(]

GENESIS: A Graphics Environment
for the Modeling and Simulation
of MultiAccess Networks:
Modeling Language Considerations
and Simulator Design

Chia Shen
James F. Kurose

COINS Technical Report 85-33
November 1985

Contents

1. Introduction 3
2. Background 6
2.1 Overviewof Past Work. i . i i i it i i it ittt i et e et s neenn 6
2.2 An Overview of Multiple Access Communication0c.. 7

3. GENESIS: Modeling Language Considerations, Channel Modeling Mechanlams,

and Simulator Design 9
3.1 Modeling Language Considerations: Modeling Primitives for Protocol Operations . . 9
20 0 ' 10

312 ModelingElementsttt e, 10

313 Routing i it i i e e e e e e 12

32 TheChamnel Model i ittt eneennnn. 13
33 Simulator Design i it i e e e e et e e e e e e 16
3.4 Overall GENESIS Architecture and the Modeling Environment 20

4. Examples 23
4.1 non-persistent CSMA/CD ittt itnnrennneennn. 23
42 TokenPassing Ringt ineteeneennnnens 27

6. Conclusion 30
A. Attributes of the nonpersistent CSMA model 31
B. Modeling Elements Specification 34
C. Data Structures supporting the Simulation Engine 37
D. Design Specifications of GENESIS Simulation Engine 45

Abstract

The development of computer simulation programs for modeling and evaluating computer com-
munication networks represents a significant software development effort and can be very costly
in terms of the effort required to build, verify, modify and maintain these programs. Our work
described in this report is part of the on-going research to reduce this effort in the system develop-
ment process. Here we discuss our current efforts on the design, development and implementation
of GENESIS, an interactive, high-level, graphics-oriented environment for constructing and eval-
uating simulation performance models of multiple access computer communication networks and
protocols. We will focus on modeling language considerations, channel modeling mechanisms and
the simulator design aspects of GENESIS in this report.

a)

1. Introduction

Evaluating the performance of computer communication nctworks is a critical, yet complex,
step in the design, planning and evaluation process for such systems. Traditionally, there have

been two approaches to modeling these systems: “analytic® models (often numerically solved) [14]

and discrete event simulation models (solved by simulating the model in software) [25].

Analytic models must be mathematically tractable (in that at least a numerical approximation
must be possible) and as a result, either only small parts of a complex system may be modeled
or few details of the entire system can be considered. Simulation models are not subject to such
constraints and thus can more accurately reflect the actual system being modeled. For this reason,
the performance evaluation of almost all “real-world” systems is accomplished through simulation.
However, the development of computer simulation programs represents a signsificant software de-
velopment effort and can be very costly in terms of the effort required to build, verify, modify
and maintain these programs. Moreover, considerable expertise in the area of statistical analysis
may be required to correctly interpret the simulation results. As a result of these problems, the
performance evaluation of the various design alternatives in a system’s design space can be a severe

bottleneck in the system development process. [2].

The goal of the on-going research effort described in this report is the development of an
interactive, high-level, graphice-oriented environment, known as GENESIS, for constructing and
evaluating simulation performance models of a class of computer communication networks known
as multiple access networks [32] [19]. This class of networks includes such diverse types of networks
as single and multi-hop packet radio, satellite, and local area networks. We additionally note that
the tools and methods developed for modeling this class of networks will superset those required
for wide-area networks as well. Indeed, the work reported in here finds much of its inspiration in
the related work reported in [26] [27] [28]. GENESIS is currently being developed on a Digital
Equipment Corporation MicroVax II workstation (VMS) and is written in C.

In the GENESIS modeling environment, the performance analyst constructs a simulation model
simply by composing various high-level modeling primitives. The primitives themselves are provided
and defined by the environment and are designed to directly reflect the objects (network components
and actions) in the modeling domain. This high level of abstraction and close mapping between the
modeling primitives and the network being modeled greatly facilitates the modeling process. The
modeling environment also provides graphical support for interactive model construction, revision
and maintenance. At the heart of GENESIS is a discrete-event-based “simulation engine” which
performs the actual simulation of the performance model and is structured in a manner similar to

that described in [25].

We stress that our goal in building such an environment GENESIS (as opposed to a system
such as PLANS [24] for example) is not simply to build a simulator for a specific protocol or set
of protocols. Rather, our more general aim is to provide the modeler/analyst with a rich set of
modeling primitives (and an environment in which these primitives can be easily manipulated) for
creating and simulating a performance model of any arbitrary, modeler-defined protocol. Thus, the
analyst would be able to rapidly construct and evaluate protocols ranging from contention-based
access protocols [19] to token passing schemes [30] to higher level network protocols and algorithms

such as routing [29] and flow control [15].

We believe that our work is of considerable interest and importance for several reasons. First,
multiple access networks represent a broad class of computer communication networks including
packet radio, satellite and local area network systems. They are thus of considerable practical
and theoretical interest to the academic, industrial and military communities and have been the
subject of intense research and development activities [32] [19] [30]. As discussed earlier, these
efforts must generally rely on simulation when performance analysis is required. We believe that
modeling environment such a GENESIS will greatly enhance the efficiency and productivity of the
modeler by providing for rapid model development, debugging and maintenance through the use of
graphical programming and animation techniques, and by providing structuring techniques which

encourage the development of well-structured, logically correct simulation models.

In a broader sense, our efforts represent an important effort in the areas of programming en-
vironments and modeling and performance evaluation. Only recently have results from software
engineering and program development environments begun to be applied in the area of simulation
software development [2] (7] [22]. There are, additionally, many important differences between the
specific problem of developing modeling software for multiple access communication networks and
the general software development problem addressed by software engineers. For example, most high
level network modeling languages (28], including the language to be developed within this research,
are declarative rather than procedural in nature. We also believe that software development in
a restricted problem domain has provided the opportunity for the development of modeling con-
structs, structuring techniques and modeler aids designed specifically for this subclass of software
development problems. Indeed, a primary purpose of this report is a presentation of some of these
problem-specific capabilities.

The contents of this report are as following. In section 2, previous work in the design of
languages for the modeling and simulation of computer communication networks is surveyed and

an brief overview of multiple access communication is given. Then in section 3, modeling language

considerations, channel modeling mechanisms and simulator design of GENESIS are presented.
Specifically, we discuss the sct of modeling elements, which constitute the primitives of the modeling
language for protocol operations provided by GENESIS, we have considered so far in section 3.1;
the mechanisms for modeling the channel in section 3.2 and the design of the simulator in section
3.3. Section 3.4 gives a brief overview of the system architecture of GENESIS. To illustrate the
language facilities provided by GENESIS and the ease with which simulation models of multiaccess
protocols can be constructed and evaluated in GENESIS, examples of model construction of two
multiaccess protocols, non-persistent CSMA/CD and token ring, are given in section 4. Finally in

section 5, we consider some open questions in the future development of GENESIS and summarize
this report.

2. Background

2.1 Overview of Past Work

Software simulation has long been the primary tool for analyzing the performance of computer
communication networks. Four distinct “generations” of simulation programming languages can
be readily identified.

General purpose applications programming languages such as FORTRAN, PL/I, PASCAL, etc.,
can be considered as “zeroth” generation simulation languages. Since these languages provide no
programming constructs which directly support simulation programming, we do not consider them
to be true simulation languages at all. Rather, they are simply general purpose languages in which a
simulation may be programmed. The modeler/analyst using a zeroth generation modeling language
is faced with the myriad, low-level details of programming the simulation “from scratch”, and must
thus contend with problems such as random number generation, event list maintenance, statistics

gathering, etc..

The “first generation” modeling languages such as GPSS (11}, SIMULA [5], and SIMSCRIPT
[3] were developed to overcome such difficulties and thus free the modeler from the necessity of
contending with low-level, implementation-dependent simulation details. These languages are based
on queueing model approaches towards simulation [13] in which systems resources are modeled as
queues and customers (jobs) move from queue to queue. These languages thus provide the modeler
with an important level of abstraction: rather than specifying the simulation model in terms of
data structures, (e.g., event lists) which are to be manipulated as the simulation proceeds, the

analyst specifies the simulation in terms of jobs, queues and the interconnection of queues.

These first generation languages, however, were designed as general purpose simulation lan-
guages and were not meant to model any specific class of systems. The second generation net-
work modeling languages, such as RESQ [28], [26] [27], PAWS (4] and STEP-1 [33], were designed
specifically for modeling and analyzing computer systems and wide-area (long-haul) computer com-
munication networks. These languages provide the analyst with a rich set of high-level modeling
elements (constructs) which can be combined in a declarative language to create, simulate and
evaluate high-level models of computer networks. That is, the language constructs directly reflect
the objects (network components and actions) in the modeling domain and the analyst simply
declares the characteristics of these elements as opposed to programming the detailed simulation
algorithms. The high-level language elements are then translated (“compiled”) into a low-level
event-based simulation.

At this level of abstraction, the modeling elements can be easily mapped onto the network
components. As a result, simulation models can be easily and rapidly constructed, modified,
verified and evaluated and the modeler’s effectiveness and productivity increases dramatically.
A performance analyst can now produce useful results sn days for problems which would have
otherwise required weeks of effort [28]. This increased productivity, in turn, permits the analyst
to more thoroughly explore the design space and answer questions that would have otherwise been
left unanswered.

Recently, a third generation of modeling languages for computer communication networks has
begun to emerge. The development of these third generation languages is based on the observation
that, even when presented with high-level modeling constructs and a sophisticated declarative
language and editor for manipulating these constructs, users of second generation languages will
typically first develop a pictorial or graphical specification of a model and only then translate this
specification into a second generation language. Indeed, there has always been a strong pictorially-

oriented flavor in even the description of the second generation languages themselves (28}, [4].

The focus of the emerging third generation of modeling languages is thus the integration of high-
level constructs within a graphics-oriented modeling environment in which the analyst may easily
manipulate these constructs and build, modify, evaluate and debug high-level models of computer
communication networks. These third generation modeling environments will undoubtedly result

in yet further increases in modeler productivity.

Current work on the third generation modeling languages has just begun. One effort recently
reported in the literature is [2]. In this work, the authors discuss extending the second generation
language PAWS (4] into a graphics-oriented modeling environment. Although various aspects of
the graphical user interface were discussed, many issues remain to be resolved as the system is
still currently under development. A similar system, known as GIST [7], has also been recently
developed. This environment, however, provides only a subset of the RESQ or PAWS modeling
constructs and provides no facilities for the construction of hierarchically structured performance
models. Finally, we note that several efforts have also recently been reported on developing graph-
ical interfaces and support environments for first generation (general purpose) modeling languages
(10} (35] [34] [22]. The work reported in [10] [22] is of particular interest due to the capability of

animating the simulation within the graphical environment.

2.2 An Overview of Multiple Access Communication

During the past ten years, the use of a shared multiple access communication channel has found

widespread acceptance as an economical means of interconnecting a set of distributed computing

resources. The characteristics of these multiple access channels differ greatly from those of tradi-
tional point-to-point communication channels. In particular, the geographically distributed nature
of the stations and the fact that the channel can (to a first approximation) only carry a single
successful transmission at one time requires that stations coordinate their message transmission by
following some prescribed channel access protocol. Numerous research efforts have been directed
towards developing such multiple access protocols; a survey of this work can be found in [32] [19].
Local area networks such as Ethernet [23], the ALOHA satellite network (1] and the PRnet packet
radio network of the Defense Advanced Research Projects Agency [12] are all examples of networks

employing multiaccess protocols.

