Abstraction in Concurrency
Control and Recovery Management

J. Eliot B. Moss
Nancy D. Griffeth
Marc H. Graham !

COINS Technical Report 85-51
December 1985

1Nancy Griffeth and Marc Graham are members of the faculty of the School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, Georgia 30332.

Abstract

There are many examples of actions on abstract data types which can be
correctly implemented with nonserializable and nonrecoverable schedules of
reads and writes. We examine a model of multiple layers of abstraction that
explains this phenomenon and suggests an approach to building layered sys-
tems with transaction-oriented synchronization and roll back. Our model may
make it easier to provide the high data integrity of reliable database transac-
tion processing in a broader class of information systems, without sacrificing
concurrency.

1 Imntroduction

The database literature contains many examples of actions on abstract data types which
can be correctly implemented with nonserializable schedules of reads and writes. We
mention one such example here.

Example 1. Consider transactions Ty and T3, each of which adds a new tuple to a
relation in a relational database. Assume the tuples added have different keys. A tuple
add is processed by first allocating and filling in a slot in the relation’s tuple file, and then
adding the key and slot number to a separate index. Assume that 7;’s slot updating (S;)
and index insertion (I;) steps can each be implemented by a single page read followed by
a single page write (written RT;, WT); for the tuple file, and RI;, WI; for the index).

Here is an interleaved execution of Ty and T3:

RT, WT, RT; WT; RI, WI; RI, WI,.

This is a serial execution of S1S:I;f;. Now I; and Ij clearly commute, since they are
insertions of different keys to the index. Furthermore, I; cannot possibly conflict with Sg,
since they deal with entirely different data structures. So the intermediate level sequence
of steps is equivalent to the sequence Sy I 15213, which is a serial execution of T3 T3. We have
demonstrated serializability of the original execution in layers, appealing to the meaning
(semantics) of the intermediate level steps (S; and I;). But note that the sequence we
gave may be a non-serializable execution of T,T; in terms of reads and writes, since the
order of accesses to the tuple file and the index are opposite. If the same pages are used by
both transactions, it will be a non-serializable execution. It is instructive also to observe
that the sequence RTy RT; WT, WT; ... is not gserializable even by layers. It does not
correctly implement the intermediate operations S and Ss.

A similar observation, which has received less attention, applies to recovery from action
failure. The following example is an illustration of this interesting phenomenon.

Example 2. Consider T} and T} as defined above, but suppose that the index insertion
steps I; and I, each require reading and possibly writing several pages (as they might, for
example, in a B-tree). We now write RI;(p), WI;(p) for reading and writing index page
p. Consider the following interleaved execution of Ty and Ty:

RT, WT, RT, WT; RI;(p) RI2(q) WIa(g) WIa(r) WIa(p) RIx(p) Wi(p)

The pair of index page writes WIz(q) WI,(r) may be interpreted as a page split. This is
serializable by layers, since at the level of the slot and index operations we are executing
the sequence S;S;I;1), as in Example 1. But we encounter the following difficulty if we
subsequently decide to abort T3: The index insertion I, has seen and used page p, which

was written by T in its index insertion step. If we attempt to reproduce the page structure

which preceded the page operations of T3, we will lose the index insertion for Ty. Worse
yet, if T} continues trying to operate on the index based on what it has seen of p, the
structural integrity of the index could be violated. Thus it appears that we cannot reverse
the page operations of T; without first aborting T;. But there is still a way to reverse
the index insertion of T, just by deleting the key inserted by T;. Consider the following

sequence:
S18 I 11 Dy

The illustrated schedule is clearly correct, as long as the keys inserted by Ty and T; are
distinct, because we do not care whether the original page structure has been restored.
We only need to restore the absence of the key in the index.

In this work, we present generalizations of gerializability and atomicity which account
for many such examples. The generalization arises from the observation that a transaction
(or atomic action) is frequently a transformation on abstract states which is implemented
by a sequence of actions on concrete states. The usual definition of serializability requires
equality of concrete states. We call this concrete serializability, to distinguish it from
equality of abstract states, which we call abstract serializability. Since many different
concrete states in an implementation may represent the same abstract state, abstract
gerializability is a less restrictive correctness condition than concrete serializability. An
immediate application of abstract gerializability is to explain the correctness of apparently
nonserializable schedules such as those described by Schwarz and Spector in [8] and by
Weihl in [10]. If results returned by actions are considered part of the state, correctness
conditions for read-only transactions, such as those described by Garcia-Molina in [2], can
also be expressed.

The generalization of atomicity is analogous. The usual definition of an atomic action
requires that it execute to completion or appear not to have happened at all. We introduce
the idea of abstract atomscity, which is analogous to abstract serializability: A schedule
of actions is abstractly atomic if it results in the same abstract state as some schedule in
which only the non-aborted actions have run. Concrete atomicity corresponds to the more
usual definition: the final state is the same as one that would have resulted from running
only the concrete actions which were called by non-aborted abstract actions.

A widely accepted folk theorem states that it is necessary to use knowledge of the
semantics of actions to achieve more concurrency than serialization allows. While we
could address the semantics of specific atomic actions case by case, this is a tedious process.
Instead, we describe a systematic method of using easily obtained knowledge about their
semantics. A basic theorem of this paper, in a result related to the results of Beeri et al.
in (1], says that we can serialize at the individual levels of abstraction. Between levels, we

need only to insure that the serialization order is preserved. Thus, in the above example,
once the slot manipulation has been completed, locks on the page may be released. It is not
necessary to wait until T} is complete. This has the effect of shortening transactions and
thereby increasing concurrency and throughput. The analogous result holds for atomicity:
we show that, for schedules which are serializable by layers, atomicity need only be enforced
within each level of abstraction.

Another contribution is a much more realistic (but slightly more complicated) model
than the usual straight-line model of transactions (as presented, for example, by Papadim-
itriou in [7]). The model presented here accounts for the flow of control in programs, such
as “if-then-else” and “while” statements, without introducing nearly as much complexity
as is present in [1]. The most interesting result involving the model is that, while it affects
the classes of abstractly serializable and concretely serializable schedules in potentially
profound ways, the class of CPSR schedules is essentially the same. This is because in-
terchanges of non-conflicting actions preserves the flow of control within an action as well
as the resulting state. It does not appear that any authors have previously addressed this
issue.

