GRAPHITE: A META-TOOL
FOR ADA ENVIRONMENT DEVELOPMENT

Lori A. Clarke
Jack C. Wileden
Alexander L. Wolf

COINS Technical Report 85-44
November 1985
(Revised March 1986)

Software Development Laboratory
Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

A previous version of this report appears in the Proceedings of the IEEE
Computer Society Second International Conference on Ada Applications
and Environments, Miami Beach, Florida, April 1986.

Thic work was supporled in parl Ly Llie foliowing grante: Rowe Air Deveivpment Corporation,
No. SCEEE-PDP/85-0037; National Science Foundation, No. DCR~84-04217 and No. DCR-~84-08143; and
Control Data Corporation, No. 84-M103.

ABSTRACT

Tools in a software development environment often manipulate objects that are instances
of attributed graphs. Moreover, an individual attributed-graph instance may be manipulated
by several different tools in an environment. During the prototyping phase in the design of
a goftware development environment, experimentation with tools may dictate changes to
the high-level structure of an attributed graph as well as changes to the graph’s underlying
representation. We have developed a tool called GRAPHITE to facilitate both kinds of ex-
perimentation while minimizing the impact of that experimentation on the tools in an Ada
environment. This meta-tool and its potential contributions to an experimental effort to
build an advanced Ada software development environment are described in this paper.

1. Introduction

Many of the tools composing a software development environment will manipulate (create,
access, or update) complex data objects. Often tools will need to manipulate data objects
created by other tools. In some cases, it may even be necessary to extend the definition of an
object that is manipulated by a set of tools to accommodate new information required for some
subset of those tools. For example, tools being developed at the three universities involved
in the Arcadia environment project [4) all need to manipulate an internal representation of
Ada programs, called IRIS. The University of California at Irvine is building the front end
of an Ada compiler that creates IRIS. At the University of Massachusetts, we are creating
a set of tools to analyze interface control relationships. This analysis is based on some Ada
language extensions [6] and thus requires that we extend IRIS to include this information.
The development group at the University of Colorado is implementing data flow analysis
tools that can work with either internal representation.

While most development teams may not be as geographically separated as the members
of the Arcadia consortium, the situation described above is not atypical for large environ-
ment development efforts. Often various groups within the development team must share
and/or extend the definitions of ;iata objects manipulated by the environment’s tools. For
experimental systems, such as the prototype Arcadia environment, one would expect that
some objects’ definitions will undergo considerable change throughout the life of the project
until the environment’s developers finally settle upon an acceptable version. In such cases, it
is important to facilitate the evolution of data object definitions yet not allow that evolution

to impede the development of tools that may depend upon sume aspects of those definitions.

Many of the data objects manipulated by software development environment tools are,

like 1RIS, attributed graphs. For example, parse trees, abstract syntax trees, control flow
graphs, and call graphs are all classes of attributed graphs that are likely to be manipulated
by several tools. A class of attributed graphs is defined by specifying a set of node kinds.
Each node kind is associated with a set of attributes. Attributes are used to describe the
properties of the objects represented by the nodes in the graph and each such attribute has
a type, referred to here as an attribute value type. Some of the attribute value types are
actually node kinds, which makes it possible to connect nodes into graph structures. An
instance of a node kind is a set of values, one for each attribute associated with that node’s
kind. A particular attributed graph, which is a member of some class of attributed graphs,
is then just a set of instances of node kinds in that class. An Ada software development
environment may require some complex graph structures. For example, in DIANA (2], which
is another internal representation of Ada programs, there are approximately 161 node kinds,

97 attributes, and 15 attribute value types—a complex structure by any measure.

A tool supporting the definition and use of attributed graphs would greatly benefit the
developers of software development environments. Such a tool should provide a uniform
mechanism for defining attributed graphs and for generating an implementation of a data
abstraction for such a definition. It is particularly important that this tool facilitate the
redefinition of attributed graphs, minimizing the impact of such changes on all the tools in
the environment. Since this is a tool for environment developers as opposed to being a tool

in the actual environment (although it could be both), we refer to it as a meta-tool.

