W

Intelligent Task Management using
Preconditions and Goals

Steven H. Schwartz

COINS Technical Report 86-01
January 1986

Departnient of Computer and Information Science
Uiversity of Massachusetts, Amherst
Ambherst, MA 01003

This research was supported, in part, by the Air Force Systems Command,
Rome Air Development Center, Griffiss Air Force Base, New York 1344]1-
5700, and the Air Force Office of Scientific Research, Bolling AFB, DC
20332 under contract no. F30602-85-C-0008. This contract supports the
Northeast Artificial Intelligence Consortium (NAIC). This research was
also supported by a grant from the External Research Program of Digital
Equipment Corporation.

Abstract

The current implementation of the POISE plan recognition and generation
system can be extended in several different directions: a more comprehensive
task model, a more intelligent scheduler, a structured VAX/VMS command
interface, and a non-volatile task-management database. This paper discusses
designs for these extensions and presents TASKMAN, a planning-only subset
of POISE which incorporates these designs. TASKMAN is demonstrated in
the domain of software development. The paper concludes with discussion
concerning the integration of POISE and TASKMAN, cooperative work among
TASKMAN users, and task learning.

CONTENTS
Contents
1 Introduction

2 The POISE System
2.1 Capabilities oo
22 TheTaskModel

23 RoomforCGrowth.

3 Improving on POISE
31 ANewTaskModel e e e
3.1.1 Parwmeters
312 TheTaskBody
313 Constraints L
3.1.4 The Run Description
3.2 A Task Management Database
3.3 Intelligent Task Scheduling
3.4 A Structurod VAX/VMSInterface

3.5 The User-interface

............................

4 TASKMAN
4.1 A POISE ! ubset

.............................

..............................

4.2 The Prototype

4.3 The Architecture

.............................

10
11
11
13
14
15

ii

4.31 Overview e e e e e e e e
4.3.2 The TASK MANAGEMENT Cluster.
4.3.3 The ENVIRONMENT Cluster

4.3.4 The CONTROLSTRUCTURE Cluster

4.4 The Database Management System
4.5 Tﬁe Flowof Control
4.5.1 System Initialization
4.5.2 Task Execution
453 FailureRecovery
4.5.4 The Unified Control Structure
4.6 The Test Domain: Software Development

4.7 Observations ¢ ¢ v i i it eu e

5 Further Directions

5.1 Integration with POISE
5.2 The Task Database
5.3 A Task Definition Facility
5.4 Cooperative Work
5.5 Goal-oriented Planning
5.6 Learning Better Subtask Sequences

5.7 In-depth Plan Criticism

6 Acknowledgements

CONTENTS

CONTENTS

A The TASKMAN Command Set

B Software Development Tasks

C Sample Task Descriptions

il

33

35

36

v

LIST OF TABLES

List of Figures

oW W

The Task Model. 7
The Subtask List., 9
The Task Management Database. 12
The User/Machine Communications Model. 15
TASKMAN Architecture Summary. 17
TASK.MANAGEMENT Cluster Architecture. 19
ENVIRONMENT Cluster Architecture. 20
CONTROLSTRUCTURE Cluster Architecture. 21

List of vTables

1
2

Database Realm-management Packages. 18

TASKMAN Commands. it e .. 34

1 Imntroduction

The POISE system, developed at the University of Massachusetts at Amherst, per-
forms plan recognition and generation. Plans are modeled as hierarchies of param-
eterized tasks. Task constraints restrict parameter values and control both plan
execution and task interpretation. [CL84]

POISE can be extended in several directions. Precondition and goal informa-
tion, part of the task description design, was never implemented; this information
would enable the task scheduler to operate more intelligently, as well as simplify
the description of the temporal ordering of a task’s subtasks. The interface between
task definitions and real-world tools cannot be easily modified. Task-management
data structures are not maintained across POISE scssions.

We discuss these major extensions and some minor ones. A design is pre-
sented for a planning-only subset of POISE which implements these extensions.
The TASKMAN system is a partial implementation of this design. We describe
TASKMAN’s architecture and control structure. TASKMAN is demonstrated in
the domain of software development tasks.