The definitions of abstract and concrete serializability and atomicity do not suggest
practical implementations. It is widely accepted, however, that the largest class of serializ-
able schedules which is recognizable in any practical sense is the class of conflict-preserving
serializable schedules. A similar situation may hold for atomicity. We define here a class
of conflict-based atomic schedules which can be executed efficiently. This is the class of
restorable schedules, in which no action is aborted before any action which depends on it.
This class may be viewed as dual to the class of recoverable schedules defined by Hadzi-
lacos in [4]: A schedule is recoverable if no action commits before any action which it
depends on. In a restorable schedule, aborts can be efficiently implemented by executing
state-based undo actions for each child action of an aborted action.

Finally, this work addresses a problem mentioned but not specifically addressed by
Beeri et al. in (1], which is the use of knowledge about abstract data types and state
equivalence in serialization. The “fronts” of [1], which must be computed from an actual
history of the system, can be determined in this context from information easily provided
by a programmer: namely, from the call structure of the system and a “may conflict
predicate” which describes which actions may conflict (i.e., not commute) with each other.
The use of knowledge about abstractions and state equivalence permit description of legal
interleavings in a simpler and more direct manner than in [1] or in Lynch’s multi-level
model in [6], where the set of legal interleavings must be given directly.

Similarly, the semantic information used for recovery can be provided easily by the

programmer. The undos must themselves be actions (which will have to be coded if
they are not “natural” actions for the abstraction). In each action, there must be a case
statement which specifies the undo action for each set of states. For example, if the forward
action is “Add key x to index I” then for the set of index states in which the index does
not already contain x, the undo is “Delete key x from index I”. For the set of index states

in which the index already contains x, the undo action is the identity action.

2 The Model

We first describe the model for a single level of abstraction. The essential difference
between this model and the straight-line model used by Papadimitriou in [7] is that the
flow of control is reflected in the model. The essential difference between this model and
those in [1] and [6] is that the construction of the set of legal interleavings is simple and
visible in the model. Some notation will be needed to describe the levels of abstraction.

Notation: Let S, be an abstract state space and let Sp be a concrete state
space. Let A; be a set of abstract actions and Ao be a set of concrete actions. Let
p: So — S be a partial function from concrete to abstract states. If p(t) = s for
concrete state ¢ and abstract state s, then ¢ represents s.

The intuition is that concrete states are used to represent abstract states and concrete
actions are used to implement abstract actions. Not every concrete state represents a
valid abstract state. Furthermore, the same abstract state may be represented by several
different concrete states. However, we do expect that every abstract state is represented
by some concrete state, that is, o(So) = 5.

Actions map states to states according to a meaning function. The meaning function
for a concrete (abstract) action is a function m : Ag — 2%*% (m 1 A — 231"5‘). It is
interpreted as follows: if (s,t) € m(a) for an action a then when executed on state s, the
action a can terminate in state t. Actions are nondeterministic, that is, there may be more
than one terminal state ¢ for a given initial state s.

Abstract actions are implemented by programs over concrete actions. These programs
generate sequences of concrete actions. For the sake of concreteness, we present one way of
generating these sequences here. However, we do not assume that any particular method
of generating the sequences is used. In proofs, we assume only that each program is
associated with a set of sequences of concrete actions, which is the set of sequences the
program would generate when running alone, and that new programs can be constructed
from existing programs by concatenation. This operation amounts to running the first
program to completion and then initiating the second program. The reader should note

that when two programs run concurrently, one or both of them may generate a sequence of
actions that would not be generated if they ran alone. Such sequences may be unacceptable.

A single concrete action is a program, and we will also regard any regular expression
over actions as a program. We borrow notation from dynamic logic (see Harel, [5]) for
a concise way to describe a program. If a and § are programs, new programs may be
formed by concatenation (o; 8 is a program); union (a U is a program); or closure (a* is
a program).

The meanings of these constructs are defined recursively as follows:

Concatenation: The meaning of «; is to execute first « and then 8:

m(e; B) = {(s,t)|(3u)((s,v) € m(a) A (u,t) € m(0))}.
Since concatenation of actions is clearly associative, we write a;;...; a, for concatenation
of n programs, ignoring the order of concatenation.
Union: The meaning of a U 8 is to execute either a or 3:
m(a U 8) = m(a) Um(B).
Closure: The meaning of a* is to execute « zero or more times.
m(e*) = {(50,5n)](381, 825+ .+ » $n-1) (Y1 < ¥ < 1)((8i-1,8i) € m(a))}.

Conditional execution of statements is modeled by actions which are identity on all
states on which they are defined. These actions are called predicate actions and can be
described by giving a predicate which is true for all states on which the predicate action
is to be defined. For example the action (z = 0)? is identity on all states in which the
variable z is 0 and undefined elsewhere. The statement “if £ > 100 then z := z — 100 else
z := 0” is then modeled by (p;a) U (p;b), where p is the predicate action (z > 100)?, a is
the action z := z — 100, and b is the action z := 0.

Notation: For any subset C of Sp x Sp let
p(C) = {(s:8)|(3(=z,y) € C)(p(z) = s A p(y) = t)}
We say that an abstract action is implemented by a program of concrete actions if p
maps the meaning of the concrete program to the meaning of the abstract action. We will

also require that if the program is initiated in a valid state then it must terminate in a
valid state.

Definition: A concrete program a smplements an abstract action e if and only if
1. m(a) = p(m(a)) and
2. for every pair (a,b) € m{a), if p(a) is defined then p(b) is also defined.

We now prove a technical lemma about implementations which will be useful in a subse-

quent section.

Lemma 1: Let a and b be abstract actions implemented by concrete programs &
and B, respectively. Then m(a;b) = p(m(e; B)).

Proof: First we show that p(m(a;8)) C m(a;b). Let (s,t) € p(m(e; B)). Then
there are states ¢ and d with p(c) = s and p(d) =t and (¢,d) € m(o; B). Thus
there is a state b with (c,b) € m(c) and (b,d) € m(f). Since a implements a and
p(c) is defined, p(b) is also defined. Therefore, (o(c), p(b)) € p(m(a)) = m(a) and
(p(b), p(d)) € p(m(B)) = m(b). It follows from the definition of concatenation that
(s,t) = (o(c), p(d)) € m(a;d).

