"Do I Press Retum?”

Liz Levine
Beverly Woolf
Rich Filoramo

Computer and Information Sciences
University of Massachusetts, Amherst

COINS TECHNICAL REPORT 85-50

"Do 1 Press Retum?”

Liz Levine

Beverly Woolf
Rich Filoramo

Computer and Information Sciences
University of Massachusetts, Amherst

ABSTRACT

The introductory programming course at this
university attempts to serve some 1500 students cach
somester. The attrition rate, due in part to the
overload on the system and in part to the students’
difficulties in "keeping up”, has, at times,
approached 25%. In response to this situation we
have revised and reordered the curriculum for use
in sn experimental course designed for the novice
user. The course is directed toward discovering
and addressing the confusions of new programming
students. It facilitates our ongoing study of the
povice programmers’ fesponse (o graphics, friendly
interface packages and the revised curriculum which
includes the teaching of procedures and control
structures at the beginning of the course. In
studying these responses we have learned some
techniques in aiding the novice user to unravel
some of the mysteries surrounding the acquisition of
programming skills. The course is constantly
undergoing development in addition to being in its
second semester as a departmental offering. It is
detailed in this paper.

L. Introductioa

course on the other hand runs on a VAX 780,
dedicated to department research, uses a Barco color
monitor and a DEC VTI25 terminal. The course
will soon move to personal computers networked for
communicaton and resource sharing.

We have been able to pencrate integrated
hardware and software packages into the curriculum
and bhave culled inspiration from the teaching
potential available in the creation of these packages.
The ' cumriculum uses these packages to aid the
beginning student and to present the rudiments of
Pascal programming while allowing the user to apply

We have designed a laboratory/classroom to

explore the nceds of the novice programmer and
hvebe@mtoevaluateandimpmetheeoumwue
and teaching methods wused to instruct the
beginnning programmer. We are also investigating
the beginner’s clasroom environment. The
motivation for this undertaking stems from the
limitations of working on a large time-sharing system
with its concurrent poor response time, weak editor
facilites and low svailability of terminals. The pilot

Permission to copy without fee all or part of this matersial is granted
provided that the copies arc not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fec and/or specific permission.

© 1984 ACM-G-89791-126-1/84/002/0454 $00.75

this knowledge to her own field of interest.

2. Graphics Pascal Packages
The courseware consists of software packages
inspired by LOGO, written in Pascal and designed
to facilitate the teaching of Procedures at an early
stage in the course. The packages, collectively
known as the InterActive Ladybug, (I.Aladybug),
mdedpedamundmiconinthefomof.
Ladybug which represents the point of a graphics -
pen on the screen. The students command the
Ladybug both interactively and through Pascal
programs to Crawl, Turn, Dot (leave a trail of
dots), Penup (move without leaving & trail), and
Sequence (remember sequences of commands in an
interactive mode). The students are first taught to
experiment with the Ladybug in her interactive
mode. A single key input activates the Ladybug; a
distance, angle or color value input following the’
single key command determines such things as the
length or color of a line. A repetition of sequences
of commands can also be executed, thus preparing
the student to work with iteration and looping
constructs. Using the Sequencing option available in
this mode, students are able to record Ladybug
movements and incorporate these in larger drawings.
In this way, students become familiar with breaking
up a problem into small pieces and coding each
ptece.

Following three to four weeks of work with
the IAlLadybug the students become acquainted
with some of the groundwork for Pascal
programming techniques and are taught to command
the Ladybug from within a program. Once the
student becomes proficient in the specifics of Pascal
syntax and program development a new and
expanded Ladybug package for Pascal loops is
introduced. ‘This package provides a chart for
graphically “recording™ the Ladybug’s meal. The
Ladybug “eats™ aphids which are represented by
colorful and randomly shaped icons on the screen.
Each “meal” is programmed by the student who
adjusts the control variable of a WHILE, REPEAT,
or FOR loop For example two commands used with
this package are:

"WHILE (aphid = red) eataphid™
"WHILE (aphidweight > 700) eataphid”

The first command causes all red aphids to be eaten
and the second causes aphids of weight greater than
700 to disappear. The Ladybug becomes
proportionally bigger with every insect caten. Using
this package, the student learmms to code boolean
variables to test the color, size, or distance of an

aphid.

3. Results in the Classroom
We find that students are intrigued, albeit

timid, by the use of graphics in a computer course.

We find, however, that there is a steady level of
interest. One reason for this may be the
friendliness of the software. Unhampered by opaque
error messages and a maze of user manuals, the

student is free to explore the system without risk.

