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Abstract

Correlation matching techniques for computing displacement fields from successive
frames in a dynamic image sequence are known to be error-prone. Our previous work
[Anan84] has been concerned with identifying the sources of these errors and computing a
confidence measure. Here we formulate a smoothness constraint that is useful for improving
unreliable matches in an image based on the reliable ones. We note the relationship
between our formulation and the gradient based formulation of the smoothness constraint.
We provide a hierarchical matching algorithm that includes our smoothness constraint and

show preliminary results of applying our algorithm to real images.
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1 Introduction

Intensity based techniques for the computation of displacements of image points between a pair of
image frames rely on the similarity of the light intensity reflected from a scene location in the two
frames. Such techniques include gradient techniques and correlation techniques.

In the traditional formulation of the gradient techniques, an intensity constancy assumption
is used to provide a partial constraint on the displacement vector at each point in the image.
A smoothness constraint on the displacement field is then used to uniquely determine the dis-
placements [Horn81,Hild85) of all the points. The correlation techniques usually provide a unique
displacement vector based on local matches, without incorporating any smoothness constraint.
Hence, obvious local errors in the displacement fields computed by the correlation techniques go

undetected.

In our previous work [Anan84], we identified some common sources of matching-errors during
correlation and provided a scalar confidence measure with the estimated displacement at an image
point. This measure, which indicated the reliability of the associated displacement estimate, used
information already available during the correlation process and hence did not require significant
additional computation.

Although our previous measure was useful in determining the reliability of a displacement es-
timate, we indicated that since the displacement is a vector quantity, a vector valued confidence
measure may be more appropriate. This paper provides such a measure and formulates a smooth-
ness constraint on the displacement field that uses our new confidence measure.

Intuitively, we regard a displacement field to be “smooth” in an area of the image if its variation

over the area is small. An example of a measure of the spatial variation of a displacement field is

Elmoo!h(u) = // IVUIZJ:ZJV

where U = (u,v) is the displacement vector at (z,y) (with u and v as its components in z and

y directions respectively), and the domain of the integral is an area of the image (possibly the



whole image). This is due to Horn and Schunck [Horn81], who use this measure in a gradient-based
approach for the computation of optical flow. Another example of such a measure is provided by
Terzopoulos [Terz84), which we will describe in detail later in this document.

The formulation provided here is the minimization of the sum of two errors, E,mo0ts and Eapproz.
Given a displacement field, E,,00:n measures its spatial variation and Espproz measures its deviation
from the initial displacement vectors computed by the matching process.

Our choice of the approximation error is based on the results of a matching process. Each
displacement vector is represented in a convenient local ortho-normal basis (emazs €min), Which
are usually not parallel to (z,y). For a given displacement field U, the approximation error is a
weighted sum of the deviations of the components (along these basis vectors) of the displacement
vectors in the field from the corresponding components of known initial values (provided by the
matching process). The weights are the components of the vector-valued confidence measures along

the basis vectors.

Intuitively, the basis vectors e;mss and epin and the weights ¢mss and epmi can be understood
as follows: At a point along an edge in the image, the basis vector emass Will be approximately
oriented in the direction normal to the edge, and em;s will be oriented parallel to edge. At such
a point, the weight cmas will be large and the weight ¢min will be small. On the other hand, in
an area of the image with small intensity variations, both the weights will be small, whereas at a
point along contour with high curvature, both the weights will be high. The precise definition of
the basis vectors the weights are provided in section 5.

The precise form of the approximation error is

Eapproz(U) = T gytmaz(U - emas = D - emas)?

+ Loy min(U - emin — D - emin)?
where ¢mgz and ¢,nn are the weights, U is the displacement vector and D is the initial displacement
vector provided by the correlation matching algorithm, at location (z,y) in the image. Here ¢mqs

and cin indicate the confidence in the components of the displacement vector D in the directions



emas 80d emin respectively.