As part of our contribution to the Arcadia consortium, we have developed such a meta-
tool, called GRAPHITE for GRAPH Interface Tool for Environments. The GRAPHITE sys-

tem accepts specifications of classes of attributed graphs written in a graph description lan-

guage, called GDL. Given the GDL specification for a particular class of attributed graphs,
GRAPHITE produces an Ada package that is an implementation of an abstract data type for
that class of graphs. Thus, this Ada package defines the graph and the operations that can
manipulate the graph. The operations include those that allow tools to create nodes, to get
and put attribute values, and to read and write nodes and graphs, as well as to ascertain
the kind of a node and its associated attributes. Because it represents the interface to the

implementation of a class of attributed graphs, this package is called an interface package.

Using the interface package produced by GRAPHITE, a tool can create and/or access a
number of different graphs of a particular class. Any or all of these could be manipulated
by other tools, which would also access these graphs through the operations provided in the
interface package. Moreover, a tool may use more than one interface package in order to
access more than one class of graphs. Figure la illustrates how GRAPHITE can be used to
create interface packages for two different classes of attributed graphs, called Class A and
Class B. Figure 1b then shows how two tools might use these packages; Tool 1 to manipulate

two instances of Class A and both Tool 1 and Tool 2 to menipulate an instance of Class B.

Using an abstract data type to manipulate a data object is not a new concept. Automat-
ically creating the abstract data type from a graph description has also been done [3]. What
is innovative about the GRAPHITE system is the design of the abstract data type that is
actually generated and the ways in which Ada is used to meet our objectives. Central among
those objectives, which are enumerated in the next section, is support for a prototyping ap-
proach to experimental environment building that permits a straightforward transition from
prototype to production quality implementation. To this end, GRAPHITE produces two dif-

ferent kinds of Ada interface packages. One supports software development of experimental

GDL INTERFACE
SPECIFICATION GRAPHITE —= | PACKAGE

OF CLASS A FOR CLASS A

INTERFACE
SPECIPICATION | —— GRAPHITE ——= | PACKAGE
FOR CLASS B
(a)
. CLASS A
GRAPH
, INTERFACE /
TooL 1 PACKAGE
POR CLASS A \
CLASS A
GRAPH
INTERFACE
TooL 2 PACKAGE —+| CLAss B
' FOR CLASS B GRAPH

(b)

Figure 1: Creating and Using Attributed-Graph Interface Packages.

© e e emANED st cBPAT

systems. It is designed so that when developers modify the definitions of graph classes there
is a minimal effect on other tools in the system, even on those tools that use this modified
class. The second interface package is designed for efficient manipulation of graphs. When
the definition of a graph class has been finalized, the second interface package can be sub-
stituted for the first so that a more efficient, but less flexible, version of the environment
can be created. Thus we have support for both development and production versions of an
environment and a process for easily going from the development to the production version.

This paper describes GRAPHITE, emphasizing the design of the interface package that is
generated. The next section discusses the goals of the GRAPHITE syatem. The third section
describes GDL. The fourth section presents the design of the interface package and describes
how to move from the development version to the production version of the package. We

conclude with a discussion of related work and the current status of the system.

2. Design Objectives

The GRAPHITE meta-tool was conceived as part of our research on a suitable infras-
tructure for the Arcadia environment. Arcadia is to be an experimental Ada software de-
velopment environment, implemented in Ada, within which we can investigate novel tools
and techniques supporting development of Ada software. Both the experimental nature of
Arcadia and our commitment to exploiting the features and programming style supported
by Ada have influenced our objectives for GRAPHITE.

Encapsulation. A primary objective of GRAPHITE was to encapsulate attributed-graph
objects into an abstract data type. Uscrs of GRAPHITE may treat attributed graphs and

their operations as primitive constructs in a higher-level programming language tailored for

building software development environments. This results in a uniform mode among the tools
in the environment for interacting with graphs, where graphs are manipulated not in terms
of record fields or array elements, but rather in terms of getting and putting attribute values.
An additional benefit of encapsulation is information hiding. In particular, the realization
of attributed graphs and their associated operations may change with minimal side effects;
whereas a change in the representation of graph instances might otherwise necessitate a
reprogramming of the tools to account for a different access method (e.g., array indexing
versus record-field selection), encapsulation means that such a low-level change could be
performed without affecting the code of the tools. As a result, a development team can

experiment relatively easily with alternative representations for attributed-graph classes.

