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ABSTRACT

Interpreting Optical Plow
September 1985

Gilad Adiv

B.S., M.S., The Hebrew University of Jerusalem, Israel
M.S., Ph.D., University of Massachusetts at Amherst

Directed by: Professor Edward M. Riseman

A new approach for the interpretation of optical flow fields is presented. The
flow field, which can be produced by a sensor moving through an environment
with several, independently moving, rigid objects, is allowed to be sparse, noisy
and partially incorrect. The approach is based on two main stages. In the first
stage the flow field is partitioned into connected segments of flow vectors, where
each segment is consistent with a rigid motion of a roughly planar surface. Such a
segment is assumed to correspond to a part of only one rigid object. This initial
organigation of the data is utilized in the second stage without the assumption of
planar surfaces, and segments are now grouped under the hypothesis that they are
induced by a single rigidly moving object and/or by the camera motion. Each
hypothesis is tested by searching for 3-D motion parameters which are compatible
with all the segments in the corresponding group. Once the motion parameters are
recovered, the relative environmental depth can be estimated as well. Experiments
based on real and simulated data are presented.

Two inherent ambiguities, which may arise due to the presence of noise in the
flow field, are analyzed and demonstrated. First, motion parameters of the sensor

or a moving object may be extremely difficult to estimate because there may exist




a large set of significantly incorrect solutions which induce flow fields similar to the
correct one. Second, the decomposition of the flow field into sets corresponding
to independently moving objects may be ambiguous because two such objects may
induce optical flows which are compatible with the same motion parameters. These
ambiguity analyses are general in the sense that they are algorithm-independent.
Constraints and parameters which can be recovered even in ambiguous situations

are presented.
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CHAPTER 1
INTRODUCTION

Dynamic visual information can be produced by a sensor moving through the
environment and/or by independently moving objects in the visual field. The in-
terpretation of such information consists of forming object hypotheses, recovering
the motion parameters of the sensor and each moving object, and structure deter-
mination. The results of this interpretation can be used to control behaviour, as
in robotics or navigation. They can also be integrated, as an additional knowledge
source, into an image understanding system, such as the VISIONS system [HAN7S].

“The most common approach for the analysis of visual motion is based on two
phases: computation of an optical flow field and interpretation of this field. In
the present discussion, the term ‘optical ﬂow ﬁeld’ refers to both a ‘velocity field’,
composed of vectors describing the instantaneous velocity of image elements, and
a ‘displacement field’, composed of vectors representing the displacement of image
elements from one frame to the next. In the latter case we will assume small values

of motion parameters.

The aecond phase, i.e,, the mterpretatnon of the optical flow field, is the main
concern of this thesis. The information in only one flow field, as opposed to a time
sequence of such fields, is utilised. Hence, this work is relevant also to stereoscopic
vision, when the relative position and orientation of each camera are not accurately

known.

A major problem which has emerged in research on optical flow interpretation is
sensitivity to noise. Flow fields generated by existing techniques are noisy and par-
tially incorrect, especially near occlusion or motion boundaries (see the discussion
in [ULL81]). Many of the algorithms for interpreting these fields fail under such
conditions. Global approaches, which utilise all the available information, can be




expected to be relatively robust. Still, an inadequate choice of an optimization cri-
terion often limits the performance of these techniques. Furthermore, the presence

of independently moving objects usually makes such global techniques impractical.

These two issues, the presence of noise and the presence of independently moving
objects, are addressed in this thesis. A new two-stage scheme is proposed. In the
first stage the flow field, which is allowed to be either dense or sparse, is partitioned
into connected segments of flow vectors, where each segment is consistent with a
rigid motion of a roughly planar surface and, therefore, is likely to be associated
with only one rigid object. In the second stage segments are grouped under the
hypothesis that they are induced by a single rigidly moving object. Each hypothesis
is tested by searching for 3-D motion parameters which are compatible with all the
segments in the cox'l"esponding group. Once the motion parameters are recovered,

the relative envf;ronﬂ:ental depth can be estimated as well.

This technique, of segmenting the flow field and then combining segments to
form object hypotheses, makes it possible to deal with independently moving ob-
jects while employing all the available information associated with each object. In
addition, the search for 3-D motion parameters is based on a least-squares technique
which minimizes the deviation between the given flow field and that predicted from
the computed parameters. Thus, the proposed scheme is relatively insensitive to
noise. There are, however, inherent ambiguities in the interpretation of noisy flow

fields. These ambiguities are analysed and demonstrated in the thesis.

L1 Thesis Outline

Chapters I and III complement the introductory part of the thesis. In Chapter
HI techniques existing in the literature for visual motion interpretation are reviewed.

The ability of these techniques to deal with noisy flow fields and independently
moving objects is examined. In the third chapter the mathematical relation between
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the flow field and 3-D motion and structure is presented. In addition, the inputs

and outputs of the interpretation process are mathematically defined.

A segmentation constraint, based on compatibility of sets of flow vectors with
rigid motions of planar patches, is introduced in Chapter IV. The algorithm for
achieving such a segmentation is based on a modification of the generalised Hough
technique. This technique is employed to group flow vectors into components con-
sistent with affine transformations of the image. If appropriate, components are
then merged together to create segments.

An optimisation criterion for determining 3-D motion and structure from a set
of flow vectors gexiérated by a rigid motion is pr&énted in Chapter V. An algorithm
for minimising an error function derived from this criterion is also described. In the
second part of Chapter V; this algorithm is combined with the segmentation results

to form and test object hypotheses and to recover the 3-D information associated
with each object.

Two inherent ambiguities, which may arise in the presence of noise in the flow
field, are analyzed and demonstrated in Chapter VL. The first ambiguity is in the
recovery of the motion parameters of a rigid obJect and the second one is in the
decomposxtxon of the flow field into sets corresponding to independently moving

objects. Constraints and parameters which can be recovered even in ambiguous
situations are presented.

Experiments, based on real and simulated data, are described in Chapter VII.
These experiments demonstrate our bropoaed scheme for the interpretation of op-
tical flow fields, as well as the difficulties in ambiguous situations. Chapter VIII
summariges our approach and the inajoi- results. In addition, possible extensions
and future research are discussed.




CHAPTER I
LITERATURE REVIEW

In this chapter we examine existing methods for interpreting optical flow fields.
Most of these methods basically rely on the information contained in one flow field
and are restricted to rigid motion. In addition, it is usually assumed that the
scene contains only one object, or, equivalently, that the sensor is moving but the
environment is stationary (e.g., [LAW82, BRUS1, TSA84]). In this case the in-
terpretation consists of recovering the motion parameters and the structure of the
environment up to a scaling factor. Only a few researchers (e.g., [ULL79, NEU80))
explicitly consider scenes with several rigidly moving objects, and investigate tech-
niques for decomposing the flow field into sets corresponding to these objects, while

simultaneously recovering the 3-D information associated with each of them.

Many of the algorithms described in the literature for interpreting flow fields can
not successfully deal with a realistic level of noise. A few algorithms are less sensitive
and may work reasonably well in restricted real world situations. This issue, as well
as the adequacy of the various techniques in the presence of independently moving
objects, will be emphasised in the review. Let us now start with a discussion of

techniques which assume only one rigid motion.

Several researchers [THO59, PRA80, NAG81a,b, FAN83a,b] present sets of
nonlinear equations with motion parameters as unknowns. Methods for solving
guch equations are usually iterative and require good initial guesses of the unknowns.
Sensitivity to noise is indicated by experiments reported in [PRA80, FAN83a,b]. It
is shown there that the results can be improved by using a large number of flow
vectors and by increasing the sise of the region containing these vectors. Therefore,
assuming no independently moving objects, the best results can be achieved when

these algorithms are applied to the whole image.



I R

73

T3

3

3

3

Longuet-Higgins [LON81| and Tsai and Huang [TSA84| develop computationaly
simple techniques based on solving a set of linear equations. Furthermore, condi-
tions for the uniqueness of the solutions are formulated. However, difficulties in the

presence of noige are reported again [TSA84].

The sensitivity to noise, indicated by experiments in [PRA80, FANS83a,b,
TSA84), may partly bé due to inadequate choices of an optimigation criterion.
A more appropriate approach; in the presence of noise, is. probably taken by Roach
and Aggarwal [ROA80] and Bruss and Horn [BRUS1]. A least squares criterion is
employed in order to minimige the deviation between the measured data and the
corresponding values predicted from the computed 3-D motion and structure. This
approach leads to a system of nonlinear equations from which the motion param-
eters and the depth values can be numerically computed. Difficulties with noisy
data, which are still reported in [ROA80], may indicate that in certain situations
recovering 3-D information from flow fields is inherently unstable.

As a response to this instability, Thompson, Mutch and Berzins [THO84] argue
for a more qualitative approach. In restricted but noisy situations, this approach
is shown, for example, to be able to classify the object motion into four classes
and to determine boundaries between independently moving objects. The results
are unsatisfactory, though, when more quantitative information is required. In
addition, the performance of this scheme has not been demonstrated yet in scenes

containing complex structures.

" Assuming a pufely translational motion, all the flow vectors are oriented towards
or from a single point in the image plane. Determining this point, called the focus of
expansion (FOE), yields the direction of the translation. A few techniques, reviewed
below, are Based on this observation. '

Early results based on real images are reported in [WIL81]. However, only

sensor motion restricted to translation is allowed and the environment is assumed




to contain only planar surfaces at one of two given orientations. Thus, the algorithm
can be based on a search for the FOE and the distances to the surfaces in the scene.
Lawton [LAWS2] describes a robust algorithm which has been applied to real world
images from several different task domains. This algorithm makes no assumptions
about the shape of environmental objects, but is still restricted to translational
motion. It is based on a global sampling of an error measure corresponding to
possible positions of the FOE, followed by a local search to determine the exact

location of the minimum value. Results for other restricted cases of motion are

presented in [LAWS4].

Prasdny [PRAS1) describes a method which relies on decomposition of the ve-
locity field into rotational and translational components. For a hypothesized rota-
tional component, the FOE of the corresponding translational field and a related
error measure are computed. Thus, an error function of the three rotation param-
eters is obtained and the solution can be determined by minimizing this function.
Jerian and Jain [JERS3)] report on difficulties with applying 3 similar approach to

noisy data.

Rieger and Lawton [RIES3] develop a relatively robust and simple technique for
computing the motion parameters of a camera moving in a stationary environment
with significant depth discontinuities. The algorithm is based on the observation
that the differences between vectors at the corresponding discontinuities in the flow
field are oriented towards or from the FOE of the translational field (LON80}. This
technique depends on the ability to compute reasonably accurate values of the flow

vectors near occlusion boundaries.

A number of methods presented in the literature are based on a local analysis
of the flow field. Ullman [ULL79] allows the presence of independently moving
objects and examines small sets of adjacent vectors. If there exists a unique rigid

interpretation consistent with all the vectors in a given set, then this interpretation
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is assumed to be correct and the vectors in the set are grouped together. Because

of its local nature, this approach seems to be very sensitive to errors in the flow
field.

Longuet-Higgins and Prasdny [LON80] and Waxman et al. [WAX83, WAX84a,b]
introduce equations for computing the motion parameters and the local structure
at a given point in the environment from the flow field and its first and second
spatial derivatives at the corresponding point in the image. If the scene consists
of several objects in relative motion, then a separate computation can be carried
out on each one. Local estimates of the second derivatives of the optic flow seem
to be inaccurate in the presence of noise, and no algorithm has been presented for
reliably computing such derivatives. Good results when determining 3-D motion
and structure of planar surfaces are reported, however, in [WAX84b).

Global approaches, which still take into account independently moving objects,
have been proposed by a few researchers. Neumann [NEU80] proposes an elegant
bypothesige-and-test scheme: for any rotation bypothesis, the translation compo-
nent may be decomposed such that motion compatibility of many flow vectors can

be easily tested. This technique heavily relies on the assumption of orthographic
projection.

The generalized Hough technique [BALSIa) is another global approach for re-
covering motion parameters from a given flow field [BAL81b, ADI83a,b). In this
technique the motion parameters are represented by a discrete multi-dimensional
parameter space, where each dimension corresponds to one of the parameters. Each
point in this space uniquely characterizes a motion transformation defined by the
corresponding parameter values. A flow vector ‘votes’ for a point in the space if
the related traniformation is consistent with this vector. The points receiving the

most votes are likely to represent the motion ‘parameters of different objects.

The Hough technique is relatively insensitive to moise and partially incorrect




data. It can also be applied, using a multipass approach [FEN79, ADI83a,b], to
scenes containing independently moving objects. However, this technique may be
very expensive, since high dimensionality and fine resolution in the parameter space
require large amounts of memory and computation time. Therefore, in [BAL81b] the
depth information is assumed to be known, thus making the task much easier, and

in [ADI83a,b] the approach is demonstrated only for 2-D motion with 4 parameters.

This review demonstrates typicai restrictions and difficulties of algorithms re-
ported in the literature for interpretation of optical flow fields. Most of these
techniques are gensitive to noise and are difficult to apply in the presence of inde-
pendently moving objects, unless severe restrictions are assumed. As will be shown
in Chapter VI, in some situations there exists inherent ambiguity in recovering
3-D information from noisy flow fields. Yet, in order to improve the performance
as much as possible, it is necessary to efficiently utilize all the available informa-
tion and to employ an adequate optimigation criterion. These obvious conclusions

constitute the basis of the approach developed in this thesis.
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CHAPTER I

THE MODEL AND THE TASK — A MATHEMATICAL FORMULATION

IIL.1_Basic Model and Equations

In this section we present a notation for describing the motion of a camera
through an environment containing independently moving objects. We also review
the equations describing the relation between the 3-D motion and stucture and the
corresponding optical flow, assuming a perspective projection. The equations are
developed both for velocity fields and displacement fields.

Let (X,Y, Z) represent a cartesian coordinate system which is fixed with respect
to the camera (see Figure 3.1), and let (z, y) represent a corresponding coordinate
system of a planar image. The focal length, from the nodal point O to the image,
is assumed to be known. It can be normaliged to 1, without loss of generality.
Thus, the perspective projection (z,y) on the image of a point (X,Y,Z) in the

environment is:

z=X/2, y=Y/2. (3.1a,b)

The motion of a rigid object in the scene, relative to the camera, can be
decomposed into two components: translation I = (Tx,Ty,Tz) and rotation
2 = (0x,0y,02z). In the equations corresponding to velocity fields, these symbols
represent instantaneous spatial velocities, and, in the equations corresponding to
displacement fields, they represent differences in position and orientation between

two time instances.

In the velocity-based scheme, let (X,Y,Z ) be the instantaneous camera coor-
dinates of a point P. on the object. Then, the velocity of P is

E=0xP+7T, (3.2)

9




10
Y
A
T \jﬂY
Figure 3.1 (redrawn from [LON8O0]): A coordinate system (X,Y, Z)
attached to the camera, and the corresponding image coordinates
(z,y) . The image position p is the perspective projection of the point
P in the environment. T = (Tx,Ty,Tz) and {1 = (Qx,0y,0z)
represent the relative translation and rotation of a given object in the
scene.
that is,
X QyZ - 0QzY + Tx
Y|=]|0zX-0xZ+Ty |. (3.3)
z OxY -Qy X+ T

The corresponding projection (z,y) on the image moves with a velocity (a,f),

3

™
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where, using (3.1):
a)ar (£) _ 1 [(XZ2-2X
(ﬂ) E (,,) _7,(”_”). 4
Hence,
a=—0xzy+ Qy(1l + 22) - Qzy + (Tx — T22)/2 (3.5a)
and
B =-0x(1+y?) +Qyzy+ Qzz+ (Ty — Tzy)/2, (3.5b)

as has already been established elsewhere (e.g., [LON80]). Notice that (a,f) can

be represented as the sum

(a, B ) = (aR’ ﬂR) + (aT! pT): (3'6)

where (ag,fr) and (ar,Br) are, respectively, the rotational and translational

components of the velocity field:
ap = —Qxzy+ Qy(1 +2) - Qzy, ar =(Tx — Tz2)/2, (3.7a,b)
Pr=—0x(1+¢%) + Qyzy+Qzz, Pr=(Ty —Tzy)/2. (3.7¢,d)

In the displacement-based scheme, let (X,Y,Z) be the camera coordinates at
time t of a point on the object and let (X',Y’, Z’) be the corresponding coordinates
at time ¢, If the rotation {} is followed by the translation I, then

X X
Y|=R|Y |+T, (3.8)
Z' Z

where the rotation matrix R can be approximated, assuming small values of the




12
rotation parameters, by (see [FAN83a]):
1 -0z Oy
R=| 0Oz 1 -Ox . (3.9)
-Qy Ox 1

If (z,y) and (#',y’) are theimage coordinates corresponding to the points (X,Y, Z)
and (X',Y’, 2'), respectively, then:

_X _ z-Qzy+0y +Tx/Z
7= 72 -Qyz+Qxy+1+Tz/2 (3.102)

and

Y' Qzz+y-Ox+Tv/Z2
V=21= T0ys+ Oxy+ 14 12/2 (3.10)

Now, let (a,5) be, in this case, the displacement vector (z' —z, ¥’ — y). Then
from (3.10) we get:

_ —Qixzy + Qy(1+22)-0zy+ (Tx — Tz2)/2
@= 1+ Qxy—-Qyz+Tz/2 (3-113)
e (1+5) (Ty - Tas)
—0x(1 +y?) + Qyzy + Qzz + (Ty - - Tzy /Z
p= T+ 0xy—Orz+T2/2 (3.11b)

i |Tz/Z| < 1 and the field of view of the camera, i.e., the visual angle correspond-

ing to the whole image, is not very large, then (employing also the assumption that
the rotation parameters are small) we can approximate the displacement vector

(a,B) by equations (3.5).