Now we show that m(a;b) C p(m(e;B)). Let (s,t) € m(a;b). There is a
state u € S, such that (s,u) € m(e) and (u,t) € m(b). Since m(a) = p(m(a))
and m(b) = p(m(B)) there are states b,c,d € So such that p(¢) = s, p(d) = ¢,
and p(b) = u; (c,b) € m(a); and (b,d) € m(B). Therefore (c,d) € m(a;B) and
(s,t) = (o(e),p(d)) € p(m(e; B)). D

Corollary 1 to Lemma 1: Let a and b be abstract actions implemented by
concrete programs a and 3. Then the abstract action ¢ having m(c) = m(a;b) can
be implemented by the concrete program v = a; B.

Proof: From Lemma 1, we have that m(c) = m(a;b) = p(m(e;8)) = p(m())-
We need only show that if (s,t) € m(y) and p(s) is defined, then p(t) is defined.
But if (s,t) € m(7) then (s,t) € m(a; B) and therefore there is a u € Sp such that
(s,u) € m(a) and (u,t) € m(6). Assume that p(s) is defined. Since o implements
a, p(u) is defined. Since # implements b, p(t) is defined. D

Corollary 2 to Lemma 1: Let a1,...,6n be abstract actions implemented by
concrete actions a,...,a,. Then the abstract action ¢ defined by a;;...;a, can be
implemented by the program a;...;an.

Proof: The proof is by a simple induction on the number of actions n.

Induction Base: If there is only one action a,, the result is immmediate from the

definitions.
Induction Hypothesis: For all sets of abstract actions of size less than or equal to
n — 1, the abstract action @y;...;an-1 is implemented by the concrete program

LTINS T
Induction Step: By the induction hypothesis:

@1;...}Gn-1 is implemented by a;...;an-1.

Using Corollary 1 to Lemma 1, we conclude that

a1;...38n-1;8n = (@15...} @) G0
is implemented by

(@15.+0 Qne1)jn = Q50005 Cpog; Qe

In keeping with the use of an initializing action in (7], we assume that the database has
been initialized to concrete state I in the domain of p (p(I) is the initial abstract state).
It will often be useful to restrict the meaning function to those pairs whose initial state is

I

Notation: The restricted meaning function for program « is defined m;(a) =
{(I,7)I(I,7) € m(a)}. The restricted meaning function for abstract action a is

defined myr)(a) = {(p(1), 0(1)) (o1, £(7)) € m(a)}.

If o implements a then m,)(a) = p(ms(a)). Associated with each program is a set of
possible computations of the program, one for each sequence of concrete actions which can
be executed to completion.
Definition: A computation of an abstract action a having program a is a sequence
C = ¢1;...;¢n of concrete actions in the regular set defined by the program, such

that m;(C) is nonempty.

A computation of a set a,,...,a, of concurrent abstract actions is an interleaving of the

concrete actions in computations for ay,...,a, which can be run to completion.

Definition: A concurrent computation of the set a,,...,a, of abstract actions
is an interleaving C of computations of the individual actions such that m;(C) is

nonempty.

3 Serializable Computations
3.1 Serializability of Abstract Actions

The set of concurrent computations for a collection of actions will in general be hard to
characterize. It may be even harder to characterize the ones which are correct. We discuss
a relatively simple subset of these computations, those that behave, in some sense, like

serial (non-interleaved) computations.

Definition: A log L is a set A; of abstract actions, a sequence Cp of concrete
actions, and a mapping AL : C — A such that Ay(c) is the abstract action a € A,
on whose behalf ¢ is run. L is complete if Cr is a concurrent computation of Ay,

and partial if Cy is a prefix of a concurrent computation of A..

Definitions are stated and results proved for complete logs unless otherwise indicated.
Usually, the extension to partial logs is trivial.
Notation: We will write m(Cy) for m(cy;...;cs) where Cp = {c1,...,¢n} and we

assume that ¢; precedes ¢; for ¢ < j.

Notation: We will write ¢ <; d when ¢ precedes d in the sequence Cy.

We consider serial computations to be correct.
Definition: Consider a log L containing abstract actions Ay = {a1,...,as} im-
plemented by programs {ai,...,as}. The log L is serial if Cy is a computation of
the program ay(1); . - - ; X(n) for some permutation 7 of {1,...,n}.
We also consider a computation to be correct if it results in an abstract state that would
result from some serial log. The following definition allows the use of knowledge about
abstractions in determining the correctness of an interleaving. Depending on the abstrac-
tion, this can be a very different class of interleavings from those that would ordinarily be

viewed as serializable.
Definition: A log L is abstractly serializable if and only if there is a permutation
x of {1,...,n} such that p(m;(CL)) C m,n(axq); .- . Gr(n))-
The next definition defines a class of serializable logs more closely related to the usual
class of serializable schedules.
Deflnition: A log L is concretely serializable if and only if there is a permutation
7 of {1,...,n} such that m;(CL) C mr(@x);- -+ ; Cx(n))-
Definition: For both abstract and concrete serializability, the sequence m(1), ...,

m(n) is called the serialization order of L.

A partial log L is serial (concretely serializable, abstractly serializable) if there is a complete
serial (concretely serializable, abstractly serializable) log M such that C isa prefix of Cp.
Concrete serializability, which requires that concrete states be the same, is more re-
strictive than abstract serializability, which requires only that abstract states be the same.
Theorem 1: If the log L is concretely serializable then it is abstractly serializable.
Proof: Let A, = {ai,...,an} and let o; implement a;. Since L is concretely

serializable, there is a permutation = of {1,..., n} such that

m;(CL) C mi(axq)i.--; a,(n)).
We define an abstract action b = ax(1);. - . ;@x(n). BY Corollary 2 to Lemma 1, b can

be implemented by the concrete program 8 = ax(1); .- -; Xnx(n). In other words,

m(az(a)i- - i @e(my) = m(b) = p(m(B)) = p(m(ar(ayi .- i Ca(m)))-

It follows from this that
p(mr(Cr)) C p(mi(axqyi---; e(n))
= myr)(@x1)i - - - Cr(n)))-

1

This theorem can easily be extended to partial logs. For a partial log L which is concretely
serializable, there is a concretely serializable complete log M such that Cy is a prefix of Cyy.
By the above theorem, M is also abstractly serializable; hence L is abstractly serializable.

