Instantiating Descriptions of
Organizational Structures

H. Edward Pattison
Daniel D. Corkill
Victor R. Lesser

COINS Technical Report 85-45
November 1985

Department of Computer and Information Sciences
University of Massachusetts
Ambherst, Masachusetts 01003

This research was sponsored, in part, by the National Science Foundation under grants MCS-8306327 and
DCR-8500332, and by the Defense Advanced Research Projects Agency (DOD), monitored by the Office
of Naval Research under Contract NR049-041.

Abstract

Instantiating and maintaining large distributed processing networks requires an explicit de-
scription of the system’s organizational structure. Such a description identifies the system's
functional components, their responsibilities and resource requirements, and the relations
among them. Existing languages with features for describing organizational structure are
inadequate for this task because they cannot describe the domain specific and complex
relations found in many organizations. EFIGE is a language that allows such relations to
be specified. The language aids the instantiation of these relations by allowing them to
be constrained from the perspective of their members, and by allowing preferences to be
expressed among instances of them. This paper describes EFIGE and shows how relations
refined with constraints may be implemented.

Contents

1 Introduction

2 An Example

2.1 PUIpose i e e e e e
2.2 Compomentsttt etinae e e
2..3 Relations Between Components0
2.4 Composite Componentsottt et

3 Describing Organizational Structures
31 Relations
3.2 Constraints

3.3 The Procedural/Declarative Interface

4 Instantiating a Description

with EFIGE

oooooooooooooooooooooo

oooooooooooooooooooooo

oooooooooooooooooooooo

10

12

14

18

23

29

30

4..1 Constraint Solution Algorithm

4.2 Instantiation of the Hierarchical Organization

Status and Ongoing Research
5.1 Organizational Self-Design v
5.2 Improvementsto EFIGE

5.3 SUIMIMAIY . . . ¢« ¢ v v o v v v o s s o s o n oo s oo s s o m s ot oo s oo

Complete Description of the Hierarchical Organization

Domain Specific Functions

ii

37

38

40

42

46

71

Chapter 1

Introduction

The need to describe large and complex process structures—in order to instantiate them on
specific processor configurations and to provide information to the operating system for re-
source allocation decisions and communication routing—has been recognized by a number
of researchers, and they have developed languages for this purpose. These include DPL-82
[Ericson 1982), HISDL |Lim 1982}, ODL [Fox 1979], PCL [Lesser, Serrain, & Bonar 1979},
PRONET [LeBlanc & Macabbe 1982}, and TASK [Jones & Schwans 1979]. These lan-
guages, however, are very weak in their ability to specify the complex processing structures
necessary for the next generation of network architectures and distributed applications.
This is especially true for applications with closely interacting tasks implemented on net-
works which are heterogeneous compositions of databases, effectors, sensors, and processors
with various processing speeds and memory sizes. For example, the specification of the
processing structure of a distributed processing network that performs signal interpre-
tation requires a complex, domain-specific, communication relation between interpreting
nodes and sensing nodes. This communication relation requires each interpreting node
to communicate only with the smallest group of sensing nodes that can provide it with
information about the region for which it is responsible. At the same time, each sensing
node is required to communicate with a limited number of integrating nodes in order to
minimize the time it must allocate for communication.

The specification of such complex process structures involves identifying functional
components (e.g., interpreting and sensing nodes), their responsibilities (providing in-
terpretations of the signals detected in a particular region) and resource requirements
(processor speed and memory size, knowledge about interpreting signals, etc.), and the
relations among them (communication). Together, this information is a specification of
the system’s organizational structure. We see specification of organizational structure as
not just parameter substitution and macro expansion, but rather a problem of organiza-
tional design under conflicting instantiation constraints. These constraints arrive from the
need to specify complex relations among the components of an organization. Relations
include communication relations, authority relations that specify the importance given to
directives from other nodes, and proximity relations that specify spatial positioning among
objects. All of these relations may be complicated by interacting constraints. This was
true of the communication relation between sensing and interpreting nodes given above,
and is true of other relations as well. For example, a producer of a product whose value
decreases with time may require that it be located near the consumer using the product
or that both be located near nodes of a reliable transportation network.

Existing languages have implemented a few specific relations but their approach is
limited. A communication relation, for instance, is described by explicitly stating that
process X is to communicate with process Y. If the processes may be replicated, this
statement becomes X|i] communicates with Y'[i], where i identifies a specific copy of each
process. This form of description is not general enough. If Y{3], for example, is lost due
to node failure, X[3] might as well be lost. Any information it was to have received from
Y'[3] will not be forthcoming and it will be idle; the production of any information it was
to have sent Y[3] will consume system resources in vain. Since the description specifies
only that X[3] is to communicate with Y(3], there is no way to find a substitute and one
cannot be created because the characteristics of Y[3] that made communication with X({3]

important are unknown.

Both the ability to specify more complex relations and the ability to allow network
designers to specify domain specific relations, such as the communication relation given
above, are needed. Instead of requiring designers to specify communication relations as

point-to-point connections, they should be asked to supply the criteria by which such
pairings can be determined. The criteria that a member of one domain of a relation uses to
recognize an acceptable member from another domain are called constraints. Constraints
refine a relation because they “reduce” the number of possible pairings of a member of
one domain with the members of another. More precisely, a relation defines a set of
ordered pairs (in general, n-tuples) that is the cartesian cross-product of each domain of
the relation, while a constraint is a predicate that selects some of the pairings as more
significant than others.

The introduction of constraints to organization descriptions significantly enhances
the description as a symbolic representation of the organization. It allows the description
of organizational classes, as opposed to descriptions of specific instances of some class.
Constraints, however, complicates organization instantiation. To instantiate a relation,
solutions must be found for each of the constraints with which it was refined. This re-
quires searching large spaces of possible solutions in an attempt to find values that will
simultaneously satisfy all of the constraints. As an interim approach, we have adapted
an algorithm from the AI literature that is used to eliminate inconsistent assignments of
values to constraints [Waltz 1975]. This approach is limited, however, because it tries to
choose solutions for one constraint without first performing some analysis that will in-
sure that the solution will be acceptable to the remaining constraints. The use of a more
sophisticated approach awaits further research.

In the next chapter we present an example of an organizational structure, then discuss
its description and requirements for an organizational description language. Chapter 3
indicates how structures are described within our framework, Chapter 4 describes how
descriptions are instantiated, and the last chapter discusses both the current status of our
work and future research.

Chapter 2

An Example

In this section, a hierarchical organizational structure for distributed signal interpretation
is presented. We use this organization as an example with which to identify organizational
features requiring description.

In our scenario for distributed signal interpretation, different kinds of signals are emit-
ted by various vehicles as they move through a region. The system’s task is to create a
history of vehicular activity within the region based on the signals it detects. One processor
organizational structure for performing signal interpretation is the hierarchical organiza-
tion. It has three types of components: sensing nodes, which perform signal detection and
classification; synthesizing nodes, which make local interpretations of the signal information
they receive from the sensing nodes; and sntegrating nodes, which combine interpretations
received from other nodes to create interpretations over larger portions of the sensed re-
gion. Figure 2.1 illustrates an instance of the hierarchical organizational structure that
has one integrating node, four synthesizing nodes, and four sensing nodes. The figure also
shows the lines of communication between the nodes, although the directionality of these
communication links and the information transmitted is not the same between all pairs
of nodes. Finally, the figure indicates the overlapping regions scanned by each sensor.
Figure 2.2 shows another instance of the hierarchical organizational structure. It has five

integrating nodes, sixteen synthesizing nodes, and sixteen sensing nodes.

hep-86

Figure 2.1: An instance of the hierarchical organizational structure with one integrating
node (circle), four synthesizing node (dots), and four sensing nodes (squares).

Figures 2.1 and 2.2 show two instances of the same organizational class. The goal
of our work has been to develop a way of describing organizational classes, as opposed to
describing specific organizations that are instantiations of some class. The key features
of any organizational class are the different types of components (here: sensing, synthe-
sizing, and integrating nodes) and the relations between them (communication relations
are emphasized in the figures: sensing and synthesizing nodes, synthesizing and integrat-
ing nodes, low-level and high-level integrating nodes 1). Each type of component has its
own particular set of responsibilities to carry out (signal detection, interpretation, integra-
tion) and a set of requirements for resources to be utilized in meeting its responsibilities
(processing hardware, knowledge about signal interpretation, etc.). The relations between
component types are independent of the numbers of components that may be instantiated
for each type or on what processor they may execute—synthesizing nodes must always

! This last relation is not instantiated in Figure 2.1 because there is only one integrating node.

hep-85

Figure 2.2: The hierarchical organizational structure with five integrating nodes, sixteen
synthesizing nodes, and sixteen sensing nodes.

receive signal information from sensing nodes. For that reason, their descriptions must
also be independent of details specific to single instances of the organization.

We have said that the key features of an organizational class are its components
and the relations between them. In the rest of this chapter, we try to identify what
information a description of these organizational features will need to include and the
range of values that will have to be accommodated. We start, however, with a discussion

of the organization’s purpose.

2..1 Purpose

An organization is a group of one or more individuals whose purpose is to perform some
set of tasks in an attempt to achieve a set of goals while observing a set of constraints.
Constraints on how the goals are to be achieved determine the rate of processing needed
and, in turn, affect the size and complexity of the organization. For example, the goal of

6

the hierarchical organization is to create a high-level history of vehicular activity over a
region. The tasks required to achieve the goal include the detection and classification of
acoustic signals generated by the vehicles, the weighing of evidence for the presence of a
particular type of vehicle based on the signal types detected, and estimating the paths of
vehicles through the region and recording them.

Constraints on achieving the organization’s goal emphasize processing tradeoffs be-
tween such features as topicality, production costs, robustness, completeness, and quality.
For example, in the signal interpretation task, we may insist that the system produce
highly rated interpretations of the data as quickly as possible, thus emphasizing maximal
values for topicality (short response time) and quality (correct interpretations), at the ex-
pense, perhaps, of production costs (the rate of processing needed to derive the answer).
Further, distributed systems, in general, are expected to be robust: able to adjust to node
failures and to have performance degrade gracefully as error in the system increases.

2..2 Components

Organizations are composed of components. The hierarchical organization, for instance,
has three components: sensing, synthesizing, and integrating nodes. What these com-
ponents have in common are sets of responsibilities and resources to be used in meeting
them.