To conclude: equations (3.5) hold not only for velocity fields, but also for dis-
placement fields, given that the following conditions are satisfied: (a) the rotation
parameters are small, (b) the Z-component of the translation is small relative to
" the distance of the object from the camera, and (c) the field of view is not very
large. The conditions (a) and (b) are reasonable if the time interval between the

_ 3
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two image frames is short enough or if the motion is slow. For example, if a video
camera is moving along the line of sight at speed of 50km/hr and the frame sampling
rate is 30/sec, then T’z & 0.5m and Tz/Z < 0.01 for objects which are more than
50m away from the image plane. In the following chapters we restrict ourselves to

conditions which allow us to employ equations (3.5) as the basis of our analysis.

OL2_The Task — Inputs and Outputs

The input utilised by our scheme for interpreting motion information is a flow
field described by {(a(z,y),8(z,¥),W(z,v))}, where (a(z,y),8(z,y)) is the flow
vector at the (z,y) pixel in the image and W(z,y) is a corresponding weight
between 0 and 1. High reliability of the flow vector is represented by a weight close
to 1 and low reliability by a weight close to 0. The flow field can be either dense,
thus defined at most of the pixels, or sparse, thus defined only on a sparse subset
of the image pixels. If the flow field is undefined at a pixel (z,y), then W(z,y) is
determined to be 0. A rough estimate of the noise level in the flow field is assumed

to be known.

The interpretation process should result in three outputs: object masks, mo-
tion parameters and depth. We wish to partition the set {(z,y) : W(z,y) > 0}
into disjoint sets of pixels, where each set corresponds to a different rigid object.
The pixels corresponding to the stationary environment, where the optical flow is

induced only by the camera motion, should be grouped together.

The five recoverable motion parameters of each rigid object, relative to the
camera, should be estimated. These parameters include the rotation parameters
(8x,0y,Nz) and the direction of the translation vector defined by the unit vector
U =T/r, where r is the length of the translation vector I'. Once the motion pa-
rameters are recovered, it is also possible to estimate the relative depth, Z(z,y)/r,

corresponding to-each pixel (z,y) where a flow vector is defined, unless r = 0 or



the location of the vector is exactly at the FOE.
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CHAPTER 1V
SEGMENTATION

In this chapter we develop a method for segmenting the flow field into connected
gets of flow vectors, where each set is consistent with a rigid motion of a roughly
planar patch. A segment satisfying this constraint is very likely to be associated
with only one rigid object. Thus, the data is organised into coherent units which
constitute the basis for the formation of object hypotheses in the second phase.
This organigation makes it possible to deal with independently moving objects,
while employing all the information associated with each object and preventing the
suppression of valuable data in distinct, but possibly small, surfaces. Another pur-
pose of the segmentation is exclusion of incorrect flow vectors which are inconsistent
with their neighbors.

In order to achieve a useful segmentation, we employ a few simple observations
about the structure of optical flow fields. First, we examine the flow field induced
by a rigid motion of a planar surface. Excluding the degenerate case in which

_ the eame plane contains both the surface and the nédal point (and, therefore, the

corresponding region in the image is a straight line), the surface can be represented

by the equation _ :
kxX +kyY +kzZ = 1. (4.1)

The coefficients kx, ky and kz can be any real numbers, except the case in which
all of them are zero. Using (3.1), we obtain:

1/Z = kxz + kyy + kz. (4.2)
Substituting (4.2) in (3.5), we realise that, given a relative motion {I},f1}, the flow

15
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field is:
a = a8 + 627 + asy + 617° + agzy, (4.3a)
B = a4 + asz + agy + arzy + agy?, (4.3b)
where:
a1 = Qy + kzTx, (4.42)
a2 =kxTx — kzTz, (4.4b)
as = -0z + kyTx, (4.4c)
ay = —~0x + kzTy, (4.4d)
as =0z + kxTy, (4.4¢)
as = kyTy — k272, (4.4f)
a7 =Qy — kxTz (4.4g)
and )
ag = —0x — kyT3. (4.4h)

Equations (4.3) represent what we shall call a ¥ transformation. They describe a
2-D motion in the image plane, represented by the 8 parameters a;,...,a3. Note
that a similar representation of the optical flow produced by a moving planar surface
is introduced in [WAX83].

We proceed now with another observation, related to arbitrary surfaces in the
environment. Given such a surface, it can be described as a function Z = Z(z,y)
defired on the image region R which correspcnds to the projection of this surface.
Let Z' = Z'(z,y) be a relative approzimation to the surface Z, that is,

|AZ(z, y)] def |1Z(z,y) — 2'(z,y)| € Z(z,y) forany (z,y)€R. (4.5)

If (ar,fr) and (af,f%) are the translational components of the flow fields induced
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by the same motion of the surfaces Z and 2', respectively, then
ol = Tx—Tzz_ Ty - Tz
T =7 = Z7-az
Tx ~Tzz AZ\ _ AZ
NT—(I.*-T)—GT(I.*.T & ar (4.63)
and
ph=Tr=Tzy Ty-Tyy
=72 Z-AZ
Ty — Tpy AZ _ ., AZ
] 7 (l+ 7 Br (l+7 s fr (46b)

the flow field induced by the relatively approxi-
mating surface 2’ ig very similar to the real flow jn the

if Z' is a planar surface which satisfies equation (4.5),
be approximated bya ¥ transformation,

region R. Asa conclusion,
then the flow field in R cap

In a real world environment the surface can

be usually approximated by a piece-
wise planar surface,

containing only a few Planar patches, for which the distance

Notice that different segmentation constraint

8 could have been employed. For
example, it is -

»8sible to use a stronger constraint, based op consistency with affine



18

transformations (see equations (4.7)). However, in such a case, an excessive over-
segmentation is possible, as demonstrated by the results of the first step of the
segmentation algorithm in experiment 1 (Seciion VIL1). This would make the
formation of object hypotheses in the next phase of the interpretation much more
difficult.

Another option is to use a weaker constraint based, for example, on a transfor-
mation which includes all the 12 coefficients of the second-order Taylor expansion
of the flow field (a representation of the optical flow, based on these coefficients,
is proposed in [WAX83,84a]). In this case, however, the space of all the possible
transformations strictly éontains the space of all the ¥ transformations; therefore,
the probability of grouping together flow vectors induced by different rigid mo-
tions is increased. In Section IV.3 we will describe an algorithm for achieving a
segmentation based on the ¥ transformation.

The concept of connectivity in optical flow fields, which is employed in the
previous section for characterizing segments, is, as a matter of fact, solely a property
of the definition domain {(z,y): W(z,y) > 0} of the flow field, and it does not
depend on the flow values. To define this concept, let us start by defining adjacency
between two points in the image. If the flow field is dense, then the adjacency
concept is simple: any pair of points (z;,y1) and (z2,y2), such that the differences
|z1 — z2| and |y1 — y2| are both not larger than one pixel, are considered to be
adjacent.

The definition of adjacency in sparse flow fields is more complicated. In this

case we first introduce another concept:

Definition 4.1: Consider the triangle created by three distinct points, denoted by
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A, B and C. The point C scparates A and B if the triangle angles at 4 and
B are both smaller than a given threshold.

In our experiments we have chosen the threshold in the last definition to be 45°.

Thus, in Figure 4.1a the points A and B are separated by C, while in Figure 4.1b

C does not separate A and B. We can now proceed with the following definition
of adjacency:

30° 40°

30° 60°

(b)

Pigure 4.1: (a) The point C separates the points 4 and B.
(b) The point C does not separate 4 and B.

Definition 4.2: Let $ be a set of points in a plane. The points A4 and B jn this
set are adjo~-nt with respect to § if no point in the set separates them.
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The adjacency relation in sparse sets of points is demonstrated in Figure 4.2, where
adjacent points are connected by straight line segments. The points in this figure

correspond to the flow vectors in experiment 3 (Section VI.3).
In this chapter we will also employ the concept of adjacent sets:

Definition 4.3: Let §; and S; be two subsets of points in §. S; and §; are
adjacent sets if there exist points A € §; and B € S2 such that A and B are
adjacent with respect to §.

Employing the concept of adjacency between points, we can also define con-
pected subsets of the definition domain, denoted by D, of a flow field:

Definition 4.4: A subset D' of D is connected if for each pair of points 4 and
B in this subset, there exists a sequence {A1,...,4s} of points in D' such that
Ay = A, A, = B and the points A; and 4,4, are adjacent with respect to D for
each 1<t<n-1.

Note that if D' is a connected subset of the definition domain of a given flow field,
then we also refer to the corresponding subset of flow vectors as being connected.
In the next section we will describe an algorithm for grouping the flow vectors into

connected sets consistent with rigid motions of planar surfaces.

IV.3 Segmentation Algorithm

The generalised Hough transform technique [BALS81a] is a useful tool for group-
ing together flow vectors which satisfy the same 2-D parameteriged transformation
[ADI83a,b]. In this technique the set of relevant transformations is represented by
a discrete multi-dimensional parameter space, where each dimension corresponds
to one of the transformation parameters. Each point in this space uniquely char-

acterizes a transformation, defined by the corresponding parameter values. A flow
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vector ‘votes’ for each point with an associated transformation consistent with this
vector. The points receiving the most votes are likely to represent transformations

corresponding to large segments in the flow field.

As a global technique, the Hough transform is relatively insensitive to noise and
partially incorrect or occluded data. However, high dimensionality of the parameter
space requires large amounts of memory and computation time. In our case, the
segmentation constraint is based on the 8-parameter ¥ transformations (equations
(4.3)). The Hough technique can, in principle, be employed, but the computational
cost required for such a number of parameters is very high. Therefore, a three-stage

algorithm is proposed.

The first stage is based on grouping together adjacent flow vectors into com-
ponents consistent with affine transformations. The affine transformations, repre-

sented by
a =ay + a2+ asy (4.73)

and
B = aq + asz + agy, (4.7b)

are a sub-class of the ¥ transformations, parameterised by only 6 parameters.
Furthermore, these parameters can be partitioned into two disjoint sets of 3 pa-
rameters each, corresponding to equations (4.7a) and (4.7b). Thus, the grouping
problem in the first stage can be basically solved by applying the Hough technique
to 3-dimensional parameter spaces, as will be shown in Section IV.3.1.

In the second stage, components which are consistent with the same W trans-
formation are merged into segments. Given a set of adjacent components, optimal
parameters are computed, using the least-squares technique. Related error mea-
sures, associated with each component in the get, can be thus obtained. If these

error values are not high (in a sense defined in Section IV.3.2), then the components

are merged. Note that this hypothesize-and-test technique could not be employed-

1
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without the initial grouping into components, which drastically reduces the number
of hypotheses to be tested.

Sometimes an over-fragmentation may occur in the first stage of the segmenta-
tion, that is, a segment is partitioned into a large number of small components. This
is demonstrated in experiment 1 in Chapter VII (see Figure 7.1c), where the flow
field in one of the segments contains large second-order terms. In order to reduce
the computational cost of the first and second segmentation stages, the grouping
of vectors belonging to small connected sets may be postponed, in such a case, to
the third stage. In this stage, flow vectors which are not contained in any of the
segments are merged into neighboring segments, if they are consistent with the cor-
responding ¥ transformations. If, after the third stage, some of these small sets are
still not merged into the existing segments, then the first and second stages of the
segmentation may be repeated, focused only on these sets, thus possibly creating
new segments. In the following sections the three stages of the segmentation are
fully described.

memmﬂ

The grouping of flow vectors into components consistent with affine transfor-
mations is based on a multipass Hough approach [FEN79, ADI83a,b) where in each
iteration a modification of the generalised Hough technique is employed. This mod-
ified Hough technique will be presented in the next section, while the details of the
multipass scheme will be described in Section IV.3.1.2.

. .
A 3 (3 _AROG GO Vers 2L AR A P SLOU KL eCALILIG U,

The affine transformations can be represented by
where each dimension corresponds to one of the parameters aj,...,a¢ in equations

a 6-dimensional parameter space

(4.7). For computational reasons the parameter space must contain only a finite

number of points. Therefore, minimal and maximal values are determined for each

e e ———————nre
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parameter such that the values associated with the actual transformations can be
reasonably assumed to be between these values, and the corresponding interval is

quantized. The parameter space is the cartesian product of the discrete sets o
obtained.

A flow vector (a(z,y),A(z,y)) votes for a transformation (ay,...,aq) if it
approximately satisfies the constraint equations (4.7), that is, if

5%\ 2462 <e, (4.82)

where
b; = |a — a1 — azz — a3y| (4.8b)
and

8 =P — a4 — a5z — agy). (4.8¢)

The threshold e is taken to be the maximal value of the resolution p in the param-
eter space (see below) and the estimated noise level in the flow field; however, to
compensate for the fact that the image transformations can not be expected to be
exactly affine, it is never less than a given bound, typically one pixel. The amount

of support is determined by the function

V(a1,462,as,44,a5, 06, Z,¥) = 1 —0.755 /¢ (4.9)

which allows the support to range from 1 down to 0.25 for those flow vectors at
the limit of the acceptable error range. The total amount of support given to each
transformation (a;,...,a¢) by a set § of flow vectors is the weighted sum

S(a1,a2,as, 44,85, 46) = Z W(zv y)v(al: a2, a3, a4, a3, G, Z, Y), . (4.10)
(=9)ED

where D is the definition domain of § and W (z,y) is the weight of the flow vector
at the pixel (z,y).
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The optimal affine transformation, among those represented in the parame-
ter space, is the one which is maximally supported by the set § of flow vectors.
However, it is sufficient to find a highly supported transformation, which is not
necessarily maximally supported, since the goal in the current segmentation stage
is only to group vectors into components as a pre-processing step for the next stage
of creating segments. By loosening the maximality constraint, we will be able to
drastically reduce the required memory and computation time, as will be shown
below.

Let us first discuss considerations for determining the resolution of the quanti-
sation in the parameter space. Suppose that §' is a subset of G which satisfies the
constraints (4.7) for some affine transformation. It is desirable that at least one of
the affine transformations represented in the parameter space generates a flow field
similar to §', when applied to the corresponding definition domain D' . Otherwise,
in order to guarantee the full support of §' in an adequate affine transformation,
it may be necessary to use a large value of ¢ and, then, flow vectors which are not

included in §' may be mistakenly grouped into ¢'. In addition, the probability

of creating false peaks in the parameter space is increased when ¢ is large. As
a conclusion (ignoring for the moment computational considerations which will be

referred fo later), it is desirable to use a fine resolution in the parameter space.

Let p be the quantisation resolution in the axes corresponding to the additive
parameters a; and a¢. Moving along one of these axes from one quantizatioﬁ point
to an adjacent point, a uniform change of p is induced in the flow field predicted
by the affine transformation. On the other hand, moving similarly along one of the
axes corresponding to the multiplicative parameters a3 y @3, a3 and ag¢ induces
a change which depends on the values of z or y. If these values are large, then
the change in the flow field will be correspondingly large. In order to decrease
this change, the origin of the image coordinate system is shifted to the center of
gravity of the set D, thus usually reducing the absolute values of z and y. In
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addition, to ensure that at least one of the predicted flow fields will be similar to
the set §' defined above, we choose the resolution in the parameters a; and ag
to be p/maxplz|, and the resolution in a3 and ag to be p/maxply|. Thus, the
resolution in the multiplicative parameters is inversely proportional to the size of

the region containing the set § of flow vectors.

Basically, we have to compute the support, according to equation (4.9), given
by each vector to any of the t@fo@atiom represented in the parameter space. A
serious computational problem may arise if the number of points in the parameter
space is very high. For example, in the experiments described in Chapter VII the
minimal and maximal possible values of the parameters 4, and a4 are taken to be
—64 pixels and +64 pixels, respectively, and the desired accuracy in determining
these parameters is 0.25 pixels. Thus, §12 quantization points are apparently needed
for each of them. Using an equal number of quantisation points also for the other
parameters, the parameter space should contain 512% s 18 x 10'® points, and a

straightforward Hough technique is computationally impractical.

This problem is alleviated by using two techniques. First, a multi-resolution
scheme in the parameter space is employed. The Hough technique is iteratively
used, where in each iteration the parameter space is quantised around the values
estimated in the previous iteration, using a finer resolution. Thus, utilising a limited
memory sise, accurate parameter values can still be found. In the experiments, for
example, 17 quantization points are used for each parameter and 3 iterations are
required for achieving the desired accuracy. Notice that using a coarser resolution
in the first iteration would increase, more than necessary, the risk of creating false
peaks in the parameter space. Other methods for improving the efficiency of the
Hough technique are presented in [OROS1, SLO81].

The second technique is based on a decomposition of the parameter set into two

disjoint subsets, {a;,a2,a3} and {aq, as,as}. The Hough technique is separately
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applied to the corresponding 3-dimensional parameter spaces, using the relevant
constraint, (4.7a) or (4.7b). Sets of highly supported parameter triples, 4, =
{(a1:y82i,033) :§=1,...,N} and Ag = {(a¢;,as,06;) : 8 =1,...,N}, are thus
found, where N was experimentally determined to be 10. As a result, a set of N?
hypothesized affine transformations,

Aop= AxAg = {(a;.-,az.-,as,-,q,-,as,-,ag_,-) i$=1,...,N; §=1,...,N}, (4.11)

is obtained. The support function (4.10) can be then directly applied to the set
Aap, thus determining the maximally supported transformation T'* in this set.
T* is not necessarily the maximally supported transformation in the 6-dimensional
parameter space. However, large components in the flow field, corresponding to
maxima points in the 6-dimensional space, can be expected to produce maxima
points also in each of the 3-dimensional parameter spaces. Therefore T* is hoped
to be at least a near optimal transformation, as can also be concluded from the
experimental results. The decomposition technique is employed in each iteration of
the multi-resolution scheme and, therefore, only 173 a3 5000 elements are required
in the parameter space. Thus, the combination of these techniques creates a very
efficient algorithm.