Concrete serializability is not identical to SR as defined in [7] because of the non-
determinism and because it is necessary to check that the reordered collection of actions
is a computation. If abstract actions are implemented only by straight-line programs, as
in [7], then any serial schedule of the concrete actions in a concurrent computation is still
a computation. But this is not the case in our model. Consider abstract actions A4, and
Aj, where 4; = ((z < 0)?; (y := 1))U((z > 0)?; (y := 2)) and Az = (z := 1). Suppose that
in the initial state z is 0. The sequence

(z:=1);(z<0)%(y:=1)
is not a computation, although any other interleaving of these concrete actions is. Thus we
cannot interchange actions of a computation arbitrarily and expect the result to remain
a computation. A subsequent lemma gives one mechanism by which we can verify that a
transformation of a computation is still a computation.

It should be noted that this model reduces to the model in 7] if the concrete actions
are deterministic reads and writes with the obvious meanings assigned to them and if all
programs are constructed by concatenation only. It was shown in 7] for these concrete
actions that concrete serializability is NP-complete. Without more information about the
semantics of the actions, however, and about the abstraction function, we cannot say
anything about the complexity class of either concrete or abstract serializability.

For this reason, neither abstract nor concrete serializability has significance as a def-
inition of a class of schedules which we can recognize. However, abstract serializability
is a valuable correctness condition for explaining the correctness of schedules such as the
one in the opening example. In a subsequent section, we generalize this use of abstract
serializability to explain the correctness of a large class of schedules, many of which are
not concretely serializable. But first, we translate another standard serializability result

to the new model of program execution.

Definition: Actions a and b commute if m(a;b) = m(b;a). Otherwise, a and b

conflict.

Definition: Let C and D be sequences of concrete actions. We say that C = Dif
they are identical except for interchanging the order of two nonconflicting concrete
actions, that is, actions ¢ and d such that m(c; d) = m(d; c). The transitive, reflexive

closure of = is denoted by ~*.

The following lemma provides the basic mechanism for establishing that a permuted com-
putation is still a computation. We use it to verify that a serial (non-interleaved) sequence
of concrete actions could actually have been requested by the given atomic actions, that

is, it is a semantically as well as syntactically valid sequence of actions.

Lemma 2: If L is a log and if D ~* CL and D is constructed from Cp by
interchanging nonconflicting operations ¢ and d such that A(c) # A(d), then there is
a log M with Ay = AL, Cv = D and Ay = AL Furthermore, m(CL) = m(Cpm).
Proof: There are sequences of concrete actions v and é such that C,, = ;e d; b
and D = ~;d;c; 6. Therefore

m(Cy) = {(s,t)|(Fu,v)((s,2) € m(7) A (¢,v) € m(c;d) A (v, t) € m(6)}.
Since m(c;d) = m(d;c) and A.(¢) # AL(d), we have that
m(D) = {(s,t)|(3u, v)((s,u) € m(7) A (u,v) € m(d;c) A (v,t) € m(8)}
= m(CL).
Therefore D is a computation of Ay, (or prefix of a computation of Ay) exactly when
Cy is, and M is a log exactly when L is. Since we did not use the completeness of

L, the results hold for either complete or partial logs. D

Definition: Logs L and M are equivalent if A, = Am, AL = Aum, and Cp, ~* Cpm.
If L is equivalent to M for a serial log M, then L is conflict-preserving serializable.

Theorem 2: If a log L is conflict-preserving serializable, then it is concretely
serializable.
Proof: Let AL = {a1,...,a,}. If Lis conflict-preserving serializable then there is a
serial log M such that Ay = AL, Cm ~* Cr, and Ay = Ar. By a simple induction
using Lemma 2 to prove the induction step, m;(CL) = mi(Cum).

Suppose that a; is implemented by a;. By the definition of a serial log, there
is a permutation 7 of {1,...,n} such that Cp = ax1);---i Qx(n)- Hence for this

permutation
mi(CL) = mi(Cm) = mi(axq); - - - Un(n))-
Therefore L is concretely serializable. []

10

3.2 Layered Serializability

In this section, the definitions of serializability are extended to multiple levels of abstraction
and the basic result on serializability is stated. We make two simplifying assumptions; how
to weaken them will be discussed subsequently. The assumptions are:

1. The levels of abstraction are totally ordered.

2. An action calls subactions belonging to the next lower level of abstraction only.
We assume a system with n levels of abstraction.

Notation: The concrete state at level ¢ is S;.,. The abstract state is S;. The
abstraction mapping at level 1 is p; : S;-; — S;. The set of concrete actions is C;.

The set of abstract actions is A; = {ai,1,...,a;;}. The number of abstract actions
at level 1 is k;. Concrete actions at level 1 are abstract actions at level ¢ — 1. Thus
Ci = Aiy.

Given a collection A, of top-level actions, concurrent execution of the actions is described

by a collection of logs.

Definition: A complete system log L is a set of complete logs L,,..., L, such that
L; is a complete log for level ¢ and the concrete actions in the log L; are the same
as the abstract actions in the log L;_;. A partial system log L is a set of partial logs
Ly,..., Ly, such that L; is a partial log for level 7 and the concrete actions in the log
L; are a subset of the abstract actions in the log L;_;. The top-level log for a system
log L consists of the top-level abstract actions (A,), the bottom-level concrete
actions (C)), and the mapping from concrete to abstract actions constructed by
composing Aj,...,An.

Definition: The system log L is abstractly (concretely) serializable by layers if
each L; is abstractly (concretely) serializable and there is a serialization order on
A;_; which is the same as the total order on C;. We will denote this serialization

order ;.

The following theorem justifies the practice of “serializing by layers”, that is, providing
serialization for the individual levels of abstraction and forgetting subaction conflicts (e.g.,
releasing locks) as soon as the action at the next higher level is complete.

Theorem 3: If a system log L is abstractly serializable by layers then its top-level
log is abstractly serializable.

Proof: Assume first that L is complete. Then by the definition of abstract serial-
izability by layers, the following holds for each ::

11

Pi(mI(CL-')) C m,mn (at'.ﬂ’.'(l); SRR a"'-f-'(k-‘))
where 7; gives the serialization order, and A, = CLiys = Gimi(1)i -+ Girilke): It

follows by induction on the number of levels that

pro-+0pa(my(Cr,)) C Mpy0-opa()(Gnma(1)i -+ 3 Gnxa (k)

If L is partial, then we can extend the sequence of concrete actions to a computation
having the above properties. Thus the result also holds for partial logs.

Corollary 1 to Theorem 3: If a system log L is concretely serializable by layers,
then its top-level log is abstractly serializable.

