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I. MOTION ANALYSIS

Our research in motion analysis continues to broaden with research in several theoret-

ical and experimental areas.

I.1. EFFECTIVENESS IN RECOVERING TRANSLATIONAL MOTION
PARAMETERS

We have continued the analysis of algorithms for constrained sensor motion [LAW84).
In particular we are evaluating the robustness, accuracy, and efficiency of the algorithm for
recovering translational motion parameters [PAV85]. Here the global search for the focus-
of-expansion (FOE) requires the computation of the sum of errors (e.g., via correlation)
associated with the displacement of a set of feature points in two or more frames. A
sparse sampling of the possible location of the FOE provides a global error function whose

minimum localizes the FOE, and thus the direction of motion.

The accuracy and robustness of the algorithm is a function of the number of points
that are matched for contributions to the error function, which of course must be traded
off against the amount of computation that can be tolerated for real-time motion analysis.
Thus far, our experiments on simulated environments imply that there is a wide range of
situations for which the motion parameters can be approximately recovered at relatively
modest computational expense. Specifically, when the angle between the image plane and
the direction of translational motion is less than 60 degrees, then between 4 and 16 points
which are widely spaced in the image are sufficient to recover the approximate motion
of the sensor. A smaller number of points (4-8 points) is necessary when the camera is

oriented approximately in the direction of motion, (0-15 degrees) and a larger number of



points (8-16) when the camera orientation is at a modest angle (15-45 degrees) with respect
to translation. When the angle between camera orientation and translation is large (60-90
degrees) there appears to be a flat error surface around the correct direction of motion,
leaving a wide range of ambiguity no matter how many feature points are employed. This
result is not surprising in that it states, for example, that when a camera is pointing out
the driver’s side window, accurate determination of the motion of a vehicle moving down

the road is not possible.

Similar analyses for other cases of constrained sensor motion, including pure rotation,
and planar motion in a known plane, remain for future work. We believe that they will

exhibit similar levels of robustness and computational requirements.

1.2. INHERENT AMBIGUITY IN MOTION ANALYSIS OF NOISY
FLOW FIELDS

In the cases where the sensor motion is unconstrained and/or there are independently
moving objects in the environment, the algorithms for direct recovery of motion parameters
and environmental structure are not applicable. Therefore, we turn to the usual method
of motion analysis which is decomposed into two phases: computation of an optical flow
field and interpretation of this field. In the present discussion, the term “optical flow field”
refers to a “velocity field®, composed of vectors describing the instantaneous velocity of
image elements. The computation of reliable flow fields is the subject of work presented in
Section 1.3. The second phase, which is the general interpretation of flow fields, was the

subject of previous work by Adiv [ADI85a,b].

The work discussed in this section mathematically examines the robustness of algo-

rithms for interpreting general motion from flow fields. The analysis focusses on ambigu-

4



ities that are inherent in the sense that they are true of all algorithms, and can only be

resolved if constraining assumptions or other sources of visual information are employed.

Two problems which may arise due to the presence of noise in the flow field have been
examined. Since noise in flow fields must be expected almost always to be present, we

believe this analysis is relevant to all real situations of motion interpretation.

The first ambiguity is in recovering the motion parameters from a noisy flow field
generated by a rigid motion. Motion parameters of the sensor or a rigidly moving object
may be extremely difficult to estimate because there may exist a large set of significantly
incorrect solutions which induce flow fields similar to the correct one. We found that if
the field of view corresponding to the region containing the interpreted flow field is small,
and the depth variation and translation magnitude are small relative to the distance of
the object from the camera, then the determination of the 3-D motion and structure can
be expected to be very sensitive to noise and, in the presence of a realistic level of noise,
practically impossible. We experimentally found that there is also a relation between the

location of the FOE and the degree of ambiguity.

The second ambiguity is in the decomposition of the flow field into sets of vectors
corresponding to indepedently moving objects. The rigidity assumption [ULL79] has been
found to be inappropriate for noisy flow fields; that is, the consistency of a set of flow vectors
with the same motion parameters, up to the estimated noise level, does not reasonably
guarantee that they are really induced by one rigid motion. Two independently moving
objects may induce optical flows which are compatible with the same motion parameters
and hence, there is no way to refute the hypothesis that these flows are generated by

one rigid object. As an alternative to the usual rigidity assumption, it is assumed in



[ADI85a,b] that a connected set of flow vectors, which is consistent with a rigid motion
of a planar surface, is induced by a rigid motion. This assumption is weaker than the
standard assumption in the sense that it can only be applied in more restricted situations

and, therefore, it is more likely to be correct.

The results of the ambiguity analysis can be used when the effectiveness of motion
algorithms is evaluated for real-world tasks. They can help to decide which algorithm to
choose, and in what situations this algorithm can be expected to be effective. Recovering
motion and structure of independently moving objects may be particularly difficult, as was
demonstrated by the flat error surfaces obtained for such objects in the second and fifth
experiments in [ADI85b]. In general, ambiguity in recovering 3-D motion and structure of
independently moving objects can be expected, since the effective field of view and the ratio
of the depth variation to the distance between the object and the camera are usually small.
Even in ambiguous sitqations, constraints and parameters might be extracted. Integration
of such partial information over a time sequence of flow fields may, eventually, resolve the

ambiguity and result in a unique interpretation.

