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1 INTRODUCTION

There are a number of techniques that provide the information necessary to obtain the 3
dimensional structure of the environment from a single static visual image, such as shape
from shading, deformation of areas, and vanishing point analysis. However, these tech-
niques are not always reliable. They may fail under unfavourable illumination conditions
or when the underlying assumptions regarding the shape of the world surfaces are in-
valid. If, however, two cameras located a short distance apart are used, the two distinct
views provided by them can be combined to produce reliable 3-d information about the
environment.

In a similar vein, one of the key features of an object that usually distinguishes it from
other objects in the environment is its movement relative to them. Even when an object is
camouflaged by its similarity in appearance to other objects, any independent movement of

the object immediately gives it away. In addition, if there is a relative movement between

Thanks are due to Mark Snyder whose detailed comments have made this somewhat more comprehensible,
to Lance Williams who contributed section 4.4, and to Poornima Balasubramanyam for her help in section
3.4.2.



the camera and the object, the viewer is automatically provided with several distinct views
of the object, and therefore with 3-d information. In general, use of the dynamic properties
of the objects in the images can provide reliable information about segementation of the
image into distinct objects, their 3-d structures, and their dynamic characteristics.

The two most common methods of obtaining two images from two distinct views are
stereopsis and motion. Stereopsis is when two images are obtained simultaneously by
two cameras. Motion is when several images are taken one after another by a single camera
and in the meanwhile, there is relative movement between the camera and the environment.

In this chapter, we explain the stereopsis and motion approaches to obtaining the 3
dimensional structure of the environment, and outline some of the major efforts described
in the literature. We further consider the geometric “constraints” involved and the is-
sues involved in applying these constraints to successfully compute the 3-d structure and

movement.

1.1 Stereopsis

As mentioned before, stereopsis refers to the situation when two images are obtained
gimultaneously from two distinct view points. In most applications of stereopsis, it is
common to orient the cameras such that their image planes are perpendicular to the
ground plane and their optical axes are parallel to each other. Usually the displacement
between the camera locations is horizontal and parallel to the image plane.

Given the two images, the task at hand is to combine them to provide 3-d information
about the objects in the image. All the approaches described in this chapter assume

that stereo analysis proceeds without the aid of other processes, such as texture, region,



and shape analyses. The process usually consists of two stages - the establishment of
the correspondence between the points in the two images to provide a disparity and then
a depth map, followed by some process that uses the depth information to discover and
describe the surfaces in the 3-d environment.

Before we proceed further, we define a few key terms. The correspondence problem is
the task of identifying events in the two images as images of the same event in the 3-d
environment. The disparity is the distance between the locations in the two images of the
two corresponding events. When the optical axes are parallel to each other, the depth of a
point is the distance along the optical axis from the image planes.

Finally, a key concept in stereopsis is vergence. In biological vision, vergence is the
process of converging the two eyes to fixate at points at different depths. In industrial
machine vision, the optical axes of the cameras are maintained parallel to each other, and

vergence is achieved by shifting the images relative to each other by different amounts.

1.2 Motion

Motion processing can be broadly divided into two categories: (1) the camera moves and
the environment is stationary, and (2) there are independently moving objects in the scene.
The first case is easier to analyze and process, as will be seen from the large number of
techniques that have been developed for this purpose.

The most common approach taken towards motion analysis is one in which the process-
ing proceeds bottom-up - similar to the approach mentioned for stereopsis. The movement
of individual points in the images is computed first, followed by a process that determines

the motion of the camera, as well as the location, 3-d structure, and motion of the objects



in the scene.

It must be noted, however, that not all researchers have adopted this approach. Some
approaches attempt to simultaneously compute the movement of the individual points
and the motion of the camera, while others attempt to first segment the image and then
compute the motion of the segments.

One important term used in motion research is optic flow. Different authors have
defined this differently. Following Lawton [Lawt84], optic flow can be broadly defined as
the vector field representing the changes in the positions of the images of environmental
points over time. The term was introduced by the psychologist J. J. Gibson, although
Gibson did not deal with the computation of optic flow. The following quote from [Lawt84]

demonstrates the ambiguity in the definition of this term.

There is some ambiguity in the definition of optic flow in the literature (even
with respect to the phrase itself, since optical flow or even optic flows are
used). Some refer to the flow field as being entirely independent of images, and
instead view it as a representation of the changes in environmental directions
over time. To others it is a basic description of image motion determined from
image intensity changes and not necessarily related to environmental motion...
A further source of ambiguity is that some people refer to the optic flow as a
continuous vector field in which the vectors are instantaneous velocity vectors,

while others refer to it as a field of discrete displacement vectors.

Strictly speaking, it is necessary to distinguish between optic flow, which is the field

of instantaneous 2-d velocity vectors of the points in the image on the image plane, and



displacement field, which is the field of discrete displacement vectors connecting the lo-
cation of the same image-point in successive image frames. It must be noted, however,
that when the time interval between the frames is small enough, the displacement field is
a good approximation to the optic flow. This is the view point taken by many researchers.
For simplicity, the term optic flow is used in this chapter both for “displacement field” and
for “optic flow”. The precise meaning will usually be evident from the context in which
the term is used.

The usual approach to motion analysis consists of two steps — the computation of optic
flow, followed by its interpretation to provide the 3-d structure and motion of the objects
in the scene as well as the motion of the camera. The computation of optic flow is similar
to the correspondence problem mentioned earlier in this section. In fact, it is common to
regard the correspondence problem in stereopsis as a special case of motion correspondence.
However, in stereopsis, the knowledge of the relative locations of the cameras constrains
the search for corresponding points in a manner that is not possible in motion analysis.

Finally, we mention one important limitation of current approaches to motion analy-
sis. Most of the techniques for motion analysis deal with only two frames. Some initial
approaches to multi-frame analysis, as well as some speculative ideas, are described at the

end of this chapter.

1.3 How to read this chapter

The rest of this chapter is divided into four sections. In section 2 we discuss various
approaches used to solve the correspondence problem (or to compute optic flow), although

vergence is not discussed. In section 3, we discuss methods that can be used to derive



surface from moiton with known optic flow, as well as some of the techniques that do
not require optic flow. In section 4, we consider correspondence algorithms specific to
stereopsis and some issues regarding the 3-d interpretation of the results of stereopsis.
Finally, in section 5, we summarize the state of the art and describe some open issues and
problems.

We should note that this chapter is not intended as a survey of the various techniques
used by researchers. It should be regarded as an introductory review of stereopsis and
motion research. We will explain the principles underlying the major types of methods
studied by researchers, and will not focus on fine variations on the themes. Finally, at the

end we will provide a bibliography.

2 THE CORRESPONDENCE PROBLEM

Identifying image “events” that correspond to each other is the primary task of both
motion and stereo analysis. The term “events® is used here in a broad sense, to mean any
identifiable structure in the image - e.g., image intensities in a neighborhood, edges, lines,
texture markings, etc.

The techniques that rely on the similarity of the light intensity reflected from a scene
location in the two frames as the basis for determining correspondence are called sntenssty
based approaches. Methods that identify stable image structures, and use them as tokens
for finding correspondences are referred to as token based approaches.

The most popular way of solving the correspondencce problem is to divide it into one
or two parts. The first is the local correspondence problem, which provides partial or

total constraints on the displacement of a point in the image, based on image information



in the immediate neighborhood of that point. Usually the local correspondence is solved
(partially or fully) sndependently at all points of interest in the image. The second part,
where used, consists in applying a non-local constraint on the flow field. This is usually
an assumption of the spatial smoothness of the flow field, or one that is derived from
the geometry of rigid bodies in motion. This constraint can be either global or semi-
global, depending on whether or not explicit boundaries are recognized, across which the
constraint is not allowed to propagate.

It is also possible to impose on top of this framework for the computation of displace-
ment fields, a multi-frequency, multi-resolution approach. In this approach the images are
pre-processed with a set of band-pass filters which are spatially local and which decompose
the spatial frequency-spectrum in the image in a convenient way. The outputs from the
corresponding filters applied to the two images are matched, and the matching results from
the different filters at the same location in the image are combined using a consistency
constraint.

We first consider the local correspondence problem, and then the use of a non-local
constraint. Of the schemes that find the local correspondences, intensity based methods
will be described first, followed bya. description of methods that generate point tokens and
match them, and methods that use linear structures in the image. Non-local constraints can
be applied to almost any of these approaches to solve the local correspondence problem,
although their precise algorithmic form will vary. Finally, the use of spatial frequency
channels will be treated. The use of structured tokens for matching is not discussed here,
since much of such work is preliminary and are rarely used. A list of papers describing

such approaches is included in the reading list.



All of the approaches are described primarily from the viewpoint of motion analysis, al-
though many of them are also applicable to stereopsis. The techniques that are specifically

suited for stereopsis will be discussed in section 4

2.1 Intensity based correspondence

The most direct approach to correspondence is to match the light intensity refelected from
a point in the environment and recorded in the two images. Assuming that the time
difference between the generation of the images is small (in the case of stereo this is given
to be sero), the intensity of the image of a specific environmental point is likely to be the
game in both images. This constancy of the image intensity of a point across the images
is usually called the sntensity-constancy consirasni.

Intensity based schemes are those that use this intensity constancy constraint. They
can be broadly divided into two classes, gradient-based schemes and correlation maiching

schemes.

2.1.1 Gradient based schemes

Consider the simple situation when the points in an image are translating parallel to the
image plane. Although this situation is rare in perspective images, it is convenient for
explaining the gradient-based schemes. Let I(z,y,t) be the intensity at a point (z,y) on
the image plane at time ¢.