The paper ends with a discussion of how portions of TASKMAN, the task
database in particular, can be integrated with POISE. We also discuss coopera-
tive work on tasks, learning task sequences, and other planning issues.

2 2 THE POISE SYSTEM

2 The POISE System

2.1 Capabilities

The following introduction to POISE is taken from [CL84]:

The POISE system provides task support on the basis of hicrarchies of task
(or procedure) descriptions. Procedure descriptions specify the steps typical
to the task, the tool invocations which correspond to those steps, and their
goals. The ability to combine recognition of user actions and plans through
use of descriptions and goals gives POISE great flexibility in the kinds of task
support it can provide.

POISE acts as an intelligent interface between the user and the tools avail-
able in an office system...Three types of information are used by the inter-
face. The procedure library contains the procedure descriptions. The semantic
database contains descriptions of the objects used in the procedures and de-
scriptions of the available tools. The model of a particular user’s state includes
partial instantiations of procedure descriptions with parameters derived from
specific user actions as well as instantiations of semantic database objects.

POISE, running under VAX LISP, a CommonLisp dialect, performs two basic
activities. Given a high-level goal, POISE plans (and executes) detailed sequences
of low-level tasks. It also recognszes individual task invocations as components of

more abstract tasks and goals, and verifies that task sequences are appropriate and
meaningful. [CLLH82]

2.2 The Task Model

In the current implementation of POISE, a task definition has the following com-
ponents [LC85]:!

e name: a unique name for the task;

1A rationale for this structure appears in [HL82].

2.3 Room for Growth 3

e description: a text comment;
e icon: a symbol used in graphic task-hierarchy displays;

e is-clause: a shuffle expression [Gis81] in the EDL event description language
[BW83], describing the temporal ordering of the task’s subtasks;?

e with-clause: definitions of task attributes (parameters) in terms of subtask
parameters, constants, and semantic database objects;

e cond-clause: attribute constraints for the task and its subtasks.

The following components were included in the POISE architecture description,
but not yet implemented:

¢ precondition-clause: conditions which must be met before the task can
begin;

¢ satisfaction-clause (goal-clause): conditions which must hold when the task
finishes;

o effects-clause: world state changes caused by performing this task.

A plan is modeled as a tree-hierarchy of tasks. Nodes represent tasks which have
been performed, are in progress, or are anticipated. The tree itself is a statement
about how these tasks are interrelated. There may be numerous possible interpre-
tations of a temporal task sequence: determining the “right” interpretation is one
of POISE’s primary functions.

2.3 Room for Growth

The current version of POISE can be extended in several different directions. First,
the precondition-, goal- and effects-clauses are not implemented. This information

2A task defined in terms of subtasks is called a composite task. The opposite, a primitive
task, specifies a VAX/VMS or LISP operation (see Section 2.3).

4 : 2 THE POISE SYSTEM

would allow the task scheduler to function more intelligently. POISE could postpone
a task which should not be started, or skip one whose goals are already satisfied. If
a task does not meet its goals, POISE would assume that one or more preconditions
were not satisfied, and select appropriate remedial tasks.

The shuffle expression used in the is-clause component of the task description is
necessarily complex: it must describe the exact subtask execution sequence. This
requires fourteen distinct temporal operators. With precondition/goal information,
the is-clause can simplified significantly. In fact, it can be omitted entirely: the
scheduler is capable of choosing the proper sequence of subtasks to achieve any goal.
This paradigm, however, is wasteful in domains where standard task sequences are
frequently performed. It is thus desirable to retain the is-clause in simpler form.

There is a potential disadvantage to this scheme. A POISE is-clause simply
specifies a temporal ordering of tasks; preconditions and goals require more com-
prehensive knowledge about the nature of a task. While there is a danger of over-
looking a subtle constraint in the latter scheme, it allows a task to be (partially)
specified in terms of intuitive and first principles knowledge.

The primitive tasks — tasks which specify low-level computer operations, like
compiling a program or sending mail — are implemented in POISE’s low-level
code. It is difficult for a POISE system programmer to add new primitive tasks,
and virtually impossible for a user. [CLLH82,LC85] discuss this problem, but do
not present specific solutions.