1.3. RELIABLE COMPUTATION OF OPTIC FLOW: A SMOOTHNESS
CONSTRAINT AND A CONFIDENCE MEASURE

Although our hierarchical correlation algorithm [GLA83] for the computation of dense
displacement fields has proved to be an efficient and reliable technique, there are still a
number of situations where the algorithm makes mistakes. These situations arise in areas
of images without significant intensity variations and at occlusion or motion boundaries.
Our previous work [ANA84] attempted to identify such situations through the use of a

confidence measure which indicated the reliability of a match vector. Our current work



attempts to improve matches with low confidence based on neighbouring matches with

higher confidences, by means of a relaxation process.

The confidence measure that was described in [ANA84) is a scalar value between 0 and
1 that indicated the reliability of the displacement vector at a pixel in the image. One such
value was provided for each pixel. This measure was derived by studying the properties
of the error-surface obtained during the process of computing the displacement at a pixel.
However, the image displacement vector is a two-dimensional quantity. Hence, it is ap-
propriate to have a two-dimensional confidence measure associated with the displacement

vector.

e

In our previous work [ANA84], we observed that the error-surface allowed us to distin-
guish between situations where we had completely reliable information information regard-
ing the displacement vector (i.e., at high curvature points along image contours), where we
had partial information (i.e., at edge locations where only the displacement perpendicular
to the edge can be reliably measured), and situations where we had no reliable information
(at homogeneous intensity areas of the image). The new confidence measure is a vector

quantity which uses these distinctions.

Our current work consists of two steps. The first is the computation of these vector-

valued confidence measures and the second is the smoothing process which corrects unre-

liable displacement vectors based on their reliable neighbours.

1. The new confidence measure is best described as a two-dimensional vector. It is
convenient to describe the vector in terms of two orthogonal basis vectors e,,,; and
€min , Which vary from pixel to pixel in an image. The displacement vector D can

be decomposed in terms of its components along these basis vectors and confidence
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measures Cmqesy and cp,;, are associated with these components. The basis vectors
and the confidence measures can be easily understood by their behaviour at a high

curvature point, an edge point and a point in a homogeneous area of the image.

At a high-curvature point both ¢pmsr and ¢y, will be high, indicating that all the
components of the displacement vector are highly reliable. In this case the exact directions
of emes and en,;n are not crucial, and will depend on the precise shape of the contour.
At an edge point cpmg; Will be high and ¢y low, and eme; and epmin Wwill respectively
be perpendicular and parallel to the edge. At a homogeneous area both the confidences
will be low, and the directions of the basis vectors will depend on the details of the image

intensity variations at that point.

Finally, the new confidence measures are also based on the shape of the correlation
error surface. The details of their computation are described in [ANAS8S). It is worthwhile
to note that these are no longer bound to the range between 0 and 1. The formulation of
the smoothness constraint described below requires that these values be allowed to vary

between 0 and oo.

2. The process of improving unreliable match estimates based on its neighbours is for-
mulated as a smoothness constraint on the displacement vector field. The smooth-

ness constraint consists of two errors E,oun and Egppror , Whose sum is minimiged.

E,moots measures the spatial variation of the displacement field - i.e., the smoother
the variation, the emaller is the error. One example of such a constraint can be found in

the work of Horn and Schunck [HORSI]. Eqpproz measures the deviation of the smooth



displacement field from the initial field provided by the matching process.
Eappros = Z cmaz((U ~ D). Cmat)z + Cmin((U — D) - emin)z

where U is the smoothed displacement vector and D is the initial vectorat a pixel provided
by the matching/procesa. The definition of this error makes it clear that the low confi-
dence estimates are allowed to vary more than the high confidence estimates. Hence, the
smoothing process modifies the initial displacement values at locations of low confidence

measures more than those at the locations of high confidence measures.

The smoothness constraint translates into a minimization problem. We solve this
problem using the finite-element method, because this method permits the inclusion of
known discontinuities in the displacement field. The application of this method leads to a

local relaxation algorithm, which iteratively updates the displacement vector field.

Our future work will consist of developing techniques for locating the displacement
discontinuities, gaining a greater understanding of the confidence measures (in particular

how to normalize them), and possible improvements to the smoothness error.

L4. REFINEMENT AND PREDICTION OF IMAGE DYNAMICS AND
ENVIRONMENTAL DEPTH MAPS OVER MULTIPLE FRAMES

To a large extent research in the interpretation of motion has focussed on the recovery
of the motion parameters of a sensor moving through a static environment, and more
generally the relative motion between a sensor and a visible object. Under ideal conditions,
once these motion parameters are known, a depth map can be recovered from two frames

if the displacement (flow) field is exact.



In previous sections of this review, we have discussed various reasons why displacement
fields are not perfect. Even with perfect information about sensor motion, displacement
vectors from translational motion are a function of the depth of the surface element. Any
ambiguity or err;r in displacements along linear paths emanating radially from the FOE
leads to ambiguity in the depth of that surface element. There are several sources of such
ambiguity including multiple minima in the matching process for computing displacements,
noise affecting the match location, and finally the resolution in the matching process
along that radial path. Consequently, we are viewing the matching process as a dynamic

refinement of depth over multiple frames.