The multipass

Hough technique is an iterative approach, where in each iteration the motivating
goal is to find the largest component of the flow vectors which do not belong to any
of the components created in previous iterations. Let us specify this more precisely.
We consider the set § of all the vectors ezcept those which fall into one of three
categories: (a) they are assigned a sero weight; (b) they are included in one of the
already extracted components; (c) they were excluded from further consideration,
because of detected incoberency, as will be described below. Initially, § is the set
of all the vectors with non-zero weight. We attempt to find a large component in

§, where a component is a connected set of vectors which support the same affine
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transformation. Note that the new component may also include vectors which do
not belong to §, as will be described below.

Flow fields are typically noisy and partially incorrect. Furthermore, in a dense
flow field the noise values in adjacent vectors can be expected to be highly corre-
lated and, as a result, false components may be created. Therefore, the weight of
each component (the weight of a set is defined as the sum of weights of all the flow
vectors in this set) is required to exceed a given threshold H, which should be high
enough to prevent such components from being created. However, using a rela-
tively large value of H may prevent detection of small components and, eventually,
segments corresponding to distinct surfaces and/or independently moving objects.
The selection of H should reflect a compromise between these two types of risk,
and it heavily depends on the type of algorithm used for computing the flow field.
If, for example, connected groups of compatible but errorful vectors are expected
to be occasionally present in the flow field, then a selection of a large value of H
may be appropriate. Note that H should be at least 3, gsince almost any set of 3

or less flow vectors is compatible with some affine transformation.

Sometimes an over-fragmentation is unavoidable, and a segment is partitioned
into a large number of small components. In order to prevent an excessive number of
iterations in such a case, the threshold H is increased if the number of components
already determined is higher than a given number, typically 10. The grouping of
vectors in small sets .ia thus postponed to the third stage.

Before describing in detail the multipass technique, let us provide a brief overview
of a typical iteration in this process. In the set $, defined above, we first find the
largest connected subset, S' (the term largest subset refers here, as well as else-
where in this section, to the subset with maximal weight). An affine transformation,
highly supported by vectors selected from $', is then computed using the Hough

technique. In the next step, each vector, in the entire flow field, is examined to
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determine its support of the affine transformation. In the set $” of those vectors
which do support this transformation, a connected subset C, with a maximal sum
of weights of vectors from §, is found (note that $” and € are not necessarily sub-
sets of §'). If the weight of CN §' is higher than H, then C is added to the list of
components and a new iteration begins. Otherwise, another affine transformation,
which is also highly supported by vectorsin $', is selected and a related component
is found and checked. If after a few such trials no component is accepted, then the
set §' is excluded from further consideration and a new iteration begins.

Let us now describe in more detail tixe steps compéaing each iteration of the

multipass technique:

1) In the set §, defined above, find the largest connected subset .§'. In the
current iteration we will focus our atteation to - §, attempting to extract an affine
‘transformation supported by a large component of this set. If the weight of §’' is
not above the threshold H, then there is no point in continuing the search for new
components, and the merging stage begins.

2) Select K flow vectors from §' » Where K is a given number, typically 64.
The Hough technique will be applied only to tﬁeae vectors, and not to the whole set
'§!, in order to reduce the computation time. We wish to select vectors which are
assigned a high weight and are uniformly distributed over the region corresponding
to §'. To achieve this goal, we determine in the image K non-overlapping windows
with their union containing the set §', and then we select from each window a
vector with maximal weight. Optimally, these windows should be squares, but for

‘implementation reasons they are rectangles in which the ratio between the long
side and the ghort side is not above 2. In addition, we want the sum of weights

of flow vectors belonging to §' to be roughly the same in each window. Thus, the
following iterative procedure is employed: in the first iteration there is only one

window which is the whole image; then, in each subsequent iteration, the window
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with the largest subset of vectors from §' is partitioned into two equal sub-windows
across its long axis. Note that if the number of vectorsin §’ does not exceed K,
then, of course, the Hough technique will be applied to all of them.

3) Use the modified Hough technique, described in Section IV.3.1.1, to find

the affine transformation which receives the maximal support from the flow vectors

gelected in the previous step.

4) Find the set, denoted by §7, of all the vectors which support the new affine
transformation. More specifically, for each vector in the entire flow field compute
the error measure § (equations (4.8)) and oc;mpare it to the threshold € (Section
IV.3.1.1). If § is smaller than ¢ and the corresponding vector does not belong yet
to any component, then include the vector in §”. In addition, even if the vector
already belongs to a component, but the new value of the error measure 6 is smaller
than the old value corresponding to the existing component, then include the vector
in $”. If the sum of weights in the set $'N S” does not exceed the threshold H,
then, assuming that other affine transformations will not have significantly more
support in the set §', exclude §' from further consideration and start a new

iteration. Otherwise, continue with step (5).

5) Find in the set $” a connected subset C with a maximal sum of weights
of vectors from $'. We consider the weight of the set C N §’, as opposed to the
get C, in order to avoid creation of a new component by basically splitting an

-already formed component. If this weight is above H , then C is accepted as a new
component. Otherwise, we wish to find another affine transformation, also highly
supported by vectors in §', which may be supported by a larger component. Note

‘that the transformation computed in step (3) may be supported by a disconnected
set of vectors; thus, although a different transformation is expected to have less total
support by vectorsin §', it may still be supported by a larger connected subset of

vectors. The goal of selecting a new transformation is achieved by decreasing the

1
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weights of all the vectors in §’ which support the current affine transformation (in
the experiments they are divided by two) and going back to step (2). The weights
are decreased only temporarily, while executing again steps (2) and (3) in the current
iteration. If after a few such cycles (three, in the experiments) no sufficiently large
component is found, then the set §' is excluded from further consideration and a

new iteration begins.

6) If the weight of the set CN §' exceeds H, then C is added to the list of
components. Note that the new component may contain vectors which previously
belonged to other components, but were changed because they produce a smaller
error measure with the new affine transformation. These components must be
examined to see whether they are still connected sets. If not, then the corresponding
component is reduced to its Jargest connected sub-component, and the other vectors
are among the vectors to be included in the set § in the next iteration. Note that
even if the weight of a reduced component is smaller than H , it is not deleted from
the list of components because it can still be assumed not to be a result of noise.
Besides, such deletions may interfere with the convergence of the multipass process,

and even result in an infinite loop.

3.2 Seco tage — o nent

Components created in the first stage of the segmentation are atomic units
which, if consistent with the same ¥ transformation, should be merged together to
create a segment. Consistency with a ¥ transformation is detected by computing,
using a least-squares technique, optimal parameters and related error values for
sets of adjacent components. The merging decision is primarily based on these

error values.

Given a set of n

flow vectors, we wish to compute the optimal ¥ transformation corresponding to
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this set, by employing a least-squares criterion. The error function to be minimized
is
L ]
E(ay,...,a8) =) Wi [(a-' — 61 — 627; — a3y; — a7z} — Ggziy;)?

+(Bi — a4 — agx; — agy; — ar%;y; — asy.?)’], (4.12)

where, for each ¢ between 1 and n, (a;,5;) = (a(z;,v:), B(=;, ¥;)) is a flow vector
and W; is the corresponding weight. Taking partial derivatives with respect to
aj,...,a3 and equating to 0; a get of 8 linear equations is obtained. In certain
geometric configurations of the set of flow vectors, these equations are linearly
dependent; we will refer to this case m Section IV.3.2.2. Usually, however, these
equations are independent, and their solution, denoted by a},...,a}, represents
the optimal ¥ transformation. Substituting this solution in (4.12) and using the

normaligation equation

o= \' E(a},...,3)/ }"'_jW.', (4.13)

an error value, corresponding to the given set of flow vectors, is obtained. o is an
estimate of the standard deviation of the actual flow values from those predicted
by the optimal ¥ transformation.

1V.3.2.2 Criteria for a merging decision. In the second stage of the seg-

mentation, groups of adjacent components are examined to see whether they can
be merged into one segment, that is, a connected set of flow vectors which support
the same ¥ transformation. In Section IV.3.2.3 we will describe a procedure for
sequentially selecting groups of components to be examined, but first let us present
the criteria for a merging decision.

Let 7 denote a group of adjacent components {C; : y = 1,...,m}. The

decision whether to merge these components into one segment is based on the

-3
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degree of their consistency with the same ¥ transformation. To determine such
consistency, an optimal ¥ transformation and a related error measure, denoted,
respectively, by W; and o;, are separately computed for each component (;,
J = 1,...,m. In addition, an optimal ¥ transformation, denoted by ¥y, is
computed for the entire set of vectors U}’;l C;. Substituting the coefficients of ¥5
and the flow values of the vectors contained in C;s 1< 35 < m, in equations (4.12)

and (4.13), a new error value, 0}, is obtained for each component ¢ T

The ratios {o;-/aj} play a major role in the merging decision. The values of
.these ratios are at least 1, since W¥; can be adjusted to the local surface and noise
associated with C;, and, therefore, o'; is never less than o, . If the ratios are close
to 1, then a decision to merge the components seems to be justified. However, the
allowed level of o0;/o;j, 1 £ j < m, should be a function of the ratio, denoted by
p;, of the sum of vector weights in € 5 to the total sum of weights in the get 7. If
p; is close to 1 and the components are really parts of one segment, then a; can
be expected to be very close to 0. On the other hand, if p; is close to 0, then ¥y
can not be expected to be adjusted to Cj, and therefore c", should be allowed to be
significantly higher than o,, up to a given upper bound l; (see below). Therefore,

a merging decision s accepted if and only if, for each component C; in ¥,
0; < pioi+(1—p;)l; . (4.14)
Thus, the allowed level of a; ranges from o; to I; as p; varies from 1 to 0.
The upper bound l;, 1 <3< m,isdetermined to be
lj = max{l,o; , b}, (4.15)

where I, and /, are given thresholds. The value of I, has typically been set to 1.5,
while I, represents a reasonable upper bound on the noise level. If, for example, the
most significant noise is round-off error induced by using integer flow values, then

the noise is uniformly-distributed between —0.5 pixels:and +0.5 pixels, and I, will
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be V2 x 0.5. (The deviation between the measured and predicted flow values is
measured as a distance in the 2-D image plane, therefore 0.5 is multiplied by v/2.)

Sometimes, an error value o5, 1 < j < m, can not be computed because
the corresponding linear equations, derived from (4.12), are linearly dependent. In
such a rare situation, the value of o, is arbitrarily set to 0, thus making a merging
decision more difficult. In addition, if the equations corresponding to all the vectors
in the group ¥ are linearly dependent, then the components are not merged. This
‘conservative’ policy is adopted to prevent under-segmentation, which may interfere
with forming correct object hypotheses in the n;axt phase of the interpretation. Over-
segmentation, on the other hand, may increase the computational cost of the next

phase, but does not prevent the formation of correct hypotheses.

M.L!!hs__emiax.nzo_m. The algorithm for finding groups of

components to be merged starts by computing an optimal ¥ transformation and
a related error measure for each component. After this initial step, segments are
sequentially created by testing possible mergings of components. In each cycle of
the algorithm a given segment is formed and only components which are not yet
assigned to any of the already created segments are considered as candidates for
merging into this segment. Eventually, all the components are contained in one of

the segments.

The process for creating a given segment starts by detecting the largest com-
ponent, denoted by C*, among the candidates for forming this segment. Then,
other candidates are sequentially tested, in the order of their associated weights,
for merging with C*. In general, given a set of components which are already
assigned to the segment, neighboring candidates, which have not been examined
yet, are sequentially tested for merging with this set. Once a merging decision is
made, additional components are tested for merging with the new set. This process

continues until all the candidates for forming the segment are examined.

3

3
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Results of the merging stage are demonstrated in Figure 7.1d. Note that such

a sequential merging process might produce different segments, if another ordering
strategy would be chosen.

The purpose of the third stage of the segmentation is examination of flow vec-
tors which were assigned positive weights, but were not grouped into any of the
components in the first stage of the segmentation and, therefore, do not belong to
any of the segments. Such vectors, called O-vectors, which are neighbors of one of
the segments, are tested for consistency with the ¥ transformation corresponding
to this segment and, if consistent, are merged into it. Then, 0-vectors, neighbors of
the just segmented vectors, are examined in their turn. This process is iteratively
executed until no new vector is merged into one of the segments. Results of this
stage of the segmentation are demonstrated in Figure 7.1e. .

It is possible that, as a result of over-fragmentation in the first segmentation
stage, the threshold H was increased (Section IV.3.1.2) and, therefore, small sets
could not be detected as components. Hence,.after the third stage we look for
connected sets of 0-vectors, which were not excluded from further consideration in
the first segmentation stage, and were not merged into one of the existing segments
in the third stage. If such sets exist, then the first and the second stages of the

segmentation are executed again, focused only on these sets, thus poasibly creating
new segfnents.



CHAPTER V

TESTING OBJECT HYPOTHESES AND
RECOVERING 3-D MOTION AND STRUCTURE

In the first phase of the interpretation process, described in the preceding chap-
ter, the flow field is segmented into connected sets of flow vectors, where each set
is consistent with a rigid motion of a roughly planar surface. Such a segment is as-
sumed to correspond to a portion of only one rigid object. The next task is to group
segments which are consistent with the same 3-D motion parameters. Employing
a rigidity assumption similar to the one in [ULL79)], such a group can be assumed
to be induced by one rigidly moving object (or by the camera motion). All the
segments corresponding to the stationary environment will be grouped together to
create one rigid object. It should be noted, however, that the segmentation results
may also provide a useful decomposition of the environment into roughly planar

surfaces.

In Section V.1 we describe a general algorithm for computing the motion pa-
rameters, relative to the camera, from a set of flow vectors generated by a rigid
motion. In Section V.2 we combine this algorithm with the segmentation results to
test object hypotheses and to estimate the corresponding 3-D motion and structure.

.1.1 Opt satl 8

Given a set of flow vectors, assumed to be induced by a rigidly moving object,
we wish to find the 3-D motion parameters and depth values which are maximally

consistent with this data. Following the general approach proposed in [BRUS1|,

36
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we employ a least-squares technique which minimises the deviation between the
measured flow field and that predicted from the estimated motion and structure.
This approach is adopted because of its relative robustness in the presence of noise.
Based on (3.5), the error function to be minimised is

S Wi (o + Oz~ B0+ 52) 4 g — (T - Ty2)/%:)

=1

+(ﬂ.‘ +0x(1+y?) - Qyziy; — Qzz; ~ (Ty - sz)/zi)z]. (5.1)

where T = (Tx,Ty,Tz) and Q = (Qx,8y,0z) are the translation and rotation
vectors, respectively, and, for each § between 1 and n, (a;,f;) is the flow vector
computed at the pixel (z;,y;), W; is its weight and Z; is the spatial depth of the
corresponding point in the environment. The task is to determine Z, 2 and {Z;}
which minimise this function. Using the decomposition of the flow field into its
rotational and translational components, denoted by (ar,Br) and (ar,fr) (see
equations (3.6) and (3.7)), the error function can be more concisely represented by

i Wil(e: — ari — ar:)? + (B: - Br; — Br:)?]. (5.2)

=1

As can easily be seen, it is actually impossible to determine the absolute values
of (Tx,Ty,Tz) and {Z;:3 = 1,...,n}. However, if the magnitude, denoted by
r, of the translation is non-gero, then it is possible to estimate the direction of the
3-D translation, reprea;nted by the unit vector

(Ux,Uy,Uz) = (Tx, Ty, Tz)/r, (5.3)
and the relative depth values, represented by
Z;i=rlZ;, i= 1,...,n. (5.4)

We employ this representation of the depth values, rather than the more ‘natural’
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representation Z;/r, in order to avoid the possibility of infinite values in cases where

Z; , as given by equation (5.10), is 0.

Introducing the abbreviations

ag =Ux - Uzz=ar/Z (5.53)
and '
Py = Uy - Uzy = Pr/Z, (5.5b)
(5.2) can be rewritten as
Y ow; [(a.- —ap; — agiZ;)? + (B — Bri — ﬁmi‘)’] . (5.6)

=1
Thus, the task can be reformulated as one of finding the values of (Ux,Uy,Uz),
(Qx,0y,0z) and {Z;:i=1,...,n} which minimige this expression. In addition,
the depth constraints
Z;>0, i=1,...,n, (5.7)

should be satisfied. Note that this error measure is different from the one actually
employed in [BRUS1] where the contribution of each flow vector is multiplied by

af, + ff in order to simplify the error function.

For any given §, 1 < ¢ < n, we can find the optimal value of Z; , as a function
of the motion parameters, by examining the first derivative of (5.6) with respect to

Z; . This derivative is given by
2W; [—(ai — ap;)agi — (Bi — Bri)Bus + (ab; +ﬁ?n)5’.’] . (5.8)
Setting it equal to 0 yields

7= ((a.' — agi)agi + (Bi - ﬂn.')ﬁu.')/ (aBr; + B, (5.9)
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unless af;. + 8%, =0, in which case Z; can be assigned any non-negative value. If

the expression in (5.9) is negative, then the corresponding depth constraint in (6.7)

is unsatisfied. In such a case, to minimize the error function (5.6), Z; should be

set to 0, because the derivative (5.8) is non-negative for non-negative values of Z;

and, therefore, the error function is monotonically non-decreasing for these values.