POISE’s data structures — the task template library and task instance hierar-
chies — are maintained in dynamic LISP memory.3 This has several consequences.
The task templates must be loaded every time LISP is started. Task instantiation
hierarchies are lost when POISE terminates; a task cannot be suspended from one
POISE session to another. Assertions about the state of the world are also lost.
This information could be preserved by creating a suspended VAX LISP session,
but this is expensive in terms of both time and memory.

Another consequence of this data management paradigm is that POISE users
cannot share information. POISE cannot control sharing of objects such as files.

3A separate semantic database for managing virtual objects is currently under development by
Carol Broverman.

2.3 Room for Growth 5

Managers cannot generate reports describing their subordinates’ work status. Mul-
tiuser cooperation on a task is impossible.

The POISE planner displays the name of each subtask as the subtask is started.
However, no instance-specific information, such as parameter values, is displayed.
In addition, it is easy to lose track of which top-level task is executing.

6 3 IMPROVING ON POISE

3 Improving on POISE

We now develop a design for a task management system which corrects the defi-
ciencies discussed above. This system will more closely achieve the fundamental
desideratum:

...an intelligent interface that both recognizes and corrects local and
global errors while permitting the user to interact with the system at
many different levels of abstraction: from existing, low-level resource-
oriented commands to high-level commands that represent
non-procedural specifications of the desired activity. [HL82]

3.1 A New Task Model

To design a better task management system, we begin with a new task model. The
task is modeled as a semantic network. Figure 1 shows the task model using a
Bachman data-entity diagram. [Bac69]

A TASK has the following attributes:

e a unique name,
¢ a text description;

e a performed flag, indicating whether this instance of the task finished suc-
cessfully;

e a display run description flag (see Section 3.5).

3.1.1 Parameters

A TASK may have any number of parameters. Unlike POISE’s generic attributes,
this design uses five types of PARAMETER structures: integers, reals, strings, file
names, and (named) file contents.

3.1 A New Task Model

TASK

comprises_many

comprises_one

comprises_one

|

has_many
{requirements,
preconditions,
goals, assertions}

|

RUN.
PARAMETER TASK_BODY DESCRIPTION CONSTRAINT
is_it isa
COMPOSITE. PRIMITIVE.
SUBTASKS CALL
|
comprises_one
comprises_one
comprises.one
|
SUBTASK.
LIST STRING.DESCRIPTOR
has_many has_many
CONSTANT. PARAMETER.
STRING NAME

Figure 1: The Task Model.

8 3 IMPEOVING ON POISE

In this model, a primitive TASK represents a VAX/VMS command. When a
VAX/VMS command is executed, a status code is assigned to the DCL* symbol
$STATUS. All primitive tasks have a special PARAMETER named $STATUS;
this PARAMETER is assigned the value of its DCL namesake after the task is
performed.

3.1.2 The Task Body

The TASK BODY specifies what actions a task performs. For primitive TASKs,
the PRIMITIVE CALL structure specifies the text of the corresponding
VAX/VMS command. This text is the concatenation of CONSTANT STRINGS
and PARAMETER values. The PARAMETERs are referenced by name.

In composite tasks, the TASK BODY specifies a SUBTASK LIST (see Fig-
ure 2). This structure consists of an operator and a sequence of subtasks: the
operator specifies the order in which the subtasks should be performed. The sub-
tasks can be TASKSs (referenced by name) or other SUBTASK I.ISTs. The operators

are:

e CONCAT — all the subtasks should be performed, in the specified order;
¢ SHUFFLE — all the subtasks should be performed, but in any order;
e CHOOSE — only one of the subtasks need be performed.

This grammar is much simpler than POISE’s shuffle expressions. The simplification
is possible because of the inclusion of precondition/goal information in the task
definition.

In both templates and instances of TASKs, subtasks are represented by UNIN-
STANTIATED TASK structures. This structure is not replaced by the full
TASK structure until the subtask is actually performed. This paradigm has several
benefits. A user can define a composite task before its subtasks are defined. A

Digital Command Language, the VAX/VMS command language.