Automatic Generation. A further GRAPHITE objective was to reduce the drudgery
involved in building or modifying a software development environment prototype. Since the
GRAPHITE processor automates the production of an Ada implementation of an attributed-
graph class from a GDL specification, it helps to reduce the overhead associated with im-
plementing a software development environment. This is particularly significant in an ex-
perimental setting such as Arcadia, where modifications are likely to be relatively frequent.
Moreover, the automatic generation of attributed-graph implementations is less error-prone

than would be the manual creation of the corresponding Ada code.

Minimizing Impact of Changes. During the prototyping phase of an environment
development project there will be a great amount of experimentation in which the definitions
of the attributed-graph classes will change. Thus, it should be straightforward to alter the set
of node kinds, attributes, and attribute value types in the definition of an attributed-graph

class. As noted previously, there may also be experimentation with the representations of

e he e e e aee e M AT ARt e L e P

attributed graphs. GRAPHITE is designed so that an alteration to either the definition or
the representation of an attributed-graph class will have a minimal effect on the rest of
the system. Of course, tools that do not access an attributed graph are not affected by
changes of either kind. Our concern is with two cases, one in which a tool manipulates
an attributed graph whose definition has been changed in ways that do not directly affect
the tool (e.g., the tool does not access the new information) and a second, in which the
representation generated by the GRAPHITE processor has changed. One level of insulation
from either type of change is achieved by assuring that the tool need not be reprogrammed
as a result of the change, although it inight require recompilation, as would be implied by a
reprogramming of the interface package specification part. A much greater insulation from
change can be realized by assuring that not even recompilation is required. This level of
insulation is attainable only if there is no reprogramming or recompilation of the interface
package specification part. GRAPHITE attains this second, higher leve! of insulation, thereby

minimizing the impact of changes.

Managerial Control. Even in an experimental setting, the definitions of the attributed-
graph classes in an environment must evolve in a manageable way. Freedom to experiment
with new structures must be given to developers, yet too much freedom may hamper integra-
tion. An example of excessive freedom is permitting tools to dynamically add new node kinds,
attributes, or attribute value types, since individual programmers could then effect undocu-
mented modifications to the most fundamental shared objects in an environment. Therefore,
the GRAPHITE system does not support the dynamic addition of new node kinds, attributes,
or attribute value types. Instead, changes to the definition of an attributed-graph class must

be made by changing its GDL specification. This controls the manner in which changes can

be made and provides clear documentation of the current status of each attributed-graph
class. Thus, for example, when several groups have experimented with the definition of
some environment object, comparison of the GDL specifications provides a clear indication
of any resulting differences. Moreover, the final GDL specification becomes the medium for

documenting the final, negotiated version.

In Sum—Support for Prototyping. Our immediate use for the GRAPHITE meta-tool
is in building prototype, experimental environments, where frequent changes to tools and to
the internal representations on which those tools will operate are to be not only anticipated
but encouraged. Moreover, these changes may be made by groups working at different,
and distant, locations. For example, GRAPHITE might help in the situation where a group
working at one site wishes to experiment with an alternative version of one of the objects
produced by a tool developed at another site. Our goal is to make it possible for this group to
use the tool to produce the alternative version without needing to even recompile that tool.
The original developing group would thereby retain full control over the tool’s code while
other groups obtain the ability to simultaneously share, experiment with, and even change

the definition of the objects produced by that tool.

To foster this prototyping activity, we have sought an approach to attributed-graph def-
inition and implementation that provides ease of use and flexibility and that also supports
sharing. We have not, however, abandoned control over the environment’s configuration,
gince we consider the structure and discipline imposed by well-defined interfaces and type
checking to be particularly important in an experimental setting. GRAPHITE, by realizing
the objectives enumerated in the preceding paragraphs, offers the ease of use, flexibility, and

support for sharing that can facilitate environment prototyping activities.

3. Graph Description Language

This section describes the Graph Description Language, GDL, which is used to specify
a class of attributed graphs. This specification is the input to GRAPHITE, which uses it to

generate the interface package for creating and manipulating graphs of that class.