Assume that a point at location (z,y) in the image at time ¢ moves to the location

(z+6z,y+6y) at time ¢ +6¢. The intensity constancy assumption states that the intensity
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Figure 1: The intensity constraint

of this point is the same in the two images, i.e.,
I(z +b6z,y + by,t + 6t) = I(z,9,t)

Using this we find [Horn80]:

Lu+ v+ 1,=0, (1)
where I, = gﬁ-, I, = g{;, I = %f, and u and v are the z and y components of the image-
velocity of the point at time ¢.

In gradient based methods, equation (1) is the intensity constraint. This can also
be represented graphically as the locus of all points in the (u,v) plane that satisfy the
intensity constraint (see figure 1). Thus, the intensity constraint formulated here only

partially constrains the image velocity at a point. The locus is a line perpendicular to the

local image intensity gradient vector (I,, I,).

The intensity constraint can be written in the form of an error,

which is usually included in a minimization process, along with an error involving the

global constraint on the displacement field.
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Figure 2: The aperture problem. Note that although the edge moves horizontally, if
attention is focused to the circular area shown, the edge appears to move perpendicular
to its orientation.

The aperture problemm and the normal flow The true velocity vector at a point
in the image can be written as a sum of the component parallel to, and the component
perpendicular to, the intensity gradient vector VI. The intensity constraint gives only
the component of image velocity in the direction parallel to the spatial intensity gradient
vector. The component parallel to the intensity constraint line is undetermined.

The lack of any information about the component of velocity parallel to the intensity
constraint line is known as the aperture problem. This term comes from psychophysical
studies of biological vision, where it is well known that if attention is focused on a narrow
area around a point on a line, the line appears to move perpendicular to itself. This is
illustrated in figure 2.

The perceived velocity is thus the component of the true velocity in this direction.



Modifications to the intensity constraint The above formulation of the intensity
constraint is due to Limb and Murphy [Limb75]. It has also been derived and used by
Fennema and Thompson [Fenn79)], and Horn and Schunck [Horn80]. There have been a
number of other formulations since then, the most notable of which are those of Cornelius
and Kanade [Corn83] and Nagel [Nage83a.

Cornelius and Kanade relax the assumption that the intensity of the point stays con-
stant over time. They state that temporal changes in the intensity at a point (i.e, the total
derivative %f) must vary smoothly over a region in the image. This provides them with
another error, which is based on the spatial variation of 5—{.

Nagel modifies the intensity constraints by including second order intensity variations
in the Taylor series expansion. This provides an intensity constraint that is more accurate
than the one given above. In addition, at high curvature points along image-contours

Nagel’s constraint usually provides a unique velocity vector.

2.1.2 Correlation matching schemes

The correlation matching approach begins with the same assumption as the gradient
scheme ~ that the image-intensity of a point remains constant over time, but uses it in an
entirely different way. The case that concerns us is the discrete correlation process, since
that applies to a discrete sequence of digital images.

Discrete correlation is the process in which an area surrounding a point of interest
in one image is “correlated” with areas of similar-shape in a target region in the second
image, and the “best-match” area in the target region is discovered. Precise definitions

of the terms in quotations are provided below. The center of the best-match-area in the
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second image is then regarded as the point corresponding to the point of interest in the
first image.

The process of correlation consists of the following steps:
e An area around the point of interest in the first image is chosen as the sample window.

o All the points in a target area (called the search area) in the second image, which is
expected to contain the match of the point of interest in the first image, are called
candidate match points. An area identical to the sample window is chosen around

each candidate match point. These areas are called candsdate match windows.

e For each candidate match point a match-measure is determined by comparing the
image intensities of the points in the sample window and the corresponding points
in the candidate match window. The most common match-measures are (i) direct
correlation, in which the image intensity values of the corresponding points in the
two windows are multiplied and summed, (ii) mean normalized correlation, in which
the average intensity of each window is subtracted from the intensity values of each
point in that window before multiplication and summing, (iii) variance normalized
correlation, which is similar to mean normalized correlation, but in addition the
correlation sum is divided by the product of the variances of the intensities in each
window, (iv) sum of squared differences, in which the sum of the square of the
differences between the intensities at corresponding points is used, and (iv) sum of
absolute differences, which is similar to sum of squared differences, but the absolute

values of the differerces are used instead of their squares.

In some cases, the match measure may be a weighted sum of the individual point
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comparisons. The weights are chosen to increase the contribution of the pixels near

the center of the window relative to those of the outlying pixels.

o If either direct, mean normalized, or variance normalized correlation is used to com-
pute the match measure, then the best match window is the candidate window that
has the maximum value for the match measure. If one of the difference measures is
used, then the best match area is the candidate window that minimizes the match
measure. The point {in the second image) that is the center of the best match candi-
date window is regarded as the corresponding-point for the point of interest (in the

first image).

At first glance, this technique appears to provide a total constraint on the local displace-
ment vector, i.e., it specifies the displacement vector completely and uniquely. However,
this is not always the case. The uniqueness of the displacement vector will depend on the
manner in which the match measure varies over the search area. This in turn depends on
the underlying structure in the image, vig., whether it is an edge, a uniquely distinguish-
able structure such as a high curvature point along a contour, or an area of homogeneous
intensity. Based on an analysis of the variation of the match measure over the search area,
Anandan [Anan84] provides a technique to compute a confidence measure associated with
each displacement vector.

It should also be noted that the correlation schemes can be fooled in different ways
depending on the match measure chosen. For example, if direct correlation is used, then

the best match in the search area occurs where the intensity values are high. The difference
measures are susceptible to mistakes when the intensity around the point is scaled up or

down (see [Hann74,Genn80| for details). The variance normalized correlation is the most
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robust measure in the presence of noise and of scale and mean intensity changes. However,
it has been noted that certain types of preliminary filtering of the image (e.g., band-pass

filtering, see [Burt82]) can provide results of similar quality at a lower computational cost.

2.1.83 A few remarks

It is important at this point to compare the two intensity based schemes for what they
compute.

Both schemes fail when the intensity-constancy assumption is incorrect and when the
shape of an image area changes due to motion. The correlation scheme is slightly more
robust in these situations, since it relies not on an ezact match of intensities, but on the
best match over the search area.

Neither scheme performs well when a point gets occluded behind another surface in
the image or disappears from the view. The schemes assume that the point is still visible,
and so compute an incorrect displacement.

The gradient schemes, since they are based on instantaneous and local image deriva-
tives, are easier to extend to a time sequence of images. The correlation schemes are more
cumbersome, since each pair of successive image frames has to be processed separately

first, and then their results can be combined.

2.2 Token matching schemes

Token matching schemes for solving the correspondence problem try to avoid the problems
that arise when the intensity constancy assumption is violated. This is done by extracting

stable symbolic tokens in the images and matching them, rather than depending directly
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on the intensity variations.

The tokens can be of varying degrees of complexity according to the structures in the
image they represent. The most common are point-tokens, which usually represent some
stable and significant image event. The corner point of an occluding contour and the
intersection of texture-markings are two examples of such points. The location of the
point is usually its primary (and sometimes only) attribute. Other attributes that have
been used include the image-intensities in an area around the point (similar to the ideas in
correlation based matching), the curvature of the contours at the point, and the location
of the point relative to its neighbors.

Sometimes edge tokens may be used, where the location, orientation, and sige of the
edges are the attributes used to identify and recognize the edges. More complex structural
tokens have also been used - for example, the image may be partitioned into regions
with bounding contours, and then high curvature points of the contours located. In this
situation, the structure is represented as a graph (or a tree), and the graphs (or trees)
from the successive frames are matched.

Token matching schemes usually determine the displacement of the token uniquely (in
the case of complex tokens, they provide a sort of average motion of the complex structure).
However,these local correspondences are error-prone, so a global constraint is also used.
Most of the global constraints discussed in section 2.3 will be applicable to any of the token

matching schemes.
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2.2.1 Point matching schemes

The techniques that use a point-token as a stable matchable feature usually have two parts

- extraction and matching.

Point token extraction

The extraction of point tokens can be based on two similar ideas. The first is the notion
that points in a highly textured area of the image, i.e., where the intensity variations in
multiple image directions are significant enough to produce a structure stable in the face of
sensor-noise and area deformation, are useful tokens. The second is the notion that along
visible intensity contours in the image (e.g., contours due to albedo changes, or occluding
contours between two objects), points of high-curvature of the contours are likely to be
stable tokens.

These two ideas are respectively the basis of interest operators and corner detectors.

Moravec’s interest operator Interest operators, as the name implies, attempt to find
points in the image that are “interesting”. There is clearly no unique definition of this word
- in general the definition depends on the algorithm used by a particular operator. The

most popular one is known as the “Moravec operator” [Mora80] which works as follows:

e A small area is defined around each point in the image.

e This area is compared to similar areas surrounding all the points within a small
radius of this point, excluding itself. Usually the comparison measure is one of the
difference measures described in page 15. The minimum of these comparisons is

regarded as the interest measure for the point under consideration.
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o All points whose interest measure exceeds a certain threshold are candidate interest

’

points.

e Among the candidates a local-maximum selection process is used. This process
consists of comparing the interest measure of a point with those of all the other
candidate points in a small neighborhood, and retaining it only if it has the maximum

interest measure.

Corner detectors Corner detectors attempt to locate the points in the image which
correspond to high-curvature (or “corner”) points on visible image contours. There are

two major ways of achieving this.

1. In the first approach the high-curvature points on the level contours in the image
- i.e., the locus of all points with a specific intensity — can be used as the points
of interest. Such a curve can be described by an implicit function of the z and y
locations of the points that belong to it. High curvature points along such a contour
are the locations where the tangent vector of the curve most rapidly changes its

direction.

Kitchen and Rosenfeld [Kitc80] perform an algebraic analysis of such contours, and
obtain esimple formulas for the planar curvature of the level contour at a point in
the image. They then proceed to define “corner points® as the locations of the local
maxima of the curvature weighted by the magnitude of the intensity gradient vector,

i.e., the local maxima of

_ (I,,I; — 21, L1, + 1,I7)
= @+ )
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where k& is the planar-curvature of the level-contour.