3.1 A New Task Model

SUBTASKLIST
isa is_a isa
CONCAT. SHUFFLE. CHOOSE.
SUBTASKS SUBTASKS SUBTASKS
has_many has_many has_many
TASK

!

comprises_.many

!

comprises_many

comprises_.many

SUBTASKLIST

Figure 2: The Subtask List.

10 3 IMPROVING ON POISE

task’s library definition can be changed without concern for other TASK hierar-
chies. Some subtasks of a composite task may never be performed; resources are
saved by avoiding needless database operations.

3.1.3 Constraints

Constraints are boolean expressions which control task execution and restrict pa-
rameter values. There are two classes of constraints. Explicit constraints describe
tangible conditions, i.e., which can be observed by the computer. Implicit con-
straints describe conditions which cannot be measured directly, but are arbitrary
statements about the state of the world. An implicit constraint is asserted by post-
ing it to a JOURNAL (see Section 3.2), and negated by deleting the corresponding
JOURNAL entry.

A CONSTRAINT has a TYPE attribute and a set of ARGUMENTS, which
can be CONSTANTs, PARAMETERs, or SUBPARAMETERs (PARAMETERs
of subtasks). If the TYPE is known to be explicit, the CONSTRAINT can be
evaluated by applying an appropriate function to the ARGUMENTS. Otherwise,
the CONSTRAINT is considered implicit: it is true if it has been asserted more
recently than it has been negated.

A task can use constraints in four different ways:

e PRECONDITIONS are CONSTRAINTSs which must be true in order to
start a task. If any precondition is false, the task cannot start. Note that a
precondition may become false after the task begins.

e REQUIREMENTS are CONSTRAINTSs which must be true while the task
is in-progress. Only explicit constraints may be specified as requirements. If
a contradiction arises between two REQUIREMENTS, the task management
system should recover gracefully.

e GOALS are CONSTRAINTs which must be true when a task concludes
successfully. If any goal is false, the task is not considered successful; again,
the system should invoke a recovery procedure. Note that, for primitive tasks,

s

3.2 A Task Management Database 11

the $STATUS parameter must be odd, meaning a successful VAX/VMS return
code, in addition to the declared goals.

e ASSERTIONS are implicit CONSTRAINTSs which are declared to be true
when a task concludes successfully, i.e., after the goals are found to be true.
A negate assertion revokes a specified assertion.

3.1.4 The Run Description

A RUN DESCRIPTION describes an instance of a task. Unlike the text de-
scription, the run description can reference parameters. For example, a COM-
PILE_PASCAL task might have, “Compiles a PASCAL program,” as its text de-
scription; the corresponding run description would be, “compiling program
FLOATAVG.” The run description thus informs the user what a task is actually
doing.

3.2 A Task Management Database

The task model developed in Section 3.1 is the basic structure of a non-volatile
database. The general database structure is illustrated in Figure 3.

The database is divided into three realms. The TASK LIBRARY realm con-
tains TASK templates. The PUBLIC CATALOG contains templates for TASKs
available to all users. In addition, each user has his own CATALOG for personal
TASKs. Users can easily share TASK templates if the owner grants permission.

The PENDING TASKS realm contains instantiations of in-progress TASKs.
Each user has an AGENDA, which contains his pending TASKs. Users can share
their work by transferring TASKs from one AGENDA to another. When a task
finishes or is aborted, the corresponding structure in PENDING TASKS is deleted.

The USER JOURNALS realm contains a JOURNAL structure for each
user. Recall that implicit constraints (see section 3.1.3) cannot be evaluated directly

12

3 IMPROVING ON POISE

f

N

PUBLIC.
- CATALOG

CATALOG

CATALOG

AGENDA

AGENDA

AGENDA

KTASK.LIBRARY J\PENDING_TASKU\USERJOURNALS /

JOURNAL

JOURNAL

JOURNAL

Figure 3: The Task Management Database.