The work that we discuss here is a first step in the exploration of several issues involved
in the stability, refinement, and prediction of depth maps over multiple frames [BHA85].
We are considering the differences in start-up (when no depth information exists) versus
updating an existing (and possibly inaccurate) depth map; in both situations we assume

limited computational resources are available, yet increasing accuracy over time is required.

When an image sequence is first acquired, or the visible field changes dramatically
(as in the case of coming around a corner), no depth map exists and the situation can
be considered as a start-up. Under an assumption of a fixed limit on the computation
that can be carried out between any pair of frames, a strategy has been developed to
extract a coarse depth approximation from the first pair of frames using a coarse spatial
resolution for the matching process. Each subsequent frame that is processed can use the
previous estimate of depth to narrow the match area while increasing the match resolution,
thereby maintaining constant computation, but finer accuracy in the depth estimates. As
this process continues, temporal resolution can also be reduced as necessary. Thus, the
approach employed involves a combined hierarchical spatial and temporal resolution as

10



frames continue to arrive.

The refinement strategy that we have just described for the start-up phase of depth
map recovery can be generalized for updating, prediction, and error analysis. Under
known gensor motion and known environmental depth, the image location and appearance
of environmental features can be accurately predicted and matched from one frame to the
next (leaving aside complex issues of image changes due to changes in lighting, highlights,
shadows, shape distortion of surface patches, or occlusion). Thus, when one reaches the
desired level (or liinit) of spatial and temporal resolution, the updating process becomes
one of prediction and verification of the environmental model. When predictions are not
accurate, then depending upon the representation, the depth of either pixels, points, lines,
regions, or surfaces could be refined in a focus-of-attention and refinement process for error
reduction. Areas of the image and environment that do not behave as predicted become
the focus of processing until their image dynamics over time can be properly predicted. In
this manner one has an ongoing mechanism for verification of the current interpretation

of the environment.
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O. IMAGE INTERPRETATION

Work on the VISIONS system for interpretation of static images continues [HAN7S,
PARSO, RIS84]. A rule-based system for generating initial object hypotheses from image
data has been extended to permit information from multiple sources of low level data to
be *fused” in a consistent manner. On the basis of the results in a forthcoming thesis
by Weymouth [WEY86], we have refined the notion of schemas as a representation of
knowledge. We are implementing a new schema system in Common LISP and translating
existing schemas and their associated interpretation strategies into the new format. We are
continuing to explore inferencing mechanisms based on the Shafer-Dempster-Lowrance idea
of evidential reasoning [SHA76, DEM68, LOWS82, WES83, WES85]. A recent development
is a method for generating mass functions using explicit knowledge about the image domain
without requiring that the range of values over which the mass functions are defined be

either explicitly or implicitly discretized into ®propositions”.

I.1. RULE-BASED HYPOTHESES FROM COMPLEX AGGREGATIONS
OF IMAGE EVENTS.

In a recent paper [WEY83, RIS84, ARB86] we described a simple type of knowledge
source for generating object hypotheses for particular regions in the image. Simple rules
are defined in terms of ranges over a scalar feature, and gomplex rules are defined as
combinations of the output of a set of simple rules. The scores of these rules serve as a
focus of attention mechanism for other, more complex knowledge-based processes. The
rules can also be viewed as sets of partially relundant features each of which defines an
area of feature space which represents a “vote® for an object on the basis of this single

feature value. The region attributes include color, texture, shape, size, image location,
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and relative location to other objects. More recently, the approach has been extended to
lines, with features including length, orientation, contrast, width, etc. In many cases, it is
possible to define rules which provide evidence for and against the semantically relevant
concepts representing the domain knowledge. While no single rule is totally reliable, the

combined evidence from many such rules should imply the correct interpretation.

Most of the rules previously described are unary, accepting a region as input and
returning a confidence for the object label. In addition, simple binary rules, defined
over pairs of regions, were used to determine the similarity of the regions and to form
aggregations of regions with similar properties. Typically, the rules operate on primitives
formed by a single segmentation process (e.g. regions or lines) and result in the merging
of the primitives into a more complete description, depending on the confidence returned
by the rules. Forming more abstract groups of elements in this way has advantages when
dealing with unreliable segmentation processes: fragmented elements can be grouped to

form aggregates which perhaps more closely match object models.

Recently, we have extended this approach to include relational rules, which capture
expected relations between the elements of multiple representation (e.g. regions, lines,
surfaces) of the image data [BEL85]. Using rules of this form, sets of elements across
the multiple representations can be selected and grouped on the basis of relational scalar
measures associated with each rule. The result, assuming the confidence value returned
by the rule is high enough, is the construction of complex aggregations of elements which
satisfy user-specified relations across the multiple representations. One advantage of this
approach is that it is modular and extensible; when new representations are added to the

system, integration is accomplished by adding the appropriate rules.
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In our preliminary work, we are concerned with relational rules defined over regions
and lines. Since both are defined in a pixel-based representation, a convenient basis for
the rules is intersection of the correspoding sets of pixels. Such relational rules, called

intersection rules, are composed of three components:

1) a relational filtering rule for selecting lines which intersect a region based on rela-

tional measures;

2) a ranking rule which ranks the lines which intersect a region based on line attributes;

and

3) a combination function which calculates the final score of the region-line aggregation

based on the scores from the filtering rule and the ranking rule.