With litile knowledge of the language primitives, the
student is, nevertheless, able 1o witness powerful
effects of her efforts.

For example, for his final project, a business
student wrote an interactive program to produce a
skeleton housing plan which accepted variables for
the dimensions of its walls, rooms, and house type.

Example student comments about this course
are:

“As an Environmental Design major I realized that
I would sooner or later have to work with a
computer in design, I decided it was time to know
my enemy. The low stress, small scaled classroom
with maximum opportunity for student-teacher
interaction quickly dispelled my fears and
misconceptions.”

155

“Enter the ever loving and humble Ladybug; she
was the most disarming factor of my computer
fears.”

“The use of graphics to learn the rudiments of
programming was a key factor in understanding the
material. The visual display of our efforts made
the whole process far more meaningful.”

“Without the first introduction to Ladybug I think
that 1 would have had a much more difficult time
grasping the eclements of Pascal” It would have
been a much less creative process for those of us
that do not so readily and immediately think in the
logical ways required for writing a program "

Graphic output from programs written by
students in the course are shown at the ead of the
paper.

Graphic and textual feedback from the system
to the student is a teaching method which requires
further study. The student sces the graphic result of
joining several smoall drawings or earlier designs
into one larger display. Textually, she gets practice
writing code for the simpler problems and then uses
indented modules (Procedures, If/Then, While loops)
to include these smaller modules in the final
program. The advantage of the dual feedback is
that the student is quick to accept and practice this
method of problem-solving.

4. Format of the Class

things in prospective
ud 1) a mnon-echnical backround, 2) g
willingness to partake in an experimental course and
3) an ability to contribute suggestions and criticisms
regarding the construction of the course.

including the
n the graphics packages, the Pascal
compiler, and the system command language, A
question session follows the lecture and often Pascal
programs with built in errors
students asked to eliminate
portion of the class is devoted

experimentation and teacher consultation on any

current problems.

40.1 Assignments

Assignments were designed so students had
some choice in what cach program would produce.
Assignments were accepted when the user had
demonstrated sufficient knowledge of the concept
in question. For example a typical assignment
might involve designing an interactive program which
allowed the user to design her own bhouse or
rewriting the simpler software to accomplish a
variety of original tasks.

The order in which topics were presented was
based on several factors. A primary consideration
was the teaching of procedures at an early stage in
the curriculum. In fact, procedures were taught as
soon as the student was comfortable with the
computer system. This was prompted by the belief
that an carly acquaintance with these tools enables a
student to write modular programs at an early point
in her career (See, for instance MINDSTORMS,
Papert). Students were given an average of three
programming assignments a month.

402 The Curriculum

The curriculum is outlined below:

the operating system

screen editor

files

interactive course work

introduction to Pascal

documentation

Procedures

Pascal programs to command the Ladybug
Variables

Control structures

While, Repeat and For loops

text output

Design and implementation of final projects
applications of computers

The sequence of topics is also motivated by
the belief that the user can and should access
powerful utilities before she is able to understand
their inper mechanics. We equip the student with
some of this richness in the form of a flexible
editor and leamning system so that she may move on
to programming concepts without having to grapple
with some of the low level tinkering so often
inherent in introductory courses. Having these
facilites at her disposal enables the new user to
move much more rapidly through basic programming
constructs. In addition, some of the usefulness of a
computer is witnessed at an carly stage in contrast
with the frustration frequently experienced in such
courses.

S. Programming Skills Need Repetitive

Relaforcement

We chose not to use formal testing to
evaluate students’ progress in the course. The
decision was part of our effort to discover other
methods which might determine whether a student
had attained adequate grasp of the material. We
also dispensed with fixed due dates for assignments
preferring to allow a negotiable window of time
during which completed assignments would be
accepted. We hoped that by reducing the pressure
associated with testing and inflexible due dates the
student would give more attention toward learning
and retaining the material. Students were graded
based on participation in the class, adherence to a
regular work schedule and completion of a specific
number of assignments including a four week project
which they designed and wrote.

The results of this experiment on scheduling
assignments produced a nearly anarchic state. Too
many students who might otherwise have been able
to master the material in a reasonable amount of
time were unable to allocate their time efficiently.
The most significant reason for this result is the
fact that programming skills cannot be learned the
night before an assignment is due. Unfortunately,

many students complete courses by determining the
nature of the requisite assignment material and
accomplishing the assignment in a single sitting.
This method (and it is a well-honed method), is not
conducive to the concrete acquisition of

programming skills.