As noted above, GDL facilitates the development and maintenance of large software
systems by providing a common medium for communicating the definition of an attributed-
graph class among developers. To make this medium as natural to use and easy to understand
as possible for Ada developers, GDL is strongly modeled after Ada. This is evident in
the elaboration scheme, lexical rules, and syntactic style that are used. The elaboration
scheme governing the order of declarations in a GDL specification is the same as Ada’s linear
elaboration in which entities cannot be used before they are declared. The text of a GDL
specification closely follows the lexical rules of Ada. For instance, an effort was made to define
reserved words for GDL that are already used as reserved words in Ada. Reserved words of
Ada that are not used in GDL, such as task, are not permitted as identifiers in GDL to avoid
any conflicts with the generated Ada interface package. The few reserved words introduced by
GDL are class, node, group, and sequence. Syntactically, the GDL specification for a given
attributed graph closely reaemﬁles an Ada package specification that contains a collection
of Ada-like type declarations. A GDL specification is syntactically delimited by the phrases
“class <class name> is” and “end <class name>", where <class name> is a name given
to the attributed-graph data structure being specified. Figure 2 presents a skeleton GDL
specification in which ExampleGraph is the name of the class of attribute graphs being defined
and Example is the name of the interface package that is to be generated. This figure is used

throughout this section to describe the features of GDL in more detail.

-

class ExampleGraph Is
package Example;

with Lexical.(Comment, Position);

type Lexicallnformation s
record
SourceComment : Lexical. Comment;
SourcePosition : Lexical.Position;
end record;

type BranchWeigth Is new Integer range -10 .. 10;

group Statement; -- complete definition given below
type StatementSequence Is sequence of Statement;

node ConditionNode; -- complete definition given below
type ConditionSequence Is sequence of ConditionNode;

node ExpressionNode is

end node;

SourceConnection : Lexicallnformation;
ExecutionCount : Natural;

node ConditionNode Is
SourceConnection;
Weight : BranchWeight;
Condition : ExpressionNode;
Statements : StatementSequence;
end node;

node [fStatement is
SourceConnection;
ExecutionCount;
IfBranch : ConditionNode;
ElsifBranches : ConditionSequence;
ElseBranch : StatementSequence;
end node;

group Statement Is (IfStatement, WhileStatement, CaseStatement, ...)
end ExampleGraph;

Figure 2: GDL Specification for a Class of Attributed Graphs.

10

P B

A given GDL specification defines a particular class of attributed graphs by declaring
the node kinds, attributes, and attribute value types making up the class. Node kind and
attribute declarations ire quite straightforward. Declarations of attribute value types are
more complicated, however, because they are based upon the rich type structure found in
Ada. Node kind, attribute, and attribute value type declarations are each briefly described

below.

Node kinds are the primary building blocks of GDL. To define a node kind, the developer
specifies the name of that node kind and the attributes that make up nodes of that kind. The
format for defining a node kind is similar to that of an Ada record declaration, with attributes
acting as record fields. The similarity between node kind declarations and record declarations,
however, is purely syntactic. In particular, node kinds are not necessarily implemented as
records, and record-oriented operations, such as field selection, cannot be applied directly to

nodes. ConditionNode and IfStatement are two node kinds declared in Figure 2.

GDL provides a syntactic shorthand (not available to Ada records) intended for situa-
tions in which two or more node kind declarations contain an identical attribute declaration
(i.e., the name and type of the declared attributed are the same). In Figure 2, node kinds
ConditionNode and IfStatement contain identical declarations for an attribute named Source-
Connection. The syntactic shorthand allows a declaration to be made in one place and then
used in various nede kind declarations by simply listing the attribute’s name. An attribute
declaration that appears outside of any node kind declaration is referred to as a commonly-
available attribute declaration. Whether or not the shorthand is used, each attribute is
only associated with one node kind; it is simply the type information that is shared using

commonly-available attribute declarations.

11

GDL supports four categories of attribute value types: predefined Ada types, user-
definable Ada types, imported Ada types, and GDL-specific types. GDL supports all the
Ada predefined (sub)types, which include Character, Boolean, Integer, Float, String, Natu-
ral, and Positive. Except for private types, all the user-definable Ada types, which include
subtype, derived, enumeration, character, boolean, integer, float, fixed, array, record, and
access are supported. Private types must be defined separately from a GDL specification and
treated as an imported type.!

In Ada, a with clause attached to a package indicates that some entities defined in other,
external package(s) are to be imported. In GDL, the with clause performs a very similar
function; a with clause inside a GDL specification describes a set of externally defined and
packaged Ada types, including private types, that are expected to be used in, or as, attribute
value types. For example, in Figure 2, types Position and Comment are imported from package
Lexical and used in defining the record type Lexicallnformation.