To summarige, the optimal value of Z; is given by:

Z; = [ ((d.‘ = ag;)ag; + (; - ﬂn.')ﬂv.') [(af; + ﬁ:’n)] * (.10)

Substituting (5.10), for any 1 < < n, into (5.6) and expanding the resulting

expression yields the following representation of the error, as a function of the

motion parameters:

EU,0) =Y W.E, (5.11a)
=1
where
AY, 2 )2 i
E = Py if (& — agy)ag; + (B: — Ar;)By; > o;
(o; — ar:)? + (B; — Bri)? otherwise.
(5.11b)
A normalized version of this error function, defined by
U(Qv Q) = \’E(Q.Q)/ZWf. (5'12)
: =1

will also be utilized. o s an estimate of the standard deviation of the measured

flow values from those predicted by the motion parameters and the corresponding
depth values.

Note that the expression (5.11) for the error function was obtained by assuming

a non-gero translation. In the case of a purely rotational motion, the appropriate




error function to be minimized is:

Eg(Q)=)_Wi ((ae — ap:)® + (B - ﬂm)z) . (5.13)

=1
The minimal value of this function is never less than the minimal value of E(U, 1),
gince the latter function is derived from (5.6) where the values of Z,i=1,...,n,
can be chosen to be 0, thus predicting a purely rotational flow field. If, however,
the minimal value of Eg(fl) is close to the minimal value of E(U, ), then the 3-D
motion is, possibly, purely rotational. Hence, both values should be computed and

compared to each other.

The task of finding the three rotation parameters which minimise the function
Eg(Q) can easily be accomplished by taking the partial derivatives of Ep(f}) with
respect to the rotation parameters, setting them equal to 0, and solving the linear
equations so obtained [BRU81]. In the next section we concentrate on the much
more difficult task of finding values of U and {} which minimize the error function
E(U,Q) (or, equivalently, the function o(U,11) ), where U can be any unit vector

and f} is unconstrained.

¥Y.1.2 Algorithm

The algorithm for recovering the motion parameters employs an error measure,
derived from (5.12), corresponding to possible locations of the FOE in the image
plane. For each hypothesized FOE, the optimal rotation parameters and a related
error value are computed. A minimum value of the resulting error function is
determined, using a multi-resolution sampling technique. Notice the difference
of this approach from the one employed in {PRA81], where for each hypothesized
rotational component, the FOE of the corresponding translational field and a related
error measure are computed. We believe that our approach is more efficient, since

the search space is only 2-dimensional, as opposed to 3-dimensional in [PRAS1], and

the error function which we employ is easier to compute. Before we proceed with a
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mathematical description of the algorithm, we refer the reader to the geometrical
interpretation given in Figure 5.1.

V.1.2.1 Reducing the gearch space. In this section we show how to derive

a new error function from E(U, 1) . This function will be defined only on the unit

hemisphere which is isomorphic to the image plane, thus reducing the dimensionality
of the search space from five to two. Let us start the derivation of the new function

with the observation that if the depth constraints (5.7) are ignored, then,

for any
hypothesized direction of translation,

the optimal rotation parameters can easily
be extracted by solving a set of three linear equations. To see that, notice that the

error function (5.11) can be reduced in this case to the function

2 2

E'U,0)=)"wi [ ((a.' - ar:)Bo: — (B: - ﬂm)au.') /(af; +ﬂr"}.')] - (5.14)
=1

Differentiating E'(U, Q) with respect to the rotatjon parameters Qx, 0y, Q,

and setting the derivatives equal to 0 yields three linear equations with the rotation

parameters as unknowns. Thus, ignoring the depth constraints {(8.7), the search
8pace can be limited to the unit sphere {L:|U|=1}.

Moreover, changing the sign of any unit vector U has no effect on the value of

E'(U, D) since it only affects the 8ign of ay and By . Therefore, the search space
can be further restricted to the hemisphere '

¥={U:|Ul=1 and Uz >0}. (5.15)

The depth constraints or, equivalently, the equations (5.11b) must still be in-

corporated in the algorithm for recovering the motion ‘parameters, -at least for de-

termining the sign of the optimal vector U found in ¥. Bruss and Horn [BRUSI],
for example,

select the sign which gives Z; > 0 for most indices 1. ‘We propose an

in which, for
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FOE

Figure 6.1: A geometrical interpretation of the algorithm. { is the line connecting
the initial point of a flow vector ¥ to a hypothesized location of the FOE. We
wish to find rotation parameters guch that the difference y — yp, Where yp is
the corresponding rotational component, will be oriented towards or away from the
FOE. The projection of v —gg on l is yp, the estimated translational component
of the flow vector. The related depth value 7 is determined as the one which yields
guch a translational component. The error measure is ‘the distance between the
c;nd points of y — yg and yr. Note that the depth constraint means that if the
Z-component of the object translation is positive (i.e., forward object motion), then
yy should be oriented towards the FOE, while if the Z-component is negative (i.e.,
backward object motion), then yr ghould be oriented from the FOE. Therefore, the
translational components should all be oriented towards, or all be oriented from,

the FOE. If the depth constraint is unsatisfied, we choose yy to be (0,0).

™
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each U in ¥, we define the error measure
*¥() = mino(oL,0), (5.16)

where s can have the values +1 or —1. The goal is to find a vector U in ¥ that
minimiges the function ox . The associated values of s and 2 are,

respectively, the
determined sign of the translation vector and the estimated rotati

on parameters.

The function oy is, however, difficult to compute, because the depth constraints
are involved in the computation. Therefore, in the proposed algorithm we compute
an approximation to oy which in the experiments was usually found to be very

accurale. A few main steps can be distinguished in the procedure for computing
this approximation:

1) Given a vector U in ¥, estimate the optimal rotation vector f1° by min-
imizing E'(U, Q) with respect to 2, and compute the corresponding normaliged
error measure ¢'(U,01*). This error value, denoted by a},(ﬂ) )
of ox(U) since it minimises the error function o(l, ),

is a lower bound
with respect to {3 and
the sign of U, without considering the depth constraints (5.7). Note that it may

be impossible to determine the optimal rotation parameters, if the corresponding

linear equations are singular. Still, even in such a situation (which never happened
in our experiments), the error measure o'(U,f) can be minimiged with respect to
{1 by employing, for example, a Hough technique. It may also be possible to change
slightly the sampling point U (see Sectién V.1.2.2fora description of the sampling
procedure), in order to avoid the singular situation.

2) Compute o(U, ') and o(—U,0*). The minimum of these two error values
determines the preferred sign of U, denoted by s*. The value o(s*U,0°), denoted
by a}, (U), is an upper bound of ox(U), because it gives the actual error measure
for some values of s and £} in equation (5.16).

3) Commute an approximation to oy(l) by averaging its lower and upper
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bounds:
63(L) = (oh (W) +o4(@)) /2 (5.17)

This approximation is utilised because it minimizes the maximal possible error.
The relative deviation of oy(U) from &y(U) is bounded by

(eh@ - oh @) / 2ou@)). (5.18)
In the experiments this value is usually very small, typically much leas than 0.01.

The following proposition shows that the solution I/* obtained by minimising
&y is guaranteed to be optimal or near optimal, if the difference d between the
minimal values of the upper and lower bounds of oy is very small. Note that the

value of U for which each of these bounds is minimiged will in general be different.

Now let us prove that

oxn(U') < minoy(U) +2d, (5.19)
where
d=m£iga},(m —nhina},(ﬂ). (5.20)
First, it should be noted that
s (h@)+ @) =aunw) = min 6y(L) < min o} (L). (5.21)
Therefore,

o} (L") < 2mino}(U) - 04(U") < 2min o}y (U) - minoy (L) = mino} () + d.
(5.22)
Finally, employing also the inequalities

ména},(g) < nhinax(_g) < txxﬂina}‘(!_f_), (5.23)

B
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it follows that

ox(U*) <ol (U*) < min ol (U)+d < min ox(U) + 2d. (5.24)

Even in rare situations (which never occurred in our experiments), where the
difference d is relatively large, the bounds a}, and a,', will usually be useful. Based
on these bounds, vectors U can be removed from further consideration, while still
guaranteeing the near optimality of the final solution. Toshow how this can be done,
let us first denote by II the vector which minimizes the upper bound function ol ,
and let ¢ denote a small error value, typically 0.01 pixels (see Figure 5.2). Given
a vector U # U for which the lower bound a},(ﬂ) is larger than min a}, - €,
then this lower bound is larger or only slightly smaller than the upper bound of
ox(U). Therefore, U can not produce an error value which is much lower than
the one produced by . Thus, U can be eliminated as a possible solution without

affecting the near optimality of the final result.

On the other hand, if there exist vectors U for which the lower bound a}, Q) is
much smaller than min a}, , then it is usually necessary to more accurately estimate
the corresponding error values oy(U). Given such a vector U, this can be done by
searching for optimal rotation parameters using, for example, a sampling technique,
and then substituting the results in equation (5.12). Note that if many error values
oy(U) must be re-evaluated, then we basically face again a problem of search in a
5-dimensional parameter space. Finally, note that a vector U for which c,‘, (U) is
significantly lower than mino} can still be accepted as a solution without further
examination, if two conditions are simultaneously satisfied: (a) c,',(,[) is at most
slightly larger than min aL ; and (b) no other vector U’ produces lower bound

a}, (U') which is much smaller than mino} .

To summarige, the algorithm can be efficiently applied if the minimal values of

the lower and upper bounds are close to each other, or if not many vectors  pro-
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Pigure 5.2: The error function oy and its upper and lower bounds, a}, and a}, ,
are displayed as functions of the translation axis U/. To simplify the illustration,

the 2-dimensional definition domain, which is the unit hemisphere ¥, is plotted as

a 1-dimensional space. The vector U is the vector which minimiges the function
a,', . The interval I contains all the vectors U for which the lower bound ‘aj,(z)
is smaller than min a}, ~¢. I is the domain where the correct error measure oy
must be more accurately estimated. Vectors U which are not included in I can

not produce error values oy(U) which are significantly smaller than ox(D).

bk}
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duce lower bounds o'}, (U) much smaller than min a}, . Based on our experimental
results, we conjecture that these conditions hold in almost any practical situation.
More work should be done, however, in order to characterize situations where these

conditions may be not satisfied.

Y.1.2.2 Search strategy. The search for an optimal vectorin ¥ consistsof a

sampling of the error measure &y . A multi-resolution scheme is employed, where in
the first iteration the set ¥ is coarsly sampled (similarly to [LAW82,84]) and in each
additional iteration only the neighborhood of the vector giving a minimum value in
the previous iteration is sampled, using a finer resolution. Note that solutions near
the boundary of ¥ require a vector U’ to be defined as a ‘neighbor’ of a vector
if either U’ or —U’ is close to U. Another way to obtain the same effect while
using the normal definition of a neighborhood is to extend the domain of definition

of the function &y to the whole unit sphere, employing exactly the same definition

" used for the domain ¥ . In this case, dy(—U) = @y(U) for each unit vector U,

and hence, computationally, it makes no difference which domain of definition is
used.

In [LAWS2,84] the unit sphere is uniformly sampled in the first step of the
search process. We propose a different approach, where the density of the sampling
:in_ a given region of X is proportional to the rate of change of the flow field, as
a function of U, when U varies in this region. Using this approach, the relative
number of samples is decreased in areas of the hemisphere where the error function
is expected to be flat, but it is increased in-areas where this function is expected
to vary rapidly. Thus, for a given number of samples, the probability of missing
the correct solution, because of a sampling that is too sparse around it, becomes

smaller.

In order to formulate this sampling constraint more concretely, suppose that the

translation vector U is changed by AU . This induces a deviation of (Aar(z,y),
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APr(z,y)) in the translational component of the flow field (ar,fr) at the pixel
(z,y) . The total deviation, given by the weighted sum

Z W(zs y) (AzaT(z: y) + AzﬁT(z: y)) ’ (5.25)

¢

will be employed as a measure of the global sensitivity of the flow field to changes in
U. Our goal is to determine a sampling pattern of ¥ such that the total deviation
induced by changing U from one sampling point to an adjacent one will be roughly
uniform over ¥. This sampling constraint will be called the uniform deviation

constrasnt.

To determine an appropriate sampling pattern, let us switch to a spherical

coordinate system (r,¢,8), where

Tx = reinécosd, (5.26a)

Ty = reingsiné (5.26b)
and

Tz =rcosé. (5.26¢)

Note that ¢ is the angle between the line of sight and the translation vector, and
9 is the angle between the z-axis and the projection of the translation vector on

the image plane. Using these notations, ¥ can be represented by the set
{(4,6):0< ¢ <90°, 0° <6 <360°}. (5.27)
In addition, the translational component of the flow field at the pixel (z,y) can be

rewritten as

r
Z(z,y)

Changing the translation parameters (¢,6) by (A$,Af), where A¢ and Af are

(ar,Pr) = (sin ¢ cosd — zcosd, sindsind — ycos é). (5.28)
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small, induces the following deviation in the flow field:

(Aar, ABr) ss (%’-M + 32 p, %M +%1n5).  (s29)

The partial derivatives of ar and fr with respect to ¢ and 8 can be derived from
(5.28):

dar/0¢ Boar/86 oy cosgcosf + zsing —singsind (5.30)
86r/0¢ 0pr/88) ~ Z(z,y) \ cos$sind + ysin 6 singcosd |-

In this stage of the analysis we can already derive a useful observation on the
desirable sampling density of ¢ and @ as a function of ¢. If z and y are small
(in focal units), then from (5.29) and (5.30) it follows that:

A’ar + A%Br o fzz("sz(cos’ $A%$ + sin? gA29). (5.31)

Thus, the sensitivity of the flow vector at (z,9) to changes in ¢ is higher as ¢
becomes smaller. On the other band, as ¢ becomes larger,

the flow vector is more
sensitive to changes in 4.

A concrete sampling pattern which reflects this observation will now be deter-
mined. We will compute the total deviation (5.25) for a representative case in which
the surface is a plane parallel to the image, the flow field is dense and uniformly

distributed over the image, and W(z,y) = 1 for each pixel (z

y¥). For this case
the total deviation is given by

A pA
E(Azar + A%6r) /: ) /_ . (A%ar + A%Bp)dz dy, (5.32)

o,y

where A = tan(fov/2) (fov denotes the field of view of the camera). Note that 4,

which is an upper bound of z and y values, is not assumed to be small. Substituting

Aar and AB~ with the corresponding expressionsiin equations 65.29) and (5.30),
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and expanding the double integral, we get

Z(A’ar + A%Br) = 4';;‘2 ((cos2 ¢+ %3 ein? $)A24 + sin? ¢A20) . (5.33)
.y

Suppose now that we select sampling points along a line of longitude on the unit
hemisphere ¥ ; that is, we keep 0 constant. Then, in order to satisfy the uniform

deviation constraint, the difference A¢ between adjacent sampling points should

be (based on (5.33))
c
(5.34)

A¢ N ’
;;cos’ ¢+ Zﬁzainzé
where ¢ is a proportion factor. Similarly, if we select sampling points along a line

of latitude, we should have
c
Al » m. (5.35)
Based on these observations, let us now construct a sampling pattern of ¥ which

gatisfies the uniform deviation constraint. First, we determine a sequence $ <

¢2 < -+ < ¢a such that $1=0°, ¢ =90° and

c .
biv1— i , 1€i<n-1, (5.36)

cos? ¢; + 24~sin §;
Then, for each 2 < < n, we choose a sequence 8;; < 6;2 < - < 0;m; Where
6i1 =0°, 0;.m, = 360° and

c

<.< g — . 07
e’ 1<j<m;—1 (5.37)

0; 541 — b3 5 &

In addition, we determine m; to be 1 and 6;; to be 0°. Given the desirable

pumber of samples, the value of ¢ can correspondingly be determined, and the

function &y is sampled in the points

{{(¢l’noi.j) 1j= lv°'-:"‘i}1£= l:v-';“}- (5.38)
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Note that for 180° < ¢ < 360°, the points (90°,6) and (90°,6—180°) correspond to
unit vectors which differ only by their sign and, therefore, &y(80°, 8) = 5x(90°,6 —-
180°). Hence, points of the form (90°,6) , where 180° < 8 < 360°, are actually

excluded from the sampling set (5.38). An example of a sampling pattern, for
fov = 30°, is shown in Figure 5.3.

The solution of U, found

in the last iteration of the unit hemisphere sampling procedure, and the corre-
sponding sign s* and the rotation parameters 0}* , defined in the procedure for
computing &y, are the determined motion parameters. Substituting these param-

eters in equation (5.10), the relative depth, corresponding to each flow vector, can
be estimated as well.

The flow field equations (3.5) may, in general, have more than one solutjon. I,
for example, the surface is planar, then usually two solutions exist [TSA84, WAXs3].
Thus, multiple solutions should be searched for on the error surface. This can be

done by locating locally minimal error values, which are also very close to the global
minimum.

Another problem is the inherent instability which may exist in recovering 3-D
motion and structure from noisy flow fields. Such a situation can be identified as
one in which the error function &y (equation (5.17)) is very close to its minimal
value in a large portion of the search space (see, for example, Figures 7.2h and
7.2i). In this case, reasonably reliable estimates of the motion parameters may be

impossible to obtain. The influence of certain parameters on this instability will
be analyzed in Section VI.1. Approaches which may be taken in order to deal with
this problem will also be discussed.
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Figure 5.83: A sampling pattern for fov = 30°. The total number of samples,
represented in the figure by dots, is 513. The angles (¢,8) serve here as polar
coordinates, where ¢ ranges from 0° at the center up to 90° at the boundary.
Each circle corresponds to a given value of ¢. Sampling points on one half of the

outer circle are excluded, as explained in the text.
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Y.2 Testing Object Hypotheses

Employing a rigidity assumption similar to the one in (ULL79), segments of
the flow field which are consistent with the same 3-D motion parameters can be
assumed to be induced by one rigidly moving object (or by the camera motion).
Using the algorithm described in the previous section, such a consistency is de-
tected by computing optimal motion parameters and related error values for sets
of segments. The criteria for accepting object hypotheses, which are similar to the
criteria described in Section IV.3.2.2 for merging components into segments, are

primarily based on these error values.