1]

3.3 Intelligent Task Scheduling 13

When a task asserts an implicit constraint, a copy of the CONSTRAINT® is posted
to the user’s JOURNAL. If a CONSTRAINT is revoked (by asserting a negate

CONSTRAINT), it is removed from the JOURNAL. A task evaluates the truth of
an implicit constraint by checking for its presence in the JOURNAL.

With this paradigm, a user can easily define new tasks. He edits a task definition
language program, then loads the definition into his personal catalog. If he has
appropriate privileges, he can load the task definition into the PUBLIC CATALOG,
or copy definitions from other users’ CATALOGS. A personal task definition would,
of course, override a PUBLIC CATALOG definition.

3.3 Intelligent Task Scheduling

The use of preconditions, goals, and implicit constraints (assertions) allows this task
management system to schedule tasks more intelligently than POISE’s planner. The
preconditions prevent a task from starting before conditions are appropriate. The
goals provide precise criteria for successful task performance: if the goals (and
assertions) are already true, the scheduler can skip the task altogether.

A task’s failure to complete successfully may be due to goals that are not
achieved, requirements that are violated, or implicit preconditions that are not
really true. When a task fails, the scheduler searches for remedial tasks whose goals
or assertions include one or more of the problematic constraints. A TASK tem-
plate index, using goal/assertion constraints as pointers, can save much time in this
search process. The index, however, is not a critical feature.

The most likely candidates for failure recovery are tasks which are part of the
active top-level task; however, any task in the task library is eligible. Primitive
tasks are generally preferred to composite tasks. The remedial task may be in-
voked automatically, or after the system queries the user. If more than one task is
identified, the user is asked to select one.

Preconditions and goals are particularly useful with the SHUFFLE and

5All parameter and subparameter references are posted as CONSTANTs. If a CONSTRAINT
to be posted contains a reference to an unassigned (valueless) parameter, the CONSTRAINT is not
posted and the user is notified.

14 3 IMPROVING ON POISE

CHOOSE operators (see Section 3.1.2). The constraints provide selection crite-
ria for choosing the (next) subtask to perform.

The task definition in this design is thus a partial solution. [DLC85] It does
not specify precisely which steps will achieve its goals. It does contain sufficient
information to construct a solution, and suggests one solution (the task body).
This solution, however, is non-binding: the scheduler may select a totally different
series of step (or none at all), and still satisfy the specified goals. Davis and Chien
suggest that such partial plans “...are responsible for much of the efficiency of
human problem solving.” [DC77]

The template can also be considered to describe a scenario:

...a set of “snapshots” of the future that outline possible courses of ac-
tion, actions of foreign processes, and their consequences. This scenario
can then be used to decide courses of action, outline contingency plans
or force reexamination of goals set in the problem statement. [WR82]

3.4 A Structured VAX/VMS Interface

A primitive task can specify any VAX/VMS command. Some commands require
user input; some produce output. All return a DCL status code when they finish.
The task management system may need to assert different levels of control over
user <= VMS interaction for various commands.

Figure 4 is a model for a structured user/machine interface. The Agent, a sep-
arate process which executes commands, communicates with the task management
system via a set of virtual mailboxes. The user communicates directly with the task
management system, but can only speak to the Agent via the mailbox interface.
The task management system controls the mailbox interface, restricting user/Agent
communications to an appropriate level for each command.

3.5 The User-interface 15

Task Management System

rF— — — 9
The User >
| Mailboxes

1
b —_— - Jd

y

The Agent

TT

Figure 4: The User/Machine Communications Model.

3.5 The User-interface

The task management system responds to a small set of commands, listed in Ap-
pendix A. The user starts a task by naming it. He can interrupt the task by
pressing CONTROL-C, which suspends the task and immediately returns the user
to the command-processor. The suspended task is assigned a number, which can be
used to continue or abort the task. Several tasks may be pending simultaneously,
though only will can be active at a time.

The top line of the user’s screen is reserved for the run description of the active
top-level task. The second line displays the run description of the current subtask.
These two lines are continually updated while a task is executing, provided constant
information about task execution.