Proof: By Theorem 1, the log is abstractly serializable by layers. It follows imme-
diately from Theorem 3 that the log described is abstractly serializable. []

Definition: If a system log is serializable by layers and if each log L; is conflict-
preserving serializable, then the set of logs is called conflict-preserving serializable
by layers (LCPSR).

Since all practical serialization methods recognize only subsets of the set of CPSR logs,
the following two results are the interesting ones, from the practical point of view.

Corollary 2 to Theorem 3: If a system log L is conflict-preserving serializable
by layers then its top-level log is abstractly serializable.

Proof: By Theorem 2, the system log is concretely serializable by layers. Hence it
is abstractly serializable by layers and the result follows from Theorem 3. D

Theorem 4: Membership in LCPSR can be tested in time O(c + a®) where ¢ is
the number of concrete actions in the system log and a is the number of abstract
actions in the system log.
Proof: For each ¢, construct the conflict graph for level i as described in {9]. The
nodes of this graph are the abstract actions in Ag,. There is an edge from node a
to node b if there are concrete actions ¢,d € Cy, such that A(¢) = g, A(d) = b, c and
d conflict, and ¢ <z, d. This graph can be constructed in time proportional to the
number of actions in Cy;. If the graph is acyclic, then level ¢ is CPSR. Acyclicity
can be tested in time proportional to the square of the number of actions in Ag,.
It only remains to test whether there is a serialization order m; on level ¢ which is
consistent with the order <g,,,. This can be tested at the time the edges are added
to the graph for level 1: if there is an edge from a to b then there is a serialization

order consistent with <g,,, if and only if @ <z, b. 0

12

In practice, the only order that would be known for a system log would be the order on
C;. The order <, is any topological sort of the order given by the conflict graph for
level 1 — 1. Any topological sort is acceptable, because if there is no sequence of edges
between @ and b then there is no conflict between any children of abstract actions a and
b in a computation of {a,b}, so that A7'(a); Az} (8) ~* Az (6); AL} (a). Also, there can be
no other conflicting actions between any children of @ and b. Therefore, a and b can be

viewed as having executed in either order.

3.3 Ordering the Layers

We are not usually given a linearly ordered collection of levels of abstraction in a system.
Instead we may have packages of actions. We expect that there will be pairs of actions
within a single package may conflict. Usually, actions in different packages will not conflict,
but there are exceptions. Consider a relational database which may be accessed by two
packages: one of the packages consists of relational operators, the other of matrix operators.
We can imagine relations which are entirely numerical which may be accessed by both
packages. Thus operations may conflict between packages.

We describe, intuitively, how to determine a linear collection of levels. We require that
all actions in a single package are at the same level. Also, any two packages containing
actions which may potentially conflict must be at the same level. Finally, two packages
must be at the same level if they have members which recursively call each other.

To compute a linear order which satisfies these conditions, draw a directed graph rep-
resenting the call structure of the system: if an action in package A calls an action in
package B, then there is an edge from A to B. Add edges in both directions between
packages containing potentially conflicting actions. Collapse all cycles in this graph to a
single node (these cycles represent either conflict or mutual recursion or a combination),
and label the new node by the set of packages on the cycle. The resulting acyclic graph
defines a partial order on sets of packages. This partial order can be converted to a total
order by picking an equivalence relation on the node labels which is a congruence with
respect to the partial order: that is, if P, < P, in the partial order, then for every QL =h
and Q; = P, @1 < Q2.

Our second simplifying assumption was that an action only calls subactions which are
at the next lower level of abstraction. But in practice, actions may call subactions at the
same level or may skip several levels. In the former case, we may treat the calls to the same
level as “invisible”, and use only calls to the next lower level of abstraction in serializing.
(In fact, this is the current practice: there are two levels, the top level and the read/write
level. Only calls to reads and writes are noticed by the serialization mechanism.) In the

13

latter case, we may insert subactions at each intervening level which do nothing but call

the next lower level.

4 Recovery from Action Failure

One method of enforcing serializability is to abort actions which violate serializability con-
straints, and every practical serialization technique sometimes uses aborts for this purpose.
Thus serialization contains the possibility of action failure and it is necessary to guarantee
correct recovery from failure to guarantee serializability. The converse is not true, and so
we initially consider failure atomicity without assuming serializability.

The rest of this paper discusses recovery from the failure of a single action by eliminating
its partial effects. Two methods of eliminating partial effects are in common use. One is
to roll the action back by undoing each change it has made. The other is to restore the
system from a checkpoint taken prior to initialization of the action, redotng each subsequent
concrete action other than those called by the aborted action. We develop the conditions
which permit use of redos in section 4.1 and the conditions which permit use of undos in
section 4.2. In both sections, we assume a single level of abstraction.

In section 4.3, the results are extended to a multi-level system and a result analogous
to the result for layered serializability is stated. In a multi-level system, serializability is
required to establish that the required sequence of concrete actions in a level of abstraction

was implemented by the next lower level.

4.1 Aborting Actions

An abstract action is not inherently atomic, since it is implemented by a sequence of
concrete actions. If it fails after execution of some of the concrete actions, then the effects
of those actions which have been completed must be eliminated. The process of eliminating
any partial effects of a failed abstract action will be referred to below as an abort of the
action.

To abort an action correctly, it is necessary to change the current state to a state that
could have occurred if the action had not executed at all. Let LOGS be the set of all logs.
(Remember that a log L consists of a set Az of abstract actions, a sequence Cy, of concrete
actions, and a mapping A\ : C — A.) We define an operator which chooses a concrete

abort action when it is given a log and abstract action to be aborted:
ABORT : LOGS x A — (So — So).
The abort must restore some state which could have occurred in executing the abstract

actions in AL — {a}.

14

Definition: An action generated by the ABORT operator is called an abort. An
action is said to be aborted if its last action is an abort.
A log which contains aborts should appear to be a log which contains all of the non-aborted
actions and none of the aborted actions. We call such a log abstractly atomic.

Definition: A complete log L is abstractly atomic if there is a complete log M

having the following properties:
1. Apm = AL — {ala is aborted in L} and
2. p(mi(CL)) C p(m1(Cn))-

Note that we have not required that the logs be serializable. Any computation will do
according to the above definition. Later, to achieve “layered atomicity”, we will assume
serializability.

Definition: A complete log L containing aborted actions is concretely atomic if

it there is a complete log M having the following properties:
1. Ay = AL — {a]a is aborted in L};
2. my(CL) C mi(Cum).
We extend the definition of atomicity to partial logs in the obvious way.