In the rest of this paper, we develop this idea and formulate it as a relaxation process. We extend
the analysis of Terzopoulos [Terz84] for the surface-reconstruction problem to our two dimensional
minimization problem. We follow a finite-element approach to solving the problem, primarily
because this approach enables us to deal with arbitrary, known discontinuities in the displacement

field.

We also incorporate the smoothness process within the framework of a hierarchical algorithm for
the computation of displacement fields. Our hierarchical algorithm is similar to the multi-frequency
coarse-fine techniques described in [Glaz83,Anan84]. At each level of the hierarchy, we include the
smoothness process after computing displacement estimates by correlation a matching process.

The relationship of this minimization formulation to other formulations is described in section
2. In section 3, the conditions for the existence of a solution to this problem are explained, and in
section 4 the finite element approach is used to provide a discrete relaxation algorithm. The source
of the weights cmaz and cymin, and the basis vectors ems: and emin is discussed in section 5. The
incorporation of this smoothness constraint in the hierarchical algorithm is described in Section
6. Finally, some experimental results are provided in section 7 and the scope for future work is

discussed in section 8.

2 Relationship to other work

The minimization problem posed in the previous section has its roots in other similar work in
computer vision. In particular, the formulation of the intensity and smoothness constraints for
the computation of optic flow fields by Horn and Schunck [Horn81}, the related work by Nagel
[Nage83,Nage84] and Hildreth [Hild85)], and the surface reconstruction problem posed by Terzopou-
los [Terz84) are closely related to our formulation.

First, we explain the relationship of our work to that of Horn and Schunck. Our smoothness



constraint can be chosen to be the same as theirs. The intensity constraint they use is

aI
VI.V+—=0
+ 3t (1)
where V[ is the spatial gradient of the image intensity I at a point (z,y) in the image and V is the
image-velocity at that point. Under the assumption that the time interval 6t between successive
image frames is small, we can approximate V by D/ét, where D is the displacement of an image-

point, and 31/dt by AI/ét. Then, we can rewrite equation 1 as
VI-D+AI=0 (2)

Based on this, we can define an error

Eapproz = I _(VI-U + AI)?
zy
which is zero whe. U = D where D is any value that satisfies the equation 2 above.

This error can be rewritten as

Al
E =Y VIV - evr + 1==)°
approz o IVI|

where ey is the unit vector in the direction of V1.

From equation 2, we see that D - ey; = —AI/|VI|. Considering our E,ppror term described in

section 1, if we set cpin = 0, ¢maz = |VI|?, emas = evy, our approximation error is the same as that
of Horn and Schunck. Indeed, their intensity constraint simply provides values for one component
of the displacement vector at any point in the image, viz., the component in the direction of the
intensity gradient. This is because only the first order image intensity variations are considered.
Nagel [Nage83] points out that at certain areas in the image it may be possible to locally obtain
values for both components of the displacement vector. This is usually true at points of high

curvature along image-contours, or in textured areas, where the second order intensity variations



are large and can be useful for obtaining the unique displacement vector. In section 5, we explain
how a correlation matching algorithm behaves at such areas of the image.

Both our formulation and the formulation of Horn and Schunck can be regarded as a two
dimensional version of the smoothness process presented by Terzopoulos [Terz84]. Terzopoulos
is interested in visual surface reconstruction. This leads to the problem of smoothing a scalar
variable u, the depth of the visible surface along each viewing direction. Approximate values for
the depth and associated confidence measures are assumed to be known at some locations in the
image. Similarly, approximate orientation of the surface and associated confidence measures ‘are

also assumed to be known at selected locations.

The problem is that of minimizing the sum of three errors E,moothnees a0d Ep, and Eo where
E smoothness 18 due to a surface smoothness constraint, Ep is due to the known approximate depth
values, and Ep is due to known approximate orientations of the surface. Terzopoulos considers
two possible measures of the spatial-variation of the depth values. One is based on what is called
a “membrane” model of the visual surface and the other is based on a “thin-plate® model of the
surface. From our point of view, the two models are different simply with respect to the functional
they minimize, which we will describe in detail in the next section. In attempting to extend this
model to the two dimensional displacement fields, we ignore the orientation constraint, because we
do not have any such information regarding our vector fields. For details, we refer the reader to
[Terz84], Chapter 4.