The relational measures are used to measure the type and degree of the relationship
between a region and a line. Lines associated with regions are categorized into three

types: boundary lines, interior lines, and lines which are neither interior nor boundary.

The measures are:

1. interior-line-percentage: the ratio of line area interior to the region to total

line area.

2. region-perimeter-percentage: the ratio of region boundary pixels covered by

the line area to the region perimeter.

3. line-length-percentage: the ratio of the length of the region boundary covered
by the line area to the total length of the line.

The relational filtering rule is then a complex line rule composed of a simple rule for
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each relational measure; in many cases it simply removes certain combinations of regions
and lines from further consideration. The ranking rule ranks each line on the basis of how
well it satisfies the associated relational measure. The combination rule is supplied the
scores from the relational filtering rule, the line ranking rule, and the relational measures

and converts these into a confidence for the hypothesis supported by the rule.

These intersection rules can be used in some very diverse ways. One example is to
use 3 filtering rule on interior-line-percentage to select only those lines which are interior
to a region. The ranking rule could then be defined to select short, high-contrast lines.
The score of the ranking rule could then be averaged to form a complex texture measure.
Alternatively, a density measure could be calculated by counting the occurrences of lines
which receive a high score from the ranking rule and then normaliging by the size of the

region.

As an additional example, the line-length-percentage measure could be used to select
lines which lie mostly on the boundary of the region. The ranking rule could then be
defined to favor long lines. The scores from the ranking rule could then be averaged using

region-perimeter- percentage as a weighting factor to form a simple shape measure.

A preliminary implementation of the extended rule system has been completed, several
simple texture and shape rules have been written, and results have been obtained on urban
house scenes and on road scenes. The results [BEL85] are quite promising. For example,
we have been able to find roads in several roadscenes by using a rule which implements
a simple shape measure. In the future, we intend to write additional rules and apply the
system to a larger variety of images, develop new rule types, add additional representations

for motion, depth, and surface segmentations, and incorporate the rule-based system into
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the schema system currently being developed (see next section).

I1.2. SCHEMA NETWORKS AS A REPRESENTATION OF
KNOWLEDGE

In the VISIONS system, scene independent knowledge is represented in a hierarchical
schema structure organized as a semantic network [HAN78, WEY83, PAR80, HAN83,
WEYS86]. The hierarchy is structured to capture the decomposition of visual knowledge
into successively more primitive entities, eventually expressed in symbolic terms similar
to those used to represent the intermediate level description of a specific image obtained
from the region, line, and surface segmentations. Each schema defines a highly structured
collection of elements in a scene or object; each object in the scene schema, or part in the
object schema, can have an associated schema which will further describe it. Each schema
node has both a declarative component appropriate to the level of detail, describing the
relations between the parts of the schema, and a procedural component describing image
recognition methods as a set of hypothesis and verification strategies called snterpretation

strategies.

The schema system provides a hierarchy of memory structures, from vertices (or even
pixels) at the bottom level through semantic objects at the top. A further division of know]-
edge into long term (LTM) and short term memory (STM) across the levels of hierarchy
provides a convenient way of differentiating the system’s permanent a priors knowledge
base from the knowledge that it has received or derived from a specific image. The goal of
the system is an interpretation, by which is meant a collection of objects at the top level
of STM that is consistent with both the image date and the system’s a priors knowledge

of the world as represented in LTM.
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A central problem of high-level vision is how to make use of knowledge, not just to
categorige the results of lower levels of computation but also to guide those levels through
the space of image analysis and feature extraction techniques. Practical systems will need
to know about an extremely large number of objects - a prohibitive number for any system
that attempts to find each object in each image. Furthermore, there is a computationally
explosive number of low and mid-level image operations (segmentation algorithms, texture
measures, line finders, rectangle finders, line grouping operators, etc. which collectively
are termed ‘knowledge sources’) which might be applicable, especially when one realiges
that for almost every object there might be a variation of certain operations that would
be particularly well suited to recognizing just that object. As a result, the combinatorics
of what low- and mid-level processes to apply and how to interpret their results is simply
too great to expect any near-term increase in the power of computing systems to solve the
problem by brute force computation. The high level vision system must control the work
being done at the lower levels for computer vision to be computationally feasible in the
near future. The goal of this research, then, is to provide a prototype knowledge-driven

system called the Schema System, to interpret images and provide control.

The development of the schema system confronts many of the same issues that have
come up in other interpretation and control domains, such as speech understanding [LES75,
WOO78]. Among them are questions of the knowledge representation, the communication

of information, error recovery and the selection of knowledge sources.