It will be shown in Section V1.2 that the decomposition of the environment into
independently moving objects may be ambiguous. For example, two such objects
induce, in some cases, optical flows which can be interpreted as resulting from one
rigidly moving object. In order to deal with this ambiguity, one may have to find a
set of possible decompositions, not only one. Therefore, each group of segments is
tested for consistency with 3-D motion parameters, unless it contains a sub-group
which has already been shown to be associated with more than one rigid motion.

At this point, we would like to raise the question of the necessity of the flow
field segmentation as a pre-processing step for the formation of object hypotheses.
At first sight, by employing a multipass Hough technique, one would think that it
might be possible to directly decompose the flow field into sets corresponding to
independently moving objects and, simultaneously, recover the associated motion
parameters. In this approach, a §-dimensional parameter space can be used, where
each dimension corresponds to one of the recoverable motion parameters. . Flow
vectors would vote for compatible transformations represented in the parameter
space, and the maximally supported transformations are supposed to correspond
to rigid objects in the environment. Thus, the segmentation process described in

Chapter IV could be avoided. However, even if the computational issues involved
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in developing such a scheme can be solved, at least two problems still remain:
(a) flow vectors corresponding to small but distinct surfaces, which may resolve
ambiguities in recovering the motion parameters (see Section VI.1), do not receive
the appropriate weight in the voting process; (b) it is difficult to detect possible

ambiguities in the flow field decomposition.

Returning to the scheme developed in this thesis, each segment is sampled, using
the method in step (2) of the multipass Hough technique (Section IV.3.1.2), 2and only
the selected flow vectors are used for testing object hypotheses and ccmputing the
corresponding motion parameters. This sampling procedure considerably reduces
the computation time. The desired number of vectors selected from each segment
does not depend on the size of the segment. Therefore, all the distinct surfaces and
independently moving objects, even the small ones, are appropriately represented,

thus preventing the suppression of valuable data.

Only one iteration of the unit hemisphere sampling procedure, described in
Section V.1.2.2, is used for testing object hypotheses, since for this purpose we
mainly need the minimal values of the corresponding error functions, rather than
the motion parameters which give these minima. Good approximations of these
values has experimentally been shown to be obtained from one iteration which

includes about 500 samples (see, for example, Figure 5.3).

‘Let us now denote by 7 a set of segments {S; : j = 1,...,n} which are
not necessarily adjacent. To determine the consistency of these segments with the
same motion parameters, an error measure 6; (which is the minimal value of the
corresponding error function &y, defined in equation (5.17)) is separately com-
puted for each segment Si»i=1..,n. In addition, optimal motion parameters,
corresponding to all the vectors sampled from the segments in ¥, are computed.
Substituting these ‘global’ parameters and the flow vectors sampled from §; in

equation (5.17), a new error measure, 6;- , is obtained for each segment ;.
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As we have already discussed in Section IV.3.2.2, when an object hypothesis is
tested, the allowed level of 6;- should be a function of p;, which is the ratio of the
sum of vector weights in §; to the total sum of weights in 7 (considering only
the selected vectors). If p; is close to 1, then 6;- is expected to be close to §;. K,
however, p; is close to 0, then 6,'. is allowed to be significantly larger than 6,,up to
a given upper bound m; (see below). Therefore, an object hypothesis is accepted
if and only if, for each segment S; in ¥,

8; < P36+ (1-pl)m;. (5.39)

Thus, the allowed level of 6;- ranges from §; to m; as p; varies from 1 to 0.

Notice that the allowed deviation of 8} from the reference error §; in (5.39)
is larger than the allowed deviation of o; from o in equation (4.14). As will be
shown below, this can be justified by continuity considerations of the flow field;
while the flow field is continuous across the boundary between two components
merged into one segment, this is often not true for segments associated with one

rigid object because the segments may correspond to surfaces which are spatially
non-adjacent.

Now let C;, and C; be two adjacent components, corresponding to surface
patches on the same plane, which should be merged together to create a segment.
Because the components correspond to spatially adjacent surfaces, the flow field is
continuous across the boundary between the two components. If C;, is much larger
than Cj,, then we expect the flow field in Cj,, because of its relatively emall sige
and continuity considerations, to be fairly similar to the flow field predicted by the
¥ transformation computed for si+ Thus, the ¥ transformation computed for
Cj, UC;, should not be significantly influenced by C;. Therefore, we expect the

€ITor measure a;-. to be very close, in this case, to oy, -

On the other hand, suppose that two segments, S;, and S, which are indeed
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induced by the same rigid motion, are tested as corresponding to one object. Such
segments may be non-adjacent, and even if they are adjacent, they often correspond
to spatially non-adjacent surfaces, and then the iiow field is usually not continuous
across the boundary between them. In addition, motion parameters which are
computed for §;, and are adjusted to the noise associated with this segment may be
completely different from the correct parameters, because of the instability discussed
in Section VI.1. Such incorrect parameters are not necessarily compatible with the
flow field in §;,, since continuity of the flow field can not be assumed. In such a
case, the optimal motion parameters for the combined pair of segments will have
to be adjusted to §;, in addition to the noise in §j,, and &), may be gignificantly
larger than §;, , even if p;, is fairly close to 1.

The upper bound m;, 1 < j < n, is determined to be
m; = max{m,d; , mp}. (5.40)

In a manner similar to the choice of the thresholds described in Section IV.3.2.2,
m, is chosen to be 1.5 and m; represents a reasonable upper bound of the noise
level. m; should be smaller, by a factor of about V2, from 3 in equation (4.15).
To see this, notice that for each flow vector the depth value Z can be adjusted
to the associated noise to obtain a predicted flow vector which is the projection
of the measured vector on the line { connecting its initial point to the FOE (see
Figure 5.1). Thus, assuming that the computed motion parameters are correct,
the deviation between the measured and predicted flow values is given only by the

component of the noise which is perpendicular to {.

To summarige, in fhe first section of the current chapter we presented an algo-
rithm for searching 3-D motion and structure values which minimize the deviation
between the fiow field predicted by these values and the given flow field. In the
second section, this algorithm is combined with the segmentation results to form

and test object hypotheses and to recover the 3-D information assocaited with each
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of them. In Chapter VII this scheme, as well as difficulties in ambiguous situations,

will experimentally be demonstrated.



CHAPTER VI

INHERENT AMBIGUITIES IN RECOVERING 3-D INFORMATION
FROM A NOISY FLOW FIELD

In the last chapter we presented a technique for recovering the motion parame-
ters and structure of independently moving objects. However, as has already been
mentioned, two problelms may arise due to the presence of noise in the flow field.
First, motion parameters of the sensor or a moving object may be extremely difficult
to estimate because there may exist a large set of significantly incorrect solutions
which induce flow fields similar to the correct one. The second problem, which is
closely related to the first one, is in the decomposition of the environment into in-
dependently moving objects. Two such objects may induce optical flows which are
compatible with the same motion parameters and, hence, there is no way to refute
the hypothesis that these flows are generated by one rigid object. These ambiguities

are inherent in the sense that they are algorithm-independent.

In this chapter we will employ mathematical analysis to characterize situations
where these problems are likely to arise. A few examples will demonstrate the
conclusions. Constraints and parameters which can be recovered even in ambiguous
situations, as well as appropriate modifications of the interpretation goals, will be

presented.

. t t on Parameters of a id Obiec

VI1.1.1 Introduction

Given a flow field induced by a rigid object, it will be shown that in certain
gituations the flow field induced by totally incorrect motion and structure may be

gimilar to the correct one. In the presence of noise which is statistically larger than
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the difference between these flow fields, it may be impossible to obtain reasonably

accurate estimates of the motion parameters. The influence of certain factors on
this ambiguity will be analyzed.

Let us start by examining the cases of pure rotation and pure translation. In

a purely rotational motion the flow field js represented by equations (3.7a,¢) which
can be rewritten as

a —zy 1422 -y
(p)=(-1-y2)0"+( . )0y+(z)ﬂz. (6.1)

Thus, each rotation parameter has a distinct signature in the

flow field, and in most
cases it can reliably be recovered.

In a purely translational motion, the direction of translation is represented by
the focus of expansion (FOE) which, in this case,

lines corresponding to the flow vectors. Usually,
[LAWS2,84], unless the absolute value of

distance of the surface from the observer,

is the intersection of the straight
the FOE can be robustly recovered
the translation is small relative to the

in which case the flow vectors are small
and the determination of the corresponding intersection is sensitive to noise.

In the general case, an ambiguity in determining the motion parameters becomes

a much more severe problem because rotation and translation may induce similar

flows. To demonstrate this, let us examine the case of a planar surface which is

and denote by d the distance of this plane from the
camera. We wish now to compare the flow field generated by a purely translational

motion (Px,Py,0) to the flow field generated by the purely rotational motion
(-Py/d, Px/d,0). The flow field in the first case is

ar Px
(57)-we(%). oa

parallel to the image plane,



while in the second case the flow is given by

ap zyPy + (14 z’)Px)
=1/d . .
(ﬁn) / ((1 + y2)Py + zyPx (63)
Hence, .
aR ar zyPy + z*Px
- =1/d . X
(ﬂa) (ﬁr) / (v’Pr+zny) (64)

If the field of view (FOV) is emall, then the ﬁecond-order terms of the image coordi-
nates, z and y, are small, and the difference between the flow fields is small as well
(see Figure 6.1). In such a case it may be very difficult, in the presence of noise,
to distinguish between these fields and to determine whether the motion is purely
translational, purely rotational or a combination of both. Note, however, that if
the FOV is large, then the second-order components of the flow field are relatively
large and, therefore, the ambiguity is more likely to be resolved.

Ambiguity in determining the motion parameters is affected not only by the
FOV, but also by variations in the surface structure. This can be concluded from
the work of Rieger and Lawton [RIES3], who examined the case of large discon-
tinuities in the depth map. In this case the differences between flow vectors near
occlusion boundaries are oriented towards the FOE of the translational field and,

therefore, the ambiguity in distinguishing between the translational and rotational

components can be resolved.

In addition, it has been experimentally shown [PRA80, LONS1, FAN83b] that
the accuracy of the estimated 3-D motion parameters is improved when the trans-
lational component of the motion is large relative to the distance of the object from
the sensor. The results can also be improved by using a large number of flow vectors

[ROA80, TSA84], and by increasing the size of the region containing these vectors
[PRASO, FANS3a].

To summarize, ambiguity (or, using another term, instability) in determining
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Figure 6.1: The flow field in (a) is purely translational, whereas the flow
field in (b) is purély rotational. In both cases the field of view is 60°.
Note the similarity of the flow fields in the central portion of the image,
where the values of z and y are small. On the other hand, the difference

between the flow fields is not negligible near the boundary of the image.
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~ 3-D information can be expected if the FOV, the depth variations, and the ratio
of the translation to the distance of the object from the camera are all small. In
| addition, local techniques, in which only the icformation in a small region of the
image is utilized, are more sensitive to noise. In the next section we will employ a
mathematical analysis in order to show that these conditions, as well as other con-
ditions, generally contribute to ambiguity in recovering 3-D motion and structure.
Combined together these are sufficient conditions for such instability. Note that the
error analyses existing in the literature are experimental and algorithm-dependent,

whereas here we develop a mathematical and algorithm-independent analysis.

VI1.1.2 Mathematical analysis
V1.1.2.1 A planar surface. In this section we restrict ourselves to flow fields

induced by a rigid motion of a planar surface given by equation (4.1): kxX+kyY +
kzZ = 1. Since
1 &k
X x_ by (65)

=X

“kz kz k3 '

1/kz , denoted by d, is the distance from the camera to the surface along the line
of sight, and the values —kx/kz and —ky/kz, denoted, respectively, by ax and

sy , represent the slopes of the surface relative to the image plane.

In the following analysis, the image is assumed to be square and the FOV is
defined to be the visual angle corresponding to each side of the image, which, there-
fore, is 2tan(fov/2) focal units. The region R corresponding to the perspective
projection of the planar patch on the image is contained in a square for which the
proportion between its side and the image side is 7, where 0 < 4 < 1. For sim-
plicity, the center of this square is assumed to be (0,0), but even if this is not the
case, results similar to those which we will obtain in this section can be derived by
expanding the flow equations around this center. 7, which we shall call the localsty

factor, will be small if the ratio of the object size to its distance from the camera is
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small relative to the image size (in focal units), or if a technique based on a local

analysis of the flow field is employed.

The flow field generated by the motion parameters {7,031} can be described
by a ¥ transformation (equations (4.3)) with the coefficients given in equations
(4.4). Let k denote the vector (kx, ky,kz) and r denote the absolute value of the
translation, which is assumed to be non-gero. Using the normalization U = I/r

and [ = rk, the coefficients of the ¥ transformation can be rewritten as:

a; =y +1zUx, (6.6a)
a2 = IxUyx — 1zU3, (6.6b)
ay = -z + lyUx, (6.6¢)
ay = —-Q0x + 17Uy, (6.6d)
as =z + IxUy, (6.6e)
ag = lyUy — 12U3, (6.6f)
a1 =0y — IxUs (6.6g)
and
as = —Qy - lyUs. (6.6h)

Employing the constraint U} + U + U} = 1, we obtain 9 non-linear equa-
tions with 9 unknowns. Usually, these equations have 2 sets of solutions [TSA84,
WAXS83|, where, of course, only one of them is the correct one. Let us now denote by
fL, {1 and { estimates of the motion and structure parameter values. We will show
that in some situations, vectors {J significantly different from the corresponding
values in each of the two exact solutions produce flow fields which are very similar
to the correct one, if combined with appropriate values of {} and i.

The basic idea is that if the region R is rather small (in focal units) and Iy, Iy
are not large, then, based on equations (4.3) and (6.6g,h), a change in ¥ has only
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a small effect on the second-order components of the flow field. Therefore, given
an arbitrary {J , we concentrate on the lower-order components, and try to'find "]
. and [ such that the correct values of the coefficients ay,...,a¢ will be maintained.
This will lead to hypothesized values of the motion and structure parameters. We
can substitute these parameters in the expressions for a7 and ag and measure the
deviation of the obtained values from the correct ones. These deviations determine
what we shall call the error field, that is, the discrepancy between the correct flow
field and that predicted from the hypothesized parameters. Note that this error field
is actually an upper bound to the ‘minimal’ error field which could be obtained for

the same J by optimizing the values of {l and | across all the eight coefficients

instead of a3,...,a6.

Given a vector [J, the equations (6.6a) to (6.6f) associated with the coefficients
ay,...,a¢ produce six linear equations with six unknowns: f1y, iy, 0z, ix, iy

and {. These equations can be represented by

Fy=a, (6.7a)

where

(-1 0 0 0 o Uy \
o1 0 0o o UOx
. o -1 0 Ox o , (6.7h)
o1 Oy 0 O
o o Ux o -0z
0

0 0 0}' —02 J
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(%) ()
Y ay
u= {;‘Z and a= % . (6.7c,d)
Ix as
iy a2
\ iz J \as )

A unique solution is guaranteed if the determinant of F, denoted by D, is

non-gero. As can easily be verified

D = U(0% + 03). (6.8)

Thus, if the translation vector is not exactly perpendicular (Jx = 0y = 0), or
parallel (07 = 0), to the image plane, then there exist {} and | which keep the
correct values of ay,...,a6. Note, however, that this solution may still be not
physically realizable if the depth constraint Z > 0 is not satisfied by one of the

depth values predicted by the vector {. We will return to this problem in the end
of this section.

The solution of the equations set (6.7) is, if D # 0,
u=Flg (6.9)

To find F~! we employ the decomposition technique in [RAL6S5]. We represent F

by
F, F
F={"' ), (6.10)
F, F,
where each of F; (i =1,2,3,4) is a 3 x 3 matrix. Then
Gy G
Fri=| ' ) (6.11)
Gs G,




where
G =A™ - I, R”Gs,
Gy = —F ' R,G,,
Gs = -G FysFy ™!

and

Gy=(F¢ - FsFl-le)_l.

(6.12a)
(6.12b)
(6.12¢)

(6.12d)

Necessary and sufficient conditions for applying this technique is that F; and F¢-—

F3F;~1F; are non-singular matrices. These conditions are satisfied if F' is non-

singular.

Employing the decomposition technique, we can now obtain

0% 0z

(-D 0 Ux0%  Ox0%

OyUz

Ox U3

o D —ﬁ}ﬁy —0}01/
-l 1 o o —0;’,02
Dl o o Uyl
0o o0 0xUz
\ 0 o Uxly

vxﬁy

-0y -0%by

Ox0% U
Ux 0

-0 0%

Substituting the definitions of u and g in (6.9),

’

=I""l

e
]

[*)

as

as

Loc

=F-l

, (—Ox +Uyliz )
Qy + Uxlz
—Qz + Uxly
Nz + Uylx
Uxix — Uzlz
\ Uyly — Uszlz J

~OxUyl; OxUyU;
-0xﬁz
-O0y0z  OyU;

. (6.13)

(6.14)

where U, 0 and [ are the correct values of the motion and structure parameters.