In the simplest model of a multiple access network, stationary stations communicate over an
error-free broadcast communications channel. If a single station transmits a message (according to
some specified access protocol), this message is received correctly by all the network stations; when
two or more stations transmit messages simultaneously, the messages collide and no message is
received correctly at any network station. A rigorous mathematical analysis of the performance of
multiple access protocols in even such an idealized network environment has proven to be extremely
difficult (see, for example, [31]).

In “real-world” multiple access networks, problems such as channel noise, signal fading, and
capture may occur. The stations may also be mobile, as in packet radio networks. Furthermore,
the spatial distribution of network stations may result in the formation of multi-hop multiple
access networks in which numerous multiple access channels are interconnected (partially overlap)
to form a wide-area multiple access network; in this case issues such as routing, addressing and flow
control must also be considered. These problems considerably complicate the problem of designing
efficient and robust protocols and make a mathematical analysis of protocol performance essentially
intractable. In this case, the network analyst must rely on simulation to evaluate the performance

of the network protocols.

8. GENESIS: Modeling Language Considerations, Channel Modeling Mech-
anisms, and Simulator Design

The widespread acceptance of multiple access communication networks, in which a set of dis-
tributed computing resources interconnects via a shared multiple access communication channel,
has spawned the need to model and evaluate the performance of such systems in order to explore
the design space. As discussed in the previous section, current existing second and third generation
network modeling languages were designed for wide-area computer communication networks and
therefore provide no direct support for the modeling, simulation and analysis of multiple access
networks. The characteristics that are unique to multi-hop multiple access communication net-
works, such as channel contention and station mobility, require the development of new modeling
and simulation techniques and methodology that supersets those for wide-area networks. Thus, the
focus of our work on GENESIS has been on the issues involving the specification, design and devel-
opment of a high-level, graphics-oriented environment for the modeling and simulation of multiple
access networks.

Three of our current major efforts have been on modeling language considerations, channel
modeling mechanisms and the design of the simulation engine. In the following subsections, we
describe these aspects of GENESIS in detail.

3.1 Modeling Language Considerations: Modeling Primitives for Protocol
Operations

A critical step in the design of a third generation modeling environment for multiple access
networks is the selection of a set of high-level modeling elements which are of sufficient semantic
richness to specify simulation models of arbitrary (i.e., user-defined) multiple access networks and
communication protocols. (We again stress that this contrasts sharply with the standard approach
of using a zeroth or first generation modeling language to model the performance of a specific

multiple access protocol, as in {24}, for example.)

At the highest level, any simulation model consists of a number of jobs which flow between
modeling elements andfor the multiaccess communication channel, according to specified routing
rules. In fact, the role of the GENESIS simulation engine is simply to perform this movement of
jobs. In the following subsections we thus examine each of these key elements of GENESIS (jobs,

modeling elements, and routing) in more detail and the multiaccess communscation channel will be

examined in section 3.2.

s.1.1 Jobs

In practice, jobs divide broadly into two classes. (Although GENESIS makes no such distinction
among jobs, we draw this distinction for pedagogical purposes, since we have found such differences
are almost always implicitly defined by an analyst’s use of jobs). One class of jobs, which we refer to
as data-oriented jobs, correspond directly to objects (messages, acknowledgments, polling requests,
token messages, programs, etc.) in the modeling domain. The second class of jobs, known as
control-oriented jobs, cause some action to be taken with respect to the data-oriented jobs and can
be thought of as modeling the flow of ezecution or action taken by a network protocol. For example,
a data-oriented job may represent a message which will be transmitted only after a control-oriented
job sets the value of a boolean flag in the simulation to TRUE.

Either type of job may also have a number of associated job variablcs. Values may be assigned
to a job’s job variables when it passes through a set node. Each set node has one or more associated
assignment statements, which are exactly analogous to assignment statements in traditional pro-
gramming language. When a job passes through a set node, the assignment statement is executed
and the value of the expression on the right hand side of the assignment statement is assigned to
the variable (typically a job variable or a global variable) on the left hand side of the assignment
statement. This ability to associate additional information with a job through the use of job vari-
ables is extremely useful in modcling features such as the semantic contents of a message (e.g., a
message type or size) or for dynamically determining the next modeling element to be visited by a

job.

8.1.2 Modeling Elements

The GENESIS modeling elements are the objects between which jobs flow. When a job arrives
at an element, some action may be taken upon that job by' the simulation, an action may be taken
upon another job, or the state of the simulation may be changed. Each modeling element has three
important propertics:

e an action to be taken by the simulation
e one or more attributes which further qualify the action to be taken.

e a graphical scon representing the object

Figure 1 lists three of these elements and their associated actions, attributes and icons and Ap-
pendix B lists all the modeling elements we have developed so far. The list is not meant to be

10

quene 1.quene discipline Arriving job quened for
2.vaiting area nemes service.

—

l S.service time Enters service vhen
—
distribation highest priority job in
d.priority queue.
information Leaves quene after

§.defection condition eervice or whea tine
G.nunber of servers constraint exceeded.

wait 1.boolean predecate Jobs wait at this node
2.queneing discipline until the predicate

- l | .<>>.8.ntth:¢ area names becomes true. Jobs

leave queune according
to queneing displine.

start {.performance Start internal timer
Reasure variable associated with this job

for this performance
variable.

Figure 1: Several representative modeling elements

exhaustive (and we expect to add/delete from any such exhaustive list as we continue to gain mod-
cling experience using GENESIS) but rather to provide a feel for the types of modeling objects
which are provided by the environment.

The first example in Figure 1 is a queue modeling construct which might be used to model a
point-to-point communication link, a central processing unit, or some other network resource. The
action taken when a job arrives at a queue is that the job is queued for service; this job is eventually
selected for service at the queue according to the specified queueing discipline. As shown in Figure
1, a queue’s attributes include its service discipline {(e.g., FCFS, LCFS, priority, etc.), the names
of the one or more waiting areas associated with the queue, the distribution of job service time, a

queue defection condition, and the number of servers at the facility.

A second example of a modeling element is the wast node, which is provided to permit synchro-
nization among jobs and may also be used to model simultaneous resource possession by a single
job. Due to the modeling power and flexibility which can be achieved by the use of this single
element type, we have chosen to introduce wait nodes into GENESIS rather than incorporating
the notion of passive queues used in [28] [4] to model synchronization and simultaneous resource
possession. Each wait node has an associated predicate which specifies the conditions under which
a job is allowed to pass through the wait node; a queueing discipline also specifies the order in which
jobs leave the wait node should a number of jobs become eligible to leave simultaneously. When
a job arrives at a wait node, the predicate value is checked. If the predicate value is TRUE, the
job passes through the wait node instantaneously. If the predicate value is false, the job remains

11

at the wait node until the predicate becomes true and the job is selected to exit the wait queue. In
our nonpersistent CSMA/CD model in section 4, a wait node is used to insure that a station never
attempts to transmit more than one message at a time when there are multiple messages queued
for transmission.

A final example of a modeling element is the startmeasure node. This node is useful for obtaining
performance statistics concerning the time between two events in the simulation. In our non-
persistent CSMA/CD model, for example, a startmeasure node is used to determine the statistics
of the channel access delay. A symbolic name, known as a performance varigble, must also be
associated with each startmeasure node. When a job flows through a startmeasure node, a timer is
associated with the job and is started (internally, by the simulation). When the job fows through
a stopmeasure node with the same associated performance variable as the startmeasure node, the
timer is stopped. This timer value is then taken as a sample of time needed by a job to pass from

a startmeasure node to a related stopmeasure node.

We have additionally found that many of the modeling constructs previously developed for
modeling wide-area networks [26] [27) [28], are also useful in modeling multiple access networks.
For example, global variables, set nodes, source, sink and split nodes are useful modeling constructs
for modeling high-level protocol functions such as routing and flow control in multi-hop multiple
access networks.

A submodel facility is also provided by the GENESIS modeling environment. As in RESQ (28],
a submodel is essentially an analyst-defined parameterized template of an interconnected set of
modeling elements which together represent a single functional unit in the system being modeled.
This template can be snvoked to create several snatances of the submodel, in much the same way
that a procedure can be invoked (called) multiple times in traditional programming languages; we
refer to each such created instance of a submodel as an snvocation. In the following example, a
submodel is created to model the operation of a generic network station and is invoked once for
each actual station in the network. The use of submodels can greatly aid in the development of
hierarchical, well-structured, and logically correct models.

3.1.3 Routing

Job routing specifies the manner in which jobs move between the modeling elements contained
in the simulation model. The movement of a job from one modeling element to another may be
fixed or probabilistic, or may depend on the current state of the simulation. Thus, when a job

leaves a given element in the model, its destination may be determined:

12

¢ deterministically. In this case, the job’s destination is always the same when leaving a given
element. In our model in the next section, for example, a job always visits a startmeasure

node immediately after leaving a source node.

e probabilistically. In this case, the job’s destination is independently determined from a

fixed set of analyst-specified probabilities each time it leaves the given element.

e according to the current simulation state. In this case, the job’s destination may depend
on the current status of the simulation. For example, in our nonpersistent CSMA/CD model,
a job leaving the SET_SEND set node either proceeds to a delay node or enters the communi-
cation channel, depending on whether the multiaccess channel is sensed busy or idle. A job’s
routing may also depend on other simulation dependent values such as the number of jobs at

a given queue, the value of a job variable, and/or the current simulated time.

3.2 The Channel Model

The unique characteristics of multiple access communication channels makes modeling the chan-
nel one of the most challenging tasks in the development of our performance evaluation environ-
ment. In order to model and simulate the multiple access aspects of the channel, the communication
channel model itself must have the capability of accounting for zero, one, or multiple simultaneous
transmissions by any of the network stations. Problems such as signal fading and capture, propa-
gation delay, changing network topology, or a changing number of network stations must also be
taken into consideration. Moreover, to accomplish our goal of providing the modeler/analyst with
an environment for modeling and simulating any arbstrary, user-defined protocol and, at the same
time, being able to provide the modeler/analyst with sufficient domain-specific tools, our chan-
nel model must be conceptually high-level, flexible and general, while at the same time internally

efficient and capable of simulating a large class of channel characteristics.

At the highest level, the channel consists of a black box with a number of channel ports. A
port can be thought of as a “plug” into which a set of modeling constructs (typically a submodel
representing a network station) can be connected; there is thus typically one port for each station

in the network model. Each such port has three associated port variables and two types of port

connections.

Port Variables

The port variables are used to define the “state” of a given port. For each port,f,s=1... N,

where N is the user-defined number of ports, the port variables for station ¢ are:

13

channel (: °

input °

nodes II\

L transmissionatatus(i)

sensestatus (i)
xposicion(i), yposition(1)

channel ° [

output

nodes o

A rL

Figure 2: Channel port variables and port connections at port)

o tranamissionstatus(i), which has the value 1 while a message is being sent into port s, and

has a value O otherwise.

o sensestatus(i), which indicates the number of transmissions initiated at other ports which
are currently available at port i. Note that the value of this variable may depend on port i’s

position in the network as well as the channel’s fading and capture characteristics.

e zposition(s) and yposition(s) define port i’s = and y position on the channel

The values of each of these port variables can be used (queried) directly within the simulation
itself. Such values might occur, for example, in an expression at a set node, a predicate expression
associated with a wait node, orin a job’s routing decision. In our model of nonpersistent CSMA/CD
in the following section, the value of senscstatus(i) is used at a wait node to detect a message
collision within the period of time during which station ¢ is vulnerable to message transmissions by
other stations.