A doctoral dissertation by Terry Weymouth [WEYS86] presents our most recent ap-
proach to these problems. This dissertation explores the information and control struc-
tures needed for knowledge-directed interpretation of natural outdoor scenes. A schema

network represents object descriptions, relations among objects, and control knowledge.
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Each node of the network, a schema, contains both a declarative structure and references
to one or more snierpretation strategies. The declarative portion of the schema describes
the composition of an object including the spatial relations of its parts and their possible
appearances in an image. The interpretation strategies are object-specific procedures for
creating hypotheses of the existence of the object. In the interpretation strategies, the
procedural representation of control information provides a natural form for expressing

the dynamic nature of the image interpretation.

A schema instance is created when a schema is activated either by a top-down request
for a goal or by bottom-up detection of key events in the image. Schema instances contin-
ually interact with one another either through a channel set up when a goal is requested
or through hypotheses created in a blackboard data structure. Several schema instances
can work simultaneously on relitively independent portions of the interpretation, thus ex-
ploiting the potential for parallelism. By selectively grouping line and region primitives
into descriptions of parts of a scene, the cooperative activities of the schema instances

construct the final interpretation network.

The system was tested on six images from four scenes. Parallel activation of schemas
is simulated; overlaping of the timing in the actions of a set of interpretation strategies is
illustrated in traces from the simulation. The resulting interpretations contain both the
agsociation between object structures and image events and three-dimensional descriptions

of some of the objects in the scenes.

Currently, as a result of this experience, we have initiated another stage of schema
development by building a schema shell for experimental development, and by restricting

the inter-schema communication to be entirely through the blackboard. What follows is
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ongoing work which has not yet been evaluted. In general, there will be three types of
messages that go on the schema blackboard: Hypotheses, Goals and Personal Mail. An
important issue is when is information propagated, i.e. at what point does one schema
instance’s hypothesis effect another. We have adopted the basic principle that the decision
whether information should be propagated from one schema to another or not resides in
the reader (given the blackboard communication), not the writer. A schema instance must
make sure the hypothesis has been posted by the time it is strong enough that another

schema might use it.

The first schema prototype being developed is structured to have a collection of seven
types of interpretation strategies (IS’s), each of which runs as its own concurrent process.
The most important IS is the Object Hypothesis Maintenance Strategy (OHM) which is
responsible not simply for creating a hypothesis, but also maintaining it as the interpre-
tation process proceeds and deciding how the hypothesis relates to the rest of the system.
The remaining six IS’s are initial hypotheses (typically inexpensive processes that give a
first estimate as to whether the object exists in the image, and if so where), hypothesis
expansions (e.g. an algorithm that expands a roof hypothesis, given just a corner of the
roof), hypothesis support, conflict resolution, negative information (in general, how to use
the information that something fsn* a particular object), and information from subparts

and/or superparts.

A programming shell has been created for research implementation of schema sets.
Schema sets are groups of concurrent processes whose goal is to label a given type object,
operating from high-level contextual and relation knowledge, and intermediate feature
knowledge. The object labeling is implemented procedurally, which permits strategies to
be tailored to the object being labelled with little interference from globally imposed data
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structuring. At the same time, the lack of a global controller imposes a great deal of

structure on interprocess communication.

The purpose of the shell is to encourage development and testing of labeling strategies
by optimizing research and programming and testing time. A prototype shell is in place
and 5§ object schema types are at different stages of development and testing under the
current shell. Feedback from these preliminary schemas will lead to improvements in the
shell structure itself. The implementation is in Common LISP on the TI Explorers, with

low level data and image processing functions handled on VAX.

I1.3. INFERENCE NET

We are actively exploring the mathematical foundations of a knowledge representation
framework within the domain of vision using the theory of evidential reasoning as developed
by Dempster [DEM68] and Shafer [SHA76]. The Dempster-Shafer formalism for evidential
reasoning supports an explicit representation of partial ignorance, uncertainty and conflict.
The inferencing model allows “belief” or *confidence” in a proposition to be represented
as a range within the [0,1] interval. The lower and upper bounds represent support and
plausibility, respectively, of a proposition, while the width of the interval can be interpreted

as ignorance.

The representation has two components [REY85]. The first part is static, and explicitly
asgociates measureable properties of some feature of the image data, via knowledge sources,
to labels which are to be assigned to abstractions of the image data. This association is
made using the notion of a mass-function as defined by Shafer. These mass functions are
generated via the notion of a possibility function which is defined using explicit knowledge

about the image domain in question. Previous methods required that the range of values
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over which the mass functions are defined to be either explicitly or implicitly discretized

into *feature propositions®.

The second part uses the static representation, just presented a frame of discernment,
and the theory of evidence as developed by Shafer and by Lowrance [LOWS82] to combine
the mass functions (via Dempsters rule), and arrive at a consensus opinion for the purpose
of determining the correct label of the image abstraction. Assumptions about the image
domain are represented within the knowledge network via possibility functions; a conflict
value detects when an assumption has been violated and is used as a represention of

uncertainty within the system.

