STUDENT SUPPORT IN AN INTRODUCTORY
PROGRAMMING COURSE

ELIZABETH LEVINE
BEVERLY WOOLF

COINS TECHNICAL REPORT 85 - 49



Student Support in an Introductory Programming Course
Submitted to:
National Educational Computing Conference (NECC)
30 October 1985
Submitted by:
Elizabeth Levine
Academic Computing

Smith College
Northampton, Massachusetts, 01060

Beverly Woolf
Computer and Information Science
University of Massachusetts
Amherst, Massachusetts, 01003

Contact:
Liz Levine

Telephone:
(413) 584 2700 x3088

B L i R T L ey o



" Levine & Woolf 2

L. Abstract

One of the greatest weaknesses of introductory programming courses is the lack of
cohesion within the course structure. Typically, students attend lectures with two to three
bundred people, spend time searching for available terminals and programming assistance,
and approach the assignments with a “do it the night before attitude™. Not only is this self
defeating but it is also pedagogically intractable. Given staggering enrollments, archaic
hardware, and a lack of challenging tasks in the introductory programming curriculum, we
have been motivated to develop inspiring screen displays, friendly operating systems, and a
way for novice programmers to custom-tailor their assignments toward their own individual
interests.

This paper describes an ongoing research effort to develop software, hardware, and
courseware solutions to the conditions of the introductory programming class. Our solution
includes graphic software embedded in Pascal, frequeat structured assignmeats, and a
microcomputer laboratory supervised by trained assistants. We described our basic approach

elsewhere (Levine and Woolf 1984); here we report on progress made in the curreat year.

2. Support for Modular Thinking

We don't belicve that the typical first ym‘;me is too hard for novice
programmers, but rather that the eaviroament is tedious and uninteresting. Assignments are
often long and spaced too far apart and deny a scnse of continuity in the student’s

acquisition of knowledge. Another problem is that the lab is often unsupervised and



Levine & Woolf 3

confounded by a slow moving mainframe offering opaque systerh messages.

LITLR [T
Crasl

Bight
teft
'\‘!" .}A", ‘. '::;0:"
2 N N [4TTTR Stmn
R DR ottt
“"d‘?ﬁ‘es:itp"\— "L{s‘iisr“ ':::.;:;::253’
Create Proc
‘~ /1‘ /“\ ’ lct::::c.'ﬂ:::::l

Cisplag.Procedure
Celete.Proceture

Esit.Ladytug
! ; i
1l L)
) I
Praceture cultistar: User Frazedures:
togin siagiler
Repeat 1§} sallister
Cranl 1 50 4; star
Right 1 £0 3 tqusre

ster;
€ads

(1]
MDY RIC ARY Key Lo BESURE (CCSCCq

fe - — - - e

Figure 1: A menn for creating Pascal programs.

In response to these conditions, we have developed software packages designed to
promote modular thinking via graphics examples. The packages have been tested and
developed in a controlled environment for three years (Levine and Woolf 1984). They

are available at both an interactive and programming level. Primitives such as Crawl,

Right, and Pendown are available through layered menus, Figure 1 displays the commands
available at the initial stage of programming. Once a student is comfortable with these

commands at an interactive level, embedded menus enable her to create procedures



Levine & Woolf 4

interactively and to observe execution of these modules without the constraints of a formal
programming language.

The screen display is split into three working parts: a meau, a scratch pad, and a
programming tablet. In a typical session the student selects commands from the meau, and
might, for instance, request that they be used in the construction of a “procedure”. The
system responds by writing a procedure on the programming tablet consisting of a header
chosen by the student and a series of commands formatted according to typical
programming convention. As the student sclects commands, she is prompted for parameters
(such as degrees or pixels) by an open parenthesis,. The parameter list is automatically
closed once an argument is provided, and the line of code is then formatted.

Figure 2: Pentagon made with a Repeat Loop.




" Levine & Woolf 5

Using this software embedded in Pascal, the student is exposed to Pascal formalism
and indentation techniques while still residing in a relatively friendly error-free eavironment.
For instance, the student can choose to “run” a procedure from the top-level menu, or nest
it in a larger procedure, which she selects by invoking the command “Run_procedure”.
Figure 2 is an illustration of a graphic designed with a REPEAT loop. The results of this
and other programming tasks appear on the scratch pad.

Although the simple graphics may use nothing more complex than a simple repeat
loop, for the beginnning programmer this exposure to stepwise programming provides a solid
foundation to the basic theory behind structured coding. The split-screen display mode
facilitates viewing a program‘s execution in chunks, prior to the synthesis of the complete
program. Thus the student is exposed to the benefits of driving procedures before learning
the pre-knowledge that is often required in a traditional cumriculum. This enables the
student to relate top-down programming to the execution of complex tasks and to use
procedures before becoming enveloped in the precision required for writing syntactically
correct code.