Responsibilities

Components perform tasks. These include: a sub-set of the tasks necessary for accomplish-
ing the organization’s purpose; management tasks incurred as organizational overhead;
and—especially in human systems—tasks that counter, or do not contribute towards, the
organization’s purpose but are, for idiosyncratic reasons, important to the component. One
way of specifying responsibilities is by assigning components sub-regions of the problem-
solving space defined by the organizational task. For the signal interpretation task, the

dimensions of the problem-solving space might be the physical region monitored by the
system, problem-solving events (e.g., the detection of a signal of a certain type, the decision
that a group of signals were produced by a particular type of vehicle, etc.), abstraction
levels (e.g., signals of different types, groups of signals, vehicle types, patterns of vehicles),
and time. Out of all of the tasks that an organization for signal interpretation needs to
perform to meet its goals, the sensing nodes perform only the signal detection task. Other
components are responsible for performing the remaining tasks.

Resources

Components possess certain resources with which they are expected to perform their tasks,
thus the resources required by a component will depend on the roles it plays in the orga-
nization. There seem to be three “flavors” of resources: software resources (knowledge),
hardware resources (tools), and other components (consultants). Access to a component
resource is access to another set of software and hardware resources and another list of
contacts.

Knowledge. There seem to be three types of knowledge: algorithms, data bases,
and expertise. Algorithms specify how to process data, data bases are repositories of
information, and expertise refers to the type of heuristic knowledge characteristic of expert
systems. The problem-solvers located at each node may incorporate any or all of these
forms of knowledge. Algorithms and expertise, for example, tell a node how to interpret
signal data as evidence for the presence of vehicles and how to track those vehicles. Some
knowledge may be meta-level knowledge used to determine when it is appropriate to apply
the domain specific knowledge.

Tools. In addition to knowledge about how to perform a task, a worker may require
particular implements with which to execute the task. These can be effectors (a robot
arm, say, or the hammer or wrench that the arm may wield during a particular process)

or sensors (the devices that a sensing node uses to detect signals). Use of a tool requires
that the worker have additional knowledge: how to use it.

Consultants and Sub-Contractors. If unexpected problems arise that are outside
the range of expertise of a component, it is useful to know of someone who does have the
expertise. Given this information, the component could ask for problem solving advice or
contract the problem’s solution to the expert. Similarly, a component might find it useful
to know who can use its data, who can provide it with missing data, or who is available to
share its processing load. Smith has investigated a method of distributed problem solving,
called the contract-net approach, in which a node, given a problem that it cannot solve
alone, contracts for the solution of the problem or of its sub-problems [{Smith 1980]. This
method does not rely on knowing in advance who is capable of solving the problems or
sub-problems, since they can be broadcast to the network, but this information is used if
available. This is known as focused addressing. We can imagine a scenario in the signal
interpretation task in which a sensing node begins sending a synthesizing node information
about signals of a type for which the node has no knowledge. If the synthesizing node
knows, however, of another node that does have the knowledge, it céuld ask for help; if
not, it could broadcast a request for the knowledge it needs.

Individual Characteristics

There may be information about a component that isn’t directly related to its responsi-
bilities or resource requirements. For instance, it may be necessary to have some abstract
description of how the component will function, especially if the organization’s performance
is to evaluated before instantiation. The level of detail will vary with the application, but
can include estimates of the average reliability of the component’s outputs, mean time
to failure, rates at which inputs can be processed, or even a state transition model that
simulates how the component will behave. Pavlin, for example, presents a way of modeling
the behavior of an entire distributed problem solving organization [Pavlin 1983].

2..3 Relations Between Components

Components in an organization do not exist—nor do they function—independent of one
another. Components interact. Commands, information, and sub-assemblies (or partial
solutions) are passed between them; they may work cooperatively at performing operations
on some object. These interactions are expressed as relations between the components

involved.

Relations between components can be arbitrarily complex. It will seldom be the
case that a single relation will be required to exist between just two components. It is
more likely that a conjunction of relations will occur and that relations between groups of
components will be required. These groups may, in turn, be formed from other relations.

Communication

The most important relation between two or more components is who talks to whom.
This is the relation shown most prominently in Figures 2.1 and 2.2: each inter-node line
represents an instance of a communication relation. The communication relation is used
to identify a component’s sources of one especially valuable resource—information—and
to identify the consumers of the information it produces.

Equally important is exactly what is exchanged during communication. The need to
associate a message structure with a communication relation complicates its instantiation.
It requires that objects satisfying the relation must, additionally, satisfy another constraint:
that their message structures be compatible. That is, if one object expects to send messages
consisting of certain information in a specific format, the other object in the relation
(assuming the binary case) must be prepared to receive that information in the same

format.

Finally, it may be necessary to associate a specific communication strategy with a
communication relation. Durfee, Lesser, and Corkill have investigated the effects of several

10

communication strategies on the global behavior of a distributed problem solving network
[Durfee, Lesser, & Corkill 1985].

Authority

Authority is a relation that modifies another: the communication relation. It indicates how
much emphasis should be given to messages from different sources or, possibly, to different
messages from the same source. If the message has authority, the component may want to
allow it greater impact on its activities. In the five-node organization, the integrating node
may be given the authority to direct synthesizing nodes to look for evidence of vehicles
in regions it designates. Upon reception of such a message, a node might cease whatever
processing it had chosen to do based on the local information available to it and take up
the requested work.

How much attention should be paid to an authority? The component may realize that
the environment has changed and the authority’s instructions are no longer appropriate.
Should they be followed, ignored, or disputed? A synthesizing node may have very strong
evidence that a vehicle’s path lies in a certain direction when it receives a directive from
the integrating node to look elsewhere. The node must decide if it is more important to
continue processing the strong data or to follow the integrator’s instructions. In fact, it may
be desirable to have individual variation between nodes, weighting some synthesizing nodes
with greater bias toward the integrating node’s authority than others. Nodes with little
bias towards authority are called self-directing or skeptical. Reed and Lesser have discussed
the importance of self-direction in the members of honey bee colonies [Reed & Lesser 1980);
Corkill has experimented with the affects of skeptical nodes in distributed problem solving
organizations performing signal interpretation [Corkill 1982].

In general, it seems that relations can often be described on two levels. The first level

is a (relatively) global level that outlines the relation and its participants. The second is
the local level, in which details and individual variance are elaborated.

11

Location, Proximity, etc.

Many other important relations may exist between the components of an organization. For
instance, if one component is a producer of a product whose value decreases with time, the
component using that product may need to be located nearby, or they may both need to be
placed near terminals of a reliable transportation network. Sales offices for a manufacturer
may need to be located across the country, instead of all in one city. Sensing nodes in
the organizations for signal interpretation need to be distributed across the entire region;
synthesizing nodes need to communicate with a sensing node (more generally, group of
sensing nodes) that scans the nodes’ region of responsibility.

2..4 Composite Components

Organizations are often composed of sub-organizations. In order to simplify descriptions
of such organizations, the sub-organizations are treated as single components and the
interactions among these components are detailed; then the components are “enlarged” to
reveal the sub-organization they represent. While these composite components don’t have
physical counterparts in the actual organization, they serve two purposes: they help make
descriptions of organizations understandable, and they group physical components that
perform the same organizational function. For these reasons, an organizational description
language should provide the ability to “package” an organization as a single component of
another organization. Furthermore, the language should treat individual and composite
components the same. If one description knows as little as necessary about another, it will
be easier to make modifications.

Composite components allow recursive descriptions of organizations. If there are
enough nodes (twenty-one, for instance), the hierarchical organization (figure 2.2) is in-
stantiated as an integrating node with hierarchical organizations as its components. Each
of these hierarchical sub-organizations is again instantiated with its share of the original
nodes. When the number of nodes becomes small enough, the organization is instantiated
as a single integrating node with synthesizing nodes under it. If the number of nodes

12

is small enough to start with, of course, no virtual components need to be created: the
synthesizing nodes are created right away. This is the case for five nodes, for example.

13

Chapter 3

Describing Organizational Structures
with EFIGE

This chapter introduces a language, called EFIGE (pronounced “effigy”), for describing
organizational structures. Descriptions of organizations in EFIGE are hierarchical. That
is, they may be of either individual or of composite structures, and a composite structure’s
components may be individual or composite. Figure 3.1 shows part of the description of the
hierarchical organization presented in Figures 2.1 and 2.2 (a complete description of the
hierarchical organizational structure is given in Appendix A). Descriptions have global
names, parameters that may have default values, and local variables. Components are
given local names, are conditionally instantiated, may be replicated, and information—in
the form of values for parameters—may be partitioned among them. Parameterized de-
scriptions and conditional instantiation of components allow descriptions to be recursively
defined. This is the case with the hierarchical organization.

All descriptions are given names.
(NAME hierarchical

A composite description has components.

14

TYPE composite

Descriptions are parameterized. The user can specify that a parameter be bound to a different

value than its default.

PARAMETERS
((number-of-integrating-nodes DEFAULT 6)
(region

)
The LOCAL-VALUES field is used to compute and assign values to local variables.

LOCAL-VALUES
((number-of-synthesizers ...)

(number-of-hierarchies

)
The COMPONENTS field lists the components of a composite organization.
COMPONENTS
Components are given local names.
((COMPONENT-NAME synthesizers

Components are described by other organizational descriptions. A description called
synthesizing-node is used to describe this component. It could be used to describe other
components, as well. Synthesizing-node has a parameter, region, which will be set to the value
of worker-region (defined in the COPIES field, below).

DESCRIPTION (synthesizing-node ((region worker-region)))

The organization that describes a component may be instantiated more than once, depending on
the value in the COPIES field. Synthesizing-node is to be instantiated one-less-node times.
One-less-node is a local variable defined in the LOCAL-VALUES field.

COPIES (one-leas-node

The VARY clause of the COPIES field is a construct for declaring variables and assigning them a
sequence of values. worker-region will be assigned a different value for each instantiation of
synthesizing-node; consequently, each instantiation will have a different value for its region

parameter.,

15

(VARY
(worker-region

))

Components are only instantiated if their PRECONDITION function evaluates to true. This
component is to be instantiated only if nunber-of-nodes is within the range 3-5, inclusive.

PRECONDITION (within-subrange? number-of-nodes 3 6)

)
(COMPONENT-NAME sub-hierarchy

The component, sub-hierarchy, is described by the description, hierarchical, thus this
component is recursive.