Multiplying F~! by g, and using the notations exy = OxUy — OyUx, exz =
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OxUz - OzUx and eyz = 0y Uz — OzUy , we can derive:
Oyexy (Oylx - 0x'y) vz, 6
= , 15
A Oxexy (Oxly — f/ylx) €xz
fy =0 Iz, 6.15b
y =0y + 0,02 + 57) Uy 2 (6.15b)
exy (Oxlx + Oy ly)
’ .15
fiz=0;+ 0302 (6.15¢)
(Uxe + Oy Uy )lx — exyly 6.15d
Ut + 02 ’ (6.154)
(oxe + Oy Uy)ly + exylx 6.1
0%+ 02 (6.15¢)
and
s Uy exy (Oylx — Oxly)
lz==Iz+ - . 6.151
270, ° U2(0% + 02) (6.151)

The error field corresponding to the values J, {} and [ is the deviation between
the flow field predicted by these values and the correct field. Referring to equations
(4.3), its value at the (z,y) pixel is:

A Aarz? + A
ap) _ (Aarz®+ Aggzy ’ ©.16)
APy Aarzy + Aagy?

where Aa; and Aag are the errors induced in the coefficients a7 and ag. Recall
now that the distance, denoted by d, from the camera to the surface along the line
of sight is 1/kz, and the slopes, denoted by sx and sy, of the surface relative to
the image plane are, respectively, —kx/kz and —ky /kz . Hence,

rld=1z, sx= —Ix/lz and sy = =ly/lz. (6.17a,b,c)
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Thus, using equations (6.6g,h) and (6.15), we can obtain:

Aay =({ty — Uzix) - (Qy — Uzlx)

=0x6xz + Oyeyz Iy + ~OxOylx + (1 - 0)ly ex exzlz
0% + 02 020 + 02) Y70,

—r[Oxexz +Overz ~UxOyax + (1 - 0%)sy €xz
=— = + = - € .
2l R A0+ T, ] (618

and
Aag =(—ﬁx - ffziy) - (-0x - Uzly)

_Oxfxz +Uyeyz Iy (03{ ~ 1)ix + OxOyly evzlz
0% + 02 0,05 +02) Y Uz

—r [0x6xz + ayéYz (0?{ —1)sx + 0X0Y’Y exy + —— GYZ] (6.18b)

=TT 0 +0z 0,02 +03) Oz

Therefore, if the translation is not large relative to the distance of the surface from
the camera (i.e., r/d is small), and the surface is not very slanted (i.e., sx and
sy are small), then Aa7 and Aag are not large for vectors [ in a relatively large
neighborhood of U. If, in addition, the region R is small, then z and y are small
as well, and thus the deviation (Aag,APe) is very small. Under these conditions,
any error surface corresponding to possible values of {J can be expected to be very
flat around the correct solution U and, therefore, the process of recovering 3-D

motion and structure will be very unstable and sensitive to noise.

To determine more precisely how these instability problems depend on factors
related to the camera and the flow field, we will normalize the error field given in
equation (6.16) to the noise level and thus, for each vector {J , obtain a measure of
a signal-to-noise ratio (SNR). Note that the error field is used as a ‘signal’ measure,

gince high values of this field reduce ambiguity. The probability that the vector i
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will be selected as the correct solution is a decreasing function of the corresponding
SNR values. Hence, if these values are small for a large set of translation axes, then

instability in recovering 3-D information can be expected.

The noise in the flow field is assumed to be additive, its expectation is 0 and its

standard deviation, in focal units, is

op= a,w, (6.19)

where the image contains N x N pixels and o, is the standard deviation in pixel
units. To obtain an SNR measure we divide the error field by the square root
of the sum of the second moments of the noise samples, which are assumed to be

independent, in both axes. Thus, for each pixel (z,y) where a flow vector is defined,

\/ (Aarz? + Aagzy)? + (Aarzy + Aagy?)?
2V/20p tan(fov/2)/N

snr(z,y) = (6.20)

Employing the definition, in the beginning of this section, of the locality factor 4,
z and y satisfy the inequalities:

|z| < v tan(fov/2), lyl < vtan(fov/2), (6.21a,b)

and, therefore,

N+’ tan(fovo/2)(|Aa1| + |Aas])

30, (6.22)

anr(z,y) <

Even when the SNR values are small, it may be possible to successfully recover
the desired parameters, if there exist many flow vectors and the noise samples
agsociated with them are independent. However, in many cases, especially if 4 and
N are small and the flow field is sparse, the number of flow vectors is small. In
addition, if the flow field is dense, then usually the noise samples in neighboring
pixels are highly correlated. This is the case, for example, if the noise is induced

by a round-off error.
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Before we can conclude this section we still have to deal with the depth con-
straint. This constraint is satisfied if, for any pixel (z,y) in the region R, the
estimated value of r/Z is positive, that is, the following inequality, derived from
(4.1), holds:

iz+ix2+iyy> 0. (6.23)

Substituting ix, Iy and {7 with the corresponding expressions in equations (6.15)
and dividing by Iz, we obtain the equivalent constraint:

Uz  exy(Oxey = Oysx) _ (OxUx + OyUy)(exz +ovy) +exv(exy —ovz)

Oz 0z(0% +03) 0% + 0%

(6.24)

If the slopes sx and sy are small and the region R is small, then, usually, the
gecond and third terms in (6.24) are small and the inequality is satisfied by vectors
{J in a large neighborhood of U. Note that anyway these conditions are among

those already specified as contributing to ambiguity.

To conclude, the following conditions contribute to ambiguity in recovering 3-D

motion and structure parameters:
e The FOV is small.
e The locality factor 7 is small.

o The planar surface is at most moderately slanted.

The object is far away.

e The absolute value of the translation is small.

e The resolution of the image is coarse.

The noise level (in pixels) is high.

e The flow field is sparse.
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e The noise values in adjacent flow vectors are highly correlated.

YV1.1.2.2 The general case. Referring to equation (4.2), the ‘reciprocal

depth’ map, 1/Z, can be generally represented by

7(_:37 = kz + kxz + kyy + €(z, y) (6.25)

where £(z,y) is the difference between 1/Z and the approximating linear function
kz + kxz + kyy. Using this representation and the normalization A = ré, we can
rewrite the flow field equations (3.5):

a(z,y) = ae(z,3) + (Ux ~ =Uz)X(z, 3) (6.263)

and
B(z,y) = Ba(z,y) + (Uy — yUz)\(z,y), (6.26b)

where (ag,fy) isthe ¥ transformation corresponding to the planar surface ky X+
kyY +kzZ =1.

Given [, we can usually choose rotation parameter values f}, and normaliged
plane parameter values z, which maintain the correct geroth and first order compo-
nents of the ¥ transformation. H, in addition, for each flow vector we choose the

value of A as the correct one, then the error field corresponding to these motion
and structure parameters is

Aag AUx — zAUg
( ) + ( ) Az, y), (6.27)
aps ) "\ avy —yau, ) 1

where Aag and APy are the errors associated with the planar surface (equation
(6.16)) and (AUx,AUy,AUz) is the error in the normalized translation vector.
Therefore, we can expect instability in determining the 3-D motion and structure if,

in addition to the conditions associated with planar surfaces, the function 1 /Z can
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be reasonably approximated by a linear function, i.e., A(z,y) is small. Note that
this condition means that the environmental surface can be relatively approximated
by a planar surface, that is, the distance betwecn the two surfaces is small relative
to the distance from the sensor to the real surface. This approximation can usually
be improved as the FOV or the locality factor 4 are reduced, unless there is a
significant discontinuity in the depth map.

VI1.1. es

In this section we demonstrate the influence of three parameters on the degree
of instability in recovering 3-D information from the flow field induced by a rigid
motion of a planar surface. These parameters are the locality factor 7, the ra-
tio r/d of the translation magnitude r to the distance d from the camera to the
surface along the line of sight, and the slope sx of the planar surface. The demon-
stration is based on several examples, where in each example a densge flow field is
simulated. The technique presented in Chapter V for computing the error function
y(U) (equation (5.17)), which is an approximation to the average value of the
minimal error field corresponding to U, is then employed. The sharpness of this
function around the correct value determines the sensitivity to noise in estimating
the translation axis and, therefore, also in estimating the rotation parameters and

the environmental structure.

In all the examples the FOV is 60°, the number of pixels is 128 x 128, the
camera translation is T = (0,0, 10) and the rotation is (0,0,0). In the first three
casges the surface, defined by the equation Z = 100, is parallel to the image plane.
The locality factor v, on the other hand, is different in each of these experiments:
1 in the first, 1/2 in the second and 1/4 in the third. The contour maps in Figures
6.2, 6.3 and 6.4 show the drastic change in the sharpness of the corresponding
error functions. Recall that these functions are defined on the unit hemisphere

X ={U:|Ul =1, Uz > 0}. The spherical coordinates (¢,6), employed in

-3
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equation (5.27) for representing this hemisphere, are used in the figures as polar
coordinates. The contours are labeled by the corresponding error values, given in

pixels, and the correct solution is marked by a black dot.

In examples 4 to 7 we choose again 4 = 1, but the planar surface is varied. In
examples 4 and 5 the surface is still parallel to the image plane, but its distance
from the camera is 200 in example 4, and 400 in example §. Thus, the influence
of the relative translation magnitude r/d is demonstrated by examples 1, 4 and 5,
in which r/d is 0.1, 0.05 and 0.025, respectively. The results in Figures 6.2, 6.5
and 6.6 clearly show that smaller values of r/d are associated with higher levels of
ambiguity.

In examples 6 and 7 the distance d is kept at 100, but the surfaces, defined
respectively by Z = 100 + 0.414X and Z = 100 + X, are slanted: 22.5° in
example 6 and' 45° in example 7. Figures 6.2, 6.7 and 6.8 show that the error
function becomes sharper as the surface becomes more slanted. The basic reason for
this relation is the depth variation associated with slanted surfaces. This variation
helps in resolving the ambiguity in distinguishing between the translational and
rotational components of the flow field, since the translational component is affected
by variations in depth, while the rotational component is independent of the depth

values.

Note the second accurate solution in Figures 6.7 and 6.8, which corresponds,
according to equations developed in [WAXS3], to a situation where the surface
is non-slanted but the translatory motion is not along the line of sight; instead,
the motion deviates by 22.5° and 45°, respectively, from this line. The relative
translation along the line of sight, that is, Tz/d, is still 0.1 for these alternative
golutions. Since in these cases the translational motion along the X -axis is non-
gero, the ratio r/d is larger than 0.1, specifically 0.1082 in experiment 6, and 0.1414

in experiment 7.
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Figure 6.4: The error function in example 3. The surface is non-slanted, r/d =
0.1,and 4 =0.25.
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Pigure 6.7: The error function in example 6. The surface is slanted (22.5°),
r/d = 0.1, and 7 = 1. Note the second solution which corresponds to a non-
slanted surface and a translation not along the line of sight (the angle between the

translation vector and the line of sight is 22.5°).
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Pigure 6.8: The error function in example 7. The surface is slanted ( 45° ), r/d=
0.1, and v =1. Thesecond solution corresponds again to a non-slanted surface and

a translation not along the line of sight (this time, the angle between the translation

vector and the line of sight is 45°).
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The solution in experiment 1 and the alternative solutions in experiments 6
and 7 correspond to situations where the surface is parallel to the image plane.
Yet, there is a large difference in the sharpness of the error functions around these
solutions. This difference may partly be due to the change in r/d. The second
factor which apparently influences the degree of ambiguity in these cases is the
deviation between the line of sight and the translation axis. At least in the case of a
non-slanted planar surface, it seems that the instability is reduced as the translation

vector increasingly deviates from the line of sight.

V1.1.4 Constraints and parameters which can be determined

In ambiguous situations, when the surface can be relatively approximated by
a plane, we can still recover useful information in terms of partial constraints on
the motion and structure parameters. Usually, the coefficients of the Oth and 1st
order components of the flow field, that is, the coefficients ay,...,a¢ of the ¥
transformation (see equations (6.6a-f)), can be reliably estimated. Integration of
these constraints over a time sequence of flow fields may, eventually, resolve the

ambiguity and result in a unique interpretation.

If a planar patch is independently moving and the camera is stationary, then
the ambiguity is, at least partially, the result of using a camera coordinate system.
In this coordinate system a; and a4 are sums of the X and Y translations (nor-
malized by the distance d from the camera to the object along the line of sight) and
rotations. It may be very difficult, however, to determine the correct decomposition
to the rotational and translational components. On the other hand, it is possible
to define an ‘object coordinate system’ which is parallel to the camera coordinate
system, but its center is shifted to the surface along the line of sight. In this coor-
dinate system a; and a4 are, respectively,the X and Y translations normalized

by d. Hence, these normalized translations can be reliably recovered.
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Let us now examine the situation where at least one of the two following condi-
tions is satisfied: (a) the translation is along the line of sight, that is, Ux = Uy =0;
(b) the surface can be relatively approximated by a planar surface parallel to the
image plane, that is, Iy = ly = 0. Note that this situation is very common in
real scenes. Employing equations (6.6¢c,e), a3 = —as in this case, and 1z can
be estimated by (as — as)/2. In addition, a; = ag and Tz, normalized by the
distance to the object along the line of sight, can be estimated by (a2 + ag)/2.
In this situation, this is the inverse of the ttme-to-collision and, therefore, we can
usually obtain a reasonably accurate estimate of this important parameter, even

when ambiguity in recovering 3-D information does exist.

In order to show how the situation discussed above can be detected, we wi‘ll
prove that when a3 = —as and a2 = ag, then Ux = Uy =0 and/or Ix =ly =0.
That is, the first equalities are not only necessary but also sufficient conditions for
the latter ones. To prove this, notice that the equalities a3 = —as and a; = aq,
combined with equations (6.6b,c,e,f), lead to the equalities:

lyUx = =ixUy, (6.28a)
IxUxy = lyUy. (6.28b)

Assuming that Ux, Uy, Ix and ly are all non-zero, we can divide each side of the
first equation with the corresponding side of the second equation, and thus obtain
ly /Ix = —Ix/ly which leads to a contradiction: (ly/Ix)? = —1. Therefore, at
least one of the quantities Ux , Uy, {x, ly must be 0. Suppose now that Uy = 0;
examining equations (6.28), it follows that IxUy = 0 and ly Uy = 0 and, therefore,
Uy =0 and/or Ix = ly = 0. Similarly, each of the conditions Uy =0, Ix =0,
ly = 0 leads to the desired result.

Another approach which may be taken in order to deal with instability in recov-
ering motion parameters is based on representing possible values of these parameters

by a probabilistic distribution function. Such a function can be defined, for example,

-3
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on the unit hemisphere ¥, using the computed values of & .

VI1.2.1 Introductory discussion

We demonstrated in Section VI.1 that in some situations there exists a large
set of motion parameters which, assuming the presence of noise, are consistent
with the flow field generated by a rigidly moving object. Suppose now that two
independently moving objects are given. If the two corresponding solution sets of
motion parameters are large, then the possibility that these sets intersect each other
is not negligible. Such an intersection corresponds to 3-D motion parameters which
are consistent with both objects. In this case the optical flows can be interpreted as
resulting from one rigidly moving object. Note that, to the best of our knowledge,

this ambiguity has not been addressed yet in the literature.

To demonstrate the possibility of ambiguity in decomposing the flow field into
sets corresponding to rigid objects, we wish to show that there exist non-trivial
situations in which we can find motion parameters compatible with the flows gen-
erated by two independently moving objects. If the surfaces of the objects can be
relatively approximated by planes, then, following section VI.1.2, we can examine
this possibility of ambiguity by trying to compute motion and struc parameters
which are consistent with the coefficients a1,...,0¢ of the associated ¥ tra.nsfori
mations. The resulting errors in the second-order components of the optical flows
will be small if, for example, the field of view is small enough. Since the six motion
parameters U and 3 should be the same for both objects but the three structure
parameters can be different, we obtain, including the constraint U +UL+U2 =1,
13 equations with 12 unknowns. It is reasonable to expect that in many situations

these equations do have a solution.
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VI1.2.2 Analysis of a gpecific case

Continuing the introductory discussion, let us now examine, as we did in Section
V1.1.4, the common situation where, for each of the two objects, at least one of the
following conditions (not necessarily the same) must be satisfied: the translation is
along the line of sight, or the surface can be relatively approximated by a planar
surface parallel to the image plane. In such a situation Ux=Uy=0o0rlyx =
ly =0, and Ul = U} =0 or I = li, =0, where the parameters associated with
the second object are marked by the symbol ¢'’. In addition, let us assume that
Nz = 0% and that the signs of Uz and U} are the same, where Uz = 0 if and
only if U4 = 0. Finally, to guarantee a solution, it is assumed that if Uz # 0 and
IzUz = 1,U%, then Qy +1zUx = Q) + I,U% and —Qx +IzUy = Q% + 13Uy

Employing equations (6.6a) to (6.6f), we can obtain the following equations,
related to the first object, where the unknowns are denoted by the symbol **” :

fiy +iz0x = a1 (= 0y +1zUx), (6.29a)
ixOx — i307 = a2 (= —12U3), (6.29b)
1z + Iy Ox = a3 (= -012), (6.29¢)
—fix + {20y = aq (= —=Ox + 1zUy), (6.20d)
fiz + IxUOy = as (= 012) (6.29¢)
and
iyOy — 207 = as (= =12U32). (6.291)

A similar set of equations can be obtained for the second object.