In what follows, we provide a mathematical analysis of our problem and derive a method to
iteratively solve it. Our mathematical analysis borrows heavily from that of Terzopoulos (see
[Terz84] Chapters 5 and 6), with suitable modifications to deal with the two dimensional vector

field.



3 Mathematical formulation

The problem of finding a smooth displacement field which approximates the estimated displace-
ments on 8 discrete subset can be formulated as a minimization problem. That is, we are trying
to find a vector field U = (u,v) which minimizes a quadratic functional E(U) where E(U) =
Eymooth(U) + Eapproz(U). As mentioned above, we consider two choices for Eomooth. Eappros mea-
sures how well U approximates the data given at a set of grid points (z,y) in D.

The two functionals which we consider have the property that under <;ertain \.veak comiiti‘ons
there will always exist a unique minimum solution. The proof of this is based on the following
theorem:

If E(U) = B(U,U) ~ f(U), where B is a symmeltric, bilinear form on a Banach space and f 1
a linear form, then E has a unique minimum if B is positive definite (in that case, E 13 sasd to be
elliptic).

We will derive conditions on Eappros for each of the two smoothness constraints so that the

positive definiteness condition is satisfied.

3.1 Smoothness constraint for thin plate model

This functional, which is minimized by an ideal thin plate, can be extended to a vector field
U =(u,v)

Esmoon(U) = [ [(uZ, + 2“2, + “;,) (3)
+ (v +20%, + v,)dzdy

In order to apply the theorem, we decompose E into quadratic and linear terms. E,moos is
purely quadratic and Eqppros has both linear and quadratic terms, so
B= Blmooth + Bapproa (4)

and

Eapproz(U) = Ecmaz(u “emaz — D - cma:)z
+ cmiu(U “eMin— D - eml'n)z

(5)



So
Bapproz(U) = E cmas(U - emas)® + E cmin(U * min)? (6)

We have confidence measurements cmas and c,min at each point, such that g, is the confidence
in direction emgz and €m¢n i8 the confidence in direction ep,;n, Where emay and epiy form an ortho-
normal basis for the (z,y)-plane, and 0 € emin S emaz £ 1.

B is positive definite if B(U,U) = 0 implies that U = 0. So we need to find conditions such
that if E,moota(U) = 0 and Bgpproz(U) =0 then U = 0.

The smoothness constraint in particular implies that all of the second partial derivatives of u

and v are 0, so u and v are linear
U= (az+by+c,dz+ey+f) (7)

We would like to show that all of these constants are zero. For example, if there are three non-
collinear grid points which are corner points, then ¢mas and c¢min > 0, and we have 6 independent
equations for the coefficients. If on the other hand emqs always points in the same direction and

Cmin 18 always 0, then we cannot get independent equations, and we know that the answer will not
be unique. Let emaz(2,y) = (cosf(z,y), sinf(z,y)) then emin(z,y) = (—2ind(z,y), cosd(z,y))

The equations are of two types :
azcosd + bycosl + ccosd + dzsinl + eysind + fsind = 0 (8)
orif epmin >0
— azsind — bysind — csind + dzcosd + eycosd + fcosld = 0 9)

The condition that will guarantee a unique solution is that one can find 6 independent equations
from the set of equations defined by the points at which the vector field has been approximated.
In particular, three non-collinear points with ¢,,,i» > 0 or 6 points with ¢mas > 0 and which satisfy

the following two conditions

1. emas points in the same direction for no more than three points.



2. if emaz lies in the same direction for any subset of three points then they are not collinear.