DESCRIPTION (hierarchical ...)
COPIES (number-of-hierarchies
(VARY
))
PRECONDITION (> number-of-nodes 5)
)

) ; end hierarchical

Figure 3.1: Part of the description of the hierarchical organization.

Figure 3.2 shows part of the description of an individual component. Fields are pro-
vided for specifying the individual’s duties within the organization, listing the resources
the individual will require to meet its duties, and for additional information about the
individual that may be accumulated during instantiation or may provide information to
be used to estimate the individual’s processing characteristics. Values for these fields are

necessarily application dependent.

16

(NAME synthesizing-node
This description is of an individual structure, it has no components.

TYPE individual

Descriptions of individuals have PARAMETERS and LOCAL-VALUES fields, but we’ll ignore

them here.

The tasks that an individual are to perform are specified in the RESPONSIBILITIES field. For
our application, responsibilities are specified as regions of the problem-solving space and rated by
importance. 81-sensor-region was bound to a description of a problem-solving region in the
LOCAL-VALUES field.

RESPONSIBILTIES
((PROCESS-AREA (sl-sensor-regions)
IMPORTANCE
)

The resources the individual needs to perform the tasks for which it is responsible are given in the
RESOURCES field. One resource required by our application is knowledge about specific tasks.

RESOURCES
(KNOWLEDGE-SOURCES
((KS-NAMES (determine-communication-kses ?this-description) '
GOODNESS
)

The CHARACTERISTICS field contains information that will vary between individuals—even
though they belong to the same component of the organization—or information that can used to
simulate the individual’s behaviour.

CHARACTERISTICS
(LOCATION
)

17

Figure 3.2: Part of the description of an individual.

3.1 Relations

The hierarchical method we have presented for describing organizations is similar to the
specification framework of other languages. What gives our approach additional represen-
tative power is the introduction of relations and constraints into this hierarchical descrip-

tive framework.

EFIGE allows relations of any kind to be established between components and allows
additional information to be associated with the relation. For instance, almost all languages
for describing organizational structures give their individual and composite structures ports
and allow the composite structures to specify communication links among the ports of their
components and between ports belonging to the composite structure and its component
ports. But a communication link is just one kind of relation and ports are just devices
for associating message structures, directionality, and other information with the relation.
These concepts have been generalized in EFIGE.

There are three parts to the description of a relation and each part appears within
the description of a different structure. The declaration of a relation between components
appears in a composite structure (Figure 3.3). A declaration merely specifies that a relation
exists between one, or more, components. The composite structure in which the declaration
is made does not know if a component is an individual or composite, but it does not need
to. Either type of component can participate in a relation, but it is more likely that a
composite structure will forward membership in the relation to some of its own components
instead (Figure 3.4). Forwarding may occur again if the component to which membership
in a relation is forwarded is another composite structure. Finally, the relation is refined
within the structures that are to actually participate in it (Figure 3.5). This is where the
constraints are specified and it is here, also, that any additional information is associated
with it.

It should be noted that one relation may depend on the instantiation of another. For

18

example, an integrating node may wish to communicate only with synthesizing nodes that
receive information from sensing nodes with particular characteristics. This requires that
the sensor-synthesizer communication relation be instantiated before the integrator-
synthesizer relation. Because EFIGE is currently unable to recognize such situations,
relations must indicate the order in which they are to be evaluated, relative to all of the
other relations in the organization. This also helps the user avoid making circular references
in constraints. The evaluation order of a relation is specified with its declaration.

A RELATIONS field is part of both composite and individual structure descriptions.
It contains a list of parts of relations, although only refinement parts can appear in de-
scriptions of individuals. Figure 3.3 shows the declaration part of a relation in EFIGE.
The RELATION-NAME field gives the relation a local name; the RELATION-TYPE field
indicates the type of relation expression.(The value new is used to indicate the declara-
tion part of a relation, forward indicates the forwarding part, and refine the refinement
part.) These two fields appear in all parts of the description of a relation. The integer
expression in the EVALUATION-ORDER field is used to establish a partial order among
new relations. The relations will be sorted in increasing order by their values for this field.
The RELATE field declares a relation between components by listing them as members of
the domains of the relation. An n-ary relation has n domains. Each domain is provided
with a name; component names, paired with the name of one of their relation parts, are
listed after it. All copies of the component will be included in the domain. The relation
parts in the components must either refine the relation or forward it. The relation sensor-
synthesizer in Figure 3.3 has two domains named sensor and synth. The members of
the sensor domain are all of the copies of the structure instantiated for the component
sensor-array. Similarly, the members of the synth domain are the structures instanti-
ated for the synthesizers component. Within these structures, there must be an entry in
their respective RELATIONS fields named to-synthesizer and to-sensor, respectively.

Figure 3.4 shows an example of the forwarding of a relation. In effect, forwarding a
relation results in the replacement of the reference to a composite structure in the original
relation with the list of the composite structure’s components. Thus the structures instan-
tiated for integrators will receive membership in the relation instead of the structure

19

RELATIONS

Entries in the RELATIONS field are given names.
((RELATION-NAME sensor-synthesizer

Entries of type new are used to declare the existance of a relation between components of an

organization.
RELATION-TYPE new

This new relation is to be among the first implemented.
EVALUATION-ORDER 1

This relation has two domains. The first is given the name, sensor, and consists of the structures
instantiated for the component, sensor-array. Within those structures, more information about
the relation is contained in an entry in their RELATIONS field with the name, to-synthesizer.
Similarly, the second domain is named, synth, and its members are the structures instantiated for
the synthesizer component. These structures contain an entry in their RELATIONS field with

the name, to-sensor, that also contains more information about the relation.

RELATE ((sensor sensor-array$to-synthesizer)
(synth synthesizers$to-sensor)

)

Figure 3.3: Example of the declaration of a relation.

20

which includes middle-integrator.

(RELATION-NAME middle-integrator

Composite structures may have entries in their RELATIONS field with type, forward. These
pass the composite structure’s membership in a relation on to one (or more) of the structures

components.
RELATION-TYPE forward

The structures instantiated for the integrator component will become members in the relation
in place of the composite structure. The entry in their RELATIONS field with the name,
upper-exchange, will contain more information about the relation.

FORWARD (integrators$upper-exchange)
)

Figure 3.4: Example of the forwarding of a relation.

A refine expression is embedded in the structure that will participate in the rela-
tion. It contains constraints for refining the relation and additional data that is to be
associated with the relation. Constraints are discussed below. Figure 3.5 gives an example
of relation refinement. The relation part to-sensor appears in the individual structure
synthesizing-node which was instantiated as the synthesizers component of the com-
posite structure hierarchical (Figure 3.1). It refines the relation sensor-synthesizer,
which referred to it in Figure 3.3. Since this is (implicitly) a communication relation, to-
sensor includes information that is to be associated with the relation (e.g., the direction
messages are to travel in the relation, their format, communication strategies, etc.).

21

(RELATION-NAME to-sensor

Each of the ultimate members of a relation (after all forwarding of membership) has an entry of
type retine for that relation. The refine entry may provide each member with fields for the
description of additional information needed by the relation and may reduce the size of the
relation by allowing each member to reject some of the tuples in which it was included when the
relation was originally defined (with a new relation entry in the description of some composite
structure).

RELATION-TYPE refine

The CONSTRAINTS feld contains the constraints with which tuples in the relation are selected
and/or rejected (see Figure 3.6).

CONSTRAINT

The ADDITIONAL-DATA field is used to add information to a structure’s description that is
needed for the relation. A communication relation, for example, needs to know the direction in
which messages will travel, the type of message, and a description its format.

ADDITIONAL-DATA

((communication
((DIRECTION receive
NATURE (hyp)
DISPATCHES
))
)

Figure 3.5: Example of relation refinement.

22

3.2 Constraints

EFIGE allows each member of a relation to make local refinements to the relation’s domains
using a combination of restriction, group, and preference constraints. A relation, R, defines
a set of n-tuples, (z;...z,), that is the cartesian product of n (not necessarily distinct)
sets, X; X ... x X,,: the domains of the relation. The number of n-tuples is equal to
the product of the cardinality of each set. EFIGE uses restriction, group, and preference
constraints to reduce the size of each of these sets and, hence, the size of R. They are
described in this section.

Restriction. Restriction constraints are applied to the members of a set to identify those
members for which the constraint evaluates to true. In other words, the constraint acts
as a characteristic function, identifying a new set among the members of the old. EFIGE
allows such a function to be provided for all of the domains of a relation:

(P,-X.-),i=1...n

where

(FX) denotes the set {z|(z € F) A (Fz)},
X, is the i-th domain of R,
F; is a predicate over X;: the constraint. In effect, the relation becomes:

R=TI(P X)

where [I.; X; is used to indicate the cartesian product, X; x ... x X,,.

Restriction constraints are used to identify those members in the other domains of
a relation that are acceptable to the current member of the current domain as partners
in the relation. The TASK language uses restriction constraints to direct assignment of

23

resources [Jones & Schwans 1979]. These are limited to specification of proximity relations
between processes and sets of physical resources identified by their attributes (features of
the Cm* hardware). A TASK constraint, for example, might specify that a process must
execute on a processor with a large local memory. Artificial Intelligence (AI) programs
that perform planning tasks also use restriction constraints. MOLGEN, when planning
experiments in molecular genetics, will generate, for example, a constraint restricting the
choice of a bacterium to one that resists an antibiotic [Stefik 1981].

Group. Group constraints are applied to a single set to create a set of sets. Each set
in the new set is a subset of the original and, for each, the constraint evaluates to true.
Thus the constraint is a characteristic function with a domain that is the power-set of
the original set; as with restriction constraints, EFIGE allows a group constraint to be
specified for each domain of a relation:

(Qi P(Xi))yi=1...n

where

P(X) denotes the power-set of X,

Q; is a predicate over P(X;).

The group constraint, Q;, identifies a set of sets: each sub-set, or group, is acceptable
as the i-th domain of the relation. Thus alternate relations are possible, one for each
combination of groups from each domain:

R =TIIVITI(@: P(x) 1] (3.1)

=1
where V X is used to indicate that alternative selections can be made from X and [[X
denotes the cartesian product of an indeterminate number of sets, the members of X.