In addition to the name of the package from which a type is imported, the GDL with
clause provides five pieces of information, which are necessary for automatically generating

the interface package that uses the entity:

1. the name of the imported type;
2. the name of the imported type's base type, if it is a subtype;
3. the name of the assignment operator for the type;

4. the name of the “external-form” type of the imported type; and

YA private type requires the specification and implementation of its operations as Ada subprograms. For
the GRAPHITE proceseor to generate an interface package that contains such a private type definition, the
GDL specification would have to include not only a representation for the private type, but sleo the complete
declarations of the subprogram operations. This would, at the very least, clutter the specification of the
attributed-graph class and detract from its otherwise high-level description.

12

5. the names of two dual-parameter procedures that serve to convert values between the
imported type and thé external-form type.

The first two pieces of information are necessitated by the fact that the actual definitions
of imported types (i.e., the specification parts of the packages providing the typeg) are not
assumed to be available to the GRAPHITE processor, as they would be to an Ada compiler.
As is explained in more detail in the next section, the interface package contains overloaded
subprograms. Therefore, the second piece of information must be known in order to generate
these subprograms, since overloading in Ada is legal for types but not for subtypes. The
only operation always required by an interface package for attribute value types is that of
assignment. This operator could be the standard “=" operator (by default) or, for limited
Private types, a dual-parameter procedure whose first parameter is the left operand and whose
second parameter is the right operand. The last two pieces of information are concerned with
the input and output of graph instances, which are discussed in more detail in the next section.
Briefly, the external-form type should have the property that it holds the same information
as the imported type, but can be immediately written out to a secondary file using the
Ada direct input/output package Direct_lO (see [1), Section 14.2.4). In particular, it cannot
contain any access types. The imported type can, of course, be its own external-form type if
it already has this property.

Figure 3 illustrates the specification of imported types in GDL. Noticed that we have
modified the Ada with-clause notation so that each imported entity from a package is explic-
itly identified. Iln this figure, four types are imported from a package Pac. The first type,
SomeTypel, is a subtype of the Ada predefined type Integer. There is no need to explicitly

indicate an assignment operator for this type, since the Ada assignment operator “:=" js the

13

with Pac.{ SomeTypel
subtype of Integer;

SomeType2/ExternalSomeType2,
:= => SomeType2Assign,
In => InternalizeSomeType2,
out => ExternalizeSomeType2;

SomeType3;
SomeTyped
subtype of SomeType2);

Figure 3: An Example Specification of Imported Types.

default for values of this type. Similarly, there is no need to specify an external-form type,
since SomeTypel is a pure numeric type, which means it can serve as its own external-form
type. Further, since SomeTypel is its own external-form type, there is also no need to specify
the names of conversion procedures. The second type, SomeType2, is not a subtype. It has
an external-form type ExternalSomeType2, an assignment procedure SomeType2Assign, and
conversion procedures InternalizeSomeType2, which converts values of the external-form type
to their “internal” form SomeType2, and ExternalizeSomeType2, which converts values of the
imported type to their external form. The third type, SomeType3, is also not a subtype,
is its own external-form type (and so does not require conversion procedures), and uses the

standard Ada assignment operator “:=". Finally, the fourth type, SomeType4, is a subtype

of SomeType2 and so by default can share SomeType2’s operations.

There are three GDL-specific types, node kind, node group, and node sequence. Each is
an attribute value type constructor that facilitates describing an attribute-graph class and,
thus, has no counterpart in Ada. Node kind was described above. Node group is used as a

value type for an attribute whose values can be any one of a number of different node kinds.

14

An example of this is given in Figure 2 where Statement is defined to range over a set of
nodes representing statements. The operations appropriate to values of a node group are
the same as those for a node kind, since a value of a node group is simply a node. Node
sequence is used to indicate an ordered collection of nodes. Again referring to Figure 2,
type StatementSequence is declared to be an ordered list of nodes, where each node must
be one of the node kinds declared in the group Statement. Operations on values of a node
sequence include those to create a sequence, retrieve an element of a sequence, and determine
whether or not a sequence is empty. All the operations for GDL-specific types are provided
as subprograms in the automatically generated Ada interface package. To insure that nodes
are the primary building blocks of the GDL specificaton, node kind, node group, and node
sequence type constructors are not permitted in user-defined Ada type declarations (e.g., as

components of a record type).