In particular, we found that several students
lacked experience with the notion of repetition as a
technique for learning. There do exist courses where
completion of one assignment is not dependent upon
knowledge retained from the previous one; in this
particular course that is not the case and levels of .
knowledge required for each task presume facility",
with any material utilized up through that point. 2
Inability to recognize this fact led some students to
resist starting work early enough to allow for the)Gl
clarification of bugs. This resulted in complet
delays and a misunderstanding about how the final¥4
output would look. Clearly, an introductory course
in programming needs to present an additional
branch of instruction; the novice requires some aid
in structuring the studying of this mate:
Exercises which stress repetition and usage ;
individual constructs is a possibility. Merely telling
the student to look at the problems in the back
the chapter is not the answer.

We suggest, therefore, that a reasonable
balance nceds to be achieved between a lenient
grading policy and one that does not allow for
different rates of scquisition. We believe that we
have qualitatively, at least, documented the fact that
students achieve graduated levels of programming
competence in accordance with their ability to both
grasp programming concepts and exercise them
regularly. These differences in abilites nceds to be
accounted for in an introductory programming
course, and allowed for within reasonable limits
when due dates are arranged. Extreme lemicacy in
this regard is not the answer; indeed it appears to
hinder rather than help the student to move ahead.

Our intention is to enforce:

1. explicit due dates without the facility to
negotiate

2. explicit partial due dates, ie, due dates
for an outline, design and meta-language

specification
3. evidence from the student that
consistent work habits are being

developed through completion of small
exercise sets in addition to programmin,
assignments '

6. Results: The graphics packages

We have organized an introductory
programming course utilizing friendly graphics
packages to teach various programming -onstructs.
We have found that despite the aforementioned
difficulties with work routines and structured
completion of assignments, students respond
productively to these packages. One observable

reason for this is plainly the built in friendliness of
the software. Unhampered by opaque error messages
and a maze of incomprehensible user manuals, the
student is free to explore the system without risk.
With little knowledge, the user is able to witness
some powerful effects of her efforts. For example a
few simple commands to the Ladybug will result in
a screen filled with colorful designs. As the user
becomes more discriminating in what she wishes to
produce, small increments in knowledge allow her to
increase the complexity of graphical output. We
have thus built into the course an incentive plan
cnabling the student to envision her future in the
course.

157

We bave found that a structured laboratory
session is useful for beginning students. Technical
snags as well as conceptual hurdles are inevitable
for any user; for the mew user they can be both
baffling and halting. Through weekly sessions,
during which the student writes and compiles a
program or explores further the intricacies of the
I.ALadybug the instructor is on hand to answer
questions and help sort out problems when they
occur. In this way the waiting period until the next
meeting i+ eliminated and the student can move
ahead in her work. In addition, the student can
bring any chronic problems to the laboratory and
demonstrate to the instructor the exact circumstances
under which they occur. This is useful in keeping
track of both hardware and software glitches.

7. Condclusions

The course is currently in its final semester of
experimentation. Final validation as a regular
university course will allow us to service both the
department and the larger university community.

In the department, we wili continue to provide
a testbed where an active research community can
experiment with friendly programming interfaces and
the design of pgraphics packages for the novice.
This research advantage is currently being tapped
in the development of a dynamic on-line help
system to be used in conjunction with the Ladybug

system.

Expansion and development are underway with
the aim of servicing 50 students in the cpring of
1984. In particular we hope to service those
members of the university community who find the
larger course inacessible as a leaming mode, yet
who wish to attain proficiency in a programming
language and technique.

Our software and curriculum packages are
being expanded to include records, files and arrays.
We are thus sble to treat all the concepts
contained in a traditional introductory programming
course. Yet, we believe that by using graphics
packages and the results of this research effort, we
will have provided an opportunity for the novice to
attain problem solving proficiency without facing the
obstacles inherent in larger more text orientated
curriculums. We trust that our results for both the
department and the community will prove useful in
meeting their needs creatively and efficiently.

We gratefully acknowledge the initia] work on this
course by Jeff Bonar, snd the progrmming assistance
of Sallie Blackburn and Geoff Brown.

Pamela’s Customired Signature.

"A Squiral made with a WHILE loop”

Kemon's Customired Signature.

A Sun made with a REPEAT loap.

158

Do 1 Press Retum?”

Liz Levine
Beverly Woolf
Rich Filoramo

Computer and Information Sciences
University of Massachusetts, Amherst

COINS TECHNICAL REPORT 85-50

"Do 1 Press Return?”