Pressing CONTROL-L clears and redraws the screen. This is useful for erasing
VAX/VMS broadcast messages and other unexpected displays. The CONTROL-L
key may be used while performing a task without interrupting it.

16 4 TASKMAN

4 TASKMAN

4.1 A POISE Subset

The system design developed in Section 3 was used to create the TASKMAN Task
Management System. Our aim is show how POISE can be extended in particular
directions. We have thus concentrated on developing POISE’s planning capabilities
and omitted the plan recognition facility. Also absent are some of POISE’s more
aesthetic features: the menu facility; the graphic task-hierarchy display; the natural-
language parsing and generation facilities. In their place, we have constructed a
simple, yet powerful command system for manipulating multiple pending tasks.

4.2 The Prototype

This section describes a prototype TASKMAN system. This version includes most
of the features described in Section 3. The following differences should be noted:

e The SHUFFLE and CHOOSE subtask-list operators (Section 3.1.2) are not
implemented.

¢ TASK CATALOGES (Section 3.2) are not implemented. All TASK templates
are stored individually in the TASK LIBRARY and are available to all users.
Users cannot define their own tasks.

o There are no facilities for multiuser cooperation on a TASK.

o The user is directly connected to the VAX/VMS interface mailboxes (Sec-
tion 3.4) while performing primitive (sub)tasks.

4.3 The Architecture 17

CONTROL.STRUCTURE

TASK.

MANAGEMENT ENVIRONMENT

Figure 5: TASKMAN Architecture Summary.

4.3 The Architecture
4.3.1 Overview

One of the primary objectives of this project is to create planning technology which
can be integrated with POISE (see Section 5.1). Accordingly, a major objective
of the architecture is to isolate this technology — constraint enforcement, agenda
management, task scheduling — from other parts of the system.

TASKMAN is implemented in VAX LISP, a dialect of CommonLisp. The ar-
chitecture can be viewed in terms of three major clusters of VAX LISP packages
(Figure 5). The TASK_.MANAGEMENT cluster implements various data struc-
tures and includes the interface to the database management system. The ENVI-
RONMENT cluster controls the user-interface and the VAX/VMS Agent (see
Section 3.4). It also provides an online documentation system, a terminal script-
ing facility, and various low-level I/O routines. The CONTROL_STRUCTURE
cluster contains the system initialization routines, the command processor, and the
task scheduling/execution system. Each cluster will now be described in detail.

18 ' 4 TASKMAN

Table 1: Database Realm-management Packages.

PACKAGE REALM TOP-LEVEL STRUCTURE
TASK.LIBRARY TASKLIBRARY CATALOG

AGENDA PENDING.TASKS AGENDA

JOURNAL USER.JOURNALS JOURNAL

4.3.2 The TASKMANAGEMENT Cluster

The TASK MANAGEMENT cluster, detailed in Figure 6, implements all data
structures related to TASK management. Each of the three packages referenced
by the CONTROLSTRUCTURE cluster — TASK_LIBRARY, AGENDA, and
JOURNAL — provides access to one of the three database realms and implements
the top-level structure in that realm (see Table 1). The CONTROL.STRUCTURE
also accesses the TASK and DBMS packages to facilitate task execution.

The TASK structure exists in both the TASK_LIBRARY (as a template) and
the PENDING._TASKS realms (as an instance); thus, the TASK package is refer-
enced by both TASK.LIBRARY and AGENDA. Similarly, a CONSTRAINT can
belong to either a TASK (as part of the task’s definition) or the JOURNAL (as
an implicit assertion). Note that TASK references JOURNAL directly in order to
efficiently determine whether implicit constraints are posted. PARAMETERs and
CONSTANTSs are elements of CONSTRAINTS as well as other task structures. All
TASK elements not explicitly mentioned here — PRIMITIVE CALL, SUBTASK
LIST, RUN DESCRIPTION — as well as UNINSTANTIATED TASKSs, are man-
aged by the TASK package.

The DBMS package is the interface to the database management system (de-
scribed in Section 4.4). The database manager is not directly accessible from VAX
LISP; a- PASCAL procedure serves as an intermediary. Database commands are
text strings; a VMS integer status code is returned.