3.2 Smoothness constraint for the membrane model

The smoothness constraint for this model is given by
Eumootn(t,0) = [ [ 196 +|Votdzdy (10)

H Eymoota(U) = 0 then all of the first partial derivatives are 0, so U must be constant, i.e.
U = (a,b) Thus if two independent equations can be derived from Bagproz, then U must be 0. This
happens if there is a corner point or there are two points with different e;nss vectors. Thus, this

condition implies that B is positive definite and therefore E has a unique minimum.

4 Solving the variational problem

In the previous s ~tion we showed that there is a unique smooth vector field which minimizes the
constraints; in this section we present methods to obtain a discrete approximation to this solution.

The choice of domain and basis functions here is not one of the standard ones and is based on

the approach of Terzopoulos. We have extended his results to two dimensional flow fields, and we
present the masks which represent the solution. We intend to investigate a more standard choice
of basis for the finite element technique.

We take as our discrete solutions piecewise polynomials; each polynomial being defined on a
domain D in the plane. For the membrane model, we choose a triangular finite element as shown
in figure i. For the thin plate, we choose a domain which consists of a set of six points on a square
grid (see figure 2).

There are two requirements for the finite element approach; that a unique solution exist for
each particular grid, and that the solutions converge as the mesh size goes to zero. Our choice of
the finite-elements follows that of Terzopoulos. He verifies that these elements satisfy these two

requirements.



4.1 Computation of masks

In order to solve the discrete minimization problem, linear equations in the values at the grid-
locations are derived. These equations are used to update the values U = (u,v) at a point in terms
of its neighbors. This is commonly done by convolution with a mask; the masks for each of the two
models are given below:

For the membrane model, the convolution mask is

1
L x101
1
For the thin-plate model it is,
-1
-2 8 =2
L x -1 8 0 8 -1
-2 8 =2
| —l

Let us denote the convolution mask as A. Also, let 0 = A s« U. Then, solving the discrete

problem is the same as solving the following system of coupled equations:

(U - U) + cmu(u “emaz — D * €maz)emaz
+  emin(U - min — D - €min)emin = 0 (11)

for each point on the image grid.

4.2 Relaxation algorithm

There are a number of numerical-methods for solving the system of coupled linear equations de-
scribed above. One of the simplest methods is the Gauss-Seidel relaxation algorithm. This is an
iterative process, where during each iteration the value of U at each point in the image is solved in

terms of the values of its neighbors.

10



In our case, we have

ntl — fIn Smez o p_ pny.
U o + Cn}!u.'f' 1 ((D 0 ) cmaz)Cmas
+ m((o — 0") - emin)emin

(12)

where the superscripts denote the number of the iteration.

From a geometric point of view, this updating scheme can be regarded as choosing a point in the
(u,v) space that is a combination 0" and D. We illustrate this idea in figure 3. For convenience, we
have chosen to represent the displacements in a cartesian coordinate system with its axes parallel to
(¢maz, emin). The two key parameters are cmaz/(1+ cmaz) and epmin/(1 + €min), Which vary between
0 and 1, as ¢z and ¢y, vary between 0 and oo. Since ¢maz 2 ¢min, the location of Un+! wil}
always be on or above the line joining D and J® in figure 3. In particular, it can be seen that the
location of U"*! will be always within the triangle that is shown in that figure, moving towards
the line joining D and U™ as ¢,,;, gets closer to cmas.

Finally, we note that although the Gauss-Seidel relaxation scheme is simple to implement, there
are more efficient techniques to solve a sparse system of equations. Studying these and choosing

\
an efficient, parallel scheme will be a part of our future work.

5 The basis vectors and the confidence measures

One of the key elements of our formulation is the approximation constraint. The proper choice
of the ortho-normal basis vectors emas and emn and the confidence measures ¢,z and Cmin 8
crucial to our model and to our algorithm. In this section we discuss how these measures can be

obtained.

In attempting to choose these measures, it is useful to formalize our efforts in the form of a set

of design considerations. These considerations are,

1. If both components of the two dimensional displacement vector are reliably known at an

image location, both ¢/ma2 and cniy should be large. If one component is reliably known and

11



the other is not, then the c¢mqgs should be large and ¢pin small, and emqs should be oriented
along the direction of the reliable component. If both are unreliable then both ¢y52 and emin

should be low.