Group constraints identify groups of objects that together satisfy some property that
their individual members cannot (unless the size of a group is one). For instance, a relation

24

in an organization that performs distributed signal interpretation may specify that sensing
nodes are to communicate with synthesizing nodes. Each synthesizing node may use a
group constraint to refine the relation by requiring that it communicate only with groups
of sensing nodes that together can provide information about the entire region for which
it is responsible. ADABTPL, a language for describing databases, employs both group
constraints and restriction constraints [Stemple & Sheard 1984].

Preference. Preference constraints implicitly define a partial order over a set (a total
order if execution is deterministic) by selecting one object from it. If this object is then
removed, a second may be chosen, and so on. The i-th object in the ordering over a set
X, where S is the preference constraint, is (8 V;), for 1 < i < |X|, where

Vi = Vier — {(S Via1)}

and
V1 = X.

Preference constraints may be used by any member of a relation to refine any domain:
(SEX),i=1...n,ke{1...|1Xl[}

where (S*X) = (SVi). Using preference constraints alone reduces the relation to a single
tuple:
R=((S" X1)...(SF X)), ki € {1...|Xil}

During instantiation, preference constraints are employed to choose between the ap-
parently equal options generated by a group constraint. For instance, the group constraint
refining the communication relation between sensing and synthesizing nodes may identify
two groups of sensing nodes that will be acceptable to a synthesizing node. A preference
constraint is used to choose between them. The smaller group may be chosen in order to
reduce communication overhead.

25

Composition Composition is the familiar functional composition. Thus the domain of
one constraint may be a set that has been defined by another constraint and the domains
of a relation may be refined by many constraints. For instance:

R= 11(5.-"* (s P(B X)),k € {1...|XI} (3.2)

where

S; is a preference constraint,
Q; is a group constraint,
P; is a restriction constraint,

X; is the i-th domain of R.

Note the differences between Equations 3.1 and 3.2. Preference constraints identify a single
group from the list of groups produced by each group constraint, with the result that a
single relation is selected from among the myriad possibilities.

EFIGE allows each member of a relation to refine it using restriction, group, and
preference constraints that are composed with each other in that order. The resulting
constraint is evaluated for each member in its local context; thus the results may vary
from member to member, even though the same constraint is applied. In any case, the
solution to the overall relation then becomes (approximately) the union of the results of
applying each of its members’ local refinements:

R= O[ﬁ(Sff (Qi; P(Pi; Xi;))

j=1i=1

where

m =", |Xi| (i.e. j varies over all of the members of the relation),

ki € {1...1(Qi; P(Pis XiiD}s

26

Xi; =X - {7}

F; is member j’s constraint on domain t.

In actuality, union is too simple a function for combining the local refinements to a
relation. This is because the tuples in the desired relation must be consistent with one
another. If, for example, the constraints for 2 member, j, of a binary relation select a
tuple (1), then the constraints for ! should include that tuple in their selection as well. If
this isn’t the case, it may be that the two members can be made consistent by using their
second choices for tuples (choosing different values for k;). Chapter 4 presents an algorithm
for evaluating constraints and combining them in such a way that they are consistent.

Figure 3.6 shows an example of the constraints a synthesizing node might use to refine
a communication relation with sensing nodes. The PARTNERS field lists the names of the
domains in the relation, omitting the name of the domain to which the synthesizing node
belongs. The names in this list must match those given when the relation was declared
(except for the name of the domain in which this constraint is a member). A restriction,
group, and preference constraint must be provided for each of the domains listed. Thus
the RESTRICTIONS, GROUPS, and PREFERENCES fields each contain a list of ordered
pairs: the name of the domain followed by the constraint that will be applied to it. The
restriction constraint is applied first to all of the members of a domain. In Figure 3.6, it
tests that the information associated with the relation (in the ADDITIONAL-DATA field,
see Figure 3.5) is compatible and that the sensing node detects signals in at least part of
the region for which the synthesizing node is responsible. Since this is a communication
relation, compatibility means that there must be at least one sender and at least one
receiver in the relation and that the proposed topics for discussion overlap. The group
constraint is applied to those members that satisfied the restriction constraint. In this
example, it will form groups of sensing nodes that together detect signals over the specified
region. The preference constraint is applied to the groups to select one of them. In this
case, it will choose the smallest group.

27

CONSTRAINT

The PARTNERS field lists the other domains of the relation: not the one to which the owner of
this constraint belongs. A constraint of each type will have to be provided for each of the
domains listed.

(PARTNERS (sensor)

The predicates in the RESTRICTIONS field act as filters, rejecting members of the other
domains that don’t meet their criteria.

RESTRICTIONS

The predicate compatable-communication? will examine the descriptions in the
ADDITIONAL-DATA felds of this relation (see Figure 3.5) and that of each member of the
sensor domain for consistency (e.g., since the DIRECTIONS field in this relation says receive,

the other must say send).

((sensor (and (compatable-communication?
?this-relation ?partner-relation)

This predicate determines if the area scanned by each sensing node includes the area specified by
region. The symbol Tpartner-structure will be bound to each sensing node’s structure
description. In contrast, the symbol Tpartner-relation, above, is bound to the relation entry in
each structure description that is used to refine the relation between sensing and synthesizing

nodes.

(sensor-scans-part-of-region?
region ?7partner-structure))))

The functions in the GROUPS field select groups of tuples in which the members of the given
domain are, together, able to satisfy some predicate. The function,
sensors-that-cover-region, returns a list of those groups of non-redundant sensors that
together are able to scan the area given by region. The symbol, 7candidate-structures, is
bound to a list of the the descriptions of those structures that passed the restriction constraints.

28

GROUPS ((sensor (sensors-that-cover-region
region ?candidate-structures)))

The functions in the PREFERENCE field return one of the groups of tuples formed by the group
constraints. The function, select-smallest-set finds the group with the least number of

members.

PREFERENCE ((sensor (select-smallest-set ?groups)))
)

Figure 3.6: Constraints.

3.3 The Procedural/Declarative Interface

Figure 3.6 illustrates that much of the information in a description written in EFIGE is
procedural. That is, functions provide details about how an organization is to be instan-
tiated. This information is inherently application dependent; users of the language will
need to develop libraries of the functions useful for each application. For instance, in Fig-
ure 3.6, the function, sensors-that-cover-rectangle, returns groups of sensing nodes
that, together, are able to detect signals from every part of a rectangular region. This
function will not be of use in many other applications. The declarative part of EFIGE,
the fields, provide a framework for organizing the procedural information and a method
for applying it. Appendix B describes other functions needed to describe organizations for
our distributed signal interpretation application.

29

Chapter 4

Instantiating a Description

Instantiating an organization involves performing parameter substitution, testing compo-
nent preconditions to find out which are to be instantiated, instantiating each component
the specified number of times with the indicated parameter settings, and implementing
relations between components. Implementing a relation requires finding solutions to each
of the constraints with which it was refined, but this is complicated because the solutions
may interact. For example, the constraints refining a communication relation between
synthesizing nodes and sensing nodes may choose the same sensing node for each of three
synthesizing nodes. The sensing node’s constraint’s, however, may restrict it to commu-
nicating with any two of the synthesizing nodes, but not all three, in order to limit the
amount of time it must allocate to communication. One of the synthesizing nodes will
have to choose a different sensing node, which may affect the choices of other nodes. In
this chapter, we first present the algorithm for finding solutions to constraints, then briefly
describe how the hierarchical organization is instantiated.

30

4..1 Constraint Solution Algorithm

The algorithm we use for finding solutions to the interacting constraints that refine a rela-
tion first applies each member’s preference and group constraints, then chooses a member
with the smallest number of groups. Thus a synthesizing node whose group constraint
produced only one solution will be processed before any node with two or more groups to
chose from. This strategy minimizes branching in the search tree, which is important be-
cause we have no global knowledge to apply when choosing a branch. Instead we use local
knowledge: the member’s preference constraint is used to select one of its groups, if there
is more than one. The selected group is a local solution; from them the global solution will
be built. The local solution lists the sensing nodes with which this synthesizing node will
communicate, the global solution contains all of the sensing-synthesizing node pairings.

The groups of the other members of the relation that don’t yet have a local solution
must be made consistent with the solution just chosen. For the other members’ groups to
be consistent with the solution they must either: 1) contain the name of the member just
processed, if the solution contains their name or 2) not contain the name of the member
Just processed, if the solution doesn’t contain their name. Inconsistent groups are deleted
and the unprocessed member that now has the smallest group is selected for processing.
Thus the choice of a local solution may prune the search tree and affect the order in which
nodes in the tree are visited.

If any of the other members has all of its groups deleted, a new group must be chosen
for the local solution, the effects of making the other members consistent with the old
solution undone, and they must be made consistent with the new solution instead. If all of
a member’s groups are tried as local solutions without success, chronological backtracking
is employed. The search is returned to the last member processed, its local solution is
discarded, its consistency effects undone, and so on. If the search ends up back at the first
member tried and tries all of its groups unsuccessfully, no global solution exists and the
relation cannot be implemented.

The complete algorithm follows.

31

begin
Order relations with RELATION-TYPE “new” by EVALUATION-ORDER.
for
each relation with RELATION-TYPE “new”
do
Determine the members of each domain of the relation.
for
all members in the relation
do
Apply appropriate RESTRICTION constraint to members of each domain
to form CANDIDATES set.
end-for.
for
all members in the relation
do
Make CANDIDATE sets mutually consistent.
end-for.
if
any member is left with an empty CANDIDATES set
then
Indicate over-constrained.
else
for
all members in the relation
do
Apply appropriate GROUP constraint to each domain’s CANDIDATES
sets to form GROUP sets for each domain.
end-for.
end-if.
Set PROCESSED stack to empty.
Set UNSOLVED list to list of all members in the relation.
repeat

32

while
(not over-constrained) and (UNSOLVED list not empty)
do
Set CURRENT-MEMBER to member in UNSOLVED list with smallest
product of the number of GROUP sets for each domain.
Set REJECTED list of CURRENT-MEMBER to empty.
repeat
if
GROUP set for any domain of CURRENT-MEMBER is empty
then
Add members in REJECTED list to GROUP set.
Set REJECTED list to empty.
if
PROCESSED stack is empty
then
Indicate over-constrained.
else
Set CURRENT-MEMBER to top of PROCESSED stack.
Pop top of PROCESSED stack.
end-if.
else
Use PREFERENCE constraints to select a group for each
domain from GROUP sets of CURRENT-MEMBER.
Set SOLUTION of CURRENT-MEMBER to selected groups.
Delete selected groups from GROUP sets of CURRENT-MEMBER.
Make GROUP sets of members in UNSOLVED list consistent
with SOLUTION of CURRENT-MEMBER.
if
no member in UNSOLVED list left with an empty GROUP set
then
Delete CURRENT-MEMBER from UNSOLVED list.
Add CURRENT-MEMBER to PROCESSED list.