An additional goal of this course is to facilitate individual expression in programming.
Rather than have all the students solve the same problem, we have created lessons that

allow a novice programmer to custom-tailor her assignments toward her own individual

interests. Figures 3 to 5 are examples of solutions t0 such assignments.



Figure 3: A signature created with procedures.

= |

Dingg - ER




" Levine & Woolf ' 7

Just as software created for this course stresses modularity and structured
pmmmmhg,thcmofasisnmgnudmtmmmmoduhﬁtymdmaum.
Mnﬂmmntme&ﬁumaﬂyddpdab,bywhlcbampnhmﬁvedeﬁgnmmbe
submitted. This design requires the studeat to consider such issues as:

® What variables will be needed in this program?
Give Type and Var declarations

® Write an algorithm to solve this problem using mnemonic procedure names

® What do you want the user’s interaction to be when accessing this program?

® Describe the data structure that will represent the user’s responses.



. Levine & Woolf 8

The design task is worth 25 percent of the project grade, thus stressing the
importance of completing the requiremeat. Once the design date has passed, students are
given access to a SAMPLE DESIGN disk, which contains the design specications for the
current assignment. Students who submitted weak designs, or no design are required to
utiliutbedesignonthisdisk.lnthhway,asmdenthnotpenalizedbutswedwhen
hcrdedgnforapa:ﬂwlarnﬁgnmentisnotappropﬁntetothemnk. It is notable that
those students who completed designs performed better on assignments than those who
wrote the programs without prior design work. In fact, 75% of those students who worked
ondaigns,meivedgmdaof&%ormonmcpmgmmmingmignmmt. Help was
available for students during the design process in the form of trained consultants and
informal tutorials.

Along with structured programming assignmeats, we impose a structured calendar of
tasks on students who are learning to program. Explicit tasks are needed because students
comefmmawidc'varietyofncademicbachmmdsmdﬁequenﬂy,thowfmmn
non-technical backround have‘ difficulty adhering to the deadlines and study schedules
inherent in a programming course. Consequently, a parcel of material is distributed to
students every two weeks containing a programming assignmeat, associated definitions for
the current topics, a schematic overview of the structures under discussion, and a collection

-~ —————of examples which the student can stady and afrer i -ghe wishies, The regularity of this——
parcel enables the student to recognize that solving a problem is a well-defined process, |
dependent upon a methodical approach. For a student, just preparing meatally for each

new set of materials helps her become a part of this process.



- Levine & Woolf 9

3:1_Exams

Exams serve as logical breaking points for topia. in the curriculum. We distribute a
study guide ten days prior to the exam that serves as a pointer to those topics that will
reccive emphasis and to the specific fpes and program formats to be presented. We feel
it is important to stress that exams should not confound the student by way of uncxpected
form or content. Regardless of the complexity of the material, testing materials should serve
to eclucidate problem areas not obfuscate them. In particular, the study guides ask students
to solve short programming problems and to provide the pseudocode for longer ones.

The final exam is offered in such a way as to minimize student duress during a
difficult time of the semester. All students are required to take the first hour of the exam.
The second hour is optional. Those wishing to improve a possible grade outcome are
encouraged to take this exam. Students who have performed well throughout the semester

are free to concentratc on other coursework. The grade for the second exam is substituted

for the poorest programming grade. We feel that this is appropriate only because the

content of the exams stresses programming tasks rather than short answer questions.

32 On_Line Courseware

Theundalyingpdndplebehindtheeoumwmisthcponceptof.Wemt

the student to recognize that programming involves several repeatable steps: design, revision,
code, redesign, run etc. We support a student to engage in this design, redesign process
on her own and to use tools that we have provided for independent use. Several banks of

documented examples exist on a “class floppy” along with running solutions to programming



+ Levine & Woolf 10

assignments and sample design specifications. Such courscware is on-line and available at all
times.

Iheamplabmkconsimcfcxemtablcpmgramsdemonmﬁngtheuseota
parﬁmhanmmdammaum.AmmdedireaowadnSmthemedhkm
which a student might print the source code. She can run the program with the code in
hand. Examples serve as models for the student regarding documentation and formatting.
New examples are added to the banks throughout the term; mode! studeat programs are
used when appropriate.