As a final point, initial values can be given to attributes of all types. Those of type (con-
structors) node kind, node group, or node sequence, like Ada access objects, are given “null”
initial values by default. A user-specified initial value is given as an expression of the appro-
priate type; syntactically, it is the same as an initialization expression for Ada objects. In the
case of node kinds, the form taken is that of a record aggregate. In the case of node groups, the
form is also that of a record aggregate, but the name of a particular member of the group must

also be given using the “tick” notation (i.e., <node kind name> * <aggregate expression>).

An initial value for an attribute can be given in three places: in the declaration of an
attribute value type, in the declaration of an attribute (within a node kind declaration or in a
commonly-available attribute declaration), and in the use of a commonly-available attribute

declaration within a node kind declaration. In the event that for a particular attribute more

15

than one initial valuc is given, the precedence order from highest to lowest is: node kind
declaration, commonly-available attribute declaration, attribute value type declaration. For
example, if a value type VT is declared and an initial value ¢ given, then that value holds
for all attributes of that type, except for those attributes of type VT initialized to a different
value j in their attribute declarations. If the attribute declaration of type VT is commonly
available, then that second initial value 5 can be overridden by an initial value k given in a
node kind declaration that uses the commonly-available declaration. Notice that GDL differs
from Ada, which does not allow initialization in types other than for fields of record types, by
allowing initialization in all user-defined Ada attribute value type declarations except those
involving unconstrained arrays.

By necessity, this section can only summarize the major features of GDL. A complete

description is given in (7|.

4. Interface Packages

Having described the input to GRAPHITE in the previous section, we now turn to the
output, namely the Ada interface package that implements a given GDL specification of a
class of attributed graphs. As mentioned in the introduction, GRAPHITE can generate either
a development version or a production version of such a package. The versions are similar in
that they realize an attributed graph as an abstract data type and provide the same set of
operations on graphs. The versions differ in how they resolve the often conflicting goals of
flexibility and efficiency; while the express purpose of the development interface is to support
flexibility by minimizing the impact of changes on tools, the intent of the production interface

is to provide efficient access to a relatively stable class of graphs.

16

This section presents our designs for the development and production versions of the inter-
face package. First, an overview is given of the operations on attributed graphs provided by
interface packages. Details of the development interface are then presented and the flexibility
that that design provides is demonstrated. Finally, the production interface is described and

issues in moving from a development version to a production version are considered.

4.1 Operations Provided by Interface Packages

The operations provided by GRAPHITE-generated interface packages fall into four basic
categories, as shown in Table 1. There are several things to notice about these operations
and about the use of Ada in their implementation.

First, notice the granularity of the operations that get and put attribute values. These
operations are designed to work on all the attributes of a particular type. Therefore, there
will be a separate pair of get/put operations for each attribute value type in a class.? Be-
cause the get (put) operations differ in the type of the attribute returned (entered), the Ada
subprograms that implement them can be overloaded, i.e., given the same name. The use
of overloading in this situation is appealing because it underscores the similarities in the
operations’ functionality. For instance, tool developers can take the perspective that there
is only one get operation and one put operation and that these two operations will work
for any attribute. The fact that the interface package must actually provide several pairs of

subprograms to realize these operations is hidden by the fact that the pairs are overloaded.

Our choice for get/put granularity has advantages beyond that of using overloading.

2 Actually, node kind attribute value types are collapsed into one Ada type and so there is only one get/put
pair for all attributes that are nodes. The same is true for node sequence attribute value types. In addition,
for each set of subtype attribute value types sharing the same base type, there ia aleo only one get/put pair.
This is discussed further.

17

1. OPERATIONS TO

MANIPULATE A NODE

Create
Get Attribute
Put Attribute

2. OPERATIONS TO

creates a new node of a given kind
gets the value of an attribute of a given type

puts the value of an attribute of a given type

ASCERTAIN A NODE'S DEFINITION

Attribute Value Type
Kind
Node Kind Attributes

retrieves the name of an attribute’s value type
retrieves the name of a node’s kind
retrieves the names of a node kind's attributes

3. OPERATIONS TO

MANIPULATE NODE SEQUENCES

Create

creates a given sequence

Insert ingerts a node into a sequence at a given position
Kind retrieves the name of a sequence ﬂ
Length retrieves the length of a sequence

Retrieve retrieves a node from a sequence at a given position
4. OPERATIONS TO INPUT AND OUTPUT GRAPHS

Read Graph reads a graph from a file

Write Graph

writes a graph to a file

Table 1: Oper

ations Provided by Interface Packages.