. Another popular approach for locating corners is to filter the image with a V3G
operator, locate the gero-crossing contours of the resulting image, and the high-
curvature points along such contours. The V2G operator can be described as a
convolution of the image with a Gaussian mask followed by taking the Laplacian
(i.e., 3";’; + 3%';) of the convolved image. This process is equivalent to convolving the
image with the mask

z2+y2)exp_z2+y2

ViG(z,y) = c(2 - —; 25 (2)

where ¢ = 1/2ro* is a scaling parameter. This convolution is used in many low-level
vision algorithms for edge detection and motion analysis. Figure 3 illustrates the

mask.

Matching point tokens

Although considerable effort has gone into the careful selection of point tokens, it is sur-

prising that not much has been done to identify stable properties that characterige these

tokens. Most algorithms use an area of the intensity-image surrounding the point as its

feature, and use one of the correlation techniques described above for matching them. This

is surprising, since one of the aims of the token matching process is to use features that

remain constant during the movement of the image to find the correspondence between

image-points, whereas, as described above, the image intensity values are anything but

constant.
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Figure 3: The V2G mask. The mask is displayed as a surface plot, in which the height of
the surface at any location is proportional to the value of the mask at that location.

Barnard and Thompson algorithm Barnard and Thompsoa’s [Barn80] algorithm
is a widely used token matching technique. Initially, each point in the first image (called
a “node”) is paired with every point in the second image (called a “label®) within a
preset distance. For each node, associated with each label is the distance between the
node and the label (called the “disparity® associated with that label). In addition, each
point is also provided a “no-match” label to allow for the possibility that the point does
not have a match. Associated with each label is the probability of that match. These
probabilities are computed using the variance-normalized correlation measure of two small
areas surrounding the two points that are paired. The probability of no match is calculated
as the complement of the sum of the probabilities of all the other labels for a point.

These labels provide a partial constraint on the local matches. The global constraint
is a consistency condition on the labels of neighboring points in the first image, i.e., the

neighboring points must have “similar labels®, i.e., labels with nearly equal disparities.
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The global constraint is implemented in the form of a relaxation algorithm. This
algorithm iteratively updates the probabilities of all the labels for each node. Similar
labels of nearby nodes tend to cause an increase in each other’s probabilities. The updating
process continues (usually for less than 10 iterations), until for each node one of the labels
has a significantly higher probability than the others. This label is then considered as the
match for that point.

This method of updating probabilities is called probabslistic relazation. It has been
shown (see [Humm83]) that this is a type of optimisation process that finds the local
match labels that are “most consistent® with each other. The measure of consistency of
the labels is implicit in the method of updating the probabilities. In this sense, Barnard
and Thompson implement a global consistency constraint on the displacement field.

Another matching scheme is described by Prager and Arbib [Prag83]. They extract
points from both images and match these points. One important feature is that they allow
inexact matches — i.e, the displacement of a point-token in one image is required to bring
it near a point-token in the other image and not ezactly to it. A relaxation algorithm is
used to compute the displacements which optimize the sum of local match measures and

a global consistency measure on the displacements.

2.2.2 Matching edge tokens

Intensity edges or other linear structures in the image can be used as stable features for
the correspondence problem. The process consists of two steps — extracting edges, and
determining their movement.

In these techniques, an edge is usually specified by its location, orientation, and size.
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The aperture problem described earlier directly applies to edge-based matching. This is
because if an edge is regarded as a small linear structure in the image, there is no local
information regarding the amount of movement parallel to the edge. Hence the local
matching scheme only provides the movement in the direction normal to the edge (also
called normal flow).

Most of the edge based matching techniques have been designed for stereopsis. We will
describe some of these in section 4. Here we present the technique of Marr and Ullman
[Marr81], which is suitable for motion correspondence.

Marr and Ullman’s scheme uses the zero-crossings of the V2G operator, which we
described earlier, as the location of image edges. These are detected by two types of units,
one dealing with positive values (“on center”), and the other with negative values (“off
center”). On one side of the zero crossing the on-center units (also called S+) will be active,
whereas on the other side the off-center units (called S~) will be active (see figure 4).

In addition the time-derivative of the V2G operator at a point is calculated by T units.
T+ units respond to positive values of the time-derivative and T~ units respond to negative
values. The combination of the activity in the different S and T units indicate the direction
of movement. For example, in the one-dimensional version shown in figure 4, S*,T+, S~
being simultaneously active indicates the presence of a gero-crossing moving from left to
right.

This technique provides only the sign of the motion along the direction perpendicular
to the edge, i.e, whether it is from right to left, bottom to top, etc. The displacement
magnitude - the speed - is not provided. The technique can be slightly modified to

provide the speed by comparing the time difference in the activation of neighboring S unit
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Figure 4: The intensity-profile of the gero-crossing of a moving e&ge. The top figure shows
the result of the V2G convolution with a moving step edge, and the bottom figure shows
the time derivative of the top figure.
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pairs. The time interval between the detection of the gero-crossing at neighboring units

located at fixed distances can be used to calculate the speed (see [Marr81] for details).
Just as in the case of gradient techniques, which this scheme resembles in some ways,

this technique provides only a partial constraint on the velocity or displacement at a point.

A global or semi-global constraint is necessary to compute the complete velocity.

2.8 The use of non-local constraints

Thus far, several different approaches for measuring local correspondence have been de-
scribed. Some of these provide only a partial constraint on the displacement vector, while
others provide a unique but unreliable displacement vector.

As we mentioned earlier, non-local constraints can be used to determine unique reli-
able displacement vectors. These non-local constraints can be used with almost any of
the local correspondence techniques described above. Although some of these have tradi-
tionally been intimately used with particular local correspondence techniques, in general
it is possible to pair any of the non-local constraints with any of the local correspondence

schemes.

The assumption of constant displacement The simplest form of non-local assump-
tion is that the displacement is constant over the image. Such an assumption is strictly
true only when the relative motion is a translation parallel to the image plane, and all the
environmental points are at the same perpendicular distance from the image plane. How-
ever, when restricted to small local neighborhoods and not allowed to completely propagate

over the image this assumption is only applied loosely and can be useful.
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We illustrate the use of this assumption with the gradient-based local correspondence.
It was pointed out that the gradient schemes only provide a partial constraint on the
displacement vector, i.e., they constrain the local displacement to a line. The orientation
of this line is normal to the local intensity-gradient vector (or parallel to the image edge, if
one exists). In a small neighborhood of a point in the image, if the intensity gradient vector
changes its orientation, then several intensity constraint lines at different orientations are
available. If the displacement is assumed to remain constant in that neighborhood, then
the intersection of the constraint lines will be the true displacement. This is equivalent to
gaying that in a small neighborhood, if there are edges at different orientations (e.g., along
an image curve), then their normal velocities can be combined to uniquely determine the
velocity of the whole neighborhood.

This idea has been developed by Glager ([Glag81]), and Thompson and Barnard ([Thom81])
to compute the displacement field for a pair of images. Their papers also discuss the limi-

tations of this approach.

The assumption of a smooth displacement field The logical step beyond the as-
sumption of constant displacement is to assume the displacement varies smoothly over the
image. Later, it will be shown that the true motion of the environmental surfaces can be
expressed in terms of six scalar parameters and the distance of each point (or its *depth”)
from the image plane. If the depth of the environmental points is assumed to vary smoothly
across the image plane, the displacement vector field must also vary smoothly. This is the
basis for any of the smoothness assumptions.

The most common form of the smoothness assumption is the minimization of a smooth-
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ness error which measures the spatial variation of the displacement field. Such a mea-
sure usually includes the partial derivatives of the displacement field. The measure can
be over an area of the image [Horn80,Anan85], or only along contours in the image
[Hild83,Nage83b]. The latter case is used in an attempt to eliminate the propagation
of the smoothness constraint across depth or object boundaries in the image. The image
contours usually trace such boundaries and restricting the smoothness constraint to be
parallel to them and not across them may have the desired effect.

An example of an area-based smoothness error is
E,moothness = / /(“3 + u: + V: + v:)dzdy

This form is due to Horn and Schunck [Horn80]. Horn and Schunck also formulated an

approximation error
Eoppros = / ] (Ls + Ly + I,)*dzdy

which measures the deviation of the local displacement from the intensity constraint line.
Horn and Schunck, and many others following them, attempt to minimige a sum of the

two errors

azEmoolhncu + Eappross

where a is a weighting factor, to obtain the displacement vector field. The minimization
process is usually in the form of a relaxation algorithm which iteratively modifies each
digplacement vector according to the values of its neighbors and the local approximation
error.

Anandan and Weiss [Anan85] provide a modified form of the approximation error, based

on a correlation matching algorithm. They express the local displacement vector U in
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terms of a local basis (€43, €min). The initial displacement vector approximation provided
by the matching algorithm is D. The quantities cqs and ¢, are confidence measures
associated with the components of D along the directions e, and e, respectively. These
confidence measures are also provided by the matching process. The approximation error

used by Anandan and Weiss is

Eamos = z cmaz((U - D) ) emcs)2 + cmin((U - D) : emin)z

which can be regarded as generalizing of Horn and Schunck’s scheme 8o as to recognize
unique displacement vectors wherever available (e.g., intensity corners).

Finally, an example of a smoothness constraint that is applied along a contour is seen
in the formulation of Hildreth [Hild83]. Given the normal velocity along a contour (due to

the intensity-constraint or by edge matching schemes), she minimizes
_ [n8Y 2
E—/(|as| +B(U-en— D - en)?)ds

where U is the desired velocity vector, e, is the unit vector normal to the contour, (D -e,)
is the velocity component normal to the image contour, and s is the arc-length along the
contour. In this way, she minimizes the variation of the velocity along the contour while
also minimizing the deviation of the normal component from its prior estimated values.
The smoothness constraints described here have the advantage of being in a rigor-
ous mathematical setting and so can utilize some known methods of solving optimization
problems. Unfortunately, however, none of these heuristics on the variation of the dis-
placement fields are likely to be precisely true. Indeed, they are not even based on the

geometric transformations that are physically possible during motion. It is conceivable that
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a more carefully formulated heuristic would lead to the computation of a more accurate
displacement field.