The manner in which a value is assigned to a port variable varies from one port variable
to another. The value transmissionstatus(i) may be sct either implicitly or explicitly. When

a message passes through the channel input connection (to be discussed shortly) of port s, the

14

value of transmissionstatus(i) is implicitly set to 1 (transmitting). Similarly, the value of
transmissionstatus(s) is implicitly set to O (idle) upon normal termination of a message transmis-
sion. A message transmission at port 1 may be prematurely aborted (e.g., as in a multiaccess proto-
col with collision detection capabilities) by explicitly setting the value of transmissionstatus(s) to
0 at a set node, as is done in our nonpersistent CSMA/CD model in the following section. Values
may also be directly assigned to the port variables, zposition(s) and yposition(s), at a set node;

this permits the modeling and simulation of mobile nodes in multiple access networks.

Finally, the value of senseatatus(s) is never directly set within the analyst’s model. Rather, this
value is dynamically computed by the simulation. As discussed earlier, this value may depend on the
station’s position in the network as well as channel characteristics such as fading and capture and
the connectivity (bearing graph) of the network being modeled. A default method for computing
sensestatus(i) is provided by GENESIS and assumes that all ports are within hearing distance of
each other and that no signal fading and capture occurs. The analyst may model more complicated
channel properties by supplying a user-written C routine which when passed a port number, 1,
and the identities and locations of the ports which are currently transmitting, returns the value of

senscstatus(s).
Port Connections

Each port also supports two kinds of connections for sending jobs (messages) into the channel
and for receiving jobs (messages) out of the channel. These connections are represented by nodal
icons shown in figure 2. Each connection to a port is named (just as all other modeling elements
are given symbolic names by the modeler) and an arbitrary number of each of these two types of

connections can be associated with a single channel port.

The first of the two types of port connections is the channel input connection. As discussed
above, when a job passes through a channel input connection, the simulator ¢nternally sets the
state of the port to which this connection is bound to 1 (transmitting); the transmission starting
time is also internally recorded. Each channel input connection has a single associated attribute:
a message-length distribution, which specifies the distribution of time required to send a message
into the channel through this port connection (note this is equivalent to specifying a channel bit

rate (capacity) and the distribution of the number of bits in a message).

The second type of connection is the channel output connection, which models the ability of

a station to read messages from the channel. When this connection is included for port ¢, a copy

of every successfully transmitted message (i.e., a message which passes port ¢, uncorrupted and

15

in its entirety) is emitted from the connection whenever the trailing end of a transmitted message

propagates past the attached port.

Internal Channel Model

The internal implementation of our channel model is passive and uses techniques from relational
databases to minimize the amount of simulation overhead required. There are two types of channel
attributes: static and dynamic. Static characteristics such as the channel’s fading and capture
characteristics, and the number of attached stations are directly specified by the modeler in the
game manner as other modeling element attributes. The dynamic characteristics of the channel are
gtored as tuples, with one tuple for each attached station. Each tuple records the station name,
the starting and ending times of its last transmission, and its current position in the network.

The channel model is passive in the sense that procedures are (indirectly) called to compute
or update the state of the channel when this information is required (e.g., when the value of a
port variable is changed) or when the channel state changes (e.g., when a job enters the channel
through a channel input connection.) Given the relational model of the dynamic channel attributes,
computing the state of the channel translates to a simple query on these dynamic attributes;
changing these attributes simply updates the tuples. Several well-known algorithms can be used
to implement these database operations [6]. In effect, the state of the channel is procedurally
determined from the past transmission starting and stopping times whenever this information is
needed. Thus, the actual transmission and propagation of messages along the channel need never
be ezplicitly simulated. This results in considerable reduction in the simulation overhead and a
concomitant decrease in the amount of time required to simulate a multiaccess network and its

protocols.

3.3 Simulator Design

As mentioned earlier, the development of simulation programs for modeling and evaluating
communication networks represents a major software effort and our goal in building GENESIS is
to reduce this effort such that the analyst can build arbitrary communication network simulation
models using high-level constructs without worrying about the implementation details of the simu-
lation itself. The actual simulation of network models constructed using the modeling language and
the channel model described in the previous two sections' is performed by a discrete-event-based
“simulation engine” in GENESIS.

The simulation engine esscntially moves jobs (see section 3.1 for discussion of jobs) from node

to node in the user-defined simulation model. Routing of jobs within a simulation model is entirely

16

defined by the semantics of the modeling constructs used in the model and the occurrence of some
cvent (see Appendix D for specifications). As described in section 3.1 and specified in Appendix
B, each modeling construct in GENESIS has three important properties, an action to be taken,
one or more attributes and a graphical icon. The first two of these three properties constitute the
semamtics of each modeling construct. Our simulation engine i8 80 designed that the semantics of
cach modeling construct are mapped directly into one or more simulation routines which carry out
the action and manipulate the attributes. Events are happenings, such as a JOB-ARRIVAL or a
JOB-COMPLETION event, during a simulation that cause jobs to traverse from node to node in
a simulation model. Meanwhile, when a job passes through a node, some future event(s) will also
be scheduled as defined in the specification of a node (see Appendix D). Therefore, the simulation

is driven by this causal relationship of discrete event occurrence and event scheduling.

The two most important data structures employed in the gimulation engine to support the
event-driven simulation are an event list and a job list (see Appendix C). The event list is a list of
future events being scheduled. Each element in the event list contains information for one event
and this information includes the event type (e.g. JOB-ARRIVAL, JOB-COMPLETION), the
time when the event should take place, a pointer to a job element (described below) of the job
being affected by this event and a port id which specifies the port at which the event is scheduled.
Similarly, the job list is a list of jobs currently exist in the network model. When a JOB-ARRIVAL
event occurs, a job element will be added to the job list and conversely as a JOB-COMPLETION
event takes place, the job element corresponding to the JOB-COMPLETION event will be removed
from the job list. The information kept in each job element in the job list includes a job id, the
name of the current node (i.e. modeling construct) this job is at, the arrival time and the service
time (generated from user-defined distribution) of the job, parent or child job(s) associated with

this job and a set of user-defined job variables (as described in section 3.1).

Besides the event list and the job list, additional data structures are necessary in supporting the
simulation of the channel and other aspects of the network model. The static and dynamic attributes
of the channel model are represented by two table form data structures, called ChannelProperties
and ChannelRelation respectively. Furthermore, a Node Table, a Symbol Table, a Routing Table,
a Queue Table and an Expression Table are the other major data structures employed in the
simulation engine. The specifications of all the above data structures can be found in Appendix C.

At the highest level in the simulation engine, the simulation of any network model proceeds as
follows:

17

MULTIPLE

ACCESS

D0

81 Ql Dbl

attribute values for the nodas in the model:

5§11 interarrival time (constant) = 0.8sec

Qls sorvice time (constant) = 1,0sec
quaueing discipline = PCPS

Dl: dolay duration (conatant) = 0.Saec

Figure $: Example of a simple four node network model

Initially, a JOB-ARRIVAL event is scheduled for all source node(s) in the model
and the internal channel model is initialized with all the attributes specified by the
modeler. Then the simulation repetitively executes the following loop until the sim-

ulation time is up or some other stopping condition becomes true:

Loop

Get an event off the front of the event list;
Set current simulated time to event time;
Process the event;

Check waiting conditions;

End

(The wait node as one of the modeling constructs in GENESIS allows jobs to wait
(i.e. to be blocked) on some conditions (e.g. to wait for a certain value of some
global variable). The last step in the above loop is thus to check if any of the waiting
conditions have become true after processing the event. If so, wake up the job(s)

waiting on the conditions.)

To further illustrate how the simulation is actually carried out, we present a simple four-node

network model below. (See figure 3). (note: The purpose of this example is NOT to demonstrate

the facilities GENESIS provides to a modeler for constructing any arbitrary user-defined models
(see section 4 for such examples). It is only to show the operations involved in the simulation

engine.)

Suppose at source node S1, the arrival rate is deterministic with interarrival time equals to 0.8

seconds. The queueing discipline at Q1 is first-come-first-serve and the service rate is also deter-

18

time in 0.0 0.8 1.0 1.5 2.0
seconds | ! 1 1 .

T

J2 loaves
J1 arrives at J2 arrives J1 leaves J1 leaves .
queve node Q1 at queue 01 and Dl and is Q1 and arrives . .
node Q1 arrives at transmitted at D1
»3% into the channel

Figure 4: The occurrences of events along the time axis in the four-node
simulation example

ministic with constant service time 1.0 second for all jobs generated and there is a constant delay,
say 0.5 second, at delay box D1. (Again, since we are not demonstrating the kind of distributions
GENESIS supports here, we are using all deterministic distributions to simplify the example.)

Now lct’s sce how this simple four-node model is simulated in the high level simulation frame
(please refer to figure 4 and Appendix D when reading the rest of this section). Initially, a JOB-
ARRIVAL event will be scheduled for the source node S1 with event time equal to 0, and the
channel mode! will be initialized according to some modeler specified attributes. Then we enter the
beginning of the loop. This JOB-ARRIVAL event will be taken off the event list and the simulated
time is set to the event time, i.e. 0. To process this event, as specified in the JOB-ARRIVAL event
in Appendix C, simulation routine ARRIVAL will be called. It would create a job record for the
arrival job with job id, say, J1 and put it on the job list; schedule next arrival for 81, i.e. a JOB-
ARRIVAL event record will be put on the event list for next arrival job J2 with event time equal
to 0.8 (since the interarrival time is 0.8 seconds) and move the current job J1 to its destination
queue node Q1, i.e. the simulation routine Arrival-at-Active-Q will be invoked. Arrival-at-Active-Q
generates the service time according to the modeler-specified distribution. In this case, the service
time is always 1.0 second. If the queue is empty (and it is the case here), a JOB-COMPLETION
event will be scheduled for job J1 at time 1.0 (i.e. after being serviced at the queue).

Now we are at the last atep of the loop and since there is no wait node in our simple model, we
are led back to the start of the loop again. The -event with the smallest (i.e. nearest future) event
time will be taken off the event list next. So the JOB-ARRIVAL event for J2 is processed here by
getting the current simulation time to the event time 0.8 and invoking Arrival-at-Active-Q again.
32 is then put on the queue in Q1 and a JOB-ARRIVAL event is scheduled for the next job J3
with event time equal to 1.6. :

19

We are back to the beginning of the loop now. This time, the JOB-COMPLETION event for J1
will be processed and the simulated time will be set to 1.0. In processing the JOB-COMPLETION
event, the simulation routine Depart-from-Active-Q is invoked. This routine first checks to see
if there is more than one job in this queue and if there is, a JOB-COMPLETION event will be
scheduled for next job in the queue based on the service time. In our case, J2 is on the queue and
thus a JOB-COMPLETION event is scheduled for it with event time equal to 2.0 (current simulation
time + service time at this queue). Then J1 is routed the next node in the model, i.e. the delay
box D1, by calling routine Arrival-at-Delay which simply schedules a JOB-COMPLETION for J1

at time 1.5 (since D1 has a constant delay of 0.5 second and current simulated time is 1.0).