Liz Levine
Beverly Woolf
Rich Filoramo

Computer and Information Sciences
University of Massachusetts, Amherst

ABSTRACT

The introductory programming course at this
university attempts to serve some 1500 students each
scmester. The attrition rate, due in part to the
overlosd on the system and in part fo the students
difficulties in "keeping up®, has, at times,
approached 25%. In response to this situation we
have revised and reordered the curriculum for use
in sn experimental course designed for the novice
uter. The course is directed toward discovering
and addressing the confusions of new programming
students. It facilitates cur ongoing study of the
novice programmers’ responsc 1o graphics, friendly
interface packages and the revised cusriculum which
includes the teaching of procedures and control
structures at the beginning of the course. In
studying these responses we have leamed some
techniques in aiding the novice user fo unravel
some of the mysteries surrounding the acquisition of
programming skills. The course is constantly
undergoing development in addition to being in its
gecond semester as a departmental offering. It is
detailed in this paper.

L. Introductioa

We have designed a laboratory/classroom to

eprrethenwdsofthenoviecprommmermd
have begun to cvaluate and improve the courscware
andteachingmethochumdtoinmuc&the
beginnning programmer. We are also investigating
the beginner’s classtoom environmeat. The
motivation for this undertaking stems from the
limitations of working on a large time-charing system
with its concurrent poor response time, weak editor
facilites and low availability of terminals. The pilot

Permission to copy without fec all or part of this material is granted
provided that the copics are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fec and/or specific permission.

© 1984 ACM-0-89791-126-1/84/002/0154 $00.75

course on the other hand runs on a VAX 780,
dedicated to department research, uses a Barco color

monitor and a DEC VTI2S terminal. The course

will soon move to personal computers networked for
communicaton and resource sharing.

We have been able to pgenerate integrated
hardware and software packages into the curriculum
and have culled inspiration from the teaching
potential available in the creation of these packages.
The ' cumriculum uses these packages to aid the
beginning student and to present the rudiments of
Pascal programming while allowing the user to apply
this knowledge to her own ficld of interest.

2. Graphics Pascal Packapes

The courseware consists of software packages
inspired by LOGO, written in Pascal and designed
to facilitate the teaching of Procedures at an carly
stage in the course. The packages, collectively
known as the InterActive Ladybug, (I.ALadybug),
are designed around an icon in the form of a
Ladybug which represents the point of a graphics -

on the screen. The students command the =

Ladybug both interactively and through Pascal
programs to Crawl, Tum, Dot (leave a trail of
dots), Penup (move without leaving a trail), and

Sequence (remember sequences of commands in an - v

interactive mode). The students are first taught to
experiment with the Ladybug in her interactive
mode. A single key input activates the Ladybug; a
distance, angle or color value input following the
single key command determines such things as the
length or color of a line. A repetition of sequences
of commands can also be executed, thus preparing
the student to work with iteration and looping
constructs. Using the Sequencing option available in
this mode, students are able to record Ladybug
movements and incorporate these in larger drawings.
In this way, students become familiar with breaking
up a problem into small pieces and coding each
piece.

.

s

Following three to four weeks of work with
the I.ALadybug the students become acquainted
with some of the groundwork for Pascal
programming techniques and are taught to command
the Ladybug from within a program. Once the
student becomes proficient in the specifics of Pascal
syntax and program development a new and
expanded Ladybug package for Pascal loops is
introduced. This package provides a chant for
graphically “recording” the Ladybug’s meal. The
Ladybug “ecats™ aphids which are represented by
colorful and randomly shaped icons on the screen.
Each “meal” is programmed by the student who
adjusts the control variable of a WHILE, REPEAT,
or FOR loop For example two commands used with
this package are:

"WHILE (aphid = red) eataphid”
"WHILE (aphidweight > 700) eataphid™

The first command causes all red aphids to be eaten
and the second causes aphids of weight greater than
700 to disappear. The Ladybug becomes
proportionally bigger with every insect eaten. Using
this package, the student leams to code boolean
variables to test the color, size, or distance of an

aphid.

3. Results in the Classroom

We find that students are intrigued, albeit
timid, by the use of graphics in a computer course.
We find, however, that there is a steady level of
interest. Onme reason for this may be the
friendliness of the software. Unhampered by opaque
error messages and a maze of user manuals, the
student is free to explore the system without risk.
With little knowledge of the language primitives, the
student is, nevertheless, able to witness powerful
effects of her efforts.