2. The computation of ¢maz and ¢yin should take minimum effort in addition to what is already

necessary for the computation of the displacement vectors.

In our previous study on the behavior of error (sum of squared-differences) surfaces [Anan84],
we noted that the shape of these surfaces contained useful information regarding the reliability of
the displacement vectors. Below, we explain what we mean by these terms, and briefly summarize
our major observations.

The process of matching by discrete correlation consists of choosing a window around a point
of interest in one frame (the first window), and correlating the intensity values in that window
with those in the candidate match windows in the second frame (the second window). The term
correlation is used in a generic sense here. The measure that we prefer (for reasons explained in
[Anan84]) is the sum of squared differences between corresponding pixel values (SSD).

By the term error surface, we mean the surface whose height is the SSD value corresponding to
each possible displacement. Hence, for each location of interest in the first frame, we have available
an error surface. The best match is, indeed, the displacement corresponding to the minimum height
of the error surface (henceforth called the pit).

In our study of the error surfaces [Anan84), we also noted that the curvature of the error surface
around the pit, taken along any direction seems to provide information regarding the relicbility of

the match along that direction. In particular, we observed the following :

1. At a corner point, the pit is sharp in all directions; correspondingly all the directional curva-

tures are high.

2. At a point along an edge, the error surface shows a long valley like structure, and the orien-

tation of the valley corresponds to that of the edge. This means that the curvature in the

12



direction parallel to the edge is low, whereas that in the direction perpendicular to the edge
is high.

3. At a point in a homogeneous area all curvatures are low, and the error surface looks rather

flat.

Figures 4, 5, and 6 show examples of error surfaces at a corner-point, an edge-point, and a
homogeneous point respectively. The surfaces are shown inverted, in order to enhance visibility.
Note that in a small area around the point with minimum error (the peak in these figures), the
surfaces demonstrate the properties described above.

The directional curvatures of the error surface seem to satisfy the first of our design criteria.
Further, the computation of the error surface is a necessary part of the matching process, and the
computation of the curvatures requires only minimal additional effort. Hence, this meets both our

design criteria. Based on these, our method of choosing ¢mes and ¢, are as follows :

1. Compute the principal curvatures and the directions of the principal axes around the pit of
the error surface. Let Cpnaz and Cpin be the principal curvatures and E,,,5 and Epnin be the

unit vectors along the directions of the principal axes.

2. Compute the error corresponding to the location of best match. Let this be SSD,,

e
3. We choose emoz = Emasz and epin = Eppin. For cmas and €pmin, we have a number of choices:
(a) We can simply take ¢maz = Cmaz, 80d €¢min = Crmin-

(b) We can normalize the principal curvatures to be within some desired range and to be
scaled by a desired factor, and choose ¢maz = NO RM(Crnoz) and cppin = NORM (Crmin)-

Here NORM(.) is the normalizing function of the curvature.

(c) We can normalize the principal curvatures using SSD,,;,. We can choose

Crmas
k1Crmaz + k2SS Dynin + ks

Cmaz =

13



and

Conin = Cmin
mn lemt'n + kZSSDml'n + ks

This has the effect of making the confidence inversely proportional to the error corre-
sponding to the best match. Usually this error is high when the local physical structure
represented in the image changes, due to expansion, rotation, etc. of the image, or if the
image has been corrupted by noise. Strictly speaking, correlation (or SSD) provides truly
reliable matches only when these effects are absent. Hence, this type of normalization

takes into account problems that are unexpected, but influence the error measure.

The choice of the normalization of the principal curvatures to obtain the confidence measures
is a crucial factor. For the experiments described in this paper, we used a normalization of the
type discussed in 3{c) above, choosing k3 = 0,k2 = 1, and ks = 100. These choices were made on
an empirical basis, although we observed that varying them did not significantly affect our results.

This issue is open for further research.