Once again, we are led back to the beginning of the loop and the JOB-COMPLETION event
for J1 at D1 will be the next event to be processed since the J OB-COMPLETION event for J2
is not due to take place until simulated time equals 2.0. This time, the JOB-COMPLETION
event invokes Depart-from-Delay which immediately routes J1 to the start transmission node 11 by
calling Arrival-at-Channel. Arrival-at-Channel ’sends’ the job into the channel by enter the start
transmitting time and set the state of the port to TRANSMITTING in the internal channel model.
Also, Arrival-at-Channel schedules POSSIBLE-SUCCESS-TRANSMISSION events for arrival of
the end of message transmission for all ports which have a channel-message-read node. Then we
come back to the beginning of the loop and simulation continues by taking the next event (in time)
off the event list (i.c. the JOB-ARRIVAL for J3) and proceeds in the similar fashion as described
above.

Before closing up this section, it is important to notice that besides the time elapsed in the
protocol operations modeled, e.g. gervice time, delay time, etc., the simulation processing in all
the other nodes (e.g. start transmission node) is instantaneous, i.e. processing in these nodes

does not affect the simulated time. It is the nature of discrete-event driven simulation that the
gimulation does not have to run ‘continuously’ along the time axis and, as figure 4 shows, it only
has to simulate at discrete time intervals as events take place.

3.4 Overall GENESIS Architecture and the Modeling Environment

A sketch of the overall GENESIS architecture is shown in Figure 5. To specify a simulation
model in GENESIS, the user uses the high-level modeling language provided by the environment as
described in the previous sections. The /it graphical model construction environment and the /it
graphical simulation display and control are the two front-end graphics units interfacing with the
user. The graphical model construction environment supports the user in building the simulation

model graphically by providing the user a graphical description of the simulation model. The basic

20

wmodel

library

graphical

model

construction

environmen
@ submodel event-driven
.éé invocation H simulation

procedures engine

graphical ¢

simulation ~ graphical

display and animation

Figure 5: Block diagram of GENESIS architecture

programming clements in the environment are icons, symbols which carry both contextual and
semantic information. Icons, which are stored in the model library, are picked up from palettes
located at the side of the display and placed on the modeling field portion of the display. The
attributes associated with the modeling element icon are then specified using pop-up windows on
the screen. Objects can be connected either manually (under user control) or by the environment’s
line drawing algorithms. The graphical simulation display and control together with the graphs-
cal animation module will further support the graphical simulation by displaying the actions and
effects of the various modeling objects as the simulation proceeds, i.e. animating the simulation
execution. This feature will be particularly helpful in debugging simulation models and in un-

derstanding the general behavior of the modeled system and the interactions among the modeled
system components.

As previously discussed, the submodel facility is provided in order to support and encourage the
development of hierarchical, well-structured models. Graphical support for the use of submodels
includes the ability to replace the original graphical description of a subnetwork with a single
block representation of the submodel subnetwork and the use of zoom in/out features to focus

the modeler’s attention of the portion of the simulation model currently under consideration. The

21

role of the submodel snvocation procedures is to create a complete internal copy of each invoked
submodel definition. This includes mapping the parameters in the submodel invocation to those in
the submodel definition, creating (for the simulation) instances of the modeling elements defined

in the invoked submodel, and connecting these elements into the job routing specification.

At the furthest end in the modeling environment from the user is the coent-driven ssmulation
engine as described in section 3.3. This is where the user-defined high-level simulation model spec-
ification is mapped into the low-level internal environment data structures and internal procedures
which carry out the details of the simulation.

Since GENESIS is still in the state of development, modification and addition to its overall
architecture should be expected.

22

4. Examples

In this section, we present two examples to demonstrate how various modeling language elements
and the channel model discussed in the previous few sections can be combined to create high-level
models of multiple access protocols. To construct such simulation models, the modeler simply
selects appropriate modeling constructs and associate necessary semantic contents (i.e. attributes)
with each modeling construct to accomplish the required protocol operations being modeled. Our
goal in presenting these two examples is not to examine the operation of the specific multiple access
protocols. Rather, our aim is to show the natural and easy manner in which simulation models
can be constructed using such a high-level approach and therefore to demonstrate the power and
flexibility of our approach.

4.1 non-persistent CSMA/CD

Figure 6 shows the graphical representation of the highest level of our model of a 4 station
multiaccess channel. At this level, the model simply consists of the channel and four invocations
of a single parameterized station submodel. Figure 7 shows the pictorial representation of the
submodel definition for a station using a non-persistent CSMA/CD protocol [32]. The attributes of
the channel and of each of the elements shown in figures 6 and 7 are given in the textual portion of
the model description contained in appendix A. This textual specification of the declared attributes
of a model is obtained by default after the model has been constructed graphically. Note that in this
particular model, the actual connection between a station invocation and the channel is specified

in the submodel definition, while the channel port characteristics are specified in the main model.

Let us now briefly discuss the submodel’s operation. As indicated in the textual portion of
the model in appendix A, two parameter values are contained in the submodel definition. The
first parameter, stationid, is used in the submodel to uniquely identify each invocation of the
station submodel. The second parameter, INPUTPORT, provides the name of the channel input
connection into which the station will send its messages.

Jobs (representing messages to be transmitted) are generated at source node SOURCEI accord-
ing to a user-specified random process (in this case, with an exponentially distributed interarrival
time of .01 seconds). Once a job leaves the source node, it first visits the startmeasure node,
STARTACCESS, in order to obtain performance statistics regarding the time between its arrival
at a sending station and its successful transmission into the channel. The job then waits at the
wait node WAITSEND until the condition (SENDING==FALSE) becomes true; this condition is

required to insure that a station never simultaneously transmits two of its own messages.

23

stationl
multiaccess
station2 channel .
model
station3
station4

Figure 6: The main model of a 4 station CSMA /CD network

24

4

4

¢

RESET_SEND1 BUSYDELAY

O —1H

SOURCE1l STARTACCESS] WAITSEND SET_SEND SPLIT1

INPUTPORT

ANILLYVISIID

2a17TI0011IVM

!
>
>““ X E_—_“

SINK1 RESET_SEND2 STOPACCESS WAIT_TRANS

ol
A}

2
4!

-
w

RESET_SEND3 BACKOFF ABORT

Figure 7: A station submodel for non-persistent CSMA

25

When a job exits WAITSEND, it first sets the value of SENDING to TRUE at the sct node
SET.SEND to insure that all other arriving jobs will wait at WAITSEND. The job’s destina-
tion after leaving the set node then depends on the current value of scnscstatus(stationid). If
senscatatus(stationid) # 0, then the channel is busy and the message is delayed a random amount
of time (in this case, we chose a random amount of time, arbitrarily between 0 and 0.5 seconds).
The job then sets the value of SENDING to FALSE to permit messages to again be transmitted
by the station, and then rejoins the WAITSEND wait queue.

If senscstatus(stationid) == 0, then the channel is currently idle and a copy of the message is
made at the split node, SPLIT1. This job copy (now a data-oriented job, representing the message
being sent into the channel) proceeds to the node parnméter INPUTPORT, which is the channel
input connection for this station; at this point in the simulation, a message transmission by station
stationid begins. The message transmission time will be determined either by the connection’s mes-
sage transmission time distribution or by the premature abortion of the transmission, as discussed
belov .

A second job (now a control-oriented job representing the flow of execution of the protocol) exits
from the lower half of the split node and records the starting time of the message transmission at
the set node, GETSTARTTIME. The job then waits at the node, WAITCOLLIDE until either
a message collision is detected or the message has had sufficient time to propagate to all other
stations in the network and back, whichever comes first.

If the job leaves the wait node and senasestatus(stationid) == 0, then the CSMA/CD protocol
insures that the message will be successfully transmitted in its entirety. Thus, the control-oriented
job waits until the data-oriented job has terminated transmission and then visits the stopmeasure
node STOPACCESS, where the value of SENDING is set to FALSE to insure that additional
messages may now be transmitted by this station. The job then leaves the set node and is removed
from the simulation when it arrives at the sink node SINK1.

If the job leaves the wait node and senscstatus(stationid) # 0, then a collision has occurred
(i.e., another station has also attempted a simultaneous message transmission). In this case, the
job immediately aborts message transmission by passing through the set node, ABORT, and sets
the value of the port variable, transmissionstatus(stationid) to 0. The control-oriented job is then
delayed (again, as specified by the non-persistent CSMA protocol) a random amount of time. After
leaving the delay node, the job then sets the value of TRANSMITTING to FALSE (to permit the

station to again attempt message transmissions) and then returns to the wait node.

Finally, we note that since we are only interested in determining the average access time for

a message, we have not included a channel output connection to a port in the station submodel.

26

SINK]
SET2 cl DELAY! Chonnel-Mog-Readl

megsage

procese

- ~ing
delay

I1s-Token=true

Jv{o) = !
3v(2) = next-

station~-
address

3v(2) = next-

station- SET3

address

¥

SOURCE! WATT-IS-TOKEN SET4 DELAY2 Starc-Msg-Transl

1 1s-~Token={aloe measage

\ jv(l)=my-address process | | .
l jv(2)=next-scatn > -ing

| jv(3)=final-deat delay

global variable used in the model: (global to a station submodel)
1s-Token: boolean

job variables uscd in the model:
Jv(0): indicacing if the job is a token measage (1 = a token)
3v(l): sender’s (source) address
Jv(2): next destimation address
Jv(3): final destination
TOKEN RING MODEL
(explicic token passing)

Figure 8: A token ring protocol submodel

Thus, a message sent into the channel will never appear out of the channel at another station. If
we were also interested in the actions taken by a station when a message was received (e.g., if we
wished to model the effects of transmission errors), then we need only include the channel output
connection and specify (through the appropriate use of modeling elements) the actions to be taken

upon the receipt of a message at a station.

4.2 Token Passing Ring

Here, we present an example of the token passing ring protocol submodel in Figure 8 to illustrate
that the modeling language in GENESIS is not only limited to model multiple access protocols for
one kind of communication channel, i.e. broadcast channel. Its generality provides the modeler the
ability to model multiple access protocols for /it any arbitrary kind of communication channels,

such as the unidirectional communication channel being modeled in this example. Again, as in the

27

b

CSMA/CD protocol submodel example given above, the token passing ring submodel would be

invoked once for each station in the network system being modeled.

In the token ring protocol with explicit token passing [19], the transmission of messages into
the channel is controlled by the protocol. Thus no collision among message transmissions would
occur. The main challenge of modeling this protocol is then the token passing mechanism. As one
can see after we trace through the submodel later that the control aspect of the protocol is the
major part of the submodel.

In this example, we assign meanings to four job variables for any job that comes in or generated
by the station protocol submodel (see Figure 8 for explanation of the four job variables). The
gemantics of these job variables directly support the modeling of the unidirectional channel. A
global variable, Is-Token, is used in the submodel to indicate that the current station submodel has
the token and therefore the permission to transmit if it has any messages to send. Now, let’s trace

through the submodel to see the various protocol operations it does.

At the source node SOURCE], jobs are generated based on some interarrival time distribution
specified at this node and the jobs will be queued at the wait node WAIT-IS-TOKEN to wait for
the condition Is- Token == truc to become true.