Definition: A partial log L is abstractly (concretely) atomic if there is a complete
abstractly (concretely) atomic log M such that Ay = Ay, Cy is a prefix of Cys, and
AL is A restricted to Cp.

It follows immediately from the definitions that concrete atomicity implies abstract atom-
icity.

One way to implement abstract atomicity is to restore state / and rerun the actions
in Ap. The state I then serves as a checkpoint. However, an arbitrary choice of M in
the above definition may require re-running the abstract actions, not just the concrete
actions. In an on-line, high-volume transaction system, this is not a practical method.
The programs for the abstract actions may not even be available after they terminate. In
such a system, we want aborts to be simpler. For this reason we will require that the log
M have a very simple relationship to the log L, in fact, that Cjs is simply C;, minus the
children of aborted actions. In this case, we can restore a final state for m;(Cy — Az (a))

to implement atomicity.

Notation: As long as it is clear what log is involved, we will write ABORT (a)
for ABORT(L,q).

Definition: Let L be a log in which action a has not been aborted. ABORT (a)

15

is a simple abort of a for L if m;(CL; ABORT (a)) # 0 and m;(Cr; ABORT (a)) C
m;(C’L - Ail(a))
Clearly, a simple abort of action a in log L exists if and only if m;(C — Az'(a)) is a prefix
of some computation of A;. The following definitions lead to a characterization of logs
and actions for which simple aborts exist.
Notation: Given a log L and action ¢ € Cy, let BEF ORE(c) be the partial log
having concrete actions Cpeprore(c) = {blb € CLAb <L ¢}, abstract actions Ag,
and mapping AperorE(c) Which is the restriction of Ay to the set CpprorEg(). Let
Carrer() = {Bl6 € CLAc <y b}. (Note that in general we cannot define a log
AFTER(c).)
The following definition says that an abstract action b depends on an abstract action a if

it has a concrete subaction which follows and conflicts with a concrete subaction of a. If
an action b depends on an action a, and if we restrict ourselves to simple aborts, then it

may be necessary to abort b when a is aborted.
Definition: An action b depends on an action a in a log L if there is some
d € A\;*(b) and some ¢ € A;(a) such that d follows ¢ in the order of Cr, a is not
aborted in the log BEFORE(d), and d and c conflict.

Definition: An action a of a log L is removable if no action depends on it. A log

L is restorable if every aborted action is removable.

Restorability may be viewed as a dual condition to recoverability, which requires that no
action be committed before any action which it depends on. Restorability says that no

action is aborted before any action which depends on it.

Definition: Let C be a sequence of actions ordered by < andlet FC C. Fis
final in Cif for every f € Fand c € C — F either ¢ < f or f and ¢ commute.

Note that the set A7 (a) is final in Cy, for any removable action a. It follows from this that
it is the terminal subsequence of some sequence D ~* Cy.
Lemma 3: If action a of log L is removable, then Cy — Az!(a) is a prefix of 2
computation of Af.
Proof: We will show by induction on the number of actions in any final set F' of
operations of Cy, that Cp — F is a prefix of a computation. The lemma then follows
from the fact that A7'(a) is final in Cy, for all removable actions a.
Induction Base (F contains only 1 action): Let F = {c}. Then Cp = 7;¢; 6 for some
sequences -y and §, such that for every d € 6, m(c;d) = m(d;c). Hence Cy ~* y;6;¢

and therefore Cr — {¢} = 7;6 is a prefix of a computation.

16

Induction Hypothesis: For every final set F in Cy, if |F| < n, then Cp — F is a prefix
of a computation of A;.

Induction Step: Suppose |F| = n. Let F' = F — {c}, where ¢ is the first (or
minimal) element of F with respect to <z. Then F' is final in Cy and by the
induction hypothesis, Cy — F' is a prefix of a computation. Since ¢ does not conflict
with any later action in Cp — F’, we can use reasoning similar to the case n =1 to
show that Cp — F' ~* Cp — F;c and therefore C, — F is a prefix of a computation.

i

Since Cy — A;'(a) is a prefix of a computation of A, — {a}, we can restore checkpoint I
and rerun all actions in Cr — A;'(a) in the order given by <. In fact, the checkpoint
can be taken at any point before the initialization of a. Let ¢ be the first action of a.
Let d € {c} U Cpgrorg() Then there is a state ¢ such that (I,t) € m(Cperore(4)) and
my(Carrer(a) — AL'(a)) # 0. Any such state ¢ can be used as a checkpoint state.

Lemma 3 can be applied inductively to show that if no dependencies were formed on
abstract actions before they were aborted by a simple abort, then atomicity is guaranteed.

Theorem 5: If L is restorable and if every abort in L is simple, then L is atomic.
Proof: Let {a;,...,a,} be the set of aborted actions. Construct the log M such
that Ay = AL —{a1,...,@n},CM = Cr—A;'({a1,...,@n}), and Apr = Ay restricted
to Cp. Since L is restorable, every aborted action in L is removable. Using Lemma
3 inductively, we see that C, — A7 ({a1,...,an}) is a prefix of a computation of Aps.
This verifies that M is a log.

Now we must verify that m;(CL) = m;(Cus). To do this, we observe that there

exist ¥1,...,n+1 such that
Cr = m1; ABORT (a); v2; ABORT (a3);. .. ;¥ni ABORT (an); Yn41-

The meaning of Cy, is given by

mi(C) = {(L,t)|(3u)((I,v) € mi(m1; ABORT (a1))A
(u,t) € mi(v:; ABORT (a2);...;
ABORT (an); Yn+1))}

But by the hypothesis of the theorem, every abort is simple, so that
mi(v1; ABORT (ay, L)) C mi(m1 — Az (a1)).

and therefore
m;(CL) € my(Cr — AL (a1)).

Proceeding inductively, we see that

m,(C,,) C m,(CL -)\El({al,.. . ,a,,}) = m,(CM).

17

i

Theorem 5 suggests a general procedure for aborting actions. When an action ¢ is to be
aborted, abort the set of actions

D(a) = {b|b depends on a} U {a}.
The abort is done by restoring any concrete state which existed prior to the first concrete
action in A7}(D(a)) and then re-running the actions in Ct — A;}(D(a)) from that point

on.