The smoothness assumption is invalid both at object boundaries, because the different
objects may move independently of each other and hence not have the same motion param-
eters, and as well as at depth discontinuities in the environment, since the discontinuities in
depth cause corresponding discontinuities in displacements even if the motion is the same.
Applying smoothness constraints across such boundaries has severely detrimental effects,
since the displacement fields on either side of a boundary should not directly influence
each other. A number of researchers point this out, and suggest prior detection of the
location of such discontinuities as a way of solving the problem. However, no technique
has yet been able to achieve this. This is indeed a serious limitation on the use of these

smoothness constraints, and one that will be a focus of the research in this area.

2.4 Spatial frequency analysis

The approaches described above for solving the correspondence problem usually work only
when the displacement is small or (in the case of techniques measuring image-velocities)
if the time difference between the two frames is small. If the displacements are large,
intuitively it would seem to be useful to track or match large structures in the image,
since these would be uniquely identifiable over a distance. The following situations help

to explain the key ideas of this section.

1. Consider a highly-textured region of an image, the texture being fairly regular and
having a small period (i.e., the “spatial-frequency® of the intensity in that region is

high). Assume that the region is displaced by a large amount (much greater than the
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period of the texture). In this case, if we focus our attention on a small area in the
middle of the region, there is no way to accurately measure the displacement of this
area. This is because the texture is repetitive and we can only detect motion modulo
the period of the texture. However, if a rough estimate of the displacement is known
(with an error less than the period of the texture), the high-frequency information

can be used to obtain more precise estimates.

. Consider another region where the texture has a larger period and the image inten-
sities vary slowly over the region. This implies that the region has no sharp edges
that can be clearly identified and localized. Although an estimate of the movement
of this region can be obtained, the inability to localige image-events implies that the

estimate will not be very precise. This problem is even worse in the presence of noise.

From a computational viewpoint, these observations suggest that the image should be

decomposed into its spatial frequency components. The low frequency components can be

used to obtain rough displacement estimates (over a large range of possible displacements)

and the higher frequency components can then be used to localize these estimates.

This idea is familiar to psychologists [Adel83]. In computer measurement of displace-

ments of image points, it appears in early stereopsis formulations by Marr and Poggio

[Marr79]. A detailed description can be found in [Burt83,Glag83).

An attempt to formulate an efficient computational technique based on this idea should

also take into account the scale and resolution of the image information. As mentioned

above, when displacements are large, we must rely on low-frequency image information for

their measurement. This measurement cannot be very precise, since any of the measures
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used on the low-frequency information will not be sensitive to small variations in the dis-
placement. In addition, the need to measure large displacements implies that a large area
of the image must be searched. Taken together, these suggest that low-frequency informa-
tion should be represented at coarse spatial resolutions, and that the large displacements
should be measured using a large scale.

In a similar manner, high frequency information should be represented at a fine reso-
lution and used for measuring small displacements at a small scale.

The techniques that use these observations usually pre-process the image using a set
of spatial frequency band-pass filters, each an octave wide and an octave apart from each
other. The filters are usually achieved through convolutions with a family of V2G masks
(as in equation 2), with increasing o values corresponding to decreasing center frequencies.
These filters are also called channels, and the output of each of these filters are represented
at a resolution corresponding to their Nyquist sampling-rate. With the octave-wide chan-
nels, this results in a set of images whose resolutions successively increase by a factor of
2.

These ideas are pursued in detail by [Burt83], [Nish84], [Glag83], [Anan84], [Quam84],
who use them in various technfques for solving the correspondence problem. The ba-
sic approach involves applying one of the correspondence techniques described earlier in
this section on each of the spatial frequency channels. The details of the communication

between the channels is usually depends on the technique and will not be discussed here.
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3 DETERMINING 3-D MOTION AND STRUCTURE

The primary goal of motion analysis is to determine the 3-dimensional structure of the
objects in the environment and the relative movement of the camera and the objects in
the scene. The determination of the 2-dimensional image displacements or velocities of
the image-points is only one (although an important one) of the steps involved. The
interpretation of the displacement (or velocity) fields to determine the 3-d structure of the
environment and the relative 3-d motion between the objects and the camera is another
important step. As mentioned before, it may even be possible to directly determine the
3-d structure and motion without computing correspondence of points or other local image
events.

We begin by noting that the instantaneous movement of any rigid object can be de-
scribed as the combination of a rotation and a translation with reference to any given
coordinate system. The rotation is usually expressed as an angular velocity w about an
axis oriented along the unit vector €; and the translation as a 3-d vector T. It is also
common to represent the rotation as a single vector {3 of length w and direction that of &,.

The choice of the coordinate system is arbitrary, since the rotation and translation
vectors with respect to two different coordinate systems are related by a simple geometric
transformation.

The 3-d structure of the visible environment is completely specified if we know the
distance along the optical axis (the “depth®) of each point in the image. This, however,
may not be the most useful form. If the task at hand is to describe the 3-d shapes in

terms of known geometrical objects (such as cylinders, spheres, etc.), there must also be
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Figure 5: The camera coordinate system

a combining step that transforms these pointwise descriptions to that of solid shapes.
However, in this section we restrict our attention to pointwise 3-d location information,

since that has been the approach taken by most researchers.

3.1 The geometry of flow fields

The geometrical nature of the optical flow fields can be understood through a series of
equations that relate the coordinates of the image-points and the motion parameters to
their velocities.

Let (X,Y, Z) be a cartesian coordinate system affixed to the camera (see figure 5) and
let (z,y) represent the corresponding coordinate system on the image plane. The focal
length of the camera is assumed to be known, and can be normalized to 1, without loss of
generality.

Consider a point P on the object, located at P = (X,Y,Z). The 3-d velocity V =



(X,Y, 2) of the point is given by
V=0xP+T (3)

where {1 = (0x, Ny, Qz) is the rotation vector and T = (Tx,Ty,Tz) is the translation
vector, whose direction and magnitude specify the direction of translation and the speed
respectively.

The task of determining the 3-d motion of an object can be described as the task of
recovering the parameters {1 and T.

If § = (z,y) is the image position of the projection of P and U= (v,v) = (z,9) is the
image-velocity of that projection, then using

X/z
Y/Z (4)

@\
i

we find from equation (3)

= —Qxzy+ Qy(l+2%) — Nzy + (Tx — Tz2)/2 (5)
v = —0Ox(1+22)+0Qvzy+Qzz+ (Ty — T2y)/2

We will refer to these equations as the optic flow equations. They ! apply only to the
velocities of the image points and not to the displacements of the points in a discrete image
sequence. However, whep the field of view, the amount of rotation, and the translation in
depth (i.e., Tz in the above equations) are all “small” the image displacements are good

approximations to the instantaneous velocities. Although some approaches deal explicitly

!Note that these equations are based on the choice of the camera-based coordinate system as the frame of
reference. This is not a restriction, since the choice of the frame of reference is arbitrary, and does not
change the interpretation of the flow field. The values of the parameters of motion and structure depends
on the reference frame, but given two frames of reference the transformation of these values between them

is a fixed.



with displacements most of the techniques for determining 3-d structure and motion of the

environment use these approximations.

Understanding the equations

Six parameters describe the motion of an object and three parameters describe its 3-d

structure. The three components each of T and £} specify the relative motion of the object
and the camera. The X,Y, Z coordinates of all the points on the object together specify

the structure of the object.
The known image-position (z,y) of a point on the object specifies the direction of P.

Hence, only the distance |}3| of P along that direction is unknown.

In the optic flow equations, the components of T (T.,) always appear in the form %

This means that based purely on the image velocities, we cannot determine the absolute
translational velocity and the absolute distance of a point along the line of sight. They
can both be multiplied by the same scale factor k without changing the optic flow field.
Intuitively, this means that given an image and its optic flow fieid, if all the objects in
the world are moved away from the camera by a factor k, the object magnified k and the
relative translational velocity is multiplied by k, the resulting flow field will be identical

to the original field.

The velocity I of an image-point can be expressed as U = Up + Uy - the sum of its
rotational and translational components. From the optic flow equations, it can be shown
that the rotational component is not influenced by Z, whereas the translational component

is. This suggests that the rotational component of the optic flow field will not be useful
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in determining the 3-dimensional structure of an object. The translational component
contains all the available information regarding the structure.

As explained before, the parameters of motion typically do not vary from point to
point in the image. All the points on a rigid object undergo the same motion and have
the same motion parameters. > Hence the number of parameters of motion are few, one
set corresponding to each area of the image having an independent relative motion with
respect to the camera. When only the camera moves, the whole image forms one coherently
moving area.

On the other hand, unless some assumptions are made regarding the structure of the
environment, there is one unknown Z value for each image-point. Many techniques of-
ten assume that the environmental surfaces can be approximated by piecewise planar or

quadric surfaces in order to simplify the computation of structure.

There are three major approaches that are of interest to us. The first type does not
require prior computation of optic flow - in fact the optic flow can sometimes be obtained
simultaneously with the 3-d motion parameters. Often, these techniques apply only to
restricted camera motion (or a restricted motion of the scene as a whole.), and do not
allow independently moving objects. The second type of technique requires knowing the
correspondences for a few points in the image. These also usually do not allow independent
object motions. The third type of technique requires an optic flow field. One such technique

allows multiple independently moving objects.