33

Indicate local-success.
end-if.
end-if.
if
(not over-constrained) and (not local-success)
then
Undo consistency changes to members in UNSOLVED list.
Add SOLUTION of CURRENT-MEMBER to REJECTED list
of CURRENT-MEMBER.
end-if.
until (local-success) or (over-constrained).
end-while.
if
(additional-solutions-requested) and (not over-constrained)
then
for
all members in the relation
do
Save SOLUTION of member.
end-for.
Set CURRENT-MEMBER to top of PROCESSED stack.
Pop top of PROCESSED stack.
Add SOLUTION of CURRENT-MEMBER to REJECTED list
of CURRENT-MEMBER.
end-if.
until (no additional-solutions-requested) or (over-constrained).
end-for.
end.

34

4..2 Instantiation of the Hierarchical Organization

Figure 4.1 shows how instantiation of each composite description leads to instantiation
of individual components and the implementation of relations between them. The hi-
erarchical organization was instantiated with the number-of-nodes parameter set to
twenty-one and the number-of-sensors parameter set to sixteen. (See Appendix A for
the complete description of the hierarchical organization.) When the upper hier-
archical structure was instantiated, the preconditions of only two of its components
evaluated to true: the integrators component and the sub-hierarchies component.
One copy of the integrators, and four of the sub-hierarchies, were instantiated. The
integrator-integrator relation is implemented because, at this point, it is actually an
integrator-sub-hierarchies relation. In the sub-hierarhcies, membership in the re-
lation is forwarded to their integrators components.

Each of the sub-hierarchies components is another hierarchical organization.
This time, however, in each of them the precondition for the sub-hierarchies component
evaluates to false and the recursion stops. The other components’ preconditions evaluate
to true and, for each of the new hierarchical organizations, one integrators, four
synthesizers, and four sensor-array components are instantiated. In each organization,
a integrator-synthesizer relation and a synthesizer-sensor relation is implemented.

Figure 4.1: (Next Page)Instantiation of the hierarchical organizational structure with six-
teen sensors, sixteen synthesizing nodes, and five integrating nodes, requires five instanti-
ations of the hierarchical composite description as well.

35

NAME

N
U

7

l hierarchical
COMPONENTS

' integrators
synthesizers
sensor-array

sub-hierarchies
RELATIONS

integrator-integrator
integrator-synthesizer
synthesizer-sensor

ﬁl‘r

NAME
hierarchical
COMPONENTS

integrators

synthesizers

sensor-array

sub-hierarchies
RELATIONS
integrator-integrator

integrator-synthesizer

synthesizer-sensor

36

hep—-86

Chapter 5

Status and Ongoing Research

EFIGE has been implemented in VAX/LISP, Digital Equipment Corporation’s implemen-
tation of Common Lisp. Descriptions have been written of organizational structures for
use in the Distributed Vehicle Monitoring Testbed (DVMT) [Lesser & Corkill 1983).(The
hierarchical organization used as an example in this paper is one of these.) The DVMT
simulates the execution of a distributed problem solver that performs signal interpretation.
Descriptions of organizations in EFIGE are interpreted and added to a file of parameters
that specify the experiment that is to be carried out on the DVMT. One description of
an organization can be used to generate many instantiations of the organization by vary-
ing the values supplied to the description’s parameters. This results in a savings in file
space, since one description can be stored instead of many instantiations, and in the exper-
imenter’s time, because previous to this work instantiations had to be generated by hand:
a time-consuming and error-prone procedure.

37

5.1 Organizational Self-Design

The long-term goal of this research is organizational self-design. An organization with
this ability will perform the following tasks: 0) monitor the organizational structure’s
effectiveness in directing organizational activities, 1) identify new organizational structures
appropriate to a new situation, 2) select the best among them, and 3) implement the new
structure over the network while preserving the network’s problem solving activities. This
work’s contribution toward organizational self-design is a language that provides for low-
level, symbolic representations of organizational structures, but much work remains.

Organization Design A slightly simpler problem is that of organization design. Or-
ganization design is the problem of choosing the best organization class—from a set of
class descriptions—given knowledge about the organization’s purpose (goal, task, and
constraints on the goal) and the environment in which the organization is to operate.
In fact, there are two problems: determining which organizations satisfy the constraints
and then deciding which is “best”. These correspond to steps 1 and 2 of the organizational

self-design task.

Repairing Broken Organizations Another simplification of organizational self-design
is the problem of reconfiguration. Reconfiguration is needed to repair a “broken” instance
of an organization (for example, one in which a component has failed), given its organi-
zation class description and environment information. This includes the problem of fault
detection (roughly step 0), but the emphasis is then placed on recovering lost functionality
without adopting a new organizational structure (eliminating steps 1 and 2, simplifying
step 3). This is still a difficult problem; more fundamental problems underlie both it and
the problems of organizational design and self-design. The sections below discuss some of
these more fundamental problems. They also adopt a further simplification by considering
static organizations (an organization capable of self-design is, by definition, dynamic).

38

Task Description The purpose of an organization is to perform some task. A descrip-
tion of that task is essential for organization design, and may be useful during instantiation
as well. It is required for organization design in order to assign components their tasks,
which will include parts of the organization’s task. Fox states that tasks can be described
by listing inputs, outputs, the transformations inputs undergo to become outputs, and
the state transitions the processor goes through during task execution [Fox 1979). Is this
information adequate for describing tasks? What is a suitable notation for representing
this information? Pavlin, for instance, uses a Petri-net inspired approach to model the
behavior of distributed problem solving organizations, this method might be adapted to
describe tasks as well [Pavlin 1983].

Organizational Goals The goals of an organization are its desired performance abili-
ties: e.g., meet a minimum production rate, do not expend more than can be recovered
by a maximum per unit cost, products must meet minimum standards of quality and re-
liability, the organization must function at a minimum rate of efficiency, and so on. How
can these organizational goals be formulated and evaluated? Assessing the ability of an
organization to meet a set of goals may require simulating the organization and observing
its behavior as it processes its tasks. How is this to be done?

Environment Model The design of an organization that is able to meet its goals re-
quires information about the environment in which it will function. The environment is
the ultimate source of the organization’s inputs and the destination of its products. The
model needs to include knowledge about the rate at which its inputs will arrive and the
variability of that rate, the characteristics of its inputs and their variability, interactions
or correlations between inputs, the effects of outputs on inputs, and the degree to which
it is ignorant of any of these things. The model is a prediction of what the environment
will be like when the organization is functioning within it. How can this knowledge be
represented?

39

Integration of Knowledge How can the knowledge about the organization’s task, its
goals, and its environment be combined and used effectively when making choices during
instantiation?

5.2 Improvements to EFIGE

Investigations directed toward finding answers to three questions should result in an im-
proved system. These questions are: how can the constraint mechanism be made more
general, how can search efficiency be improved, and what can be done when a set of con-
straints is over-constrained? Directions in which to search for answers to these questions
are considered in the following sections.

Bottom-Level Constraints Currently, the EFIGE interpreter is free to physically lo-
cate nodes wherever dictated by the description and to assume that communication chan-
nels exist wherever needed. In effect, the system is allowed to configure the processing
network as is convenient. It could be left to a distributed operating system to create a
“virtual” processing network that matched the one assumed by the interpreter, but we
have chosen to investigate how to describe bottom-level constraints and how to incorporate
them into the instantiation of an organization. Bottom-level constraints specify that the
instantiated organization include components with given values for some or all of their
attributes or that particular relations be implemented. Such constraints could specify an
entire processing network, making it the job of the interpreter to instantiate, as best as pos-
sible, an organization’s functional components and their relations over a physical network
that provides less than optimal support. For example, if bottom-level constraints spec-
ify that there are only a dozen processing nodes but the instantiated organization needs
thirty-seven, the interpreter will have to assign multiple nodes to the same processor.

Constraint Propagation Because of the combinatorics, it may be unreasonable to ap-
ply restriction or group constraints to all of the members of a domain. For instance, the

40

number of ways n synthesizing nodes can communicate with s sensing nodes, where any
given synthesizing node may be assigned from zero to s of the sensing nodes, is 2"*. The
present algorithm attempts to avoid examining all of the objects of this set by eliminating
subsets of objects on the basis of local information. Thus, if the restriction constraint for
synthesizing node A selects sensing node P, P is checked to see if its restriction constraint
selected A. If not, P is eliminated as a candidate for A. This eliminates from further con-
sideration all of those configurations in which P and A are paired, thus cutting the search
space in half. Unfortunately, evaluation of A’s restriction constraint requires applying it
to all of the sensing nodes in the domain and this is repeated for all of the synthesizing
and sensing nodes in the relation.

Another approach to improving efficiency is constraint propagation [Stefik 1981]. In
this method a description of the partner required by a member in a relation is gradually
built up as constraints are evaluated. Constraint propagation, it is hoped, would allow
the accretion of a more specific constraint that would identify, after only one pass say, the
sensing nodes that both require and are required by a synthesizing node. Propagation of
the more complex constraints used in our work, however, is a problem that remains to be
investigated.

Constraint Utility When a set of constraints proves to be over-constrained, it would
be useful to be able to intelligently modify them so that a solution can be obtained or to
determine which ones must be satisfied and which ones can be safely ignored or relaxed.
This requires knowledge about the purpose of the constraint, so that judgments about its
importance can be made, and it requires the ability to locate the conflict, to determine
which constraints to modify. This may not always be possible. Fox assigns constraints
utility ratings which can then be used to determine the usefulness of a given constraint’s
satisfaction, or lack of satisfaction, in a situation [Fox 1983]. The least useful constraints
are less likely to adversely affect results if they are not met. Utility ratings are also used
during backtracking to find decision points where it is most likely that the wrong choice
was made. A new choice is sought for and made at these points and the search is restarted.
Investigation of the assignment of credit problem in machine learning, and on the problem
of resolving deadlock during resource allocation in operating systems may also provide

41

clues on how to locate conflicting constraints.