4.2 Rolling Back Actions

A potentially much faster implementation than checkpoint /restore would simply roll back
the concrete actions in the computation of an aborted action a. For this purpose, we
define an UNDO operator on concrete actions which chooses an inverse concrete action to
perform the roll back. The plan is to implement the ABORT operator on abstract actions
as a sequence of UNDO actions, one for each concrete action called by the abstract action,

applied in reverse order of execution of the concrete actions.
UNDO : C % So — (So — So)

This UNDO operator chooses a state-dependent inverse action which will transform the
current state to the state in which the forward action was initiated. Thus we must define
the UNDO so that m(¢; UNDO(c,t)) = {(t,¢t)}. It follows from this definition that if ¢ is
the last concrete action in C, and (I,t) € m(C—{c}) then m(Cy; UNDO(e,t)) = {(Z,t)}-
Furthermore, if (I,t) & m(C — {c}) then m(Cy; UNDO(c,t)) = 0. In other words, if the
final action ¢ was initiated in state ¢, then UNDO(c, t) restores the state to ¢ and to nothing

else.
Actually, to undo an action ¢, it is not necessary that ¢ be the last action of Cy, only

that ¢ is not followed by any action which conflicts with UNDO(c,t) for the state t in
which ¢ was initiated. This is stated in the following lemma.

Lemma 4: If the following conditions hold:
1. c€Cy;
2. (I,t) € m(CpEFORE());
3. no action of CaprEeR() conflicts with UNDO(c,t); and
4. UNDO(e,t) & CAFTER(c)
then
m;(Cr; UNDO(e,t)) = {(I,u)i(t,u) € m(CAFTER()}-

18

Proof: By the definitions of Cpgrore() and Carrer(c)
CL = Cgrorg(c) ¢ CAFTER(c)-
By the hypothesis of the lemma, for every d € CAFTER(c)s
m(d; UNDO(¢,t)) = m(UNDO(c, t); d)
and
CL; UNDO(c,t) =* Cperorgie)i ¢ UNDO(¢,t); CarTER()-

It follows that
m(Cy; UNDO(c,t)) = m(CpEerore(e); ¢ UNDO(¢,t); CarER(:)
{(s,w)|(3u,v)((s,u) € m(CperoRrE())N
(v,v) € m(c; UNDO(e,t))A
(U,W) € m(CAFTER(c))}
= {(s,w)|(s,t) € m(CBEFORE()N
(t,w) € m(Carrer())}-
Therefore, m;(Cr; UNDO(c,t)) = {(I,u)|(t,u) € m(CarTER())} I

The sequence of concrete actions called by an aborted abstract action e in a complete log
L should be a prefix ¢;;...;cx of a computation ¢;;...;¢5 of @ followed by UNDO(ck,t);
...; UNDO(ey,t1). We extend the definition of concurrent computations to allow such

sequences.

Definition: The concurrent computations of a set A of abstract actions include all
interleavings C of sequences ¢i;...;ck; UNDO(ck, te); - - UNDO(ey,t,;) such that

¢1i...; ¢y is a computation of a € A for some n > k;

my(C) # 0;
there is at most one UNDO action in C for each ¢ € C;

Lol o A S A

if there is an action UNDO(c,t) for ¢ € C then ¢ precedes UNDO(c,t) in C
and (I, t) € mI(CBEFORE(c))-
5. each concrete action is called by exactly one abstract action.
Definition: If an action a has called an UNDO then we say that a is aborted and
is rolling back. If it has called an UNDO for every forward action it called, then we
say that a is rolled back.
The definition of a log is unchanged except for the expanded set of computations.

Definition: The rollback of action a depends on action b in a log L if there is
a child ¢ of a and a child d of b such that ¢ <; d; UNDO(c,t) € CperorE(d) and
UNDO(d, w) € CBEFORE(UNDO(::,!)); and d conflicts with UNDO(c,t)

19

Definition: A log L is revokable if for each action a € Ay, the rollback of a does
not depend on any b € Ag.

Theorem 6: If a complete log L is revokable then it is atomic.
Proof: We show that if L is revokable then m;(CL) C m;(Ca) for the log M with

Aym = A — {a|a is rolled back in L}and

Cm = Cp — {c|UNDO(c,t) € Cr} — {UNDO(e,t)|t € So}.
Since for a complete log L, Ay = AL — {ala is aborted in L}, it follows that L is
atomic.

The proof is by induction on the number k of UNDOs in C.

Induction Base (k = 1): Let ¢ be the action with UNDO(c,t) € Cy, and let Ar(c) =
a. Because L is revokable, there is no action b such that the rollback of a depends
on b. In other words, for every concrete action d in Cy, if ¢ <t d < UNDO(e,1)
then d commutes with UNDO(c,t). This implies that

CL ~* Cpgrorge(e) ¢; UNDO(e,t); CarTER()
and therefore

my(CL) = mi(Cperore(e)i ¢; UNDO(c,t); CarTER(S)

C m;(Cperors(e)i CAFTER(c))
= ms (C M) .

Induction Hypothesis: If there are fewer than k UNDOs in Cy, then my(CL) C
my(Cp) for some log M with

Aym = Ap - {a|a is aborted in L}.

Cym = Cp — {c|UNDO(c,t) € CL} — {UNDO(c,)|t € So}.
Induction Step: Suppose there are k UNDOs in Cy. Consider the first UNDO in
the order <z. Suppose that it is UNDO(c,t). Since it is the first, there is no
UNDO(d,w) such that ¢ <; UNDO(d,w) <, UNDO(c,t). Since L is revokable,
UNDO(ec,t) commutes with every action d such that ¢ <z d <y UNDO(c,t). There-
fore, using the same reasoning as for the induction base, and applying the induction
hypothesis,

m;(C1) C mi(Cperore()i CAFTER(c))
C m;(CM).

1

If the log L is partial, we can extend L to a complete log by adding UNDOs for every
incomplete action to the end of the log. The order of the UNDOs should be the reverse
of the order of the forward actions. The new log is complete and revokable, therefore by

Theorem 6 it is atomic.

20

Theorem 6 suggests the following algorithm for aborting actions. If the rollback of an
action will not depend on any action in Ay, then execute a sequence of UNDOs in reverse
order of the forward actions. If the rollback will depend on some action, recursively
abort the action on which the rollback will depend. Of course, the cascaded aborts can be
avoided. To avoid them, it is necessary to block an abstract action if a rollback-dependency

would develop.