2]f the object i3 non-rigid the situation is more complex. Most of the current work applies only to rigid
motion. Hence the same restriction will apply here.
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8.2 Processing a restricted class of motions

The problem of processing a restricted class of motion to obtain directly the parameters of
motion and image structure without having a prior solution to the correspondence problem
has been dealt with extensively by Lawton [Lawt84]. All of the cases Lawton considers
are situations where the motion is solely due to that of the camera. The class of motion
processed includes pure translation of the camera in an arbitrary direction, pure rotation
of the camera about an arbitrary axis passing through the focal point, and known-planar

motion - one in which all the environmental displacements are restricted to lie on the same
plane. This last case arises when the axis of translation T lies on the plane perpendicular

to the axis of rotation 1.

These cases considered by Lawton are significant because many practical situations
with 2 moving camera fall into one of these cases - e.g., a pilot attempting to land usually
follows pure translational motion, while a car moving and turning on a road is a case of
planar motion where the motion is on the ground plane.

In each of these cases the number of unknown parameters is small and hence com-
putation can proceed easily. The assumption that all the observed motion is due to the
movement of the camera allows us to treat the whole image as a single rigid object. This
enables information from everywhere in the image to be used for the recovery of motion
parameters, an idea that leads to a robust technique.

The next two sections describe briefly the approach used by Lawton for the case of pure
translation and the case of pure rotation. The case of known-planar motion is similar, and

is not included here.
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Translational
Axis
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Figure 6: The displacement due to camera translation

Pure translation

When the camera motion is a pure translation towards the environment, all the displace-
ments on the image appear to emanate radially from a single point in the image. This
point is known as the Pocus of Expansion (FOE). It is also the point of intersection of
the axis of translation with the image plane. This is illustrated in figure 6. If the camera
moves away from the environment, the displacements appear to converge at a point on the

image plane called the Focus of Contraction (FOC).

In the case of pure translation, the problem of determining the motion of the camera
reduces to that of locating the FOE or, equivalently, the axis of translation. In either
case, the number of parameters is two, thus greatly simplifying the problem of general
motion, which has six parameters. Additionally, knowing that all the displacements have
to lie along the radial lines from the FOE provides a powerful constraint that simplifies

the correspondence problem.
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The displacement AD of the image of the projection of a point in the 3-d environment
is directly proportional to the distance D of the projection from the FOE and inversely

proportional to the distance Z of the point from the camera. More precisely,

AD AZ
D=7 (6)

D,AD and Z are as defined above, and AZ is the displacement of the camera along its
optical axis.

I the FOE is known, then D is known and AD can be measured. From the equation
above, it is clear that onlv the ration Z and AZ can be recovered. It is common practice
to set AZ to 1 and then obtain the depths. Alternately, some point in the image can be
arbitrarily chosen to be at unit depth and then the relative depth of the others can be
obtained.

Based on these observations, Lawton provides a simple algorithm for the location of
the FOE and the computation of relative depth. Instead of searching for the FOE, Lawton
searches for the direction of translation. This way the search is conducted in a unit sphere
surrounding the focal point. Each point on the surface of the sphere corresponds to a
direction of translation.

Given a hypothesized direction of translation, the corresponding FOE can be deter-
mined. Given a set of points S in one image (which are chosen by an interest operator
similar to those discussed in section 2.2.1), each point is matched with points in the other
image which lie along the radial line from the FOE. Associated with each potentia! match
of an “interesting® point is an error measure. Lawton’s error measures are based on the

correlation measures described in section 2.1.2. Of all the candidate-points along the radial
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line from the hypothesized FOE within some fixed maximum displacement, the one that
minimizes this error measure is chosen. Let (i, ) be the minimum error-measure for the
point § in the set S under the hypothesized axis of translation 7. Then, Lawton defines

the error measure E(T) as

E(T) = ) _e(i,T)

€S
The correct axis of translation is the one that minimiges E. The details of the search for
the minimum can be found in [Lawt84).
Once the true axis of translation and the corresponding FOE are determined, then

measurement of the displacement along the radial line immediately provides the relative

depth of each point under consideration.

Pure rotation

When the motion of the camera is a pure rotation about an arbitrary axis, each image
point follows a path that is a conic. The exact curve along which the point travels is the
intersection of the image plane with a cone passing through the image point, whose vertex
is at the focal point, and whose axis is the same as the axis of rotation. A typical case of
rotation is illustrated in figure 7

Given a hypothesized axis of rotation, the path of each point can be determined. In
addition, the angular displacement of the point along this path is the same for all image
points, regardless of their depth. These facts are used by Lawton in an algorithm that
searches for the axis of rotation. An error measure similar to that of the translational case

is defined. The additional constraint that the angular displacements must be identical is
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Tigure 7: The path of an image point due to camera rotation. The two figures display the
cases when the axis of rotation is parallel to (the figure on the left) and perpendicular to
(the figure on the right) the image plane

also used to improve the search.

3.3 Approaches based on point correspondences

A class of techniques exist that uses the knowledge of the correspondence of a few points
in the images to determine the 3-d structure and motion of the objects in the scene.

The fundamental assumption that is used (although often implicitly) by all such tech-
niques was noted by Ullman. This is the rigidity assumption, which states that “any
get of points undergoing a 2-d transformation between images which has a unique inter-
pretation as a rigid object moving in space should be inierpreted as such.” [Ullm79]

As such, it is clear that displacement of each image point is a function of the motion
parameters (six in number) and the depth of the point. It is then a matter of obtaining a
sufficient number of points and their displacements to be able to solve for these unknown

parameters and depths. This is the approach used by all techniques that rely on known
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point correspondences. A few prominent algorithms that use this approach are outlined
briefly here, leaving aside details of the algorithms.

It should be noted that all these techniques assume that the points involved in the
computations belong to the same object. Ullman describes a possible way of avoiding this

assumption, but it is not clear if his approach works successfully in practice.

Ullman’s approach

Thus far, all the discussion in this chapter has concerned the analysis of a dynamic image-
gsequence generated under perspective or central projection. However, Ullman separately
considers both orthographic and perspective projection images {Ullm79]

For orthographic projection, Ullman derives the following theorem, which he calls the
structure from motion theorem:

Given three distinct orthographic views of four points in @ rigid configuration (and the
correspondences between their image locations), the structure and motion compatible with
the three views are uniquely determined

For perspective projection Ullman derives the condition that three views of five points
are usually sufficient. However, he notes that greater accuracy is needed in their image lo-
cations (in the perspective case) to achieve accurate results, and the computation required
to compute the structure and motion is more complex.

Ullman also claims that the results in the perspective case are superior {o human per-
formance. He suggests an interpretation based on a polar-parallel-projection assumption.
Polar-parallel-projection assumes that in a small area of the image one can assume or-

thographic projection if the objects imaged in that area are sufficiently far away from the
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camera. This approach is claimed to produce results comparable to human performance.

The approach of Roach and Aggarwal

Roach and Aggarwal [Roac80] base their analysis cn the equations of perspective. With
reference to some arbitrarily chosen cartesian coordinate system, the three dimensional

world coordinates of a point can be expressed as

F
r = x°+ (F z‘)(anz’ +a,2y’+a,3F)
y = Yot (F_z,)(anz'+any’+a,,F) (7
z = Zo+(F z,)(auz’+a32y’+a”1“)
where (X,, Yy, Z;) are the coordinates of the camera location, (ayy, -, as3) are functions

of the three orientation parameters of the camera, (z,y, 2) are the 3-d coordinates of the
point, (z',y') are the coordinates of the image of the point on the focal plane, F is the
focal-length of the camera, and 2’ is a free-variable.

Equations (7) give the locus of points that form a straight line in space passing through
the camera origin (X, Yo, Zp) and the image of the point at (z’,y') on the focal plane. The
location of the point along the line is determined by the free parameter 2*, which can be
arbitrarily specified. Specifying 2’ has the same effect as changing the scale of the global
coordinate system — similar to choosing the scale-factor k discussed in section 3.1.

Roach and Aggarwal also determine the projection equations giving the image coordi-
nates of the point as functions of its world coordinates and the camera parameters. These
are the standard perspective projection equations, and are omitted here.

Although it appears that in this method, there are six unknown parameters for each

43



of the two camera positions, the choice of the global coordinate system is arbitrary. We
can choose the global coordinate system to coincide with the camera coordinate system
(described in figure 5), of one of the camera positions, thus reducing the number of unknown
camera parameters to six. There are also three unknown coordinates for each point. The
the scale factor 2’ can be tixed by arbitrarily choosing the 2 location of any one point.

Roach and Aggarwal show that by choosing five points in one image whose correspond-
ing locations in the other image are known, we can obtain 18 non-linear equations with 18
unknown parameters. These 18 parameters include the camera parameters as well as the
3-d coordinates of the points. The equations are solved using an iterative technique.

In general this method is severely affected by noise and errors in the correspondence
process. They claim that they need two views of 12 points in order to give robust mea-

surements of structure and motion.

The approach of Tsai and Huang

If (z,y) and (2',y') are the courdinates of the projection of a point in two images, Tsai

and Huang [Tsai84] derive the equation

z
(z v l)E(z;’)=0 (8)

where E is a 3 x 3 matrix with 8 unknown entries and an unknown scale factor. The
entries of E are linear functions of the motion parameters. The structure parameters are
not involved in E.

Given n points whose correspondences are known, Tsai and Huang present a technique

that uses a least-square error method to determine E, followed by a singular value de-
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composition of E to determine the motion parameters. Once the motion parameters are
known, the determination of the structure is straight-forward.

This method is unusual in that it is one of the very few attempts to solve the problem
using a set of linear equations. This is claimed to improve the stability and noise sensitivity

of the results.

3.4 Techniques requiring optic flow

If the velocities (or displacements) of a fairly dense set of points in the image are given,
there are a number of methods for computing the 3-d structure and motion. Some of these
methods require one flow vector for each point (or pixel) in the image, whereas others
require that the available flow vectors be spread over the image without requiring they
be known everywhere. Because all these techniques require more than a small number of
point correspondences, they have been grouped here as those requiring an optic flow field.