Assignments are not distributed until a running solution (in executable-only format) is
available on the SOLUTIONS disk. Students are encouraged to review these running
solutions prior to coding the assignmeat. Grading specifications are particular regarding the
characteristics of a completed assignment. A running solution provides the definitive
aampleoftheaespo?dﬁcaﬁom. It is important for the student to watch a program run
withcodeinhand,a.ndtoknowthatthisisjtm:mestepinthcstmctu:edpmmthatis

central to writing programs.

3.3 Stndent Centered Slides

Lecturainpmgmmminsoounesoﬁendonmdacﬁbetheuudent‘sapeﬁenceatthe

nachine. We address this problem by using student centered slides that detail step-by-step
msponsathenudentcancxpeawhen:hcusavariouseommands.'l‘hisisoftenatediw
chore for the teacher - yet, we feel that it helps to disabuse students of the “treading
water” sensation that occurs later in the course if fundameatals are not clarified during the

initial interface sessions.



Levine & Woolf 1

Asa;tudentgaimnophkﬁeadoninpmgnmming,the leqtumcontinuetoaddmthe
actual laboratory situation; running programs are demoastrated and typical errors illustrated.
Students view code through the overhead projector while watching the program’s execution
onanadjaeeutscrm.'ropiaareumallymotivatedat the beginning of lectures with

problems that necessitate a particular structure. Lectures conclude with the demonstrations.

4. Department Support

We have found it necessary to go to two departments for space, money and trained
pmonndneededwdwdopthiswmewetamywpaiod.miﬁanythebepamnem
of Computer and Information Science (COINS), supported development of the coumware
The School of Education generously provided a temporary classroom and laboratory for the
first semester until COINS could provide laboratory space. As in many computer science
departments space is at a premium.

Bothdepamnenuweregenemlnthei:mpponofminmotfortheooum.ne
School of Education gave the instructor a grant for cusriculum redevelopment. Subsequent
programmers were given stipcods by the COINS Department for specific tasks, such as
porting the software to new machinery and building an on_line help system. Finally, COINS

‘JMWMMM—WW_W
course credit for their work. An additional positicn which has yet to be filled or funded
is that of a systems and hardware person to handle the invariable repair and replacement
of parts required by the use of microcomputers. The course has been given university

status and made a regular Computer Science offering, thus obviating the need for support



Levine & Woolf 12

from two distinct departments.

4.1 Computing Envirenment

The courseware and student operations have been moved to microcomputers to ensure
quick response time. Students work on the same or related- assignments in a -laboratory
supervised by trained assistants and are encouraged to present algorithms or flow charts to
the assistant prior to beginning the first edition of an assignment.

Assistants can often detect misconceptions before extensive coding has taken place.
They are screened for empathetic yet disciplined teaching skills and are trained using role
playing sessions that simulate interactions with bewildered studeats. Familiarity with the
machinery is acquired through hands on sessions as well as required reading of
documentation. Assistants mect weekly with the course instructor to discuss current
assignments, common questions and difficulties with current concepts. Also provided by the
assistants are ongoing workshops dealing with advanced editing techniques and particular
programming concepts such as recursion.

We have purchased microcomputers to support the graphics software on which the
course is based. Within the eavironment there is an opportunity for graduate studeats

interested in systems programming to transport and improve the software for use on the

new microcomputers. In addition, students with teaching interests are invited to teach the .
course and to make suggestions toward incorporating more graphics systems into the
curriculum. Future teachers of the course are pedagogically supported by accumulated

on-line curriculum and parcels.



Levine & Woolf 13

S. Unresolved Issues

Student attrition is still a major unresolved problem. Despite our efforts to make this
a small, userfriendly course, programming itself seems to be a difficult discipline as
displayed by a 25% attrition rate. We attribute this, in part, to a lack of cohesion on the
part of the students regarding study habits and time management. In the past, our theory
has been to support studeats through well-timed assignments, on-line courseware and
supervised lab time. Now we believe we have to teach “tmkermg" or the patience and
discipline required to tinker and fix a program repeatedly before submitting it. Students
often believe a program will work the first time it is run; the logical connective to this is
that a program can be written the night before. Obvicusly students must be disabused of
this idea. More importantly, they must realize that the actual running program is the last
task in a lengthy learning process. We have not as yet developed curricula support that
teaches this kind of perseverance and tinkering knowledge.

representation of arrays, records and files. For example a student will be able to access a

record or array and observe the automatic loading of information into fields. The program
will ask the student what type of structure she needs to create, and prompt for specific

types of input. The record (or other structure), is then displayed on the screen, permitting




Levine & Woolf 14

the student to observe the fields accepting values. A bibliography application is an obvious
use of such a system. Such a program might prompt the student for the name of the book
or article, the author, and the topic of the work. As the student enters the information,
she will see a record displayed on the monitor, storing the information as she types it in.
In this way the student expericnces the feeling of constructing and loading a structure with
information. This is important for the novice who frequently wonders “but how do you
know it’s there?", referring to the fields of a record, for example.