6 A hierarchical matching algorithm with smoothing

The foregoing discussion regarding matching and smoothing and the associated confidence measures
is based on the strong assumption that the displacements are small in magnitude compared to
the scale of the image and the spatial rate of image intensity variations. It has been noted by
other researchers [Burt83,Glaz83] that in order to realistically deal with general images with larger
displacements, it is desirable to use a hierarchical matching approach. This has the advantage of
achieving both savings in computation and the use of image intensity variation at a scale appropriate
for the amount of motion. information Our technique here is based on the hierarchical correlation
algorithm described in [Glaz83] and [Anan84).

Briefly, the hierarchical matching/smoothing algorithm is as follows:

14



¢ Each of the two images are processed with a set of band-pass filters and reduced in resolution.
The band-pass filters are isotropic diflerence of Gaussian filters, one octave wide and one
octave apart from each other. These are implemented based on the ideas suggested by Burt
([Burt81).

¢ The matching begins at a level of resolution corresponding to a displacement of less than 1
pixel. The process of correlation is described in [Glaz83,Anan84). Sum of squared-differences
is used as the match measure. For the experiments of this paper, we chose square windows §

pixels wide.

e After the matching at one level, confidence measures are computed as described in the previous
section and smoothing is performed. For the experiments of this paper, we used a membrane

mode! and finite element method for smoothing.

o The smoothed vector field is projected to the next finer-level image, based on the modified
projection strategy described in [Anan84). These are used as initial values for the match-

ing/smoothing process at this finer level.

e This process is repeated at all levels up to the level of the image.

7 Experiments

We performed two experiments to illustrate our algorithm. These experiments are meant to be
illustrative of the ideas presented in this paper. In this sense these results should be regarded
as preliminary. However, it will be easy to see from these examples that the smoothness process

reduces the errors in the initial match estimates.

The first experiment demonstrates the effect of applying our smoothness algorithm at a single
level of resolution and computing a dense displacement field. The second experiment demonstrates
the use of our confidence measure in a hierarchical matching/smoothing algorithm. In both cases,

we used the membrane model for the smoothness constraint.
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The first experiment was performed by using a single real image and generating a second image
by digitally translating the first image. This enabled us to have “ground-truth” displacement data
for comparison. The second experiment was performed using a pair of images from a real image

sequence called road-scene image sequence.

7.1 Testing the single level smoothing algorithm

For this experiment, we used the image shown in figure 7 as the first of the pair of images. The
second image was obtained by rotating the first image clockwise by 4 degrees on the plane of
the image about the center of the image. The initial results of the matching process, prior to
smoothing are shown in figure 8. The results after 100 iterations of the smoothness process are
shown in figure 9. Although these results are useful to gain a qualitative understanding of the effect
of the smoothness process, it is more useful to consider the statistics of the error vectors (i.e, the
difference at each pixel between the true flow vector and the computed vector). These are shown
in the table in figure 10.

Note that we have shown component-wise error statistics as well as the statistics of the length
of the error vector. The component-wise statistics are based on a local decomposition of the error
vectors in the direction of gz and emin. We use these in order to illustrate the point that most

of the error is usually in the direction of emin.

7.2 Testing the hierarchical algorithm

Our second experiment involved performing the hierarchical matching algorithm with smoothing
on a pair of images from the road scene image sequence, which is a sequence of images of a road
scene obtained from a translating camera. The two images are shown in figures 11 and 12.

The displacement of any point between these two images is less than 10 pixels. This implies that
four levels of the hierarchy are sufficient for processing. At each level, we performed 10 iterations

of the relaxation algorithm. This number was chosen arbitrarily.

16



In figures 13 and 14, we display the displacement fields at the four levels of the hierarchy. The
dramatic improvement in the final results are the results of the integration of the matching and
the smoothing process in the hierarchy. Smoothing at one level of resolution will not provide such
improvement.