Our representation provides a simple mechanism for representing uncertain information
and for pooling of partial evidence. Assumptions one makes about the domain provide
the constraints on the relationship between primitives extracted from the image data and
objects in the scene one is trying to reason about; we are interested in obtaining and
pooling evidence which pertains to these constraints. These include intrinsic properties of
the objects, which are expressed as unary constraints, and contextual constraints such as
spatial relationships which are binary or in general n-ary relations (for example adjacency

is a binary relation, betweeness is a ternary relation).
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. INTERMEDIATE LEVEL VISION

The general strategy by which the VISIONS system operates is to build an intermediate
symbolic representation of the image data using processes which initially do not make use
of any knowledge of specific objects in the domain. The result is a representation of the
image in terms of intermediate primitives such as regions, lines, and local surface patches
with associated feature descriptors. These primitives may be directly associated with an
object label (using the rule-based object hypothesis system as described in the previous
section) or they may be grouped into more abstract descriptions. The grouping processes
may be guided by high level contextual constraints (e.g. top-down) which effectively select
certain groupings related to the interpretation goals, they may be guided by very general
object-independent constraints (e.g. bottom-up), or they may be guided by both, changing

their form depending on the constraints available.

In this section we summarige three areas of research whose focus is the construction of

intermediate level primitives and their features.

II.1. GEOMETRIC GROUPING OF STRAIGHT LINES

The extraction of lines based on significant intensity changes and perceived boundaries
between areas is a difficult and important step in image understanding. We have developed
a new approach to the extraction of straight lines based on geometric grouping. The
primary goal is the extraction of straight lines from images in which there are fragmented
intensity discontinuities. The secondary goal is the demonstration that the use of geometric
organigation is an important part of the line extraction process and therefore can produce

improvements when combined with standard edge detection techniques.



The algorithm has two major components: edge detection and hierarchical grouping.
There are many edge detection algorithms which might be used. The main requirements
are that it produce measurements of the intensity contrast and direction of the edge. The
two algorithms that have been used for selecting points are sero crossings of the Laplacian

operator [MAR80, CAN83] and the Haralick operator [HARS4].

The hierarchical grouping process is based on scale (but there is no smoothing) and two
steps which are performed at each level: linking and merging. The hierarchical representa-
tion is a compact representation which reduces the search space at each level for sequences
of linked edges. It reflects the observation that “closeness® of lines is scale dependent and

is a multi-scale representation of a line which may be straight only at large scales.

The linking process is based on intrinsic and geometric properties. It searches a space
of lines for almost colinear pairs which are close to each other and links the appropriate

endpoints. There are four criteria used for linking:

1. Similar gradient magnitude. The gradient magnitudes across the edge must

be close to each other and in the same direction.

2. The lines must be approximately colinear. Lines 180 degrees apart are not
linked.

3. The end points of two candidate lines must be close.

4. The lines must not overlap. If both endpoints of one line project within

corresponding endpoints of the other, they are not linked.

The merging process consists of grouping and replacement. If a sequence of linked
lines can be approximated sufficiently well by a straight line, then they are grouped and

23



are replaced by a straight line.

This approach has a number of advantages for extracting straight lines. The results
shown in [WEIS5)] indicate that the principle of geometric grouping for extracting long
straight lines gives significant improvement in the results obtained from standard edge de-
tection algorithms. For example, line segments can be linked even when they are separated
by gaps. We believe that the approach can be extended to curved lines, (see Section I11.3)

parallel lines, closed contours, and other geometric abstractions.

Although the algorithm is very robust in its extraction of straight lines, it has some
problems which we are continuing to investigate. The ability of the algorithm to bridge gaps
is simultaneously one of its strengths and one of its weaknesses. Gaps sometimes appear
in a line because of changes in the lighting conditions along the line, (such as shadows
and specular reflections) which in turn affects the magnitude of the gradient. These gaps
should be bridged. Other apparent gaps are caused by the alignment of distinct lines (such
as those on the top or bottom of a pair of shutters); such gaps are real and should not
be bridged, yet at some level in the hierarchical representation they appear as one line.
Methods must be found for analygzing the multi-scale representation and for determining

what scales are appropriate and which are not appropriate.

The algorithm, like many others, relies on intensity gradient information to link lines,
yet what we perceive as straight lines are not always collections of edges with similar
intensity gradients. Finally, the algorithm will often find long lines in heavily textured
areas because of accidental alignment of texture edges. We are investigating the possibility

of using texture measures to inhibit the linking step.
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II.2. EXTRACTION OF CURVED LINES

Until recently the traditional method in computer vision for extacting straight and
curved lines has been either through the use of the Hough transform or via “edge linking®
algorithms applied to the output of some “significant edge pixel” algorithm. However, a
novel approach for extacting straight lines was recently reported in Burns, Hanson and
Riseman [BURS84], and involved a simple local computation (not involving any histogram

methods), followed by a computation of connected components.

The central module of this algorithm was a grouping process using overlapping parti-
tions on gradient orientation. In the context of extracting straight lines this process can

be summarized as follows:
e Compute the gradient orientation at each pixel.

o Partition the 360 degree gradient orientation measure into non-overlapping sectors
(normally 8 or 16 are used) and label the image according to the sector into which

the gradient orientation falls.*

o Apply a connected components algorithm to the quantized gradient orientation,
thereby producing regions with pixels having similar gradient orientation.
o Fit a straight line to the resulting “edge support® regions.
We have been investigating the application of this general approach to the problem
of extracting semi-circular arcs, replacing gradient orientation with a curvature measure.