Meanwhile, if there is any job on the channel passing by this station, the channel message read
node Channel-Msg-Readl will take the job off the channel and route it to DELAY1. After some
message processing delay (e.g. check the checksum value), the semantic contents of the job will be
examined by the protocol model. If jv(0) equals 1 at decision node DECI, indicating that this job
is a token message, a function QL will be invoked at decision node DEC?2 to check the queue length
of WAIT-IS-TOKEN. If the queue length is not O there (i.e. there are jobs waiting to be sent at
the station), then the global variable Is-Token will be set to true and the job enters SINK1. Now,
gince the Is- Token == true condition is true, the next job waiting to be sent at WAIT-IS-TOKEN
can be transmitted by assigning values to its job variables at the set node SET4, experiencing some
message processing delay at DELAY?2 and finally going through Start-Msg-Transl into the channel.
On the other hand, if the queue is empty at WAIT-IS-TOKEN (i.e. the queue length == 0), the
token message will be assigned the next station address at SET1 and passed on to the next station
from the Start-Msg-Transl.

If the job read in from the channel is not a token message, i.c. jv(0) is not equal to 1, it has
to be decided if this job should be passed onto the next station in the network to preserve the
unidirectional channel property. jv(2) will be checked at decision node DEC3 first to see if the job
has the current station’s address as its next destination. If it doesn’t, then the job is discarded
by entering the sink node SINK2. If it is destined for the current station, jv(1) will be examined

28

to sce if the job is originally sent by the current station. If it is originated here, it means that
the message has gone through the entire network and therefore it can be taken off the channel by
the sender. The sender (i.e. the current station) will re-issue the token message to give the next
station permission for transmission by setting jv(0) to 1 and jv(2) to the address of next station at
SETI1 and send the token out through Start-Msg-Transl. However, if the job is not originated by
the current station (but has the current station as its next destination) as decided by the decision
node DEC4, it will simply be passed on to the next station by setting the next destination address
to the address of next station at SET3 and transmitting out through Start-Msg-Transl.

29

5. Conclusion

In this report, we have described a third generation, graphics-oriented, modeling and perfor-
mance evaluation environment, GENESIS, for simulating performance models of multiple access
networks and protocols. The high-level approach used in GENESIS will greatly enhance the produc-
tivity of the nctwork modeler since the performance models will be significantly easier to generate,
debug, controlled and understood within such an environment. GENESIS is right now under devel-
opment and some issues still need to be considered further. How to animate the simulation process
guch that the modeler can actually have control over the simulated system interactively is one of
such issues. Also, the set of modeling primitives we have designed so far are by no means exhaustive
and as we gain more experience during the development process, more modeling constructs may be
developed and existing ones may be modified to make the environment more effective. Finally, to
provide more flexibility and freedom to the modeler, GENESIS will support user-defined modeling
elements when the system-defined modeling primitives are not sufficient and this is another area

neec :d further development.

ACKNOWLEDGMENTS

Many individuals have contributed their ideas, time, and effort in the development of GENESIS.
We are particularly grateful to Kurtiss Gordon, Saraswathi Krithivasan, and David Jacobs for their

contributions.

30

Appendix

A. Attributes of the nonpersistent CSMA model

/* This first file is the textual portion of the specification of
the main (highest-level) model of a four station non-persistent
CSNA/CD network. Note that the actual CSNA protocol (i.e., the
behavior of each station) is specified in a submodel +/

NODEL NANE: fourstation

Yinclude station /* include the station submodel */

INVOCATION: stationi /* create an instance of a station */
SUBNODEL NANE: station /* by providing the subzodel name ¢/
STATIONID: 1 /¢ and a value for the parameter ¢/

INVOCATION: station2
SUBNODEL NANE: station
STATIONID: 2

INVOCATION: station3
SUBNODEL NANE: station
STATIONID: 3

INVOCATION: stationd
SUBNODEL NAME: station
STATIONID: 4

NULTIACCESS CHANNEL MODEL /% Now declare channel characteristice s/

CHANNEL BENSE: /% usa default connectivity, fading, capt ¢/
NUNBER OF PORTS: 4 /¢ 4 stations, one per channel port s/
PORT 1 -

INITIAL POSITION: (0.0,0.0)
CHANNEL INPUT CONNECTIONS: inputl
NESSAGE LENGTH DISTRIBUTION: f£ixed(0.0001) /+ 1K pkts, 1ONB chanl ¢/

CHANNEL OUTPUT CONNECTIONS:

PORT 2 -
INITIAL POSITION: (100.0,0.0)
CHANNEL INPUT CONNECTIONS: input2

NESSAGE LENGTH DISTRIBUTION: £ixed(0.0001)
CHANNEL OUTPUT CONNECTIONS:

31

PORT 3 -
INITIAL POSITION: (300.0,0.0)
CHANNEL INPUT CONNECTIONS: inputd

MESSAGE LENGTH DISTRIBUTION: fixed(0.0001)
CHANNEL OUTPUT CONNECTIONS:
PORT 4 -
INITIAL POSITION: (400.0,0.0)
CHANNEL INPUT CONNECTIONS: inputd

NESSAGE LENGTE DISTRIBUTION: £ixed(0.0001)
CHANNEL OUTPUT CONNECTIONS:

ROUTING: /* no routing needed in main model s/
SINULATION RUN INFORNATION -

QUEUES FOR QUEUEING TINE DISTRIBUTION:

PERFORNANCE VARIABLES DISTRIBUTIONS: stationl.accesstime

SINULATED TINE: 10000

NUNBER OF SINULATED EVENTS:

END
/¢ this submodel contains the model of an individual station s/
SUBNODEL: station /+ submodel for a generic station «/

NUMERIC PARAMETERS: stationid /+ number of this station
NODE PARAMETERS: INPUTPORT /¢ channel input port for this station ¢/

CLOBAL VARIABLES: sending /¢ whether this station may send ¢/

TYPE: boolean
INITIAL VALUE: FALSE
PERFORNANCE VARIABLES: accesstime /* time from arrival to success s/

DELAY NODES: busydelay, backoff /* delay times chosen arbitrarily s/
DELAY ANOUNTS: uniform(0.0,0.5), uniform(0.0,0.5)

SET NODES: set_send
ASSIGNNENT: sending=TRUE

SET NODES: reset_sendl, reset_send2, reset_sendd
ASSIGNNENT: sending=FALSE

SET NODES: getstarttime /* get start time for this msg ¢/
ASSIGNNENT: jv(0)=time

32

SINK NODES: sinkl

SOURCE NODES: sourcel
INTERARRIVAL TINE: exp(.01) /+ exponential with mean of .01 seca ¢/

SPLIT NODES: splitil

STARTNEASURE NODES: startaccess
PERFORNANCE VARIABLE: accesstime
STOPNEASURE NODES: stopaccess

PERFORNANCE VARIABLE: accesatime

WAIT NODES: waitsend
WAITING AREAS: waitsendl
CONDITION: sending==FALSE

WAIT NODES: waitcollide
WAITING AREAS: waitcollidet
CONDITION: (sensestatus(stationid)>0) OR (time-jv(0)>.000085)

/* .00006 is worst case end-to-end delay taken from the s/

/+ Ethernet Specification (see Comp. Comm. Rev, July 1981) s/
WAIT NODES: wait_trans

WAITING AREAS: wait_transi

CONDITION: transmisasionstatus(stationid)==0

JOB ROUTING DEFINITION:

sourcel -> startaccess -> waitsend -> set_send

set_send -> busydelay splitl; if(sensestatus(stationid)>0)
if(sensestatus(stationid)==0)

busydelay -> reset_sendl -> waitaendl

splitl -> inputport getstarttime

getatarttime -> waitcollidet

vaitcollidel -> wait_transi abort; if (sensestatus(stationid)==0)

if (sensestatus(stationid)!=0)
vait_transil -> stopaccess -> reset_send2 -> sinki
abort -> backoff -> reset_send3 -> waitsendl

END

B. Modeling Elements Specification

ICON

)

NODE NANE

source

vait

start
measure

-

measure

>
e

stop

ATTRIBUTES

1.interarrival

time distribution

1.queue discipline
2.waiting area names

3.service time
distribution

4.priority
information

6.defection condition
G.number of servers

1.boolean predecate
2.queueing discipline
3.vaiting area names

i.performance
variable

1.performance
variable

none

34

ACTIONS

Generate job arrivals
according to specified
distribution.

Arriving job queuned for
service.

Enters service when
highest priority job in
queue.

Leaves queue after

service or vhen time
constraint exceeded.

Jobs wait at this node
until the predicate
becomes true. Jobs
leave queue according
to queueing displine.

Btart internal timer
associated with this job
for this performance
variable.

Stop internal timer
associated with this job
for this performance

variable. Use the time
value as a sample value

of performance variabla.

Job arriving at a sink

node is removed froa
the simulation.

set 1.assignment Job flowing through set

expression nodes causes value of

- : expression to be assigned

to a specified job or
simulation variable.

delaybox i.delay distribution Job arriving at delay

box leaves box after
—_— — specified amount of time.

split none Job passing through
split node is duplicated.

,/////1"'5” A duplicate exits via

upper path, original vie

lowver path.

fission 1.fields for the When a job goaes through
dependent job a fission-node, a
—> dependent (child) job
I vill be created with
given attributes.
fussion none The fussion ncde is

vhere zll the dependent
jobs created by some

fission node(s) come
together.
A job that arrives at

a fussion node first
must wait for the other
dependent job.

decision 1.decision exprassion A decision node has
tvo outgoing routes.
A job arrived at a
decision node will be
routed out at either
outgoing route based

on the evaluation of

35

...'
S

channel
input 1.message trans-
mission time
I distribution
channel
output none
op-node 1.objects to be
operated on
2.user-defined
operations

36

the decision expression
specified for the
decision node.

A job entering this node
causes the value of
transmissionstatus(i) to
be set to 1(transmitting).
This value will be set to
0(idle) after an emount
of time drawn from the
specified messege trans-

mission time distribution.

A job which is sent into

the multiaccess channel at
some port, j, is emitted

from this node if it is
transmitted in its entirety
(without) collisions) and
port j is within hearing
distance of port i.

This node is to

support operations on
user-defined objects.
When a job goes through
an operation-node,
operations specified

at this node will be
performed upon some

user-defined object(s).

C. Data Structures supporting the Simulation Engine

/* This file contains all the declarations for all the definitions
and global data structures associated with the event list. s/

/+ the following macro definitions are used to define the various

event codes. s/

#define LEAVESOURCE 1§
#define LEAVEQUEUE 2

#define LEAVEDELAY 3

,t#ttt“ttttttt‘t"ttttt"““tt‘tt‘t“t“‘tt##“t‘tttt“‘

+ EventRecord contains information of an event to *
¢ heppen at some time in the future. EventRecords .
¢ are linked into a linked list with the next_event .
¢ field and an EventRecord will be removed from the .
¢ list upon completion. .

tttttt‘#“‘#‘“t‘t‘ttttt‘ttt‘ttt‘t‘ttt‘tttttt‘t““.““t,

struct EventRecord

{
int event_id; /+ an integer code for event s/
double event_time; /* time at which event occcurs +/
struct JobRecord sjob; /* ptr to job affected by event ¢/
struct StationRecord ¢atation;
struct EventRecord s¢previous_event,

¢next_event;
}:

extern struct EventRecord *EventList; /* pntr to front of event list ¢/

37

/Otttt“tttttt‘t“tt‘t‘t““ttt“#““‘t‘t‘.tt#t“t“‘t“

¢ JobRecord repreaents a job with the information .
s associated with that job. All jobs are linked into #
* a linked list with the field next_job. Although *

»

¢ conceptually a job moves from node to node in the

¢ network model during the simulation, the actual job
* record stays in the job list until the completion of
¢+ the job. The attributes of a job will be modified ¢

¢ vhenever necessary during the simulaton. *
#t*tttttt#tttttt*#t‘tttttttttt#tttttttttttttttttttttt“‘/

»

struct JobRecord

{
int Job_id;

int current_node;/+an integer code for a node */

int arrival_time;

int service_time;

struct JobRecord *next_job;

struct JobRecord sparent;

struct JobRecord *child;

int JobVars([10]); /% job variables, semantics are defined ¢/

/* by the user */

/* These fields are to be considered later in the project. */

/* struct JobRecord *link_pointer-1, ./
]+ +1link_pointer_2; s/
/+* wait_type wait_cond; +/
}:
extern struct JobRecord *JobList; /* pointer to JobRecord ¢/

38

/* This file contains all the external definitions for the node

table.