Let us start the solution process by choosing fi; =0z, Iy = fy =0and I} =
i'y = 0, thus satisfying equations (6.29c) and (6.29¢), as well as the corresponding
equations associated with the second object. We proceed by examining the case

Uz # 0, in which we constrain Uz to be non-zero and to have the same sign as the
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sign of Uz . Thus, from (6.29b) and (6.29f) we can obtain
. U
Iz =1z 5% (6.30)
Z
Substituting this expression in (6.29a) and (6.29d) yields
fiy + 13Uz, = a; (6.31a)
and
~fix + 17Uzt = ay, (6.31b)

where (1h,,1h,) = (ﬁx/ﬁz,ﬂy/ﬂz) is the corresponding FOE. Similarly, we can

obtain the following equations, corresponding to the second object:

Qy + LUm, = d, (6.32a)
and
~Qx + lyU%h, = a). (6.32b)

Combining (6.31) with (6.32) yields

ay —zUzh; = o} — l5U%, (6.33a)
and
a4 — lzUzrhy = o} - I Uyh,. (6.33b)

I lzUz = 13UY, then, according to our assumptions, a; = a} and a( = a}, and,

therefore, we can choose arbitrary values of #, and my . Otherwise,

. _  aj—ay
me = m (6.343)
and
. Gy —ay
my = 7 Ay 7o (6.34b)
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The values of {lx and {ly can now be computed from equations (6.31) or (6.32).

Let us now examine the complementary case where Uz = 0. In this case, to
gatisfy equations (6.20b) and (6.29f), we choose Uz = 0. Combining equations
(6.29a) and (6.20d) with the corresponding equations associated with the second

object yields
ay —iz0x = a} - i'zf]x (6.35a)
and
a¢— 70y = af — i'szy. (6.35b)
Therefore,
(i'z - iz)ﬂx =a}) —a (6.36a)
and
(Pz - iz)oy = aj — 4. (6.36b)
Thus, since U% + fIf, =1,
b — iz =2\f(a] —a1)? +(ag - as)?. (6.37)

If a; = @} and a¢ = ay, then Iz = "z, and any Uy and Uy which satisfy

0% + U2 =1 are legitimate solutions. Otherwise, that is, if a) # @) or a4 # 6y,

then ,
ﬁ = _____ﬂ_:_a_l———— 6.38
XS I —aP s @) (6.382)
and
'—
Oy 42 (6.38b)

TSI —m) T (3 -6

To finish the solution process, we should choose iz and f'z which satisfy the con-
straint (6.37) and, then, using equations (6.29a) and (6.29d), determine the values
of iy and iy . It is optimal to select the values of Iz and f’z such that the

resulting errors in the coefficients a7 and ag of the ¥ transformations will be

minimal.
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V1.2.3 An example

In order to demonstrate how different motions can be interpreted as one rigid
motion, let us examine the case where two planar patches, parallel to the image
plane, are independently translating. Both translations are assumed to be parallel
to the image plane, but one object is translating in parallel to the X-axis generating
flow values of (—0.04,0) (in focal units), and the second object is translating in
parallel to the Y-axis generating flow values of (0,0.03) (see Figure 6.9). Note
that a; = —0.04, a = 0.03 and the other coefficients of the ¥ transformations

associated with the objects are 0.

Ay

0.03T

B

3

0.04

Pigure 6.9: The optical flows induced by the

translation of two objects.

We wish to recover motion parameters {J and {} which are compatible with
both sets of flow vectors and with structure parameters [ and J corresponding,
respectively, to the first and second object. Employing the results in Section VI.2.2
for the case Uz = 0 (equations (6.38)), we have §J = (+0.8, 40.6,0), 1z =0,
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ix =iy =0, i& = i'y =0 and i‘z — iz = £0.05. In addition, using equations
(6.29a) and (6.29d), fix = +0.6iz and €y = —0.04 7 0.8];.

Since {lx and fly are exactly the errors in the coefficients a7 and ag of the

¥ transformations, we wish to minimige
x(iz) ¥ 0% + 6 = 0.36 2 + (0.04 + 0.81;)2. (6.39)

Let us now distinguish between the cases i}, > iz and I, <iz. In the first case
0 = (0.8,0.6,0) and the first derivative of x(Iz) is 2iz + 0.064. Since Iz is
constrained to be positive, the minimum of x(iz), obtained for iz =0, is, in this
case, 0.0016. Note that iz = 0 means that the object is at infinity, which is, of
course, unrealistic; however, taking a sufficiently large distance of the object from

the camera, iz can be arbitrarily close to 0.

In the second case I = (—0.8,—0.6,0), the derivative of x(iz) is 20z — 0.064
and {; should be at least 0.05. Hence, the minimum of x(iz), achieved for
iz = 0.05, is, in this case, 0.0009. The optimal solution is, therefore, I =
(-0.8,-0.6,0), [ = (0,0,0.05), ' = (0,0,0) and {} = (-0.03,0,0). Assuming
small second order terms of the rotational component, this solution can be graphi-

cally represented by Figure 6.10.

Since ﬁy = 0, there i8 no error in a7; on the other hand, there is an error in
ag which is —f}y = 0.03. The corresponding discrepancy between the correct flow
field and that predicted from the above parameters is small if the FOV is small,

or both the size of the objects and their distance from the line of sight are small

relative to their distance from the camera.

We have just shown that the rigidity assumption is not appropriate when the

flow field is noisy, that is, the consistency of a set of flow vectors with the same
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A (0, 003)
- i
V=V
V=V 4V
-
(-004,0)
d

(-0.04, -0.03)

Figure 6.10: Graphical representation of the op-
timal solution. The flow vectors corresponding
to the first and second object are denoted by ¢
and o', respectively. The rotational component of
the optimal solution is yp, while the translational
component corresponding to the first object is yp
and the translational component corresponding to
the second object is (0,0).

3-D motion parameters does not reasonably guarantee that they are really induced
by one rigidly moving object. Observing, in addition, that almost any set which
contains less than 5 flow vectors is consistent with some ¥ transforrﬂation, we
propose a modified assumption: a set of at least 5 adjacent flow vectors, which are
compatible, up to the estimated noise level, with a rigid motion of a planar patch,

will be assumed to be snduced by one rigidly moving object. This assumption has
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been successfully applied (see Chapters IV and VII) to segment noisy flow fields.

In some situations, however, the consistency of two sets of flow vectors with the
same motion parameters is still a strong evidence for the hypothesis that these sets
are generated by one rigidly moving object. This is the case, for example, when
accurate motion parameters can be separately recovered for each set. In such a

gituation, similarity of the results is not likely to be accidental.

Nevertheless, in general we still must accept the possibility of ambiguity in
grouping flow vectors into sets corresponding to rigidly moving objects. Hence, as
has already been proposed in Section V.2, the interpretation of the flow field should
result in a set of possible decompositions, rather than only one decomposition. Each
hypothesized object can be assigned a probability value, based on the number of
segments composing the object’s flow and on the degree of ambiguity in separately

recovering the motion parameters associated with each of them.
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CHAPTER VI

EXPERIMENTS

In this chapter we present five experiments which demonstrate our proposed
scheme for the interpretation of optical flow fields. The first two experiments are
based on simulated data, and the last three are based on images taken from a video
camera in the UMASS Robotics Lab. In all the experiments, values that appear in
translation vectors and surface equations are given in focal units, whereas rotation
parameters are given in degrees and flow vectors are given in pixel units. Actually,
the flow values in the experiments based on simulated data are rounded to integers,
thus inducing noise uniformly distributed between —1/2 and +1/2 pixels. The
methods employed for computing the real data in experiments 3, 4 and 5 also
produce flow values given in integer units, hence the noise level in these experiments
should be at least as high as in experiments 1 and 2 (actually it is higher). The
image, in all the experiments, contains 128 x 128 pixels. The field of view of the

camera is 45° in the experiments with simulated data and 30° in the experiments
with real data.

VILL Experiment 1

The first experiment simulates a translatory motion of the camera, represented
by the vectors Tz = (0.,0.02,1.) and 0, = (0°,02,0°). The environment consists
of two distinct surfaces: a plane described by the equation Z = 50Y + 100 and an
ellipsoid represented by (X —2)? + [(Y —2)/4]2 4 (Z ~ 5)2 = 1. These surfaces
are displayed in Figure 7.1a. A flow vector with a weight of 1 is computed for each
pixel, unless the corresponding ray of light does not intersect any of the surfaces,
in which case the related weight is assumed to be 0. A sample of the flow field is

shown in Figure 7.1b.

91
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The results of the three stages of the segmentation, shown in Figures 7.1c, 7.1d
and 7.le, demonstrate the role and importance of each of these stages. The over-
fragmentation in the first stage is due to the iarge second-order terms of the flow
field. The non-smooth and repetitive shapes of the components were caused by the
round-off error. In order to reduce the computational cost of the first and second
stages, the grouping of vectors belonging to small connected sets was postponed to
the third stage. A few vectors were still not mergéd into any of the segments in
this last segmentation stage, because of incompatibility with the corresponding ¥

transformations.

The two segments, found in this process, were determined to be consistent with
the same rigid motion. The error function &y (equation 5.17), defined on the unit
hemisphere {U : |U| =1, Uz > 0}, was computed using 64 vectors from each seg-
ment. The spherical coordinates (¢,8), utilized in equation (5.21) for representing
the unit hemisphere, are used as polar coordinates for displaying the function &y in
Figure 7.1f. Recall that &y(U) is approximately the average deviation between the
measured flow field and the one predicted by the optimal motion and depth values
when the translation axis is constrained to be either U or —U . Employing the non-
uniform sampling procedure (which is not represented in the display of Figure 7.1f)
for minimizing &y , the motion parameters were determined, after two iterations, to
be U = (0.0017, —0.0204, —0.9998) and 03 = (—0.03°, —0.02°, —0.02°). Note that,
assuming a stationary environment, the camera motion is given by QC = —-U and

3c = —§}. These results are in a good agreement with the correct values; the error

in determining the translational axis is only 0.1°.

Substituting the computed motion parameters in equation (5.10), the ‘reciprocal
depth’ map, that is, the function r/Z shown in Figure 7.1g, was obtained. Errors
in the depth values are mainly a direct result of the noise induced by rounding the
flow values to integers. They are especially large near the FOE which is close to the

center of the image. The average of the relative errors in the estimated values of

)
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Figure 7.1: Experiment 1. (a) The simulated environment. Lines corresponding
to constant values of X, as well as lines corresponding to constant values of Y, are
drawn. The environment is stationary, but the camera is moving: I; =(0.,0.02,1,)
and 2; = (0.°,0.°,0.°).
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Figure 7.1, continued: (b) A sample of the flow field. The initial point of each
vector is marked by a dot. The length of the vectors is scaled by 0.25. The FOE is

marked by a equare.
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Figure 7.1, continued: (c) Components, represented by line patterns, which were
determined in the first step of the segmentation. The small areas with the densest

pattern correspond to vectors which are not contained in any of the components,



Pigure 7.1, continued: (d) Segments obtained by merging components consistent
with the same ¥ transformation.
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Figure 7.1, continued: (f) The error function &y , shown inverted, defined on the
hemisphere {U : |[U| =1,Uz 2 0}. The spherical coordinates (¢,8), employed in
equation (5.21) for representing this hemisphere, are used here as polar coordinates.
The range of the function &y is [0.275, 8.605] (in pixels); that is, 0.275 pixels is
the average error value, per flow vector, associated with the peak of the displayed
surface (tliis peak corresponds to the estimated translation axis), and 8.605 is the
error value associated with the reference plane at the bottom of the surface. The

(—0.0017, 0.0204, 0.9998) and

Ue

solution found by minimiging this function is

(0.03°, 0.02°, 0.02°).
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Pigure 7.1, continued: (g) The function r/Z, where r is the length of the trans-
lation vector and Z is the environmental depth. The length of each bar represents
the relative value of r/Z at the image pixel corresponding to the attached dot.
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r/Z is 111.1% for vectors which are not more than 16 pixels away from the FOE.
The corresponding average for all the other vectors is only 8.4%. The total average
of the relative errors, calculated for the entire depth map, is 12.3%. Notice that
these errors can considerably be reduced by using smoothing techniques or fitting

parameterised surfaces to the depth map.

VIi.2 Experiment 2

In the second experiment, the camera motion is composed of both translation
and rotation, described by T'c = (0.5,0.5,1.) and @, = (1.15°,—1.15°, 2.86°).
The environment contains an independently moving sphere, defined by (X —9)2 +
(Y - 9)2 + (Z — 30)> = 4. An object coordinate system is defined, which is
parallel to the camera coordinate system, but its origin is in the sphere cen-
ter (9,9,30). The motion of the object, in this coordinate system, is repre-
gsented by To = (0.5,—0.5,0.) and o = (0°,0°,—11.46°). Thus, the object
is trapslating in parallel to the image plane and rotating around an axis per-
pendicular to this plane. The stationary environment is composed of two sur-
faces: a plane described by Z = X + 0.5Y + 50 and an ellipsoid described by
[(X +3)/2]2 + (Y +1)/5]* + [(Z — 20)/2]? = 1. These surfaces and the moving
object are displayed in Figure 7.2a. A 32x32 sample of the flow field corresponding

to this scene is shown in Figure 7.2b.

The results of the three segmentation stages are shown in Figures 7.2c, 7.2d and
7.2e. The fragmentation in the first stage is not excessive, because the second-order
terms of the ‘W transformations associated wiih the segments are small relative to

those in the first experiment.

The two segments associated with the stationary environment were determined
to be consistent with the same rigid motion, while no rigid motion compatible

with the third segment was also found to be consistent with one of the other seg-
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ments. Thus, the decomposition of the flow field into sets corresponding to in-
dependently moving objects could be uniquely (and correctly) determined. The
error function &y corresponding to the stationary environment is displayed in Fig-
ure 7.2f. The associated motion parameters of the camera were determined to
be U, = (0.3899, 0.4037, 0.8277) (the corresponding actual values were U, =
(0.4082, 0.4082, 0.8164) — an error of 1.2°) and fi, = (1.17°, —1.12°, 2.83°).

The depth map of the stationary environment is represented by the function r/Z
in Figure 7.2g. Again, the relative errors in r/Z are mainly a direct consequence
of the round-off errors in the corresponding flow values. Their average value, in
this experiment, is 14.7%, while the corresponding average for vectors which are
within 32 pixels of the upper right corner of the image (which is close to the FOE)
is 79.1%.

The error function corresponding to the independently moving object is shown
in Figures 7.2h and 7.2i. This function is very close to its minimal value in a
large portion of the search space, thus demonstrating the ambiguity in recovering
motion parameters from a noisy flow field, which is discussed in Section VI.1. The
main reason for the ambiguity in the current case is the small size of the sphere’s
projection on the image, since the extraction of the 3-D motion can be based in
such a case only on local information. In additioh, the depth variation is small
relative to the distance of the object from the camera. The correct parameter
values of the motion of the object relative to the camera are, in camera coordinates,
Uop = (—0.7809, 0.3471,-0.4338) and Dy = (~1.15°, 1.15% —14.32°), while
the estimated values were determined, after one iteration, to be completely different
(see Figure 7.2i): {o; = (0.7025,-0.4661,-0.3932) and ), = (—5.96°, —9.37°,
—9.13°) . The error measure associated with the correct parameter values is indeed

larger than the error measure associated with the estimated values, although only

slightly. Note the somewhat symmetric shape of the error surface in Figure 7.2i.
This may be related to the duality of planar surface solutions, because the aphere
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Pigure 7.2: Experiment 2. (a) The simulated environment, graphically represented
by lines corresponding to constant values of X and Y. The motion of the camera
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Figure 7.2, continued: (b) A 32 x 32 sample of the flow field. The vectors are
scaled by 0.5. The FOE associated with the camera motion is outside the image,

near the upper right corner.
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to the stationary environment. The range of the function is [0.281, 2.710]. The
solution obtained by minimising this function is {'; = (0.3899, 0.4307, 0.8277)

Figure 7.2, continued: (f) The error function &y, shown inverted, corresponding

E . E . E_. E__.

(1.17°,-1.12°, 2.83°).

and Qc=
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Pigure 7.2, continued: (g) The depth function r/2 corresponding to the stationary
environment. The round-off error has a strong effect, especially in the upper right

corner, near the focus of expansion.
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Figure 7.2, continued: (h) The error function &y, shown inverted, corresponding
to the moving object. The range of this function is [0.257, 0.390]. The eolution found
by minimiging this function is Yo = (0.7925,—0.4661,-0.3932) and Do =
(—5.96°, —9.37°, —9.13°) .
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Pigure 7.2, continued: (i) The error function corresponding to the sphere is shown
again, this time by using a contour map. The contours are labeled by the symbols
‘A, ‘B’, ‘C’, etc. which represent, respectively, error values (in pixels) of 0.26, 0.27,
0.28, etc. The correct FOE is marked by a dot, and the computed FOE is marked

by a cross.

_3
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can be relatively approximated by a plane (see Section IV.1).

YI1.3 Experiment 3

The third experiment demonstrates the ability of our scheme to interpret sparse
flow fields. This experiment is based on real data, originally utilized in [RIES3],
which is shown in Figures 7.3a and 7.3b. The scene contains two textured cylinders
(oriented vertically and positioned on the left and right sides) in front of a textured
Plane parallel to the image plane. The camera was translated approximately in
the direction of the Z-axis (U, v (0.0261, 0.0249, 0.9993)), and then rotated
to the left about its Y-axis. Figure 7.3c shows the flow vectors determined by
correlating windows which were centered at interesting points extracted from the
image [RIE83]. The weight assigned to each vector is 1, since no reliability measure

was computed.

The results of the segmentation process are shown in Figure 7.3d. Note that
these results were already produced by the first segmentation stage, since the three
surfaces can be relatively approximated by planar surfaces (see Section IV .1) which
are parallel to the image plane and, therefére, the flow field corresponding to each

of them is compatible with an affine transformation.