Specifically we find “curve support regions” which are uniform with respect to a curvature

*Note that the process is actually somewhat more complex in that two sets of sectors are employed;
the second set is applied with sectors rotated a half interval (see[BURSA)).
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measure and as such can be abstracted from the image data as a part of a circle.

The curvature measure be used is given by the Kitchen-Rosenfeld curvature operator

[KIT80] defined by:

K=IL, B+ly B -2l LI + I8,

In fact this measure only makes sense when applied to areas of locally maximum
gradient magnitude, ie. gero crossings of some second derivative operator. Thus, this

curvature algorithm can be summariged as follows:
e Apply the curvature measure along the zero-crossing contour.
e Partition the range of the curvature measure into sectors.
o Label each pixel according to the partition into which the curvature value falls.

e Produce regions by applying a connected components algorithm to the labels of the

curvature partitions.

¢ Fit a semi-circle to each curve-support region.

e

¢ Repeat the above process for a second set of sectors rotated one-half sector.

e Each pixel then votes for one of the two regions which it is a part of in the two repre-
sentations, specifically the region whose extracted curve is longest. The percentage

of pixels within a region that vote for that region is the support of the region.
e Normally the regions selected are those whose support is greater than 50 percent.

Associated with each curve is a set of curve attributes, such as length, center, radius,
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endpoint parameters, contrast and support. The algorithm is local in nature and is hoped
to be robust in the face of moderate amounts of noise due to the coarse partitioning of the

output curvature measure .

In summary, we are developing a system to derive local and piecewise circular descrip-
tors of the image data. The approach utilizes local 2D operations and is computable in
parallel. Curves are partitioned based on constancy of curvature rather than usual extrema
methods. Also in contrast to other approaches, descriptors of neighboring segments are
treated as independent, with the expectation that higher level processes will guide the next
level of grouping. The system is designed to provide reliable local primitives (as opposed
to pixel level events) for the purpose of moving up the abstraction hierarchy within the

image understanding system.

II1.3. APPLICATION OF VANISHING POINTS TO 3-D MEASUREMENT

Perspective is an important cue to 3d spatial information such as the direction of lines
or the orientation of surfaces. Human beings can perceive three-dimensional objects in
space even when looking at two-dimensional images. A computer vision system must do
likewise, but 3D shape, sige and location cannot be recovered from a single image without
additional information or assumptions. Vanishing points and vanishing lines can provide
this information in the case of objects which are assumed to have parallel lines or parallel
edges planar surfaces in the 3D world. Once the location of the vanishing point is detected,
we can use it as a cue to calculate the distance and shape of the object to which the parallel

lines belong [NAK80, NAK84a, BARS2).

Estimation of the errors in these features has practical significance and could be used
in many ways. A modular process such as a knowledge source on perspective could use
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this type of information in the form of constraints to generate and verify hypotheses.
With some object models such as buildings, the dihedral angles between their surfaces
(e.g. walls and roofs) are invariant shape features. An estimate for the relative orientation
between surfaces which incorporates a model of error allows one to verify hypotheses in
the face of imprecision in low-level processing. For example when analyzing a house scene,
if two adjacent regions are temporarily labeled as house walls based on some property, say
rectangular shape, the calculation of the mutual angle of the two surfaces can be used to
verify this. This means that we must know whether the measured angle is outside the

estimated range of error.

Parallel lines in 3d space are projected onto the image plane to lines which radiate
from a single common point, called a vanishing point (VP). It can be used to calculate the
size and orientation of objects with parallel lines. The vanishing line for a surface can be
computed as the line passing through two VP’s obtained from two sets of parallel lines.
There are infinitely many sets of parallel lines which could be drawn in a given plane and

the vanishing point for each set lies on this vanishing line.

The surface orientation of a plane is given by the unit normal vector perpendicular
to the surface. The vanishing line (VL) of a plane gives a precise description of the unit
normal. The distance from the VL to the center of the image plane corresponds to the
angle of tilt of the surface away from the viewer. If the line goes through the center, then
the normal to the surface is parallel to the viewing plane. The second angle of the surface
is given by the orientation of the vanishing line; its normal is the projection of the normal
to the surface onto the image plane. Thus, analysis of the errors in the distance and
orientation of the vanishing line can be related to effect on the estimates for the surface

orientation and line length. We have developed formulae for these errors as a function of
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VP or VL errors, and we have used constraints based on real world knowledge to increase
the precision of the estimates of surface orientation (NAK84b). The assumptions made
are that the focal length of the camera and the depth of one point on a line are known. If
the depth is not known at all, then the orientation can still be recovered, but only relative

distances can be estimated.

The algorithm for locating vanishing points of a set of lines could take place as a
form of Hough transform. Lines are extracted which are likely to be parallel (e.g. by
gelecting all lines which are nearly parallel in the image and spatially clustered. These
lines are stereographically projected onto half of the Gaussian sphere and extended to
semicircles. Peaks are located on the Gaussian spﬁere by simply thresholding. There
is also the possibility of knowledge-directed selection of lines in the image (possible only

pairs) which are assumed to be parallel in the world.