#define NNODES 100
extern struct NodeEntry {

int n_name;

int n_type;

double n_value;
int n_expr;

double n_wvaitime;
int n_maxlen;

int n_ndepart;

struct distel *n_distptr;

} NodeTable[NNODES];

I+
]

¢/
/*
/*

/*
/*
/*

¢/

index into symbol table def for this node */
code for the node type. Codes are:

1 - class 2 - split
3 - fission 4 - fusion
5 - set 6 - delay
7 - source 8 - sink
unused ¢/

index into the expression table for an

expression associated with this node o/
perf. value - total wait time of all jobs ¢/
perf. value - max length of a class ¢/
perf. value - # departures from this node ¢/
/% perf value - pointer to & linked list */
/* of values for which queueing time s/
/* distributions are to be measured s/

39

/‘tttttttt..tt“tt“t‘tOttttttt‘#““‘ttttt‘t‘tttttt‘t“‘tt‘t
+ This file contains the definition for the symbol table. *

+ For nowv, this is only a simplified version of the symbol ¢

¢ table to hold the names for nodes and queues. *

I R T R A DA A D A L T AL L Y
#define SYNTABSIZE 100

struct SymTabEl
{
char *pame;
double value;

int typecode; /%e.g. global or job variables */

int inited; /* velue initialized or not */
};

extern struct SynTabEl SymTab[SYNTABSIZE]:

40

/+ This file contains nll the external definitions for the queue
table. «/

#define NQUEUE 100

struct classel { /+ this structure used in each queue table entry ¢/
int clasaname; /+ index into node table for this class */
struct classel *next; /* ptr to next class element for this Q +/
}:

extern struct QueueEntry { /¢ QUEUE Table - info about all queues ¢/

int q _neame; /+ index into symbol table def for this Q */
int q_type: /* code for the node type. Codes are:
1 - active 2 - passive ¢/
int q _nservers; /* number of servers */
int q_discipline; /* queueing discipline. codes are:
1 - FCF8 2 - LCF8
3 - Random
4 - nonpreemptive Pri
b - preemptive resume priority
6 - preemptive restart priority

s/
struct classel ¢classlist;

/* ptr to list of classes associated w/ Q */
double q_value; /¢ unused ¢/
int q_expr; /% unused */
double q_time_busy; /¢ perf. value - total time queue is busy o/
double q_waitime; /+ perf. value - total wait time of all jobs ¢/
int q_maxlen; /¢ perf. value - max length of a class ./
int q_ndepart; /* perf. value - # departures from this node ¢/
struct distel *q_distptr; /+ perf value - pointer to a linked list ¢/

/% of values for vhich queueing time s/

/¢ distributions are to be measured s/
} QueueTable[NQUEUE];

41

#define EXPRTSIZE 50O

extern struct exprel

{

int type:
double value;
} exprtab(EXPRTSIZE];

extern struct exprel *position;

/ttttttttttttt#tttttttttttttttttttttttt‘ttt
for the TYPE field of exprel

¢

* & #* & & »

> ® » »

*® & & & & & »

s

1 = pnumber

2=+

3 o - (binary)

4 *

6=/

6 = - (unary)

7 = symbol

8 = exponentiation

9 = 1n

10 = sqrt

11 = absolute

12 = mod

13 = div

14 = max

16 = min

16 = unifora distribution
17 = exponential distribution
18 = geometric distribution
19 = poisson distribution
20 = bernouli distribution
21 = erlang distribution

22 = normal distribution
.tt‘tt‘.‘tt“.‘ttt‘t‘t“‘t‘tttttt“tt‘tt#‘/

42

*

*
*

®. 5 % »

»

»

* % % X #& » =

. » . »

&

/* This file contains the definitions of the external data structures

for the routing table.

The ith element in the routing table is

the *from* node for a routing definition. #*All* the "to" nodes
(directly reachable from this "from® node) are contained in a linked
list pointed to by the entry in the routing table ¢/

#define NROUTENTRY 100

extern struct RoutEntry

{

struct

} RouteTable [NROUTENTRY];

struct RoutElm
{ int
float

int

atruct

}

RoutElm #ptr;

destination;

rout_type;

exptr;

RoutElm *next;

/* the “from® nodes, one entry per node */

/* pointer to list of elements,
one element per destination +/

/* the "to" nodes */

/* node table index of a destination ¢/
/+ in [0,1] => probablistic routing ¢/
/¢ = 1 => deterministic routing ¢/
/¢ = -1 => boolean expression */

/* index into the expression table */

/* for the expression to be evaluated */
/+ pointer to the next destination of ¢/

/* the same ®"from" node */

43

/tttttttttt‘t data structures for the channel #‘ttttttttttt#t‘/

/ttOOttt‘t“i‘tt.ttttttt‘ttttttttt‘ttt‘tt‘ttttt“t“‘ttt‘
¢ ChannelProperties is a table containing the static +

¢ properties of s channel given by the user before *
s+ sipulation. *
ttt‘tttt“t‘tttttt‘ttttttttttttttttttt#tttttttttttttt“t/

extern struct ChannelProperties

{
int number_of_ports; /+total number of ports in the channels/
float fading; /+fading rates/
boolean capture; /+indicate if capture effect is
going to be considered in the
model*/
Y

/i““tt#Ctttttittt‘t‘#ttt#ttttttt‘t#tttttt‘tttttt#“ttt“tt‘
¢ All the dynamic channel attributes during a simulation ¢

¢ are contained in a relation. Each ChannelRelationRecord #
+ is a tuple in the relation containing information of a ¢

¢+ port’s activities in the channel. .

‘t“t“#t“‘*‘tt“‘ttt*t‘#tttttt*#t“ttttt“t‘tt#t‘ttttttt‘t,

oxtern struct ChannelRelationRecord
{
int port_id;
int port_position;

char state; /+ either i’ or °t’ for IDLE or TRANSNITTING ¢/
int trans_start_time;

}:

44

D. Design Specifications of GENESIS Simulation Engine

Detailed Design Specification for GENESIS SINULATION ENGINE

/‘0ti‘tttt*i#“*tt#“#t.“‘O‘tt‘.i“..‘.‘000“‘t“tt‘t“ttttt.‘.t.ttt
¢ This file contains the simulation routine specifications *

¢« for GENESIS.] ¢
T T T T T T T T T T T LT T e T T YT YYYIYY

kbbb dettibb bkt s hish level simulation dggcription 2665888858824 488%

begin /* sizmulation ¢/

Init_simulation /* together with other things,
schedule a Job_Arrival event for all sources ¢/

Init_Channel(ChannelProperties, ChannelRelation)

Loop

get an event off the front of the event list
set current simulated time to event time
process the event

call Check_Wait_Conds

end /+ loop +/

end /+ simulation */

45

/“‘t0“‘0“‘0““‘t‘tttt“tt‘tt‘ttt‘t“tttt“tt‘tttitt.tt

¢ Init_sizulation *
$ cocemecoccccem-- *
¢ Purpose: To initialize the simulation. .
. input parameters: *
s EventlList

i return parameters:

. EventList -- with newly scheduled arrivals. *

““0t“tt..‘t“tt“tt"‘..t.ttt‘t““‘0“‘.‘00.“““‘.‘/

Init_simulation(EventList)

sgchedule a Job_Arrival event for all sources:
for all sources do
--create an even record
--#i11 in the event record fields and the event time
--ingert the event into the event list

end /¢ Init_simulation ¢/

/‘i“t‘tt#ttt***ttttttttt‘#tttt‘t#t#ttt‘t#t#.‘t‘#t‘ttt#‘tt

¢ Arrival .
$ ee-mee- .
. Purpose: To handle an arrival from a source node. *
¢ input parameters: .
* job_id, msg size, control, current_node, .
¢ uesr_def_vars, arrival_time, service_time s
* -- yariables with information of the arrival #
¢ job. *
s return parameters: .
s JobRecord -- For the arrived job. s
¢ EventRecord -- Next arrival scheduled. s

O‘Qtttttt‘t‘t‘t“t‘*t‘tt‘t“t‘t#tttt#‘ttt#‘tttttt.‘tttt‘tl

Arrival (job_id, msg size, control, current_node,user_def_vars,
------- JobRecord, EventRecord)

¢ Create a job record
-- #4111 in all possible fields

46

¢ Schedule next arrival from this source node
-- generate RN according to RV distribution

-- create an event record
-- £i11 in the event record fields and event_time = tO + RV

¢ Call Cet_destination(current_node, jobrecord, route_var, destination)

+ Call Nove_to_destination(destination, jobrecord)

end /¢ Arrival */

/ttt‘““‘tt‘t‘tt"t“ti“ttt.‘t“t‘tt“t.t.t‘t““tt“““t

s Cet_Destination *
$ covmccceccaccccea *
s Purpose: To find the destination node for a given .
* job at a given current node and return *
* the destination. s
* input parameters: . *
* current_node -- the node the job is at novw. *
* jobrecord == the job to be routed. *
* route_var -~ the value of route_var .
* indicates the outgoing ¢
. direction of a job at a .
* multi-branching node, e.g. s

SensorI. *
* return parameters: *
* destination -- the destination node for the *
* job. *
* L

“‘“Ctttttt‘ttt‘0‘tt“‘ttttt‘tttttttttttt“t“t““0“““/

Get_Destination (current_node, jobrecord, route_var, destination)

* Find the next node the job should go to according to the current node
and the model specification

¢ Return the destination

47

end /¢ Cet_Destination */

/‘ttttt*tﬁtt‘tttttttt‘ttttttttttttt*tt‘#ttt‘tt#tttttt#tttttt

¢+ Nove_to_Deatination *
$ emccccccceccccccece .
¢ Purpose: To move a job to the given destination node.*
. input parameters: *
* destination -- the destination node of a job. ¢
s JobRecord -- the job to be routed to the *
s destination node. i
s return parameters: +
» none. *

ttt#t“tt‘tt#**ttt‘ttt*##t#t#ttttt‘t‘tttt##ttt*‘t‘.t‘tt“tt/

Nove_to_Destination (destination, jobrecord)

case of destination

active_queue arrival_at_active_q(...)
port(i) .msg_in: arrival_at_channel(...)
port(i).nag_ont:Channol_xug_nead(...)
decision_node : arrival_at_decision(...)
delay_node : arrival_at_delay(...)
#ission_node : arrival_et_fission(...)
fussion_node : arrival_at_fussion(...)

set_node . arrival-at_set(...)
sink_node : arrivel_at_sink(...)
split_node : arrival_at_split(...)

transmission_terminate: nrrival_at_txnnlniltion.torninuto(...)
wait_node : arrival_at_wait(...)

end /¢ case */
end /¢ Move_to-Destination ¢/

/0.‘0“00““‘0“0t.‘t‘ttttt‘t‘t‘.ttt‘t#t‘.“ttt...‘tt‘t

¢ Arrival_at_Delay *

$ ecomccccccmcwenmcee *
. Purpose: To handle a job arrived at a delay box. *

48

d input parameters: *

* JobRecord -- the job arrived at delay box. *
* return parameters: *
¢ EventRecord -- event scheduled. s

00“‘ttttttttttt‘ttttt#ttttt“.t““.t‘...“tttttttt"‘/

Arrival_at_delay (JobRecord, EventRecord)

+ Get the delay expression to calculate the delay duration from the

user define model structure

¢+ According to the deley duration, calculate the time vhen the job should
be leaving delay box, i.e. t = t(curreat) + D

+ Schedule an event job_completion based on t
end /+ Arrival_at_delay ¢/

/t‘00‘*###““‘0““"t‘t“.t“‘.“t‘t.‘t“t“‘t.“‘t“‘..