For example, for his final project, a business
student wrote an interactive program to produce a
skeleton housing plan which accepted variables for
the dimensions of its walls, rooms, and house type.

Example student comments about this course
are:

“As an Environmental Design major I realized that
I would sooner or later have to work with a
computer in design, I decided it was time to know
my enemy. The low stress, mmall scaled classroom
with maximum opportunity for student-teacher
interaction quickly dispelled my fears and
misconceptions.”

185

“Enter the ever loving and humble Ladybug; she
was the most disarming factor of my computer
fears.”

“The use of graphics to learmn the rudiments of
programming was a key factor in understanding the
material. The visual display of our efforts made
the whole process far more meaningful.”

“Without the first introduction to Ladybug I think
that I would have had a much more difficult time
grasping the elements of Pascal” It would have
been a much less creative process for those of us
that do not so readily and immediately think in the
logical ways required for writing a program "

Graphic output from programs written by
students in the course are shown at the end of the
paper.

Graphic and textual feedback from the system
to the student is a teaching method which requires
further study. The student sces the graphic result of
joining several small drawings or earlier designs
into one larger display. Textually, she gets practice
writing code for the simpler problems and then uses
indented modules (Procedures, 1f/Then, While loops)
to include these smaller modules in the final
program. The advantage of the dual feedback is
that the student is quick to accept and practice this
method of problem-solving.

4. Format of the Class

We looked for three thin in prospective
students 1) a non-technical b?ckroung, 2) a
willingness to partake in an experimental course and
3) an ability to contribute suggestions and criticismg
regarding the construction of the course,

.'I‘he class uses both traditional and innovative
techniques during the three weeckly meetings, A
short lecture is used to present new material.
Central to this lecture is distribution of a set of
definitions and manuals designed to aid the user in
comprehension of new material. Manuals were
written to accompany each phase of the pew
student’s interactions with the system, including the
screen editor, the graphics packages, the Pascal
compiler, and the system command language. A
question session follows the lecture and often Pascal
programs with built in errors are displayed and
students asked to eliminate the bugs. The Ilast
portion of the class is devoted to student

experimentation and teacher consultation on any
current problems.

40.1 Assignments

Assignments were designed so students had
some choice in what each program would produce.
Assignments were accepted when the wuser had
demonstrated sufficient knowledge of the concept
in question. For example a typical assignment
might involve designing an interactive program which
allowed the user to design her own house or
rewriting the simpler software to accomplish a
variety of original tasks.

The order in which topics were presented was
based on several factors. A primary consideration
was the teaching of procedures at an carly stage in
the curriculum. In fact, procedures were taught as
soon as the student was comfortable with the
computer system. This was prompted by the belicf
that an early acquaintance with these tools enables a
student to write modular programs at an early point
in her carcer (See, for instance MINDSTORMS,
Papert). Students were given an average of three
programming assignments a month.

402 The Curriculum
The curriculum is outlined below:

the operating system

screen editor

files

interactive course work

introduction to Pascal

documentation

Procedures

Pascal programs to command the Ladybug
Variables

Control structures

While, Repeat and For loops

text output

Design and implementation of final projects
applications of computers

The sequence of topics is also motivated by
the belief that the user can and should access
powerful utilities before she is able to understand
their inner mechanics. We equip the student with
some of this richness in the form of a flexible
editor and leaming system so that she may move on
to programming concepts without having to grapple
with some of the low level tinkering so oftea
inherent in introductory courses. Having these
facilites at her disposal enables the new user to
move much more rapidly through basic programming
constructs. In addition, some of the usefulness of a
computer is witnessed at an early stage in contrast
with the frustration frequently experienced in such
courses.

§. Programming Sklilis Need Repetitive

Reinforcement

We chose not to use formal testing to
evaluate students’ progress in the course. The
decision was part of our effort to discover other
methods which might determine whether a student
had attained adequate grasp of the material. We
also dispensed with fixed due dates for assignments
preferring to allow a ncgotiable window of time
during which completed assignments would be
accepted. We hoped that by reducing the pressure
associated with testing and inflexible due dates the
student would give more attention toward learning
and retaining the material. Students were graded
based on participation in the class, adherence to a
regular work schedule and completion of a specific
number of assignments including a four week project
which they designed and wrote.

The results of this experiment on scheduling
assignments produced a nearly anmarchic state. Too
many students who might otherwise have been able
to master the material in a reasonable amount of
time were unable to allocate their time efficiently.
The most significant reason for this result is the
fact that programming skills cannot be leammed the
night before an assignment is due. Unfortunately,

many students complete courses by determining the
nature of the requisite assignment material and
accomplishing the assignment in a single sitting.
This method (and it is a well-honed method), is not
conducive to the concrete acquisition of

programming skills.