There are two ways in which the optic flow fields can be used in this process. The local
derivatives (or spatial differences) of the flow vectors can be used to provide information
about the structure and motion of the object. Alternatively, some global measures of the
flow vectors can be used.

Local techniques have the advantage that their computations are based on local prop-
erties, and 8o the distant areas of the image (which are often parts of different objects) can
be treated independently. The disadvantage of the local techniques is that they usually
require local computation of up to second order derivatives of the flow vectors. This is
usually difficult or impossible to obtain using currently available methods, and the pro-

cess of differentiation is highly sensitive to even small inaccuracies. In the case of global
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techniques, the situation is just the reverse — while local errors do not severely affect the
process, it requires global computations which lead to communication bottlenecks and slow

processing.

8.4.1 Local techniques

As the camera moves relative to a surface patch in the environment, the image of the
patch moves and deforms in shape. The local deformation and movement of a small area
can be used to determine the parameters of motion and the surface structure. This is the
fundamental observation used by practically all local techniques.

Two approaches are outlined here to introduce the reader to the relevant work in this
area. One type of approach is primarily due to Waxman and Ullman [Waxm83, Waxm84a, Waxm84L
and the other due to Longuet-Higgins and Prazdny [Long80] and Rieger and Lawton
[Rieg83]. The approaches of Longuet-Higgins and Rieger are directly related to some of
the mathematical analysis of Koenderink and Van-Doorn on optic flow fields generated by
a moving observer and a stationary environment. This last work here is complicated, and

primarily of theoretical interest. Hence, it will not be described here.

Waxman'’s approach The approach of Waxman and his colleagues is best summariged
as what he calls an image flow paradigm. Consider an environmental surface-patch
(planar or quadric) moving rigidly through space relative to an observer. Local flow of the
images of the points on the surface can be described in terms of 12 flow deformation
parameters evaluated at the image of any point on the surface. The origin of the refer-

ence coordinate system is chosen at that point. The twelve quantities consist of the two
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components of the image velocity of the point, the three independent strain rates, the spin,
and the six independent derivatives of the strain rate and the spin. If the two components
of the optic flow field are expressible as Taylor series expansions around the point, then
these parameters are linear combinations of the first six coefficients of the two series.

The strain-rate consisis of the rate of stretch of image lines oriented along the z and
y axes, and the rate of change of the angle between two line segments oriented along the
axes. The spin is the rate of rotation of a small neighborhood of a point in the image
around that point.

These 12 parameters can be used to compute locally the six parameters of motion
and the structure parameters of the surface. The general case of a quadric surface has
8ix parameters, corresponding to the six coefficients of the Taylor series expansion of the
depth around that point. Physically, these are the location, the two slopes, and the three
curvatures of the surface-patch. All of these are shown to be specified only up to a scale
factor.

The deformation parameters can be obtained by differentiating a dense flow field around
the point of interest. This is likely to be error-prone, since it relies on obtaining reliable
flow fields — as yet an unsolved problem.

Alternatively, Waxman and colleagues propose an evolving contour analysis which
attempts to measure these parameters directly from the image. This approach involves
detecting contours on the image that correspond to stable physical markings on the surfaces

and studying the manner in which these contours deform over a sequence of image frames.

It should be noted here that there is no known technique to do so.

The above ideas are relevant for a single surface patch in rigid motion relative to the
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camera. When dealing with multiple moving surfaces (both when the surfaces are from
different parts of the same object, or from different objects), Waxman’s approach consists
of separating the areas of the image within which the flow field is twice differentiable. Once
again, as noted in the previous section on the correspondence problem, this is one of the
major unsolved problems of motion analysis.

Thus, while Waxman’s approach is impractical at present, the ideas are useful in two
ways. First they are theoretically significant in that they analyze local properties of the
image flow and relate them to the motion and structure of physical surfaces. Second, their
analysis provides motivation for the direct measurement of image deformation parameters,
an approach that is different from the popular paradigm of making displacement or velocity
fields as the sole basis of further computation. The difficulties in determining accurate

displacement fields makes this an attractive alternative.

Using motion parallax In stereopsis, parallax is the disparity between two points at
different depths but at nearby visual directions. As noted earlier, the magnitude of the
displacement of a point due to the translation of an object relative to the camera is inversely
proportional to the depth of the point. Further, it was also noted that the displacement
takes place along the line joining the FOE and the point. Thus, two different points at
different depths but nearby visual directions will be displaced in almost the same direction
but by different amounts. This is known as motion parallax.

If now there is also a rotational component to the motion, the displacement due to
this component is independent of the depth of the points. Therefore when the difference

between the displacements of nearby points is considered, their rotational components
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cancel each other. Hence, the difference between the displacement vectors of the two
points is due only to the translational components and will point toward or away from the
FOE.

This observation is central to the method of Longuet-Higgins and Prazdny [Long80]
and of Rieger and Lawton [Rieg83]. Longuet-Higgins’ formulation is for the ideal situation
where the two points are infinitesimally apart in the image. Rieger and Lawton, on the
other hand consider the situation when the displacement vectors may be those of points
that are a finite distance apart. Their analysis takes into consideration the inaccuracies
that may be introduced due to the distance between the points.

If many such point pairs are chosen the intersection of the difference vectors will indeed
be the FOE. This idea is used by Rieger and Lawton. Point pairs are chosen from the
displacement vector field such that the two points are separated by a small distance and
have reliable displacement vectors. (They use an algorithm described in [Anan84] to obtain
the displacement vectors and reliability measures.) But among the difference vectors, only
those above a certain threshold are maintained. The best intersection of these difference
vectors is then determined as the FOE.

Once the FOE is known the axis of translation is known. The rotation can be then be
computed simply by removing the translational component from each displacement vector
and searching for a rotation {3 that gives the appropriate rotational components of the
displacements.

This method implicitly assumes a stationary environment and a moving camera. It is

not clear it can be generalized to situations involving multiple moving objects.
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8.4.2 Global techniques

Whereas local techniques rely on the local differential properties of optic flow to provide
information about the environment, global techniques recognize the fact that the motion
parameters are the same for an entire rigid object, and attempt to recover them.

If the optic flow information from distinct parts of the object can be brought together in
a coherent way, it can be used to identify the six parameters of motion that simultaneously
give all the flow vectors. There are several attempts to do this, but the one that is of
greatest interest is the technique of Adiv [Adiv85]. His is one of the very few attempts to
deal with images of scenes containing multiple independently moving objects.

Adiv takes a two stage approach. The first stage consists of grouping local flow vectors
into those consistent with the motion of a planar patch. In the case of an arbitrary planar
patch, it can be shown that the flow field is a quadratic function of the image coordinates
(z,9):

u(z,y) = ay+az+asy+ (a7z + asy)z ()
u(z,y) = 6+ asz+ aey + (7% + asy)y,

where the (a;,---,as) are functions of the slopes and the location of the planar patch,
as well as of the six motion parameters. These equations represent what Adiv calls a ¥
transformation - a mapping of the two dimensional image onto itself.

Adiv notes that an environmental surface can be approximated piecewise by planar
surfaces, provided that the distances between the real surface and the approximating planes
are small compared to the distances of these surfaces from the camera. In this case, the
flow vectors are grouped into those consistent with the rigid motion of a planar patch.

The grouping process itself consists of two parts. If the second order terms are ignored
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then the flow vectors are consistent with an affine transformation of the image patch. These
affine transformations are parameterized by the 6 quantities (a,, - - -, ag) and, further, each
component of the flow vector is only a function of 3 parameters. This observation enables
Adiv to use a generalized Hough transform to determine the 6 parameters consistent with
flow vectors in a patch. 3

In the second part of the grouping process adjacent segments consistent with the same
¥ transformation are merged together as planar patches in rigid motion. Thus the grouping
process also enables the separation of distinctly moving objects (or surfaces) into different
“segments” in the image.

In the second stage of Adiv’s process, segments whose optic flow vectors are all consis-
tent with a single rigid motion are grouped together as a single object. The motion and
the structure parameters of a group of segments is determined as those that minimize an
error E(f}, T, {Z:}), where {Z;} are the depth values of all the points in the group. For
any (@1, 7, {Z;}) the error E is defined as the weighted sum of squares of the differences
between the flow vectors predicted by these parameters and the given flow vectors of the

points in the group. The weights are confidence measures associated with the individual

flow vectors.
Since the depth values and the magnitude of the translation vector can be specified

only up to a scale parameter, the task then is one of finding the direction of translation

€r, the relative depths {Z; = (Z; |T|)}, and the rotation parameters {3 that minimige E.

3The Hough transform is a global parameter searching process. It is a voting process, where each piece
of data (in this case the flow vector) votes for all the parameters that are consistent with it. Only the
parameters that are consistent with a large part of the data will get significant votes. Local maxima of
votes in the parameter space indicate possible true parameters and their contributors in the data usually
correspond to a consistent set. This is a well known technique in pattern recognition and computer vision
(see |Duda73,Ballg2)).
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The minimization process consists of the following steps: Adiv first shows that the
optimum set of {Z;} values can be written as a function of the motion parameters. This

allows him to recompute a new error o{ér, ﬁ) as a function solely of the motion parameters.
For each hypothesized direction of translation, the rotation parameters that minimize o
are determined. Substituting these into o yields a new error function o’ which is a function

only of the direction of translation:

o'(ér) = mgn o(ér, ()

The direction of translation that minimiges o’ is then chosen as the optimal estimates
of the direction of translation, and the corresponding rotation parameters as the optimal
estimates of the rotation parameters. The relative depths are then computed in a straight-
forward manner.

A final stage of verifying the hypothesiged groupings of the segments is also incorpo-
rated. The details on the minimization algorithm and the hypothesis verification phase

can be found in [Adiv85).