¢+ depart_from delay .
¢ eccccccacea ceceee s
* Purpose: When a job completes its delay at the .
* delay box, this routine will be called s
s by the job_completion event to route the =
* job out to the next node in the net. *
* input parameters: .
* JobRecord -- the job completed delay. s
* return parameters: *
d none. s

ttttt*ttttttttttt"#ttt0“0“‘tt*tti‘t“‘.‘tt““‘t‘tt“t/

depart_from delay (JobRecord)

+ Call Gat_Destination (current_node, JobRecord, route_var, destination)
¢ Call Nove_to_Destination (destination, jobrecord)

end /+ depart_from_delay */

49

/tt‘0#t“ttt"tttt‘tt‘t*#ttttt‘t“t“ttttt#t““‘“‘t‘tt#t#

¢ Arrival_at_Active_Q *

$ eeccccrvcccccccceee= *

* Purpose: To handle an arrival at an active queus. ¢

i input parameters: *
* JobRecord -- the job arrived at this node. *
* return parameters: *
* EventRecord -- scheduled job completion .
* event. .

.“0‘0#‘000.“““tt‘#‘*‘“ttttttt‘t“t‘t‘..‘..0“0&‘#0“#/

Arrival_at_Active_Q (JobRecord, EventRecord)

¢ Fill in current_node in jobrecord
¢ Cenerate service time by calling, for example, got_exp-rv(mean)
+ If queue empty

schedule job completion (i.e. add to eventlist at time
t0 + job_service_time)

else

link jobrecord into linked list of jobs vaiting for service at
this queue

end /+ Arrival_at_Active_Q */

/t‘tttt‘tt""ttt*ttt‘t‘““ttttttttttttt‘##‘tt‘tt‘t‘tt‘tt

¢+ Depart_from Active_Q *
$ c-cecmceccccecc—ccna- .
* Purpose: To handle a departure from an active s
* queus. This routine will be called *
* directly as the result of a JobRecord *
. being teken off from the front of event ¢
. 1ist with event being job_completion. *
. input parameters: *
* JobRecord -- the job to depart. *

50

* return parameters: *
* EventRecord -- job completion event *

. scheduled. .
ttt‘tt‘ttttt#tt‘t‘tt‘ttttttttttt‘tttt“tt#tttttttttt‘ttt‘,

Depart_from_Active_Q (JobRecord, EventRecord)

¢+ If (>1 jobs in present queue)

schedule job_completion for next job in queue waiting for service
/+ assuming FIFO &/

/+ then route the job just completed at this queue ¢/
* Call Get_Destination(current_node, jobrecord, route_var, destination)

+ Call Nove_to_Destination(destination, jobrecord)

end /* Depart_from_Active_Q ¢/

/‘t‘tt“ttttttttttt‘t‘tt‘ttttttttttttt‘t#‘t‘t#t‘ttt‘tt‘t‘t

¢ Arrivel at_Sink *
] L LT T T T T T e *
* Purpose: To handle a job arrived at a sink node. ¢
* input parameters: .
* JobRecord -- the job arrived at Bink. .
* Job_list -- list of all jobs in the .
* systen. .
* return parameters: s
* Job_list -- the list of all jobs with i
* the job at the sink node *
* being removed. i

S I I T T T T
Arrival_at_Sink (JobRecord, Job_list)

LY T R T R

¢ Remove the job record from job list

51

* Do garbage collection

end /+ arrival_at_sink ¢/

,0‘0“."0.““‘#“‘.‘.#0“‘tt‘t‘tttttt0““‘0‘0.“‘0*““‘.

* Arrival_at_Wait .
$ eoccmccmccsccenc= *
s Purpose: Handles a job arrived at a wait node with ¢
* some waiting comnditionm. s
i input parameters: *
¢ jobrecord -- the job arrived at the wait node. ¢
¢ wait_cond -- the condition for the job to wait *
on. *

return parameter: .

* jobrecord -- with the wait_cond updated and ¢
* linked to the waiting list for
* that conditien. *

P YR Tttt e e TR R TS YR TR IS AT A DA SR R S 222 222 22 2]

Arrival_at_Wait (JobRecord, wait_cond)

+ Put wait pointer to condition into jobrecord.wait_cond
¢ Fill in jobrecord.current_node

¢ According to the wait condition, put the job record on that wait queue

end /+ Arrival_at_Wait */

/ttt"ttttt‘t‘tttti“tttt#t“ttttt‘tt‘ttttttt#t‘t“tt‘tt“

¢ Arrival_at_Set .
$ eccecccccccence *
s Purpose: To set a variable to some valuo as a *
. given job passing through the set node. ¢
. input parameters: .
. set_var -- the name of the variable. .
. set_val -- the value the variable to be set *
s to. *

52

s JobRecord -- the job going through the set

node.
* return parameters:
t set_var -- roturn the variable with value ¢
* set_val. &

ttttt##t*tt“‘t‘tt“‘#ttttttttttt‘tttt“t#tttttttttt““t,

Arrival_at_Set (set_var, set_val, JobRecord)

+ Set the variable (e.g. job variable, global variable, etc.) to the value
(arbitrary expression)

s Call Cet_Destination (current_node, jobrecord, route_var, destination)
+ Call Nove_to_Destination(destination, jobrecord)
end /+ Arrival_at_Set ¢/

/##*ttt*t‘t““0ttt‘“‘0‘“ttttt‘t*t*“‘t““‘t“‘t““t‘

¢+ Arrival_at_Decision .
2 coccccccwcomceaancaa *
* Purpose: To handle an arrivel at a decision node. *
* input parameters: *
* JobRecord -- the job arrived at this node. *
* return parameters: .
* none. s

tttttt#ttttt#tii‘tt"tttt‘t“‘ttttt‘#‘t‘ttt“ttttttt.“‘/

Arrival_at_Decision { JobRecord)

+ Cet the control expression to be evaluated of this decision node

-- look at the curret node in the user defined model structure
-- retrieve the expression to be evaluated with current value(s)
for the variables in the expression

* Evaluate branching condition

*+ According to the branching condition result, set route_var

83

¢« Call Cet_Destination(current_node, jobrecord, route_var, destination)
+ Call Nove_to_Destination(destination, jobrecord)

end /* Arrival_at_Decision ¢/

/tt00"¢00“‘O““.“".0‘“‘t‘t“‘t‘tttttt‘ttt“t‘ttttt‘t
¢ Arrival_at_Fission

4 ececccccccccccscce-- .
. Purpose: To handle a job arrived at a fisasion node.®*
¢ input parameters: *
* JobRecord -- the job arrived at this node. ¢
* Job_list -- the list with all jobs. *
s return parameter: *
¢ Job_list -- with the new duplicated job s
* added to the list. *

ttt.‘.“t“t"‘“‘t“".‘..ttt““tt‘t.ttttttt"tttt‘t“‘/

Arrival_at_Fission (JobRecord, Job_list)

»*

Create & job record, jobrecordl, with duplicated field values
except parent/child fields and establish parent_child relationship

»

Call Cet_Destination(current_node, jobrecord, route-var, destination)

L 2

Call Nove_to_Destination(destination, jobrecord)

»

Call Cet_Destination(current_node, jobrecordi, route_var, destination)

»

Call Nove_to_Destination(destination, jobrecord1)

end /+ Arrival_at_Fission +/

/“t‘““‘.t.“‘t““‘ttt“t‘tﬁttttttttt‘ttttt‘ttt““ttt‘t

¢ Arrivel_at_Fussion .
¢ Cermecvccwcncccccccnes *
¢ Purpose: To handle a job arrived at a fusasion node. *
* input parameters: *
. JobRecord -- the job arrived at this node. *

54

* Job_list -- list of all jobs in the net. *

. return parameters: b
* Job_list ~-- with all the related jobs *
* but one removed from the list. ¢

tt“ttt“‘#t“‘“t’.t..t0ttttttttttt‘tt.““““t“t“‘t‘t/

Arrival_at_Fussion (JobRecord, Job_list)

¢ Check for previous arrival of esll related jobs
s If not all arrived
add this job to fuasion queue
else

remove all related jobs from fussion queue except one
call Get_Destination(current_node, jobrecord, route_var, destination)
call Nove_to_Destination(destination, jobrecord)

end /¢ Arrival_at_Fussion */

/t"t#t‘*t‘t‘tttt#t##‘tttt#‘ttt#tt‘t#ttttttttt““‘tttttt‘

¢ Arrival_at_Split *
$ Ccocrvceccmccccccs &
s Purpose: To handle a job arrived at a split node. +
* input parameters: *
* JobRecord -- the job arrived at Split. .
* Job_list -- the list of all jobs. *
s return parameters: ¢
* Job_list -~ with the job just created *
* at this split node added to *
i the list. b

‘t‘#t#‘tt‘#tt.tt‘tt#tt‘tt.““t‘tt‘.tt.ttttt.ttt“t‘ttttt/

Arrival_at_8plit (JobRecord, Job_list)

¢ Create a job record, jobrecordi, with appropriate field values

85

*

Insert this job into the job list

»

Call Get_Destination(current_node, jobrecord, route_var, destination)

»

Call Nove_to_Destination(destination, jobrecord)
¢ Call Cet_Destination(current_node, jobrecordi,route-var, destination)
¢ Call Move_to_Destination(destination, jobrecordl)

end /+ Arrival_at_Split ¢/

/tt*tttttt*t‘#"“t‘t#‘tt‘#."tttt"ttt#ttttttt‘*tttttt‘t"tt

¢ Transmission_terminate *

s Purpose: To terminate the trasnmission of a message *

s for a given port. s
s input parameters: .
* JobRecord -- the job to be aborted. *
* port_id -- the port the job belongs to. *
4 return parameters: . *
* JobRecord -- with the nev trans_end_time *
* updated. *

ttt*t**tttt*t##t#tttt‘tt#‘tt*tt#ttttt#*t*tttttt*#tt‘tt‘ttttt/

Transmission_Terminate(jobrecord, port_id)

R N et Rkttt uadnd

L 4

Set the state of the port to IDLE

-

Update trans_end_time of the sending port in ChannelRelation

L

Get_Destination(current_node, jobrecord, route_var, destination)