In particular, we found that several students
lacked experience with the notion of repetition as a
technique for learning. There do exist courses where
completion of one assignment is not dependent upon
knowledge retained from the previous one; in this
particular course that is not the case and levels of
knowledge required for each task presume facility ;>
with any material utilized up through that point.
Inability to recognize this fact led some studeats to
resist starting work early enough to allow for the
clarification of bugs. This resulted in completioni
delays and a misunderstanding about how the finali}
output would look, Clearly, an introductory course N
in programming needs to present an additional
branch of instruction; the novice requires some
in structuring the studying of this materis
Exercises which stress repetition and usage
individual constructs is a possibility. Merely telling
the student to look at the problems in the back
the chapter is not the answer.

We suggest, therefore, that a reasonable
balance needs to be achieved between a lenient
grading policy and one that does not allow for
different rates of acquisition. We believe that we
have qualitatively, at least, documented the fact that
students achieve graduated levels of programming
competence in accordance with their ability to both
grasp programming concepts and exercise them
regularly. These differences in abilites needs to be
accounted for in an introductory programming
course, and allowed for within reasonable limits
when due dates are arranged. Extreme leniency in
this regard is not the answer; indeed it appears to
hinder rather than help the student to move ahead.

Our intention is to enforce:

1. explicit due dates without the facility to
negotiate

2. explicit partial due dates, ie, due dates
for an outline, design and meta-language
specification

3. evidence from the student that
consistent work habits are being
developed through completion of small
exercise sets in addition to programming

. assignments ‘

6. Results: The graphics packages

We bave organized an introductory
programming course utilizing friendly graphics
packages to teach various programming ~onstructs.
We have found that despite the aforementioned
difficulties with work routines and structured
completion of assignments, students respond
productively to these packages. One observable

reason for this is plainly the built in friendliness of
the software. Unhampered by opaque error messages
and a maze of incomprehensible user manuals, the
student is free to explore the system without risk.
With little knowledge, the user is able to witness
some powerful effects of her efforts. For example a
few simple commands to the Ladybug will result in
a screen filled with colorful designs. As the user
becomes more discriminating in what she wishes to
produce, small increments in knowledge allow her to
increase the complexity of graphical output. We
havethusbuiltintothemmuineenﬁveplan
enabling the student to envision her future in the
course,

157

We have found that a structured laboratory
session is useful for beginning students. Technical
snags as well as conceptual hurdles are inevitable
for any user; for the new user they can be both
baffling and halting. Through weekly sessions,
during which the student writes and compiles a
program or explores further the intricacies of the
I Aladybug the instructor is on hand to answer
questions and help sort out problems when they
occur. In this way the waiting period until the next
meeting i+ climinated and the student can move
ahead in her work. In addition, the student can
bring any chronic problems to the laboratory and
demonstrate to the instructor the exact circumstances
under which they occur. This is useful in keeping
track of both hardware and software glitches.

7. Conclusions

The course is cumrently in its final semester of
experimentation. Final validation as a regular
university course will allow us to service both the
department and the larger university community.

In the department, we wili continue to provide
a testbed where an active rescarch community can
experiment with friendly programming interfaces and
the design of graphics packages for the novice.
This research advantage is currently being tapped
in the development of a dynamic on-line help
system to be used in conjunction with the Ladybug

system.

Expansion and development are underway with
the aim of servicing S0 students in the cpring of
1984. In particslar we hope to service those
members of the university community who find the
larger course inacessible as a leamning mode, yet
who wish to attain proficiency in a programming
language and technique.

Our software and cusriculum packages are
being expanded to include records, files and arrays.
We are thus able to treat all the concepts
contained in a traditional introductory programming
course, Yet, we believe that by using graphics
packages and the results of this research effort, we
will have provided an opportunity for the novice to
attain problem solving proficiency without facing the
obstacles inherent in larger more text orientated
curriculums. We trust that our results for both the
department and the community will prove useful in
meeting their needs creatively and efficiently.

We gratefully acknowledge the initial work on this
course by Jeff Bonar, and the progrmming assistance
of Sallie Blackburn and Geoff Brown.

T

Pamela’s Customixed Signature.

"A Squiral made with a WHILE loop”

Kemon's Customized Signature.

A Sun made with a REPEAT loap.

158