Optimal Solutions Group and restriction constraints provide binary valued ratings of
choices: either an element of a set is accepted or it is rejected. Preference constraints
order choices but provide no information about their relative worth. An assignment of
relative worth to choices might allow more intelligent decisions to be made: several choices
could turn out to be equivalent, or one choice may emerge as much more preferable than
all others. The problem is, given the relative worth of local choices, how can they be
optimized globally?

5.3 Summary

We have suggested that descriptions of organizational structure are important for the in-
stantiation and maintenance of distributed systems over large heterogeneous networks.
Current languages for describing organizational structure do not allow descriptions of ar-
bitrary relations and are incapable of describing higher-order relations. We have identified
three types of constraints and presented a method that uses them to describe and instanti-
ate arbitrary and complex relations. We have provided an algorithm for finding solutions
to interacting constraints employed in descriptions of relations. Finally, we have tested
these techniques by incorporating them in a language, EFIGE, and its interpreter.

42

Bibliography

[Corkill 1982] Daniel D. Corkill. A Framework for Organizational Self-Design in
Distributed Problem Soluing Networks. Ph.D. Thesis, University of
Massachusetts, 1983. Available as COINS Technical Report 82-33, Computer
and Information Sciences Department, University of Massachusetts, Amherst,
MA 01003.

[Durfee, Lesser, & Corkill 1985] Edmund H. Durfee, Victor R. Lesser, and Daniel D.
Corkill. Coherent Cooperation Among Communicating Problem Solvers.
COINS Technical Report 85-15, Computer and Information Sciences
Department, University of Massachusetts, Amherst, MA 01003.

[Ericson 1982 Lars Warren Ericson. DPL-82: A Language for Distributed Processing.
Proceedings of the 3rd International Conference on Distributed Computing
Systems, Miami/Ft. Lauderdale, Florida, October 1982, pp 526-531. IEEE.

[Fox 1979] Mark S. Fox. Organization Structuring: Designing large complez software.
Technical report CMU-CS-79-155, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA 15213.

[Fox 1983] Mark S. Fox. Constraint-Directed Search: A Case Study of Job-Shop
Scheduling. PH.D. Thesis, Carnegie-Mellon University, 1983. Available as
CMU-CS-83-161, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, PA 15213.

[Jones & Schwans 1979] Anita K. Jones and Karsten Schwans. TASK Forces:
Distributed software for solving problems of substantial size. th International

43

Conference on Software Engineering (Proceedings), Munich, Germany,
September 1979, pp 315-330. IEEE.

[LeBlanc & Macabbe 1982| Richard J. LeBlanc and Arthur B. Maccabe. The Design of a
Programming Language Based on Connectivity Networks. Proceedings of the
3rd International Conference on Distributed Computing Systems,

Miami/Ft. Lauderdale, Florida, October 1982, pp 532-541. IEEE.

[Lesser & Corkill 1983] Victor R. Lesser and Daniel D. Corkill. The Distributed Vehicle
Monitoring Testbed: A tool for investigating distributed problem solving
networks. Al Magazine, Fall 1983, 4(3), pp 15-33.

[Lesser, Serrain, & Bonar 1979] Victor R. Lesser, Daniel Serrain, and Jeff Bonar. PCL:
A Process-Oriented Job Control Language. Proceedings of the First
International Conference on Distributed Computing Systems, 1979,
pp 315-329. IEEE.

[Lim 1982] Willie Y-P. Lim. HISDL—A Structure Description Language.
Communications of the ACM, November 1982, 25(11), pp 823-830.

[Pavlin 1983] Jasmina Pavlin. Predicting the Performance of. Distributed
Knowledge-Based Systems: A Modeling Approach. AAAI-83 Proceedings,
William Kaufman, Inc. Los Altos, CA 94022.

[Reed & Lesser 1980] Scott Reed and Victor R. Lesser. Division of Labor in Honey Bees
and Distributed Focus of Attention. COINS Technical Report 80-17.
Computer and Information Sciences Department, University of Massachusetts,
Ambherst, MA 01003.

[Smith 1980] Reid Smith. The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver. IEEE Transactions on Computers,
December 1980, C-29(12), pp 1104-1113.

[Stefik 1981) Mark Stefik. Planning with Constraints (MOLGEN: Part 1). Artificial
Intelligence, 1981, 16, pp 111-139.

44

[Stemple & Sheard 1984} David Stemple and Tim Sheard. Specification and Verification

of Abstract Database Types. Proceedings of the $rd ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems, Waterloo, Ontario, April 1984,
pp 248-257.

[Waltz 1975] David Waltz. Understanding Line Drawings of Scenes with Shadows. In

Patrick Winston (editor), The Psychology of Computer Vision, McGraw-Hill,
New York, NY.

45

Appendix A

Complete Description of the

Hierarchical Organization

This appendix contains all of the descriptions needed for the hierarchical organization,
which includes the composite description, hierarchical, and the descriptions of the indi-
vidual components integrating-node, synthesizing-node, and vanilla-sensor. The
descriptions have been annotated in order to provide explanations of the syntactic con-
structs. The first description is of the hierarchical organization.

**************************************#***********************************

All descriptions are given names.
(NAME hierarchical
A composite description has components.

TYPE composite

46

The user can specify that a parameter be bound to a different value than its default.

PARAMETERS

Number-of -nodes is the total number of synthesizing and integrating nodes to be used in the
instantiation of the organization. Number-of -sensors is the total number of sensing nodes to be
used.

((PARAMETER-NAME number-of-nodes DEFAULT 21)
(PARAMETER-NAME number-of-sensors DEFAULT 16)

Areas in the DVMT are given in terms of a two dimensional coordinate system. region is the
entire area that is to be monitored and is specified as a rectangle with minimum z and y

coordinate values of 0 and maximum z and y values of 22.

(PARAMETER-NAME region DEFAULT '(0 0 22 22))

The distance the areas scanned by sensing nodes should overlap.

(PARAMETER-NAME sensor-overlap DEFAULT 2)
)

The LOCAL-VALUES field is used to compute and assign values to local variables.

LOCAL-VALUES

((one-less-node (1- number-of-nodes))

A group-divide of n, I, and m returns a list of no more than l integers, none of which is less
than m, and that sum to n.

47

(1ist-of-hierarchy-sizes (group-divide one- less-node 4 3))
(nunber-of-hierarchies (length list-of -hierarchy-sizes))
(1ist-of-hierarchy-sensor-counts
(group-divide
number-of-sensors number-of-hierarchies 1))

The COMPONENTS field lists the components of a composite organization.
COMPONENTS
Components are given local names.
((COMPONENT-NAME integrators

The organizational structure of the component is given in the description named
integrating-node. Region-i is a parameter of integrating-node. It will be given the value of

region, one of the parameters to this description.

DESCRIPTION (integrating-node ((region-i ‘region)))
The organization will be instantiated once as this component.

COPIES 1)

Components will be instantiated only if the entry in the PRECONDITION field evaluates to
true—in this case, when the value given the parameter, number-of -nodes, is greater than 2.

PRECONDITION (> number-of-nodes 2)

)
(COMPONENT-NAME synthesizers

48

The component, synthesizers, is described by the organizational description,
synthesizing-node. Synthesizing-node has a parameter, region-s, which will be set to the
value of worker-region, defined in the COPIES field below.

DESCRIPTION (synthesizing-node ((region-s worker-region)))

Synthesizing-node is to be instantiated one-less-node times (as the component,
synthesizers; it could be instantiated for another component, as well). One-less-node is a
local variable defined in the LOCAL-VALUES field.

COPIES (one-~less-node

The VARY clause of the COPIES field is a construct for assigning a sequence of values to
variables. Here, the variable, worker-region, is to receive one-less-node values, each of which

will be used in a different instantiation of synthesizing-node.

(VARY
(worker-region

Because parameter values are evaluated before substituting them for occurrences of the
parameter’s name in a description, regions need to be quoted since they are specified with a list.

(quote-1list-elements

The function, 1il1-rectangle-with-overlapping-rectangles, will divide the rectangular area,
region, into one-less-node sub-regions. These regions will overlap each other by a distance of
sensor-overlap in both the z and y directions.

(fill-rectangle-with-overlapping-rectangles
'region one-less-node
(1ist sensor-overlap sensor-overlap))))

))

49

This component is to be instantiated when nunber-of-nodes is within the range 3-5, inclusive.

PRECONDITION (within-subrange? number-of-nodes 3 6)

)
(COMPONENT-NAME sensor-array
DESCRIPTION (vanilla-sensor ((region-v sensor-region)))

COPIES (number-of-sensors
(VARY
(sensor-region
(quote-list-elements
(fill-rectangle-with-overlapping-rectangles
‘region number-of-sensors
(1ist sensor-overlap sensor-overlap))))

))

The sensor-array component should be instantiated when the synthesizers component is and

if number-of-sensors is greater than zero.

PRECONDITION (and (within-subrange? number-of -nodes 3 6)
(> number-of-sensors 0))

)
(COMPONENT-NAME sub-hierarchy

The component, sub-hierarchy, is described by the description, hierarchical, thus this

component is recursive. Three of the parameters will be given new values: region,

number-of-nodes, and number-of-sensors.

DESCRIPTION (hierarchical

((region one-region)
(number-of -nodes hierarchy-node-count)
(number-of -sensors hierarchy-sensor-count)
(sensor-overlap sensor-overlap)

50

))
COPIES (number-of-hierarchies
(VARY
{one-region
(quote-list-elements
(fill-rectangle-with-overlapping-rectangles
‘region number-of-hierarchies

(1ist sensor-overlap sensor-overlap))))

list-of-hierarchy-sizes and list-of-hierarchy-sensor-counts were defined in the
LOCAL-VALUES field. They are lists of integers.

(hierarchy-node-count 'list-of-hierarchy-sizes)
(hierarchy-sensor-count ‘'list-of -hierarchy-sensor-counts)

))

Sub-hierarchy is instantiated only if number-of-nodes is greater than five; when this is the
case, the only other component that will be instantiated is integrators.

PRECONDITION (> number-of-nodes 6)
)

The RELATIONS field defines relations between components.

RELATIONS

This first relation is for communication between sensing nodes and synthesizing nodes.

Relations are given names.

((RELATION-NAME sensor-synthesizer

51

A RELATION-TYPE of new indicates that this entry will declare the existence of a relation
between one or more groups of components. (Other types of entries are forward and refine;
they will be described as they occur.)

RELATION-TYPE nev

Implementation of one relation may depend on having another relation already implemented. The
EVALUATION-ORDER entry specifies in what order new relations should be implemented.