[g

Nove_to_Destination(destination, jobrecord)

end /+*Transmission-Terminate ¢/

/tt“t‘t.t“‘.‘.“ttt.‘tit“‘Ottttt‘ttttttttttttt““..t‘

s Check_Wait_Conds *

$ emccecccecccccece *

* This routine would be executed after processing *

56

. each event to wake up any jobs wvhich are waiting +
* on some condition(s) that have become true now. *

0t0‘00‘t"00t".‘“‘“‘.t0.“&00“‘0.0‘0“‘.“““““##/

Check_Wait_Conds

For every waiting queue
If >= 1 job on the queue and the job’s waiting condition is true
Get_Destination(current_node, JobRecord, route_var, destination)
Nove_to_Destination(destination, JobRecord)
end /+ for loop ¢/

end /+ Check_Wait_Conds #*/

57

Jesserssrsssstsssss Channel simulation routines T I I3)

/"tttttltt#‘ttt‘tttttt‘t#tttitttttttt#t*t#t#t#itttt**ttt*

¢+ Init_Channel *
$ ececvomcnccce- *
¢ Purpose: To initialize the ChannelProperties table #
* and the channel relation. *
* input parameters:

s none. *
* return parameters: *
* ChannelProperties -- initialized. *
* ChannelRelation -- initialized. *

t‘“.t#‘#t‘0tttttt‘#“‘ttttttt‘“t*“*“““##‘#“t‘t‘t“/

Init_Channel (ChannelProperties, ChannelRelation)

/¢ Run automatically before the simulatien, after all the data are
colected from the user sbout the channel */

« Read in all field values for ChannelProperties

¢ Initialize the ChannelRelation with initial port data (i.e. port
position and port-to-port delay, etc.)

end /+ Init-Channel */

/ttt“####*t‘#######t*t‘t‘“#tt‘*t‘#tttt#*t#‘tt.“ttt‘t.‘t‘tt

¢ Arrival_at_Channel *
¢ —ccememmccccccena- .
* Purpose: To handle a job entering the channel. .
* Note, this routine is to be mapped to the *
* Begin Transmission node, i.e. the channel s
s input port. s
* input parameters: *
. JobRecord -- the job arrived at the channel. .
* ChannelRelation -- to be updated. *
. return parameters: *
. ChannelRelation -- updated. *
* Event_list -- with events scheduled at this *

58

s node added to the list. *
“0tt‘.““.“.".ttt‘tt‘t“.‘t"t“‘.‘t““‘.“‘t“0“00‘0‘/

Arrival_at_Channel

¢ Update ChannelRelation for the port which sent the message into

the channel
-- enter nev trans_start_time and trans_end_time
-- set the state of the port to TRANSNIITING

+ Update all port locations according to their previous locations
and their mobile_speeds if they are mobile ports

+ Schedule poasible_succ_transmission events for arrival of end of message
transmiassion at all ports which have a channel_msge_read ncde
or are waiting for a change in the channel status

¢+ Schedule event for arrival of start of message transaission arrival
only at ports which have a job wvaiting for change of channel
status

end /+ Arrival_at_Channel #*/

/tttt‘#t‘t‘tt‘t‘tt‘t"“tt*tti#t‘ttt‘t‘t“‘#tt“t“t.‘t‘.t

+ Channel_Status s
$ ecccccccceccaaa *
* Purpose: Given the port id, returns the current .
¢ Channel status for that port. 4
s input parameters: *
* port_id -- the port at which the .
s channel status should be *
¢ computed. *
¢ return parameters: .
¢ status -- the channel status at that port
. at current time. .

tt"tt‘tt#ttttttttttt“‘t‘tttttttt‘tttttt“‘ttttttt*tttt‘/

Channel_Status(port_id, status)

59

¢ Number_of_active_poxt = O

¢« For (1 = 1 to numbar of ports of this channel) do
if (trans_end_time + delay(i,port_id) < current_time)
then nothing /*+ no message sent by i currently at port_id s/

else {
number_of_active_port = +1

record active port ids
if capture
-- check all ®active ports®
-- determine if there exists one dominating port
then number_of_sctive_port = 1 /¢ success */

}

¢ IZ number_of_active_port = O then status = idle
else if number_of_active_port = 1 then status = success
else status = collision

end /% Channel_status */

/t*ttt#tt#tttttt‘tt*#tttttttt‘tttt‘ttt‘tt##tttttt‘t“tttttt

+ Channel_Msg_Read *
¢ cemecmcccceccc-e .
¢« purpose: Reads a message off the chennel. .
s Note, this is to be mapped to the message .
s out port, i.e. the channel output port. .
¢« dinput parameters: ¢
* port_id -- the port to read the message. *
+ return parameters: .
* message -- the measage to be read. *

‘tt#ttttt"i‘##t“itttt‘tt##ttttttt‘#“tt##t‘ttttt‘tttttt‘/

Channel_Nsg_Read (port_id, message)

¢ Channel_Status(port_id, status)

¢+ I? (status = succeas)
read the message off the channel

Call Cet_Destination (current_node, JobRecord, route_var, destination)
Call Nove_to_Destination (destination, JobRecord)
Else /* unsuccess transmission ¢/

do nothing

end /+ Channel Nsg_Read ¢/

61

REFERENCES

(1] “The ALOHA System”, Proc. FICC, AFIPS, Houston, TX, Nov. 1970, pp. 281-285.

(2] J. Browne et al., “A Graphical Programming Language for Computer Network Simulation”,
Annual Simulation Conference, pp. 96-128., 1985

[3] Consolidated Analysis Centers INC., SIMSCRIPT IL5 Reference Handbook, Santa Monica,
CA., 1971.

[4] K.M. Chandy et al., “Simulation Tools in Performance Evaluation”, Proc. Computer Perfor-
mance Evaluation Users Group, San Antonio TX, Nov. 1981,

[5] O. Dahl and K. Nygaard, “SIMULA - an ALGOL Based Simulation Language®, Comm.
ACM, Vol. 9, No. 9, pp. 671-678.

[6] C. Date, An Introduction to Database Systems, Addison Wesley, Reading, MA, 1980.

{7] K. Doshi, S. Madala, J. Sinclair, “GIST: A Tool for Specifying Queueing Network Models”,
Tech. Report TR8511, Department of Electrical Engineering, Rice Univ., May 1985.

[8] E. Glinert, S. Tanimoto, “PICT: An Interactive Graphical Programming Environment”, IEEE
Computer, Vol. 17, No. 11, pp 7-29.

[9] F. Hopgood et al., Introduction to the Graphics Kernel System (GKS), Academic Press
(NY,NY), 1983.

[t0] IEEE, “Application Briefs”, JEEE Computer Graphics and Applications, June 1985, pp. 15-
17.

[11) “General Purpose Simulation System V: Operations Manual®, SH20-0867-3, 3rd edition, IBM
Corporation, Data Processing Division, White Plains, New York, 1971.

(12] R. Kahn et al., “Advances in Packet Radio Technology”, Proc. IEEE, Vol. 66, Nov. 1978,
pp. 1468-1496.

[13] H. Kobayashi, Modeling and Analysis, Addison-Wesley Publishing, North Reading, MA, 1978.
(14] L. Kleinrock, Queueing Systems, Wiley Interscience, 1976.

[15) L. Kleinrock and M. Gerla, “Flow Control, a Comparative Survey”, IEEE Trans. on Com-
mun., Vol. COM-28, No. 4 (April 1980), pp. §53-575.

[16] “J. Kurose and S. Salza, ”Structure and Internal Operation of the RESQ Language Transla-
tor®, IBM Proprietary Technical Report, July 1983.

[17] J.F. Kurose, M. Schwartz and Y. Yemini, “Controlling Time Window Protocols for Time-
Constrained Communication in a Multiple Access Environment”, 8th Int. Datsa Communica-
tion Symposium, October 1983. submitted to JEEE Trans. on Commun.

(18] J.F. Kurose and M. Schwartz, “A Family of Window Protocols for Time Constrained Com-
munication in a Multiple Access Environment”, IEEE INFOCOM, April 1983. submitted to
IEEE Trans. on Commun.

62

[19] J. Kurose, M. Schwartz, Y. Yemini, “Multiple Access Protocols and Time-Constrained Com-
munication®, Computing Surveys, March 1984,

[20] J.F. Kurose and C. Shen, “GENESIS: A Graphical Environment for the Modeling and Perfor-
mance Analysis of Protocols in Multiple Access Networks”, submitted to IEEE International
Communication Conference, June 1986.

{21] J.F. Kuroze and C. Shen, “GENESIS: A Performance Evaluation Environment for Modeling
Multiple Access Networks”, submitted to IEEE Journal on Selected Areas in Communica-
tiona.

[22] B. Melamed and R. Morris, “Visual Simulation: the Performance Analysis Workstation”,
IEEE Computer, Vol. 16, No. 8, pp. 87.

[23] R. Metcalfe and D. Boggs, “Ethernet: Distributed Packet-switching for Local Computer
Networks”, Commun. of the ACM, Vol 19, July 1976, pp. 495-403.

[24] T. Nishida et al.., “PLANS: Modeling and Simulation System for LANs”, Int. Conf. on
Modeling Technigues and Tools for Performance Analysis, (Paris, May 1984), INRIA.

(25] C. Sauer and K.M. Chandy “Computer System Performance Modeling,” Prentice Hall, En-
glewood Cliffs, NJ, 1981.

[26] C. Sauer, E.A. MacNair, J.F. Kurose, “The Research Queucing Package version 2: CMS
Users Guide”, IBM Res. Rep. RA-139, Yorktown Heights, NY, April 1982.

[27] C. Sauer, E.A. MacNair, J.F. Kurose, “The Research Queueing Package version 2: Introduc-
tion and Examples”, IBM Res. Rep. RA-138, Yorktown Heights, NY, April 1982,

(28] C. Sauer, E. MacNair, J. Kurose, *Queueing Network Simulation of Computer Communica-
tion”, IEEE J. on Selected Areas sn Communications, Vol. SAC-2, No. 1 (Jan. 1984), pp.
203-220.

(29] M. Schwartz and T. Stern, “Routing Techniques Used in Computer Communication Net-
works”, IEEE Trans. on Communications, Vol. COM-28, No. 4 (April, 1980), pp. 539-553.

[30] W. Stallings, “Local Networks”, ACM Computing Surveys, Vol. 16, No 1. (March 1984), pp
3-42.

{31] H. Takagi, “Analysis of Throughput and Delay for Single- and Multi-Hop Packet Radio
Networks”, PhD Thesis, Department of Computer Science, UCLA Report CSD-830523, May
1983.

[32) F. Tobagi, “Multiaccess Protocols in Packet Communication Systems®, IEEE Tans. Com-
munications, Vol COM-28, pp. 468-488, April 1980.

[33] S. Tripathi et al., “STEP-1: A User Friendly Performance Analysis Tool®, Proc. Int. Con-
ference on Modeling Techniques and Tools for Perf. Analysss, INRIA, Paris 1984.

{34) R. Willis, W. Austell, “GMSS: Graphical Modeling and Simulation System®, Proc. 16th
Simulation Symp., (Tampa, Fla., Mar. 1983), pp. 137-160.

[35] Y. Yamamoto, M. Lenngren, “Graphical Model Building System®, Proc. 16th Simulation
Symp., (Tampa, Fla., Mar. 1983), pp. 161-175.

63