18

These advantages become clear when our choice is compared with an obvious alternative—one
get/put pair for each attribute—which is the granularity used in the example implementation
of a DIANA interface package in [2]. In that approach, the operations are tied to the low-
level details of the data being represented, which for attributed graphs are the names of
the attributes comprising the node kinds. This results, for example, in a DIANA interface
package having 97 pairs of uniquely named (i.e., non-overloaded) subprograms for getting
and putting attribute values, one for each of the 97 attributes in the class. This compares to
the approximately 15 get/put pairs, corresponding to DIANA’s approximately 15 attribute
value types, that would be required under our approach. The tools most hurt by DIANA’s
example granularity are those that perform general-purpose functions, such as traversing a
graph. These tools would very likely have to include complex constructions, such as case
statements with large numbers of arms {e.g., 97). Maintaining such structures would be
difficult, not only because of their sheer size, but also because they are highly sensitive to

changes in a class’s set of attributes.

In the extreme, our choice for granularity would reduce to the alternative discussed above
if every attribute were given a unique attribute value type. This is, of course, an unlikely
possibility. More typical would be classes consisting of small numbers of attribute value types
compared to attributes, as is the case for DIANA. Furthermore, we would expect that the set
of attribute value types would change much less often than the set of attributes. Therefore,
our approach better supports the building and maintaining of general-purpose tools as well

as offers greater protection against changes in class definitions.

A second thing to notice about the set of operations provided by interface packages is the

inclusion of operations to retrieve details about a node’s definition. This, like the granularity

19

of the get/put operations, is intended to facilitate the development of general-purpose tools.
Using these functions, tools could be written that apply to any class definition as long as the
attribute value types are known. Consider, for example, the design of a tool that, given the
name of an attribute and the name of the type for nodes, traverses a graph searching for all

nodes containing that attribute. The basic algorithm for such a tool might be the following.

1. Retrieve the list of attribute names for the current node.
2. Note whether the desired attribute is present.
3. For each attribute in the list:

(a) Retrieve the name of the attribute’s value type.
(b) If the type indicates that the attribute is a node, then recursively apply the algo-

rithm to that node.
Notice that the algorithm is independent of any particular class definition because it can
dynamically determine all the information that it needs.

Third, notice the operations provided by GRAPHITE to manipulate node sequences. Al-
though support for node sequences is not strictly necessary, since such sequences can be sim-
ulated with attributes that linearly link nodes together, it is provided simply because such
structures are so common in the representations used in software development environments.
For example, in representing an Ada program, the nodes for the elements of a declarative
part or the elements of a statement part are, by their very nature, in a sequence. The oper-
ations for manipulating node sequences were chosen for their primitive functionality. From
them, practically any style of sequence manipulati;)n, such as a LisP-like CAR-CDR-CONS
approach, can be built.

The fourth thing to notice is that the read and write operations are intended to support the

sharing of an attributed-graph instance among tools that may be invoked at widely different

20

times. The write operation, given a node N in a graph, creates a secondary file and saves in
that file every node reachable from N. The read operation reconstructs a graph by retrieving
the nodes saved in a file by a previous write operation. The Ada direct input/output package
Direct.1O provides extensive support for reading and writing values of arbitrarily complex
types. The only limitation of this package is that it cannot maintain the values of Ada
access types. Attributes whose types involve access types must therefore be translated, or
linearized, into a suitable external form before being saved. The GDL specification of an
attributed graph provides GRAPHITE with sufficient information to define an external form
and perform any necessary linearization, even for those types imported from separate packages
(see Section 3). This external form preserves the semantics of access values without actually
ﬁsing access types. These semantics are then used by the read operation to re-establish access

values while reconstructing a graph.

Finally, notice that two possible categories of operations are completely missing. The first
would consist of operations to dynamically add node kinds, attributes, or attribute value types
to a class definition. As argued in Section 2, such capabilities, if provided, would adversely
affect managerial control over a large project and thus we decided not to provide them. The
second missing category would provide capabilities to convert an instance of a graph created
from a previous class definition into an instance of a graph corresponding to the current
definition. This would be an important category if, for example, an experimental environment
is expected to undertake the analysis of large, or large numbers of, Ada programs. Then we
may not want to incur the cost of complete re-analysis because intermediate representations
have undergone change. Since we do not expect such loads in the Arcadia environment until

it has somewhat stabilized, operations to perform instance-to-instance translations have not

21

been included.