8.5 Concluding remarks

The problem of finding 3-d structure from motion appears to be as difficult as the problem
of measuring the point correspondences. There appear to be robust techniques that apply
to cases of restricted sensor motion, but the general problem of dealing with multiple
moving objects is still difficult to solve. Most of the techniques deal with the information
from two frames. Usually, they try to provide the depth of each point in order to describe

the structure, and the 3-d motion parameters in order to describe the motion.
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It would appear that in the longer run, a shift of emphasis towards a qualitative descrip-
tion of the motion is perhaps more useful. In addition, the information from a sequence of
images should be used, and a gradual refinement of the structure of the environment over

time is likely to prove useful. These are open issues for research in this domain.

4 STEREOPSIS

The analysis of a pair of stereo images is in many ways simpler than motion analysis. For
instance, the knowledge of the relative locations and orientations of the cameras has been
used to reduce the efforts involved in finding correspondences of image-events. The inter-
pretation of the disparity information is also simplified, since the only unknown parameters
are the depths of the image-points.

Stereopsis is also perhaps one of the best understood aspects of human vision. In
fact, there are a number of techniques which claim to be computational models of human
stereopsis. The results from these techniques are comparable to results from psychophysical
studies of human vision.

In this section, we first overview the geometric issues involved in stereopsis and describe
how the matching-process can be simplified. We then describe two techniques that utilize
general physical and geometric constraints, and two systems that use information specific
to a scene-domain. Following this, we review the major attempts at modelling human

stereopsis. Finally, we describe the issues involved in the 3-d interpretation of disparity

data.
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Figure 8: The camera set-up for stereopsis

4.1 The geometry of stereopsis

The geometry of stereopsis is best described in terms of what is known as epipolar anal-
yeis. This is discussed in detail in [Bake83]. Here, we present some of the major ideas
from that paper.

The epipolar analysis considers two cameras placed in arbitrary relative locations and
orientations. The camera set-up is shown in figure 8.

The epipole is defined to be the point where the line joining the two focal-points
intersects an image plane. Therefore there can be at most two epipoles, one for each
image. If the line joining the two focal points is parallel to either of the image planes, then
there is no epipole for that image.

The two key concepts are the epipolar plane, which is the plane containing the
two focal points and a point in the environment, and the epipolar line, which is the

intersection of the epipolar plane with an image plane. It should be obvious that the
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image of a point will lie on an epipolar line. Indeed, for each point in an image, the
epipolar line can be determined as the line joining that point to the epipole.

Baker, et. al. define a coordinate system for each image based on the location of the
epipole. The location of any point on the image-plane can be specified by the epipolar
line it lies on, and its distance on that line from the epipole. These are the epipolar
coordinates of that point.

In the case where the epipole does not exist, it can be shown that there still is an
epipolar direction and the epipolar lines will all be parallel and oriented along the
epipolar direction. Any point on the image-plane can then be arbitrarily chosen as the
origin of a cartesian coordinate system whose axes are parallel and perpendicular to the
epipolar direction.

If the relative camera locations and their relative orientations are known, then given
an epipolar line in one image, the corresponding epipolar line in the other image can be
determined. Therefore, for any point in one of the image frames, its corresponding point
in the other image must lie along the corresponding epipolar line (called the conjugate
epipolar line) in the other image. This constraint (called the “epipolar-line constraint®)

can be used in the matching process.

4.2 Geometric and physical constraints

The geometric constraint often used in stereopsis that the two image-projections of an

environmental point lie on conjugate epipolar lines in the two images. This can be used
in two ways. One approach involves choosing an event of interest from one image (e.g.,

an edge, an “interesting point”, etc.), determining its epipolar line, and searching for its
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match along the conjugate epipolar line in the other image. The other approach involves
geometrically transforming the images such that the epipolar lines become horizontal scan-
lines. This has some computational advantages, especially when designing an algorithm
that operates in parallel at all image-points of interest.

Baker, et al. [Bake83] use the latter approach. Their technique combines an edge-
based matching process with an intensity-based correlation algorithm. For the edge-based
matching process, they first detect edges from each image and then transform the edge
images. For the correlation process, they transform the two intensity images.

In addition to the epipolar-geometry constraints, it is also possible to derive two other
physical constraints. In order to describe both constraints, it is convenient to assume that

the images have been transformed such that the epipolar lines are scan-lines.

An ordering constraint Consider two points in the environment whose images are on
the same scan-line — possibly at different depths. Then, the point which is to the left of the
other in the scene will have its images to left of the images of the other in both views. This
provides an ordering constraint for the matching process - vis., the left-right relationship

of the two points must be preserved across the two views.

A continuity constraint This constraint is similar to the smoothness constraint ex-
plained in section 2.3. We reformulate it here in terms of edges in the image.

Edge fragments are usually a part of a contour in the image. Hence, their locations
continuously vary across the scan-lines. Therefore, the disparity of the edges that are part

of the same contour must vary continuously across scan-lines.
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4.2.1 The use of physical constraints

There are a number of algorithms that perform edge-based matching. The ones that are
of relevance here are those that use the constraints described above. One such algorithm
is provided by Ohta and Kanade [Ohta85].

Their algorithm consists of an intra-scanline search as well as an inter-scanline search.
These embody the epipolar line constraint and the continuity constraint. The algorithm
also uses the ordering constraint as a part of the intra-scanline search.

In brief, their algorithm uses edge-limited intervals on a scan-line as the events that
are matched. An edge-limited interval on a scanline is all the points between successive
edges. The algorithm uses a dynamic programming approach, which is an optimization
technique. This involves minimiging a global cost of match, which evaluates simultaneously
the matches of all the edge-limited intervals. The match-cost is computed in a systematic
manner that enables efficient processing to take place.

Each possible match of edges between a pair conjugate scanlines is given a match-
cost determined by the similarity of the intensity values of points in the corresponding
edge-limited intervals. The costs from all the scanlines are added together to provide
the global measure. The intra-scanline ordering constraint and inter-scanline consistency
are used during the computation and combination of these costs. We omit the details of
the algorithm here, but simply state that Ohta and Kanade provide a parallel, iterative
sceheme for searching for the optimal set of matches.

Baker [Bake82] describes a similar edge-based scanline matching technique using a
dynamic programming algorithm. His approach differs from that of Ohta and Kanade in

how the measures are added and how the search for the minimum-cost match is performed.
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In particular, Baker finds the optimal intra-scanline match independently for each scanline.
He then uses a cooperative process that detects and corrects intra-scanline matches that

violate the inter-scanline consistency constraint.

4.8 Using domain specific constraints

When the problem is restricted to specific scene domains some additional constraints can
be used to partially interpret the static image structures and analyze their transformation
across the two views to determine their 3-d structure. We describe here two examples of
methods that use such information. Both the examples deal with the stereopsis of urban
scenes containing buildings and roads. In such environments there are usually clearly
delineable curves that form the boundary between objects and surfaces, and polyhedral

vertices which are junctions of physical edges of an object.

4.83.1 The approach used in the 3-d Mosaic system

The 3-d Mosaic system is a vision system that incremently reconstructs complex 3-d scenes
from multiple images. This approach is being developed and studied by Kanade and his
colleagues at Carnegie-Mellon University [Herm84].

One aspect of this system is the generation of 3-d information from stereopsis by match-
ing structural features such as junctions of lines. In aerial images, it can be often assumed
that L-shaped junctions are the results of surfaces parallel to the ground plane - usually
part of building tops, roads, etc. An ARROW or a FORK junction usually arises when
three mutually orthogonal lines intersect. These two observations are useful in constraining

the search for correspondences.
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If the orientation of the image plane is known (or can be estimated) with respect to the
ground plane, the location of L-junctions in subsequent frames can be predicted. In the
case of the ARROW or FORK, their location as well as their appearance can be predicted
(or at least constrained).

In addition, the Mosaic system uses constraints on the relationship between connected
junctions. It is assumed that two connected junctions are at the same height from the
ground. This assumption is used as a comsistency condition for the depth of the two

junctions. It is not clear how the system handles violations of this assumption.

4.3.2 The rule based analysis at Stanford

Baker and his colleagues [Bake83] use structural constraints similar to those described
above for urban scenes. Such constraints are made part of a rule-based analysis system
for the determination of the 3-d structure of objects. Hence, the representation and the
manner in which these constraints are used are different from those found in the 3-d Mosaic
system.

The analysis is based on structural elements called orthogonal trihedral vertices (OTVs).
These are junctions of three mutually orthogonal lines (the same as the ARROW or FORK
junctions described above). Based on an analysis of the geometry of OTVs by |Perk68),
they provide a method of identifying an OTV in a monocular image and determining its
3-d orientation. The system then matches the OTVs across the strereo pair.

They also derive a set of rules for the 3-d interpretation of image structures (T-
junctions, OTVs, and edges) in the monocular image, as well as for the relationship between

their views in a stereo-pair. These rules are then used to guide the matching process. These
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rules, their representation, and how they are used can be found in [Bake83].

4.4 Stereopsis algorithms based on human vision

Most of the stereopsis algorithms that try to model biological vision are based on the
experiments of Juless that suggest that very simple image-tokens are matched [Jule71].
These experiments are based on random dot stereograms. A random dot stereogram is
generated from an array of random dots. Typically, a square subsection of an identical
copy of the array is displaced a given amount and the resulting gap is filled in with a new
random pattern. When the original array and the modified copy are presented to the left
and right eyes seperately, one sees a square floating in space This occurs even though there
is no monocularly visible square to guide the matching process. Clearly, the matching
primitive used in the human visual system is of a very simple nature.

