .I:awLeveIAnalysisTools:

package body LowLevelAnalysisTools is

InternalRepresentation.Node ) return . . . Is

function Ynavailable ( EntityRequested, Entity :
InernalRepresentation.Node ) return Boolean is

tunction SemanticConflict ( EntityRequested, Entity :
internalRepresentalion.Node ) return Boolean Is
begin ... end SemanticConllict;

..y == Other utilities (e.g.. RecordinterfaceError) |

procedure InterfaceCheck ( SpecSubmodulel, SpecSubmodule2 :
In InternalRepresentation.Node; ... ) Is

EntityRequested : InternalRepresentation.Node;

: InternalRepresentation.Node;
..; == Other local objecls and types

foreach Entity In EntitiesOf { SpecSubmodule1 ) loop
RequesiList : = GetAttribute { RequestedEntities, Entily ).
foreach EntityRequested in RequesiList loop
it { EntityReqliested.Parent = SpecSutmodule? ) thea
if ( Unavallable { EntityRequested, Entity ) ) then
RecordinterfaceError { ... ):
alsh ( SemanticConflict { EntityRequested. Entity ) ) then
).

-- Bodies of other low-level analysis procedures

Figure A6. Body submodule of low-lcvel analysis tools package.

mentivion, winch can be done sraightior-
wardly by means of cither the graphical or
the textual representation, doces not affect
the implemenation of the package. since
esMricHons on provision volve the
maodule’s interlace esclusively.

Retuening 10 the example, the appear-
ance of the augmenied of fivial specitication
wwbmadule of package InternalRepresenta-
tion makes the specification stub sub-
module obsolete All checking cin now be
purtormed—with geeates vonbidence -
aeains the true spevitication subatodute.
Such checking can be expedited by vy
the previously checked stub submodule,
rather than the other submodules, as a basis
for most of the checking of the newly in-
troduced specification submodule.
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