EVALUATION-ORDER 1
RELATE

Each domain of a relation is given a name; here they are sensor and node. The members of a
domain are specified by giving 8 component name combined with a RELATION-NAME from the
organizational description of the component. The two names are separated by a dollar sign.

((sensor sensor-array$to-synthesizer)
(node synthesizers$sensor-data)

)

This relation is for communication between synthesizing nodes and integrating nodes.

(RELATION-NAME synthesizer-integrator

RELATION-TYPE new

EVALUATION-ORDER 2

RELATE
((integrator 1ntegrators$10wer-exchange)
(subordinate synthesizers$to-integrator)
)

52

This relation is for communication between high-level integrating nodes and low-level integrating
nodes.

(RELATION-NAME integrator-subhierarchy

RELATION-TYPE nev

EVALUATION-ORDER 3

RELATE
((integrator integrators$lower-exchange)

(subordinate sub-hierarchy$middle-integrator)

)

)

(RELATION-NAME middle-integrator

An entry with type forward is used in the description of a composite organization to confer its
own membership in a relation upon one of its components. Here, the assumption is made
that—somewhere—the organization, hierarchical, is a component of another organization and
within the description of that organization’s relations is a reference to middle-integrator. (In
fact, since the description of hierarchical is recursive, that other organization is itself and the
reference is in the declaration of the relation, integrator-subhierarchy, above.)

RELATION-TYPE forward

Pass membership in the relation to the entry in the RELATIONS field of the organizational
description for the the component, integrators, with the name, upper-exchange.

FORWARD (integrators$upper-exchange)
))

); end "hierarchical".

M sk s ok s s ok o e s ok ok o o ok ok o o o ok ok o o o ke s e ot sl ok o ke sk ook o ok sk ok ko s o sk s sl ok o sk sk ok sk sk sk sl sk skl ook sk ok ok

53

The remaining descriptions are of individual structures. The first of these is called
integrating-node. It appears in the description of the hierarchical organization as the
organization to be instantiated for the integrators component.

**************************#****************#**#***************#***#*******

(NAME integrating-node

For descriptions of organizations in the DVMT, we distinguish between two types of individual
structures: nodes and sensors. Sensor designates a sensing nodes, while node is used for any
other kind of node.

TYPE node

PARAMETERS
((PARAMETER-NAME region-i DEFAULT '(0 0 22 22))
)

LOCAL-VALUES

These two LOCAL-VALUES variables are set to descriptions of interest areas. The interest areas
describe the boundaries of a region in the four dimensional space in which problem solving is
performed. They differ only along the dimension that is the level of abstraction at which problem
solving is performed. They both cover the same area through which vehicles move (the actual
value depending on the value available for the parameter, region-1i), extend for all time periods,

and include all event classes.

((vt-everywhere
* (ABSTRACTION-LEVELS *(vt)
INTEREST-REGION ‘region-i
TIME-PERIODS *all
EVENT-CLASSES *all

54

))

(pt-everywhere
* (ABSTRACTION-LEVELS * (pt)
INTEREST-REGION ‘region-i

TIME-PERIODS *all
EVENT-CLASSES *all
))
)
RESPONSIBILITIES

Integrating nodes will be responsible for problem solving in the interest regions described by
vt-everywhere and by pt-everywhere. They should, however, allocate most of their time to

processing at the pt abstraction level.

((PROCESS-AREA '(vt-everywhere)
IMPORTANCE *moderate*

)
(PROCESS-AREA ' (pt-everywhere)
IMPORTANCE *extremely-high#

))

RESOQURCES
(KNOWLEDGE-SOURCES

Integrating nodes will need knowledge about problem solving in their particular region of the

problem-solving space.

((KS-NAMES (union *vehicle-merge-connect *vehicle-to-pattern
*pattern-processing)
GOODNESS *extremely-high+
RESOLVING-POWER *zilch*
RUNTIME '(0 1)

55

’

Integrating nodes will need to know how to communicate with other nodes in the network.

(KS-NAMES (determine-communication-kses ?this-structure)
GOODNESS *extremely-high*
RESOLVING-POWER *zilch*
RUNTIME '(0 0)
))

Meta-level knowledge expressed in an arcane format intelligible only to the DVMT.

SUBGOALING
*(((pt) (((vt) ((1 10000)))))

)

CHARACTERISTICS

The node is assigned a location within the region through which the vehicles move.
(LOCATION (rectangle-center region-i)

The node’s speed expressed in a form understood by the DVMT.

NODE-SPEED nil
)

RELATIONS

56

This entry refines the communication relation between upper-level integrating nodes and
lower-level integrating nodes from the lower-level node’s perspective. That is, when a node that
has been instantiated from this description is the low-level node in an upper-level lower-level
communication relation, this entry is used to refine the relation.

((RELATION-NAME upper-exchange
RELATION-TYPE refine
CONSTRAINT

An n-ary relation has n domains, each of which is given a name. The PARTNERS field lists these
names, except for the name of the domain in which this node occurs. A constraint must be
provided for each of the relation’s other domains and this list helps the user to remember what
those domains are and insures consistency between the relations declaration and its refinement.

(PARTNERS (integrator)

A restriction constraint must be provided for each of the domains listed in the PARTNERS field.
This constraint tests the consistency between the information supplied in the
ADDITIONAL-DATA field of this relation and that supplied by the ADDITIONAL-DATA field

of each member of the integrator domain of the relation.

RESTRICTIONS
((integrator (compatible-communication?
?this-relation ?7partner-relation))

Those members of the relation’s integrator domain that satisfied the restriction constraint,
above, are called candidates and are accessed with the symbol 7candidates. This group
constraint creates a single group from the candidates without eliminating any of them.

GROUPS
((integrator (all-candidates ?candidates))

)

57

The list of groups formed by the group constraint can be accessed with the symbol 7groups. This
preference constraint simply takes the first group from the list (the group constraint above will
only generate one group).

PREFERENCE
((integrator (first ?groups))

)

The ADDITIONAL-DATA field is used to add fields to a description; the presumption is that
such additions will only need to be made when the described entity is a participant in a relation.

ADDITIONAL-DATA

((communication

These entries describe the nature of the communication between low-level and high-level
integrating nodes from the perspective of the low-level node. The low-level node sends hypotheses
in the interest region defined by vt-everywhere if their belief is greater than 0. It receives goals
in the interest region, vt-everywhere, if their belief is greater than 0.

((DIRECTION send
NATURE (hyp)
DISPATCHES
((CONDITION (above-threshold 0)
INFORMATION (vt-everywhere)
))
)
(DIRECTION receive
NATURE (goal)
DISPATCHES
((CONDITION (above-threshold 0)
INFORMATION (vt-everywhere)

58

))
))
))

This entry is used to refine two relations: the integrator-synthesizer relation from the integrator
perspective and the low-level high-level integrator relation from the perspective of the high-level

node.

(RELATION-NAME lower-exchange
RELATION-TYPE refine
CONSTRAINT
(PARTNERS (subordinate)
RESTRICTIONS
((subordinate (compatible-communication?
?this-relation ?partner-relation))
)
GROUPS
((subordinate (all-candidates ?candidates))
)
PREFERENCE
((subordinate (first ?groups))
)
)
ADDITIONAL-DATA
((communication

Note that this description of the communication is an inverse of the communication description
for the upper-exchange entry, above. For instance, there hypotheses are sent while here they are
received. This is because the upper-exchange entry and the lower-exchange entry are used in

different domains of the same relation.

((DIRECTION receive

59

NATURE (hyp)
DISPATCHES
((CONDITION (above-threshold 0)
INFORMATION (vt-everywhere)
))
)
(DIRECTION send
NATURE (goal)
DISPATCHES
((CONDITION (above-threshold 0)
INFORMATION (vt-everywhere)
))
))

))
))

); end "integrating-node".

*******************************#***********************#******************

“ e e
[N I]

This description is of synthesizing-node, which is the organization instantiated for
the synthesizers component of the hierarchical organization.

*******#**

0 e
LI

(NAME synthesizing-node

Node is a type of individual structure used in the DVMT.

TYPE node

PARAMETERS

60

((PARAMETER-NAME region-s DEFAULT ‘(0 0 22 22))
)

LOCAL-VALUES
((vt-sensor-regions
' (ABSTRACTION-LEVEL ‘' (vt)
INTEREST-REGION

The value of this INTEREST-REGION field depends on the implementation of the
sensor-synthesizer relation. The function relation-solution will search the RELATIONS
field of 7this-structure for an entry with sensor-data as its RELATION-NAME and return
the group selected for the sensor domain when the relation was implémented. The function
make-group-members-structures insures that sum-sensors-scan-regions will receive a list of
descriptions of structures (as opposed to their relation entries that were used to refine the
sensor-synthesizer relation, or the names of these entries). SBum-sensors-scan-regions
returns the smallest rectangular area that contains all of the areas scanned by the sensing nodes

in a group.
(sum-sensors-scan-regions
(make-group-members-structures
(relation-solution 'sensor-data 'sensor ?this-structure)))
TIME *all
EVENT-CLASS *all
)

(sl-sensor-regions
* (ABSTRACTION-LEVEL ' (sl)

INTEREST-REGION ‘region-s
TIME *all
EVENT-CLASS *all

))

(gl-sensor-regions
* (ABSTRACTION-LEVEL ' (gl)
INTEREST-REGION ‘region-s
TIME *all

61

EVENT-CLASS *all
))
(vl-sensor-regions
* (ABSTRACTION-LEVEL '(v1)

INTEREST-REGION ‘region-s
TIME *all
EVENT-CLASS *all
))
)
RESPONSIBILITIES

Work in different interest regions has different priorities.

((PROCESS-AREA ' (sl-sensor-regions gl-sensor-regions)
IMPORTANCE *tiny*

)
(PROCESS-AREA ' (v1-sensor-regions)

IMPORTANCE *yery-low*

)
(PROCESS-AREA ' (vt-sensor-regions)

IMPORTANCE *moderate*
))

RESOURCES
(KNOWLEDGE-SOURCES

The symbols beginning with * each represent a list of knowledge source names; they are all joined

into one list.