Even though the search for a matching feature in stereopsis is constrained to the epipo-
lar line, the “false target® problem is by no means trivial. Indeed, in the case of a random
dot stereogram, any “dot® in the left image could conceivably match any dot along the
corresponding raster in the right. Marr and Poggio suggest that the false target problem
is solved by exploiting two constraints of the physical world [Marr82]. The “uniqueness”
constraint states that each feature in the left image should match at most one feature in
the right, since the feature corresponds to a unique point on a physical surface. The “con-
tinuity” constraint states that since matter is cohesive and grouped into surfaces, disparity
should vary smoothly, except at surface boundaries. (Note that these are examples of the
local and global constraints discussed in section 2.3.)

In these approaches, a multiple frequency channel approach - of the kind described



in section 2.4 - is also utilized. Marr and Poggio propose that the features matched in
human stereopsis are the gero crossings of the V2G convolution with the left and right
eye images [Marr79]. This convolution has the effect of applying a band-pass filter to the
image. The sero crossings of the filtered image correspond to changes in image intensity
at the scale of the associated gaussian. By restricting the search for a matching gero
crossing to a sufficiently small interval along the scanline, matches can be determined
almost unambiguously. The greater disambiguating power oi iow spatial frequency tuned
channels is in turn exploited by high spatial frequency tuned channels through eye vergence
movement.

The biologically oriented stereopsis algorithms also incorporate vergence control as
a part of the correspondence process. In an implementation of the Marr and Poggio
stereopsis algorithms by Grimson [Grim80], matching is first conducted within the lowest
spatial frequency tuned channel. Only zero-crossings are matched, and the only feature
associated with them is their sign - i.e., the sign of the intensity variation of the filtered
image around the gero crossing when traversed along a particular direction. They are said
to have a successful match if a zero-crossing with the same sign is found within a specified
disparity range. Matching is then attempted at the next higher frequency. Any local area
of the higher frequency channel with less than 70% successful matches is declared “out of
range”. Regions that are out of range require eye vergence movement, a relative adjustment
of the position between corresponding local areas of the left and right eye image. In order

to determine in which direction the local area should be shifted, the “majority disparity” ¢

4The process of determining the “majority disparity” involves histogramming, where each point in the area
votes for its disparity. The disparity value with the maximum number of votes is selected as the “majority
disparity”
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within the corresponding area of the low frequency tuned channel is computed. Depending
on whether the majority of the disparities lie to the left or to the right, the local area is
shifted in the appropriate direction and matching is repeated. The process is repeated until
all local areas within all spatial frequency tuned channels have been processed. Grimson’s
program has been demonstrated on several random dot stereograms and natural images
with good results.

There are several problems with the Grimson control strategy. The most significant is
its failure on images with periodic features [Grim80]. Since a local area of a high spatial
frequency tuned channel only requests vergence movement when it is locally dissatisfied,
and any one of a number of possible alignments will satisfy it in an image with periodic
properties, different initial vergence positions produce different results. No attempt is made
to reconcile the local definition of disparity with conflicting estimates provided by more
global sources (i.e., those provided by neighboring areas or other chanpels). Additionally,
gince vergence is realized physically by eye movement, and since different local areas can
simultaneously make conflicting requests of the eye movement resource, questions have
been raised about its adequacy as a human model [Will85].

Mayhew and Frisby propose that computation of correspondence in stereopsis is closely
linked to the construction of a symbolic description of image intensity changes occuring
at different spatial scales, called the “raw primal sketch” [Mayh81]. Central to Mayhew
and Frisby’s theory is the notion of “spectral continuity” proposed by Marr and Hildreth
[Marr80]. This is similar to the ideas described in 2.4. The spectral continuity constraint
states that disparity of the primal sketch token should remain relatively constant over

a range of spatial frequencies. Mayhew and Frisby suggest that matches that preserve
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spectral continuity and “figural® continuity (unbroken gero crossing contours) should be
selected over matches that do not.

The notion of spectral continuity has recently been incorporated in a vergence strategy
that attempts to address some of the problems inherent in Grimson’s control strategy
[Wilig5]. In Williams’ implementation, the left and right images are moved relative to
each other in a single uniform movement. Matching is repeated at periodic intervals;
matches within the higher frequency channel are accepied valy if they agree with the
“majority disparity” within the corresponding area of the ucxi iower frequency. Matching
within a local area of a spatial frequency tuned channel is viewed as taking opportunistic

advantage of a vergence movement that is controlled at a global level.

4.5 Obtaining 3-d descriptions

Most of the correspondence techniques provide only a depth map, i.e., a specification of
the depth of each point in the image. In a practical system, it may be more useful to
obtain information about 3-d surfaces - their shape, extent, location and orientation in
gpace, or a volumetric description of the objects in the environment.

The following review of 3-d representations and how they relate to stereopsis is based
on an excellent overview of 3-d object recognition provided by Paul Besl and Ramesh Jain
[Besl85).

The major categories of object representations are the wire-frame representatson, which
consists of vertices and connecting edges, the constructive solid geometry description, which
specifies objects as a combination of volumetric primitives such as cones and cylinders, the

spatial occupancy representation, which specifies the space occupied by a particular object,
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and the surface boundary representation, which mathematically specifies the shape of the
surfaces. In some cases, it is convenient to represent the object in terms of its appearance
from a set of views.

The issue of how to obtain these models from the depth information is an open prob-
lem. Besl and Jain survey a number of efforts to convert depth map information to one
or another of these models. There have been attempts to segment depth-maps, locate
discontinuities in the depth map, locate 3-d edges and junctions from depth maps, and
describe depth-map segments as planar or other polynomial surfaces. A complete survey

and bibliography can be found in [Besl85).

4.6 A few remarks

In certain ways stereopsis is a simpler problem than motion, since the relative location and
the orientation of the cameras is under the control of the user, or can be predetermined.
This knowledge provides additional constraints that simplify the search for the correspon-
dence of image events. However, even in this simpler case, there are few attempts to

extract 3-d information from the depth maps and to integrate depth information in prac-

tical real-time systems.

5 CONCLUSION

This chapter has provided an overview of some of the issues involved in stereopsis and
motion analysis in computer vision. In this section, we summarize the major aspects of
contemporary approaches, and discuss possible next steps in the development of these

areas of research.



The major aspects of contemporary approaches are:

1. The important results in both motion and stereopsis have contributed towards a

better understanding of the geometry of disparity and optic flow fields.

2. The major problem in stereopsis is the correspondence problem, since the knowledge

of the relative camera geometries simplifies the interpretation of disparity data.

3. In motion, interpreting the low-level correspondence data is an equally complex prob-
lem. The emphasis nas been largely on obtaining accurate quantitative results re-
garding 3-d structure and motion. However, most of the techniques appear to be
unstable and incapable of handling a wide variety of imaging situations and different

types of motion.

4. In both stereopsis and motion the correspondence problem has been largely addressed
in terms of low-level image data such as intensity variation, points with stable image
properties, edges, and lines. Although in motion analysis some atiempts have been
made, to use larger and more complex image structures, the dependence of such

methods on good static processes has handicapped their usage.

5. Most of the motion-correspondence algorithms simply find the displacement or 2-d
velocity of a point, or its average over an area. Not much has been done to use the

change in shape of curves and regions in the image.

6. Both motion and stereopsis work has concentrated on describing the 3-d structure
of the scene by specifying the depth of the image points. Very little work has been

done to extract 3-d surface or volumetric decriptions.
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7. There is virtually no work that integrates motion and stereopsis. This seems peculiar,

since similar techniques are used in both problems.

8. Almost all of the motion work so far has concentrated on analyzing the information
from a pair of frames. Expanding this work to process a sequence of more than two

images is not a simple task.

9. Almost no attempt has been made to use higher-level control strategies to focus the
attention of the camera on locations of interest. Most of the processing proceeds in

a bottom-up fashion, from image, to motion-data, to its interpretation.

These comments focus mainly on the shortcomings of current approaches. This was
done in order to indicate the magnitude of the task ahead. In what follows, we briefly
discuss two issues — integrating motion and stereopsis, and processing a longer sequence

of images.

5.1 Integration of motion and stereopsis

Integration of motion and stereopsis arises when two cameras in a stereo configuration
move together. In his recent work, Jenkin [Jenk84] describes some possible approaches to
this problem.

At the level of the correspondence problem, the integration process can proceed in one
of three possible ways. Stereopsis can be performed before temporal matching, motion
analysis can precede stereopsis, or both can be done simultaneously. Jenkin chooses the
third approach in order to let the two processes aid each other.

His approach consists of the cyclical operation of four successive modules called static



analysis, prediction, testing and decision. Static analysis extracts monocular image fea-
tures (usually feature points of the type discussed in this chapter) and lists all potential
binocular matches of these features. The prediction module uses the static analysis as well
as the motion information from the previous frame to predict and constrain the motion of
the features. A set of hypotheses concerning the motion of the features is derived. The
testing module uses the information from the next frame to identify invalid hypotheses.
The remaining ones are used by the decision module to update the scene model and the

motion information. Details can be found in [Jenk84}.

5.2 Processing longer image sequences

There are not many examples of systems that involve processing more than two frames
at a time. Some of the correspondence algorithms can be extended to use more than
two frames in some simple way. For example, the gradient-based algorithms require the
temporal derivative of the image intensity variations at a point. This can be obtained in
some manner from a sequence of frames. Fleet [Flee84] proposes a model for a velocity
detection mechanism based on neuro-physiological data concerning cortical cells.

The matching algorithms can be extended by using a temporal form of the smoothness
constraint on the optic flow. Some discussion of this can be found in [Horn80] and [Prag83].
Although these ideas are somewhat old, it is interesting to note that there is no system
that actually incorporates any of them.

Jenkin’s work described above [Jenk84] also includes processing a sequence of images
using a prediction and verification mechanism. Another prediction-based algorithm for

processing images generated by the translation of a camera is also proposed in [Bhar85].
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These ideas are as yet preliminary. This area of research is likely to be the next important

development in motion analysis.
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