The three segments are consistent with. the same camera motion. Figure 7.3e
displays the corresponding error function 6y . Assuming stationary environment,
the recovered motion parameters of the camera are U = (~0.0079, 0.0181, 0.9998)
and {15 = (—0.1°,~1.16°, 0.01°). The error in determining the translational axis
is 2°. This relatively large error may partly be due to the use of the approximating
velocity equations (3.5) instead of the accurate diéplacemeht equations (3.11), while
the values of Tz/Z are relatively large for the left and right surfaces.

The three distinct surfaces in the environment and their relative distances from



Pigure 7.8: Experiment 3. (a) The first intensity im-

age. (b) The second intensity image.
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Pigure 7.8, continued: (c) The flow field produced in [RIES3]. The vectors are

scaled by 0.5. The FOE is marked by a square near the image center.
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Pigure 7.8, continued: (d) Final segmentation. Each segment is represented by a

distinct shape; the black dots correspond to flow vectors which are not contained

in any of the segments.
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Pigure 7.3, continued: (e) The error function &y shown inverted. The range of
the function is [0.356, 3.571]. The solution obtained by minimiging this function is
Uc = (—0.0079, 0.0181, 0.9998) and fic = (-0.1°,-1.16°, 0.01°).
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Pigure 7.3, continued: (f) The estimated depth function r/Z . The correct FOE

is marked by a square, and the computed FOE is marked by a circle.
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the camera can be perceived in the depth map in Figure 7.3f. It is evident that
the surfaces on the left and right sides are much closer to the camera than the
central surface; the average values of r/Z for the left, right and central surfaces
are, respectively, 0.1049, 0.1036 and 0.0356. It is also clear that the depth variations
for the left and right surfaces are small compared to their distance from the camera;
the standard deviations of r/Z values for these surfaces are, respectively, 0.0079
and 0.0083. Notice, however, the relatively large variation in the depth values
computed for the central surface (standard deviation of 0.0152), whereas the actual
values are approximately constant in this area. These errors can be related to the
location of the FOE in the region corresponding to this surface, and to the error in
estimating the FOE location; as in experiments 1 and 2, they are particularly large
near the computed FOE (see Figure 7.3f).

Y1l.4 Experiment 4

Figures 7.4a and 7.4b are images taken from a camera translated in the direction
of its X-axis. The scene mainly contains a coffee can in the front and a plant in the
background. The flow field (Figure 7.4c) and a related confidence measure (Figure
7.4d) were computed employing a technique developed by Anandan [ANA84]. The

confidence values were used for weighting the contributions of the flow vectors.

The four segments in Figure 7.4e were already'obtained in the first segmen-
tation stage, because, as in experiment 3, the surfaces are approximately parallel
to the image plane and the flow field in each of them is compatible with an affine
transformation. The segments roughly correspond to distinct surfaces in the image.
Their boundaries are inaccurate, however, because of errors in the given flow field,

especially at occlusion boundaries and in homogenous areas.

All the segments were found to be consistent with the same motion parameters.

The corresponding error function is shown in Figure 7.4f. The optimal motion pa-



Figure 7.4: Experiment 4. (a) The first intensity im-

age. (b) The second intensity image.
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Figure 7.4, continued: (c) A 32 x 32 sample of the computed flow field. The

vectors are scaled by 0.33.



Pigure 7.4, continued: (d) The weight plane.
values are represented by bright gray levels.
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Figure 7.4, continued: (e) Final segmentation. The white areas correspond to
flow vectors assigned weight 0. The areas with the densest pattern correspond to

unsegmented vectors.
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Pigure 7.4, continued: (f) The error functioz &y shown inverted. Note the two
peaks which actually correspond to the same translation, because &y is invariant
to sign change in the translation vector. The range of the function is [0.120, 2.190].
The motion parameters obtained by minimizing this function are Uc =(.,0.,0)
and f1; = (0°,0.11°,0°).
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Figure 7.4, continued: (g) The estimated depth function r/Z. The depth values
are computed only for the segmented flow vectors.
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rameters of the camera, obtained by minimizing this function, are Q.c =(1.,0.,0.)
and f1; = (0°,0.11°,0°). These results are very close to the correct ones; there is
no error at all in determining the translation axis. Note the two peaks in the error
surface which actually correspond to the same solution, that is, a translation along
the X -axis. These two peaks occur because the error function &y is invariant to
sign change in the translation vector and, therefore, the solution can be represented
by either U = (1.,0.,0.) or =¥z = (~1.,0.,0.). In other words, the FOE can be
either on the right, and then the translation is from the FOE, or on the left, and
then the translation is towards the FOE.

Figure 7.4g shows the corresponding ‘reciprocal depth’ map, namely, r/Z. The
fact that the surfaces are roughly parallel to the image plane, as well as the relative

distances of the surfaces from the camera, can easily be deduced from this depth

map.

VII.6 Experiment 5

Figures 7.5a and 7.5b are images taken from a camera translated in the direction
of its X-axis and then rotated 1.6° about its Y-axis. In addition, to introduce
an independently moving object, a toy ‘dinosaur’ was rotated approximately 4.2°
about an axis perpendicular to the image plane. This moving object was placed
on a tea can covered by a sheet of white paper. The flow field (Figure 7.5¢) and
a related weight plane (Figure 7.6d) were computed employing again the technique
in [ANAS84).

The three segmentation stages are shown in Figures 7.Se, 7.5f and 7.5g. As in
experiment 4, the segments correspond to the main surfaces in the environment,
but their boundaries are inaccurate because of errors in the computed flow field,
and because of the continuity of flow fields across boundaries between regions cor-

responding to surfaces in similar depths (relative to their distance from the sensor).

1
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One should remember that the segmentation is based purely on the flow field and
no information from the intensity images is utilized other than that employed in
the computation of the flow vectors. When evaluating the segmentation results, the
reader should examine Figure 7.5h which shows together the flow field used as input
to the segmentation process, the grouping of the flow vectors into segments, and the
‘correct’ boundaries. In general, the problems mentioned above in computing flow
fields imply that only limited goals should be set for segmentation based on motion

analysis or, more importantly, it should be combined with analysis of intensity data.

A correct and unique grouping of the segments into objects was determined.
An error function, based on the three segments corresponding to the stationary
environment, is displayed in Figure 7.5i. Minimising this function, the trans-
lation axis and the rotation parameters of the camera were determined to be
U = (0.9996,-0.0258,-0.0059) and {}; = (—0.05°,~1.68°, 0.61°), in a rea-
sonable agreement with the actual values; the error in determining the translation

axis is 1.5°.

In Figure 7.5j, which shows the ‘reciprocal depth’ map r/Z, three distinct
surfaces can be detected. Two of these surfaces are roughly parallel to the image
plane, and the third one is slanted; these orientations are consistent with the actual

environment.

The error function associated with the independently moving object is dis-
played in Figures 7.5k and 7.5]. As in experiment 2, the error function is very flat
and, therefore, the translation axis can not reliably be determined, thus demon-
strating again the instability which may exist in recovering the motion param-
eters. The main reason for the ambiguity in this case is the small depth vari-
ation in the object relative to its distance from the camera. The correct pa-
rameter values of the motion of the object relative to the camera are Uoio »

(—0.9962, -0.0872, 0.) and f15/; =~ (0.°, 1.5°, 4.2°), while the computed values
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are U/ = (—0.9411,-0.3365, 0.0332) and flp/g = (—2.2°, 6.3°, 4.7°). The
correct and computed values of the FOE are shown in Figure 7.5]; they differ from
each other by about 15°. The large errors in 1x and Qy are associated with
large errors in the relative depth values r/Z; the estimated values of r/Z are
approximately 0.13, while the correct values are about 0.04. On the other hand,
the computed values of Tz/Z (= Uzr/Z) and 1z are fairly accurate as can be
expected from the analysis in Section VI.1.4 for the case where the surface can be
relatively approximated by a planar surface parallel to the image plane. Finally,
note the additional peak of the error surface near the center of the display in Figure
7.51. This peak may be related to the duality of planar surface solutions.
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(| Pigure 7.5: Experiment 5. (a) The first intensity im-

age. (b) The second intensity image.
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Pigure 7.5, continued: (c) A

vector lengths are scaled by 0.5.

32 x 32 sample of the computed flow field. The
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Pigure 7.5, continued: (d) The weight plane. High
values are represented by bright gray levels.
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Pigure 7.8, continued: (e) Components found in the first segmentation stage. The
white areas correspond to flow vectors assigned weight 0. The areas with the densest

pattern correspond to ungrouped vectors.
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Figure 7.5, continued: (f) Segments obtained by merging components in the second
segmentation stage.
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Pigure 7.5, continued: (g) Final segmentation.
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Figure 7.5, continued: (h) The grouping of the flow vectors into segments is shown
by using various shapes of the vector tails. Vectors without a tail are ungrouped.
In addition, the ‘correct’ boundaries are drawn.
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Pigure 7.6, continued: (i) The error functiou &y, shown inverted, corresponding
to the stationary environment. The range of the error function is [0.297, 2.216. The
solution obtained by minimiging this function is Uc = (0.9996,—0.0258, —0.0059)
and f}; = (—0.05°,—1.68°, 0.61°).

™



135

i
ll
1111t

v ot Ml
0 il
o |
W |
O 1
AU

T T TR
JIN T

U LAE DM R R 0 0
[ DS
TR i
(N
(It

I
i T

I
I

Figure 7.5, continued: (j) The estimated depth function r/Z.
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Figure 7.5, continued: (k) The error functics, shown inverted, corresponding to
the independently moving object. The range of this function is [0.241, 0.707]. The
solution was determined to be Ugjc = (—0.9411,—0.3365, 0.0332) and Bo/c =

(—2.2°, 6.3°, 4.7°).
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Figure 7.5, continued: (1) A contour map representing the error function which
is associated with the moving object. The symbols ‘A’, ‘B’, ‘C’, etc. represent,
respectively, error values (in pixels) of 0.25, 0.27, 0.29, etc. The correct FOE is
marked by a dot, and the computed FOE is marked by a cross.



CHAPTER VI

SUMMARY

We have presented a new approach for the interpretation of optical flow in-
duced by general motion of the camera as well as independent motions of several
rigid objects in the environment. The interpretation goals included decomposition
of the flow field into sets corresponding to independently moving objects, recovery
of the rotation parameters and the translation axis of the camera and each moving
object, and estimation of the relative depth of environmental surfaces. The feasi-
bility of these goals has been examined for noisy, partially incorrect, and possibly
sparse flow fields. An algorithm based on our approach was demonstrated to suc-
cessfully work with such data derived from both artificial and real images. On the
other hand, a mathematical error analysis discovered algorithm-independent ambi-
guities which may exist in interpreting noisy flow fields. These ambiguities were

also demonstrated by experimental results.

Taking into account the sensitivity to noise indicated by experiments in the
literature (see Chapter II) and by the ambiguity analysis in Chapter VI, we found
it necessary to improve the performance of the algorithm as much as possible by
employing a global approach in which all the available information is effectively
and efficiently utilized. This goal was achieved by segmenting the flow field and
then combining segments to form object hypotheses. Thus, we could deal with
independently moving objects while employing all the information associated with
each object. Using this method, we also prevented the suppression of valuable data
in distinct, but possibly small, surfaces, and we excluded incorrect flow vectors

which were inconsistent with their neighbors.

The technique presented in Chapter V for recovering the 3-D motion and struc-

ture of a rigid object by a direct minimization of the deviation between the actual

138
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and predicted flow fields also contributed to the robustness to noise. An error
measure, based on the least-squares criterion, was defined on the 5-dimensional
parameter space corresponding to the recoverable motion parameters. The depth
constraints (5.7) were fully incorporated into the procedure for computing the error
measure, as opposed to other techniques in the literature. A method for reducing
the dimensionality of the search space from five to two made the minimization task
relatively straightforward. This method employs an error measure corresponding to
possible locations of the FOE. For each hypothesized FOE, corresponding rotation
parameters are computed by solving 3 linear equations and, then, the related error
measure is estimated by computing lower and upper bounds of this value. A min-
imum value of the resulting error function is determined, using a multi-resolution

sampling technique.

It should be noted that the scheme proposed in Chapters IV and V is based on
a hierarchical structure, in which four levels of organization in the flow field are em-
ployed. In the interpretation process units from each level are combined into larger
units in the next level based on their consistency with appropriate parameter val-
ues. Thus, flow vectors, consistent with an affine transformation, are combined into
one component; then, components that are compatible with the same ¥ trans-
formation (motion of a planar surface) are merged into a segment; and, finally,
segments which satisfy the same 3-D motion parameters possibly correspond to one
rigid object. The techniques for computing the parameter values in each level has
been based, whenever possible, on solving linear equations derived from the least-
squares criterion. Otherwise, sampling techniques combined with multi-resolution
search schemes, have been employed. Combining all these techniques together, an
effective and efficient algorithm has been developed.

In some situations, however, there exist inherent ambiguities in the interpreta.
tion of noisy flow fields. In Chapter VI we characterized and demonstrated such

situations. The first ambiguity is in recovering the motion parameters from a noisy
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flow field generated by a rigid motion. We found that if the field of view corre-
sponding to the region containing the interpreted flow field is small, and the depth
variation and translation magnitude are emall relative to the distance of the object
from the camera, then the determination of the 3-D motion and structure can be
expected to be very sensitive to noise and, in the presence of a realistic level of
noise, practically impossible. We experimentally found that there is also a relation
between the location of the FOE and the degree of ambiguity. This relation should

be mathematically investigated in future research.

The second ambiguity is in the decomposition of the flow field into sets corre-
sponding to independently moving objects. We found that the rigidity assumption
is not appropriate for noisy flow fields, that is, the consistency of a set of flow vec-
tors with the same motion parameters, up to the estimated noise level, does not
reasonably guarantee that they are really induced by one rigid motion. As an al-
ternative to this assumption, we have assumed that a connected set of flow vectors,
which is consistent with a rigid motion of a planar surface, is induced by a single
rigid motion. This is the central assumption in the scheme developed in this thesis.
It is weaker than the first version of the rigidity assumption in the sense that it can

only be applied in more restricted situations and, therefore, it is more likely to be

correct.

The results of the ambiguity analysis can be used when the effectiveness of
motion algorithms is evaluated for real-world tasks. They can help to decide which

algorithm to choose, and in what situations this algorithm can be expected to be

effective.

Constraints and parameters which can be extracted, even in ambiguous situa-
tions, were also introduced in Chapter VI. Integration of such partial information
over a time sequence of flow fields may, eventually, resolve the ambiguity and re-

sult in a unique interpretation. In addition, combining this informaton with other
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knowledge sources (e.g., a fiber optic rotation sensor [LAWS84]) can be considered.

Recovering motion and structure of independently moving objects may be par-
ticularly difficult, as was demonstrated by the flat error surfaces obtained for such
objects in the second and fifth experiments in Chapter VII. In general, ambiguity
in recovering 3-D motion and structure of independently moving objects can be
expected, since the effective field of view and the ratio of the depth variation to the
distance between the object and the camera are usually small. Furthermore, addi-
tional information from other knowledge sources may be hard to acquire. Therefore,
the possibility of partially resolving the ambiguity in such a cage, by using an ob-
ject coordinate system, is especially interesting and should be investigated in future

research.

Another limitation of optical flow interpretation is related to the segmentation
process. The segments found in the experiments usually correspond to distinct
surfaces in the environment. Their boundaries, however, are sometimes inaccurate
because of errors in the given flow fields, especially at occlusion boundaries and
homogenuous areas, and because of the continuity of flow fields across boundaries
between regions corresponding to surfaces in similar depths (relative to their dis-
tance from the camera). It should be emphasiged that the segmentation results in
Chapter VII are entirely based on the flow fields and no other information derived
from the intensity images is utilited. These results imply that only limited goals
should be set for segmentation based on motion analysis. In order to obtain better
results, it might be combined with segmentation based on intensity data or other

knowledge sources, e.g., stereo or direct depth measurements.

An additional problem which should be further investigated is the accuracy of
the approximation used in Chapter V for evaluating the error measure associated
with each hypothesized location of the FOE. This approximation may fail if the
deviation between the actual and predicted flow fields can significantly be reduced by
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allowing negative depth values. We believe that such an occurrence depends on an
unlikely coincidence and, based on our experimental results, we conjecture that the
approximation is satisfactory in almost any practical situation. More work should
be done, however, in order to characterise situations where this approximation may
fail, because then an almost full search of the original 5-dimensional parameter

space may be required.

The results of this thesis are valid for velocity fields generated by objects moving
rigidly, without any significant restrictions on the motion parameters. However, for
our analysis to be valid in the case of displacement fields, small amounts of rotation
and translation along the line of sight (relative to the depth values) muét be assumed
(see Chapter III). Thus, in the experiments the displacement fields were restricted
to relatively small values. The possibility of extending our scheme to displacement

fields generated by unrestricted motion should be examined.

Embedding our_acheme in a computational framework for dealing with a se-
quence of frames seems to be n;acessary not only for resolving ambiguities but, in
general, for real-world tasks such as controlling a robot arm or navigating an au-
tonomous vehicle. In addition, these tasks may require developing a technique for
constructing a parameterized model of the environment from a depth map. Other
goals of our future research are: real-time implementation, more extensive math-
ematical and experimental error analyses, and integration with other knowledge
gources for image understanding systems. We will also have to deal with the possi-
bility that changes in the image are not a function of motion and structure alone,
but also of lighting conditions and surface properties [WEB82]. Another issue to

be addressed is non-rigid motion which is very common in biological systems.

™
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