((KS-NAMES (union
*vehicle-merge-connect *yehicle-join-extend-form
*goup-processing *gignal-processing

62

' (sensors))

GOODNESS *extremely-high*
RESOLVING-POWER =*zilch#
RUNTIME *(0 1)
)
(KS-NAMES (determine-communication-kses ?this-structure)
GOODNESS *extrenely-high*
RESOLVING-POWER #*zilch#*
RUNTIME *(0 0)

))

SUBGOALING

*(((vt) (((v1 gl sl) (€1 10000)))))
((pt) (((vt vl gl s1) ((1 10000)))))
)

CHARACTERISTICS
(LOCATION (rectangle-center region-s)
NODE-SPEED °((1 *all))
)

RELATIONS

This entry refines the communication relation between synthesizing nodes and sensing nodes from
the synthesizing node perspective.

((RELATION-NAME sensor-data
RELATION-TYPE refine
CONSTRAINT
(PARTNERS (sensor)
RESTRICTIONS
((sensor (and (compatible-communication?
?this-relation ?partner-relation)

63

This constraint (or conjunct of the constraint) determines if a sensing node is capable of detecting

signals within the region for which the synthesizing node is responsible.

(sensor-scans-part-of-rectangle?
region-s ?partner-structure)))

)
GROUPS

This group constraint returns a list of those groups of sensing nodes that together are able to scan
the entire region for which the node is responsible. No redundant sensing nodes are included in a

group.

((sensor (sensors-that-cover-region
region-s “?candidate-structures))

)
PREFERENCE

This preference constraint selects the smallest group in the list.

((sensor (select-smallest-set 7groups))

)
)
ADDITIONAL-DATA
((communication
((DIRECTION receive
NATURE (hyp)
DISPATCHES

Synthesizing nodes always accept information from sensing nodes.

((CONDITION t

64

INFORMATION (sl-sensor-regions)
))
)
))

This entry refines the communication relation between synthesizing nodes and integrating nodes.

(RELATION-NAME to-integrator
RELATION-TYPE refine
CONSTRAINT

(PARTNERS (integrator)
RESTRICTIONS

This constraint accepts all members of the integrator domain.

((integrator t)

)
GROUPS

Create groups of size one from all of the candidates.

((integrator (any-candidate ?candidates))

)
PREFERENCE

Select the integrating node that is nearest.

((integrator (located-nearest ?7this-structure ?7groups))

)

65

ADDITIONAL-DATA
 ((communication
((DIRECTION
NATURE
DISPATCHES
((CONDITION
INFORMATION
))

)

(DIRECTION
NATURE
DISPATCHES

((CONDITION
INFORMATION
))

The DVMT provides for messages that are to be sent only in response to certain requests,

the reply direction.

(DIRECTION
NATURE
DISPATCHES
((CONDITION
INFORMATION
)
))
))
))

): end "synthesizing-node".

MM **

send
(hyp)

(above-threshold 0)
(vt-sensor-regions)
receive

(goal)

(above-threshold 0)
(vt-sensor-regions)

reply
(hyp)

(above-threshold 0)
(vt-sensor-regions)

66

The last individual structure, vanilla-sensor, is described below. It is instantiated
for the sensor-array component in the hierarchical description.

a0 2 s ke ke o o S ok ok s ok ok sk 3k 3k 3K 3k 3k 3 sk s o o o 3 ok ok ok ok ke e ok ke ok sk ok ok sk kol ok ol ok sk sk s ok ok okl ok skl ok ok sk ok ke ok ok ok ok

(NAME vanilla-sensor

This individual structure is of the DVMT sensor type.

TYPE sensor

)

PARAMETERS
((PARAMETER-NAME region-v DEFAULT *'(0 0 22 22))
(PARAMETER-NAME max-nodes-per-sensor DEFAULT 2)
)

LOCAL-VALUES

There are two ways of giving the position of a rectangular region in the DVMT. The first is with
a list of four integers that are the minimum z and y coordinates followed by the maximum z and
y coordinates; this is “corner” notation and is the most used. The other method is to give the
location of a point in the region and then specify the minimum and maximum coordinates of the
rectangle in terms of z and y displacements from the point. This “displacement” notation is used
in the DVMT when describing the region scanned by a sensing node. It is sometimes necessary to
convert from one notation to the other.

((Bcan-displacements
(second (convert-coords$corner-to-displace ‘region-v)))
(sensor-region
' (ABSTRACTION-LEVELS ' (8l)
INTEREST-REGION 'region-v
TIME-PERIODS *all

67

The SIGNAL-CLASS-MASK field in the CHARACTERISTICS field of descriptions of sensing
nodes (see below) specifies which signal classes the node can detect. These events are listed here

as well.

EVENT-CLASSES (1ist-detected-signal-classes ?this- structure)
))

In the DVMT, the responsibilities and resources of a sensing node need no explicit description.

RESPONSIBILITIES nil
RESOURCES nil

CHARACTERISTICS
(LOCATION (rectangle-center ‘region-v)

In the DVMT, sensing nodes are treated as black boxes: no attempt is made to simulate how

they produce their results. Consequently, their descriptions are devoted to providing “statistical”

information used to model their behavior.

LOCATION-ACCURACY *extremely-high*
CLASSIFY-ACCURACY #*extremely-high#
PERFORMANCE-RATING *extremely-high¥

A one in the list indicates that the sensing node is capable of detecting the signal type associated

with the one’s location (this is DVMT notation).

SIGNAL-CLASS-MASK
(011111111111111111 11111111111111110)

68

The value in MULTIPLE indicates how many signals the sensing node will detect, per stimulus
signal, within the region given in the DISPLACEMENTS field; thus the closer this number is to
one, the more accurate the sensing node. (The DISPLACEMENT value is implicitly combined
with the value of the LOCATION field, above, to make a complete specification of a rectangular

region in displacement notation.)

SCAN-DATA
((DISPLACEMENTS scan-displacements
MULTIPLE 1
))
)
RELATIONS

This entry refines the communication relation between synthesizing nodes and sensing nodes that

was declared in the hierarchical structure.

((RELATION-NAME to-synthesizer
RELATION-TYPE refine
CONSTRAINT
(PARTNERS (node)
RESTRICTIONS
((node (and (compatible-communication?
?7this-relation ?7partner-relation)

This conjunct of the constraint tests for the pathological case in which a potential partner in the
relation does not have the resources necessary for processing the information sent to it by the

sensing node.

(node-has-ks-names?
' (*signal-processing) ?partner-structure)))

)
GROUPS

69

This group constraint returns a list of all of the subsets of 7candidates with one to
max-nodes-per-sensor members.

((node (subsets-to-size-n max-nodes-per-sensor ?candidates))

)
PREFERENCE
((node (select-smallest-set ?groups))
)
)
ADDITIONAL-DATA
((communication
((DIRECTION send
NATURE (hyp)
DISPATCHES
((CONDITION t
INFORMATION (sensor-region)
N
))
)

))

) ; end "vanilla-sensor".

R ************************#***

70

Appendix B

Domain Specific Functions

This section describes some functions needed for the description of organizations in the
DVMT. A few of these have been seen in the examples throughout this report.

The simplest class of functions test the contents of a particular field in a given de-
scription or collect or summarize information about the fields in a description. Exam-
ples of this class of function have already been seen. They are node-has-ks-names?
and sensor-scans-part-of-region?. node-has-ks-names? tests if a node’s knowledge
sources include a particular set of knowledge sources. sensor-scans-part-of-region?
determines if a sensor is capable of detecting vehicular activity in some portion of a given
region. Other examples of this class of function examine the contents of a sub-field of the
CHARACTERISTICS field in a sensor description to see if it includes the given list of
values (sensor-detects-signals?), compare the overall rating of a sensor’s accuracy at
classifying and locating signals with a given value (minimum-sensor-accuracy?), test to
see if an organization has interest-areas that intersect with a supplied list of interest-areas
in all dimensions except their regions—which are allowed to lie side by side if they do
not overlap—(bordering-interest-areas?), list the classes of signals a sensor detects
(1ist-detected-signal-classes), and determine the communication knowledge sources
an individual will need based on its communication activity (determine-communication-

71

kses).

Another function class tests for the presence of a relation between fields in multiple
descriptions or summarizes data from multiple descriptions. The same example in section
2 includes an example of this class of function as well.sensors-that-cover-region finds
all of the combinations of sensors (from a list of sensors) that will, between them, scan all of
a given region.within-distance?, nearest-n, and sum-sensors-scan-regions are three
other functions from this class. The first checks that the distance between two locations
does not exceed a given value; the second orders individual organizations by their distance
from a given location and returns a list of the n closest organizations; the last returns a
region that encloses all of the regions scanned by a list of sensors.

One class of functions are those that are essentially operations on sets. Among these
are subsets-to-size-n, which returns all of the sub-sets of a set that contain n or fewer
members, and select-smallest-set which selects from a set of sets the one with the
fewest members (or one of them if there are several of a size equal to the smallest).

A number of functions were written to perform operations on regions: two-dimensional
rectangular areas specified by the coordinates of their lower-left and upper-right corners.
(Technically, a region is just one dimension of an interest-area and it is only a matter
of convenience that they are all rectangles in the DVMT.) Some of these are minimum-
enclosing-rectangle: takes a list of rectangles and returns the one that surrounds them
all (used in sum-sensors-scan-regions); intersecting-rectangles?: takes a list of
rectangles and returns the rectangle that is overlapped by all of them; list-uncovered-
sub-regions: takes two overlapping rectangles, breaks up the area of the first rectangle
that is not overlapped by the second into smaller rectangles (at most, three are required),
and returns them in a list (used by gensors-that-cover-region); fill-rectangle-
with-overlapping-rectangles: takes a rectangle, the dimensions of another rectangle
that is to be repeatedly overlaid upon the first, the number of overlaying rectangles that
are to be used, and the amount of overlap as parameters, then returns the list of overlying,
overlapping, rectangles (since an attempt to specify all of these parameters may result in
a situation that cannot by physically realized, one parameter may be left unspecified, the
function will then compute the missing value). This last function is used by a composite

72

structure to assign regions to its components.

The final function class is for unusual operations on integers. It has just one example,
group-divide. Its arguments are an integer, a maximum divisor, and a minimum quotient.
It returns a list of no more than maximum divisor integers, all of them at least as large
as the minimum quotient, such that they all add up to the original number. This function
is used to distribute employees to sub-hierarchies (in the example of section 3) where: no
manager wants to manage more than some number of sub-hierarchies (maximum divisor),
and a minimum number of employees are required to make up a hierarchy (minimum

quotient).

73