4.2 Development Interface

Figure 4 shows a portion of the specification part of the development version of the
interface package that would be generated by GRAPHITE from the GDL specification given
in Figure 2. The specification part contains declarations for the subprograms realizing the
operations discussed above. It also contains declarations for the Ada types realizing the

attribute value types of the class definition.

Two of the types declared in the specification part correspond to the GDL-specific at-
tribute value types node kind and node sequence. (The other GDL-specific attribute value
type, node group, is only used within the body part of an interface package and so does
not require a visible Ada type to represent it.) Note that the name of the class given in a
GDL specification is used as the name of an Ada private type whose objects designate nodes
in attributed graphs of the class. The name of the class is also used to form the name of
an Ada private type whose objects designate sequences of nodes in the class. Thus, for the
example shown in Figure 4, the type for designating nodes is ExampleGraph and the type for
designating node sequences is ExampleGraphSequence. Because these types are private, the
only operations on nodes and sequences of nodes (other than assignment and the equality/
inequality tests) that can be performed by tools are those realized by the visible subprograms
defined in the specification part. Although one type is used to designate nodes of all kinds,
an interface package will guarantee at run time that a node is used in a manner consistent
with its kind. For instance, if a node kind has an attribute A whose value type is another

node kind NK, then only nodes of kind NK will be allowed as values of attribute A. The

22

- utility entities
with ExampleGraphUtilities;

-- imported types and subtypes
with Lexical;

package Example is
-- GDL-specific types
type ExampleGraph is private;
type ExampleGraphSequence is private;

-- user-defined types and subtypes
type Lexicallnformation Is
record
SourceComment : Lexical.Comment;
SourcePosition : Lexical.Position;
end record;
type BranchWeight is new Integer range -10 .. 10;

- types for communicating names

type NodeKindName Is new String;
type NodeSequenceName Is new String;
type AttributeName Is new String;

type AttributeValueTypeName Is (ExampleGraphVT, ExampleGraphSequenceVT,

BranchWeightVT, LexicalinformationVT, IntegerVT, ...);

-- types for listing a node's attributes

type AttributeNamelListElements Is array (Natural range <>)

of AttributeName { 1 .. ExampleGraphUtilities. MaxNameLength);

- MaxNamelength is a function

type AttributeNamelist (Length : Natural :=0) Is

record

Elements : AttributeNameListElements { 1 .. Length);
end record;

-- operations to manipulate a node

function Create (NodeKind : NodeKindName) return ExampleGraph;

procedure PutAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName;
TheValue : ExampleGraph);

functlon GetAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)
return ExampleGraph;

procedure PutAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)
TheValue : ExampleGraphSequence };

function GetAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)
return ExampleGraphSequence;

Figure 4: Specification Part of Interface Package for Class of Figure 2
(Development Version).

23

procedure PutAttribute (TheNode : ExampleGraph; TheAttribute AttributeName;
TheValue : BranchWeight);

function GetAttribute { TheNode : ExampleGraph; TheAttribute : AttributeName)
return BranchWeight;

procedure PutAttribute { TheNode : ExampleGraph; TheAttribute : AttributeName;
TheValue : Lexicallnformation);

function GetAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)
return Lexicallnformation;

procedure PutAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName;
TheValue : Integer); -- used for subtypes of Integer

function GetAttribute (TheNode : ExampleGraph; TheAttribute : AttributeName)
return Integer; -- used for subtypes of Integer

-- operations to ascertain a node's definition
function Kind (TheNode : ExampleGraph) return NodeKindName;
function AttributeValueType (NodeKind : NodeKindName; TheAttribute : AttributeName)
return AttributeValueTypeName;
function NodeKindAttributes (NodeKind : NodeKindName) return AttributeNameList;

-- operations to manipulate node sequences
function Create [NodeSequence : NodeSequenceName) return ExampleGraphSequence;
procedure Insert (TheSequence : ExampleGraphSequence; Position : Positive;
TheNode : ExampleGraph);
function Kind (TheSequence : ExampleGraphSequence) return NodeSequenceName;
function Length (TheSequence : ExampleGraphSequence) return Natural;
function Retrieve (TheSequence : ExampleGraphSequence; Position : Positive)
return ExampleGraph;

--<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>