We are equally concerned with the support needed for more advanced studeats as
they encounter the concept of the abstract data structure. A frame-based represeatation of
abstract data structures, such as trees and linked lists, would facilitate the user’s
understanding of dynamic allocation and recursion. This representation would enable the
user to construct a tree, observe the nodes being linked and view a binary search as it
locates the item in question or stalls on a particular node. Frequently, the student new to
abstract imylementaﬁém has no concept of the term “independence of implemeatation”™, and
insists upon coding deliberately without previous design work. Our graphics package would
inform the student, using a sclection of applications, how a linked list might be strung
together dynamically for an ongoing library program, yet be better implemented with an

array for a computerized research facility where the quantity of membership is known.




"Levine & Woolf 15

§.2 Networked Laboratory

Ideally, studeats and instructors should communicate via networked terminals. This
caables studeats to access one another for help and examples; in a networked lab, they can
depend upon rapid response. Instructors and students need to send assignments, questions
and problems on the spur of the momeat. A networked environment facilitates these tasks,
as does distributed online tutorials. Thismeansastudentcanmanexampleﬁoma
central account without utilizing a mainframe or waiting for the necessary floppy.

7. Distributed Teaching

The ladybug sSoftware will be utilized in the large (around 500 students per semester)
introductory programming course that initially spawned its conception. We are not going in
drdes;mtherthishrgeemmeisgoingwmderiubaseofopemﬁomtopenmnl
computers and will i;noorponte the laboratory based curriculum developed in the smaller
graphics course. Each section of the course will strive to emulate the mechanics utilized in
the prototypical experimental eavironment. This section details the methodology which we
will use to maintain the flavor of a small microcomputer programming class within an
administratively large programming course.

-7 TTTTT T Our modet—ot-educational’ management I bases8 o0 HEWTES “and “distiibuted power. T T
This approach differs from the hierarchical model used in many industries. Since teachers
generally share the same goals of service and instruction, our model operates more like a
network than a pyramid and we think of it as a collection of nodes (teachers) where each

node has the problem solving knowledge to handle any teaching problem and each node is



"Levine & Woolf 16

fully capable of communicating with every other node. In this way, the pressure on one
person, to minister to every difficulty is alleviated. In addition, if a student has a problem,
she need not wait until the “manager” is available. Several people are equipped to help
with the problem. We provide ecach teacher with enough information to manage the course
and to communicate quickly via the computer with every other member of the team. In
this way each member of the staff is able to diagnose deficiencies in the system, to
anticipate disasters, and to design additional tools as needed. In the future, these tools will
be rebuilt for a networked micro lab. Among the mainframe computer tools used to aid in
the control of comunication are online practice exams, lesson assignments, messages about
exams, help sessions, etc. examples, a grading program and a syllabus.

Several of these tools are designed to relieve instructors of purely routine bookeeping
chores. In particular, a grading program allows each student to access her program and
cxammdecatanyti'meandprovidesteachinguﬁmuwiththeabilitytokeepmckof
dnsmacnmdwftw;mﬁbmﬁu.nedaubucofgmdambebledtombﬁsha

meter or monitor for each teaching section.

8. Discussion

Ouraimistomalnmmmongoinglabommformmhimowftwaminnmﬁom

— — cws C et AP L - tP ot Lswe e I e—e e

for teaching, managing and supporting studeats. In addition, the laboratory setting is
conducive to the collection of programming misconceptions and the formation of
misconception classifications. Our lab is ideal for running half baked ideas and almost

finished ones, for reworking software, for finding bugs, and for handing them again to the



'chine & Woolf 17

students for evaluation.

We have described several software and courseware artifacts used to create cohesion
and support in our introductory course. These artifacts include explicit graphic software,
printed matter, interactive running solutions, student-ceatered overheads, online examples,
mdmuymnﬁmnﬂmmmmmemwmwmmmgmdmm
studcats we have created an eavironmeat that helps organize the learning process and helps
us rethink our traditional definition of curriculum and textbooks. We have learned that
consistent interaction between studeats, instructors and implementers can benefit development
ofoophkdcatedcouncwanmdmggeuthatufumxegenmﬁombemewnﬂy
dependenfonnoftwm,moreandImprovedmaofcomwminedtmﬁonwillbemquired.