4.3 Layered Atomicity

In this section, we describe the correct aborting of actions in a multi-level system. As in
section 3.2, suppose that we have a system log L = {L,,...,L,}. To guarantee that the
sequence of concrete actions at level 1 + 1 is implemented by the abstract actions at level
i, we must be able to say that there is an ordering on the non-aborted abstract actions in
Ay, which is the same as the ordering on these actions when they are viewed as concrete
actions at level i + 1. But this requires that each level be both serializable and atomic.

Definition: Let L be a complete log containing aborted actions. Let A —
{a]a is aborted in L} = {ay,...,a,}. L is abstractly serializable and atomic if there

is a permutation 7 of {1,...,n} such that

p(mi(CL)) C mp(l)(aa-(n); s ;aa'(n))-
L is concretely serializable and atomic if there is a permutation 7 of {1,...,n} such
that

my(CL) C my(cx(r);-- i Cxim))-
This is similar, in combining the aspects of computational atomicity with failure atomicity,
to Weihl's definition of atomicity [10]. As usual, concrete serializability and atomicity
implies abstract serializability and atomicity.

Definition: A system log L is abstractly serializable and atomic by layers if each
log L; is abstractly serializable and atomic; Cy,,, = AL, — {ala is aborted in L;} =
{a@i1;...;aix}; and there is a serialization order m; on level L; such that Cp,,, =
Qizri(1)5 0 o5 Biymy(k;)e

Theorem 7: If a system log L is abstractly serializable and atomic by layers then
its top-level log is abstractly serializable and atomic.

Proof: The proof is by induction on the number n of levels.

Induction Base: If there is only one level, then the top-level log is identical to the
log for that level and is therefore abstractly serializable and atomic by the definition
of layered serializability and atomicity.

21

Induction Hypothesis: The top-level log is abstractly serializable and atomic if the
system log is abstractly serializable and atomic by layers and there are fewer than
n levels.

Induction Step: Suppose that the system log has n levels. By the definition of
layered serializability and atomicity the level 1 log is abstractly serializable and
atomic. Therefore there is a log M such that Ay = AL, — {ala is aborted in L}

and
p1(mi(C1,)) € p1(m1(Cwm))
= "n_p;(l)(al.n(l); veed alm(kx))’
By the definition of layered serializability and atomicity Cr, = @1,7,(1)} -+ - CLmi(ka)*
Therefore

mm(f)(al.ﬂ(l); cerd al.n(h)) = mm(l)(CLz)'
Applying the induction hypothesis to the system log M consisting of the logs
La,..., Ly, the top level log for M is abstractly serializable and atomic, that is,

p20°°°0 p"(mm(])(cbz)) C mPl°Fa°"'°pn(I)(CN)
for some log N with Ay = AL, — {ala is aborted in L,}. It follows that

P00 Pn(mm(I)(CL1) C mp.op,o---op,.(])(CN)
for this same log N. D

Corollary 1 to Theorem 7: If each level of a system log L is serializable and

restorable, then its top-level log is abstractly atomic.

Corollary 2 to Theorem 7: If each level of a system log L is serializable and
revokable, then its top-level log is abstractly atomic.

5 Conclusions and Further Work

In summary, we have shown that, with respect to both serializability and failure atomicity,
the correctness of atomic actions can be assured by guaranteeing their correctness at each
level of abstraction. The result for serializability alone follows from the results presented
by Beeri et al. in [1]; but the relative simplicity of the proofs presented here is impressive.

Additionally, the inclusion of predicate actions in the model reveals the importance of
conflict-based approaches to correctness of atomic actions. As a consequence of Lemma
2, conflict-based approaches are not only efficient, they also prevent accepting as correct
certain computations which could never have occurred in a serial execution of the actions.
The importance of conflict in the correctness of ABORT actions and UNDO actions also

seems significant.

22

It should prove interesting to address the possibility of using different protocols for
serializability and different techniques for enforcing failure atomicity at different levels
of abstraction. The implementation of such techniques for abstract actions presents a
variety of problems. Among the problems to be addressed is the extension of the model
so that actions operate on objects rather than on the global state. Also to be considered
is implementation of serialization primitives such as locks and timestamps for abstract
objects and implementation of recovery objects such as log entries, shadows, and intention
lists at higher levels of abstraction.

The relationship between forward conflict (between two actions) and backward conflict
(between an action and an UNDO of another action) should also be addressed. Can we
implement UNDOs in such a way that backward conflict occurs if and only if there is
forward conflict? Also, to what extend can UNDOs be treated like ordinary actions? Can
an ABORT or an UNDO be aborted or undone? What additional problems would this

present?

6 Bibliography

1. C. Beeri, P. A. Bernstein, N. Goodman, M. Y. Lai, and D. E. Shasha, A
Concurrency Control Theory for Nested Transactions, Proceedings of the Second
Annual ACM Symposium on Principles of Distributed Computing (August 1983),
45-62.

2. Hector Garcia-Molina and Gio Wiederhold, Read-Only Transactions in @
Distributed Database, ACM Transactions on Database Systems, Volume 7,
Number 2 (June 1982), 209-234.

3. Vassos Hadzilacos, An Operational Model for Database System Reliabilsty,
Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems (March 1983), 244-257.

4. Theo Haerder and Andreas Reuter, Principles of Transaction-Oriented Database
Recovery, ACM Computing Surveys, Volume 15, Number 4 (December 1983),
287-318.

5. David Harel, First-Order Dynamic Logic, Lecture Notes in Computer Science,
edited by G. Goos and J. Hartmanis (Springer-Verlag, New York, 1979).

6. Nancy A. Lynch, Multilevel Atomicsty - A New Correctness Criterion for Database
Concurrency Control, ACM Transactions on Database Systems, Volume 8,
Number 4 (December 1983), 484-502.

7. C. H. Papadimitriou, Serializability of Concurrent Updates, Journal of the ACM,
Volume 26, Number 4 (October 1979), 631-653.

8. Peter M. Schwarz and Alfred Z. Spector, Synchronizing Shared Abstract Types,
ACM Transactions on Computer Systems, Volume 2, Number 3 (August
1984), 223-250.

23

9. Jeffrey D. Ullman, Principles of Database Systems, Computer Science Press,
1082,

10, William E. Weihl, Specsfication and. Implementation of Atomic Data Types,
PhD. Dissertation, MIT /LCS/TR-314, March, 1984.

24