The estimation of the surface normal from the estimates for two vanishing points
involves intersecting constrained regions on the Gaussian sphere. Each vanishing point
estimate, which is an area on the Gaussian sphere, determines an annular set of possible
directions for the normal to the surface. The intersection of these annular sets is the

estimate for the normal.

For the application of geometric constraints in the case where two house walls are
perpendicular, the estimate for the normal for one wall was rotated 90 degrees on the
Gaussian sphere and intersected with the estimate for the normal to the other wall. In our
experiments, there was significant reduction in the sige of the error region estimate for the

surface normal in the example used.

Although we assumed the perpendicularity between the planes in the two cases men-
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tioned above, we can apply this method even if the dihedral angle is not a right angle. If
the angle is given to be 0g, the other plane’s normal must be in the belt that makes an
angle g with the given normal. We can again form the consistent range by taking the
intersection of the belt and the area for the VP. These constraints can also be applied to

more than two planes, for example when three planes meet in a trihedral angle.



IV. THE UMASS IMAGE UNDERSTANDING
ARCHITECTURE PROJECT

4

Our research group is designing and constructing a highly parallel architecture for
computer vision with the goal of achieving real-time processing rates for low, intermedi-
ate and high level image interpretation tasks. This architecture consists of three tightly
coupled layers that correspond to these levels of abstraction. These layers are the Content
Addressable Array Parallel Processor (CAAPP) at the bottom, Intermediate and Commu-
nications Associate Processor (ICAP) in the middle, and the Symbolic Processing Array

(SPA) on top. Attached to the SPA is a host processor.

The CAAPP is an associative square grid processing array that is designed to provide
bi-directional parallel communication between symbolic and sensory processing [WEES3,
WEES4, LEV84]. The ICAP is also an associative square array, and is tightly coupled to
the CAAPP and SPA. The purpose of the ICAP is to perform intermediate level symbolic
processing such as geometric grouping and to facilitate the flow of information and control
between the CAAPP and SPA. The SPA is an array of processors which perform high
level symbolic processing such as hypothesis generation and testing, schema processing,

and knowledge source/blackboard processing.

The multilayer associative structure of the UMass architecture provides simultaneous
parallelism at three different levels of abstraction with high bandwidth bi-directional flow
of information and control between the levels. This permits the entire iconic to symbolic
transformation process to take place within the architecture so that the top layer can
provide a high level symbolic interface to the image interpretation process. At this level,

images of the environment have essentially been transformed into a symbolic representation
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of that environment.

The effort involves a custom VLSI implementation for the processing elements in the
bottom two layers of the architecture; a systems hardware implementation for integrating
the custom processors with off-the-shelf components in the top layer and host processor; a
goftware development effort for creating a complete programming environment, simulators
and tools for the system; and an algorithm development effort for implementing vision
algorithms on the architecture. This project, particularly the VLSI implementation effort,
will be shared with Hughes Research Labs.

IV.1. Hardware:

A test chip of the NMOS version of the CAAPP processing element has just been
received from the MOSIS facility. We are currently preparing to test this chip. The layout
for a CMOS version of the CAAPP processing element is about 60 percent complete. We
will be examining the tradeoffs involved in going to a CMOS implementation. Although
CMOS would increase the sige of the layout, it would permit the use of the MOSIS scaleable

rules, with a potential for significant sise reduction and speed increase in the future.

The first pass on the design for the Intermediate and Communications Associative
Processor (ICAP) has been completed. Unfortunately, to place this ICAP design on the
same chip as the CAAPP cells will necessitate a greater number of pins than is currently
available from MOSIS. Thus we are examining the tradeoffs of reducing the functionality
of the ICAP to make it fit the pin limitations, versus placing the ICAP on a separate chip.
The latter would double the size of the prototype circuit boards, but would provide greater

processing flexibility.
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IV.2. Software and Algorithms

We are currently constructing an instruction-level functional simulator for the new
CAAPP architecture. This simulator promises to provide considerably greater execution
speed than the old simulator. The new simulator is being written in C as a stand-alone,
portable system although its image formats will be compatible with the UMass Image
Operating System (IOS) of the VISIONS project. Once the ICAP architecture is finalized,

it will also be incorporated into the simulator.

An iconic to symbolic transformation process has been developed and tested for the
CAAPP, using a version of the IOS to simulate the new CAAPP architecture, prior to
construction of the new simulator. Several vision algorithms have been implemented in
the simulator; these include an algorithm for computing approximations to large Gaus-
sian convolutions, the Burns’ line extraction algorithm, and the line grouping algorithm

described in Section III.1.

A prototype slice of the UMass architecture is scheduled for completion in approxi-
mately 2 years. This will produce a symbolic representation of region and line image events,
as well as surfaces, and can be interfaced to a LISP processor as a demonstration of the
concept. The complete prototype could be built in two additional years. At the end of the
first year, the software effort will produce simulators and tools for the bottom two layers
of the architecture. The second year of the software effort will result in a transportable,
stand-alone simulator for the entire architecture with associated environment and tools.
After this, the software effort will concentrate on implementing vision processing tasks on
the simulators and then transferring those implementations to the hardware as it becomes

available. Additional enhancements to the environment and further tools will be developed



as necessary.
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