In figure 15 we display the confidence measures ¢mas and ¢y as intensity images. The bright-
ness of a point in these images are proportional to the confidence measures. We have also superim-
posed the unit vectors ¢4, on the figure containing ¢mgg, in order to demonstrate that it is usually
perpendicular to the edges in the image.

For the purposes of a closer scrutiny, in figure 16 we display the results only at the image-

resolution.

8 Future Work

In this paper, we provided an outline of a technique for incorporating a smoothness constraint in a
matching algorithm. We also indicated how this may be incorporated in a hierarchical technique.
Although we demonstrated these ideas with some experiments, many details of the algorithm are
yet to be worked out. In particular, we feel the following areas need greater analysis and closer

scrutiny.

1. The choice of the smoothness criterion. The membrane model as well as the thin plate model
are heuristics for the type of variation we expect the displacement field to possess. It may
be possible to limit the choice of the smoothness criterion based on an understanding of the
geometric structure of continuous flow fields. Such analyses abound in the literature (e.g.,

[Adiv85,Waxm84]).

2. The normalization of the confidence measures. One of the important factors that affect the
outcome of the process is the validity of the confidence measure. At the outset, a conservative
Ieasure seems more appropriate, i.e., one that is more prone to doubt the reliability of the

local match estimate. This will help us avoid the process from being misguided by incorrect
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values with high confidence. In general, a more thorough investigation is critical to make this

process useful in real images.

3. One of the motivations behind choosing the finite element approach for solving the mini-
mization problem is that this approach allows us to deal with known motion and occlusion
boundaries. Therefore, the recognition of such boundaries, and the inclusion of that informa-
tion in the smoothness process is one of goals of future research. We seek an understanding

of what information is available for recognizing such events and how they may be utilized.

We believe that the hierarchical matching/smoothing algorithm is a useful technique for the
computation of dense, reliable displacement fields in real images. Many issues remain to be solved.
However, the approach takes into consideration the limits of its various components, and uses them

appropriately. This provides us the motivation for further investigation along this line.
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Figure 1: The finite-element domain for the membrane model
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Figure 2: The finite-element domain for the plate model
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Figure 3: A geometrical illustration of the relaxation process

min = 600, max = 30400

Figure 4: The error surface at a corner point



min = 300, max = 29000

Figure 5: The error surface at an edge point

min = 0, max=2500

Figure 6: The error surface at a homogeneous point
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Figure 7: The input image for the single level experiment
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Figure 8: The initial displacement estimates provided by the matching process. Only a quarter of
the displacement vectors are shown, in order to enhance visibility
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Figure 9: The displacement field after 100 iterations of smoothing using the membrane model

err. along ema: | err. along emin eIT. Inag
mean | std. dev | mean | std. dev:| mean | std dev
initial disp. 0.1571 | 0.1964 | 0.4066 | 0.3341 [ 0.4693 0.3464
| membrane mod. | 0.1191 | 0.1264 |0.1609 | 0.1418 [0.2263 | 0.1580
{ plate model 0.1323 | 0.1465 |0.2179 | 0.1857 | 0.2845 [ 0.1799

Figure 10: Table of error statistics for the single level experiment The table shows the statistics of
the absolute values of the crror component along emqs and e, as well as those of the magnitude

of the error vectors
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Figure 13: The results of the hierarchical matching al- . ] )
gorithm without the smoothing process when applied to Figure 14: The results of the hierarchical

the road-scene image-pair. ing/smoothing algorithm applied to the road-scene im-
age-pair

In both the figures above, results at four levels of the hierarchy are shown. The background images

are the low-pass filtered versions of the first road image. The image resolution is 128 x 128 (showu,

in the bottom-right quadrant). At each level, except the 16 x 16 resolution in the top-left quadrant,

we have shown only a sample of the displacement vectors. This was done 8o as to enhance visibility.
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Figure 15: The confidence measures ¢mas (on the left) and cmin (on the nghtz at the finest-level of
the hierarchy. These measures are displayed here as intensity images. The lelt figure also contains

the unit-vectors emas
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Figure 16: The results at image-resolution for the road-scene image-pair