The work-area, used for passing data to and from the database manager, is im-

4.3 The Architecture

- T T T /= = /- /= == = = = = e - e e e e - |
| CONTROLSTRUCTURE
e e e e — — — —_—— e
‘ -
TASK.)
LIBRARY AGENDA
T
L A
TASK
1 1 \—] JouRNAL
L
CONSTRAINT
PARAMETER CONSTANT
L L 1 L
DBMS

Figure 6: TASK. MANAGEMENT Cluster Architecture.

19

20 4 TASKMAN

r— == == == = == = - - - = - - - 9
I CONTROL.STRUCTURE |
T L] [
TERMINAL SCRIPT VMS.AGENT
DEVICE. INPUT.
TERMINAL OUTPUT .

Figure 7. ENVIRONMENT Cluster Architecture.

plemented as an alien-structure. This is an aggregate data structure defined as a
block of VAX/VMS memory. The DBMS package provides machine-independent
work-area access functions for other packages in the TASK.MANAGEMENT clus-

ter.

4.3.3 The ENVIRONMENT Cluster

The ENVIRONMENT cluster (Figure 7) provides a structured interface to
VAX/VMS and the user. This cluster has three major components:

The VMS_AGENT package controls the VMS Agent and its mailboxes (see Sec-
tion 3.4). This includes functions for transmitting VAX/VMS commands generated
from primitive tasks and interpreting the resulting output.

The SCRIPT package provides a facility for recording terminal interaction dur-
ing the TASKMAN session. INPUT_OUTPUT implements file-system-related func-
tions for SCRIPT (as well as the CONTROL_STRUCTURE cluster).

4.4 The Database Management System 21

COMMAND EXECUTION

Figure 8: CONTROLSTRUCTURE Cluster Architecture.

The TERMINAL package manages the terminal screen, including the RUN
DESCRIPTION display. It also provides a screen-oriented file browser. DE-
VICE_.TERMINAL translates generic screen functions (e.g., “clear-to-end-of-line”)
into device-dependent command sequences.

4.3.4 The CONTROL.STRUCTURE Cluster

The CONTROLSTRUCTURE cluster is TASKMAN’s operating system. It is
divided between two packages.

The COMMAND package contains TASKMAN’s top-level control code. This
includes the initialization and shutdown sequences, the command processor, and
the commands listed in Table 2. This package also maintains the variables which
are manipulated with the SET command.

The EXECUTION package contains the task scheduling facility and the code
which performs tasks.

4.4 The Database Management System

The database manager is VAX-11 DBMS, a CODASYL-compliant system. The
database schema is maintained in VMS’s “Common Data Dictionary”; data struc-
tures are distributed among four VMS files.

The database schema is completely independent of the task domain; under nor-
mal conditions, it never needs modification. The schema fully defines the realms

99 4 TASKMAN

and the data structures described in Section 3. Note that there is no intrinsic dif-
ference between a TASK template and a TASK instance; they are distinguished by
realm.

DBMS provides checkpointing of database transactions and allows controlled
sharing with protection of data integrity. Optional subschema definitions permit
database enforcement of TASKMAN user classes.

There are several interfaces to the DBMS system. TASKMAN calls a subroutine
which dispatches on text commands and returns a VAX/VMS integer status code.
The most useful status codes are exported as global constants from the DBMS
package. Any package which accesses the DBMS package can thus perform arbi-
trary database operations. It is each VAX LISP function’s responsibility to only
manipulate appropriate database objects.

4.5 The Flow of Control
4.5.1 System Initialization

TASKMAN is started by calling the (taskman) function in the COMMAND pack-
age. The screen is immediately cleared, and displays “start-up” RUN DESCRIP-
TIONs. The TASKMAN control-keys are bound to their functions, the VMS Agent
is started, and the user’s AGENDA and JOURNAL are located in the database.
Any pending tasks are then listed on the screen.

Control now passes to the command processor. Commands typed by the user
invoke corresponding functions in the COMMAND package. These may, of course,
call appropriate routines in other packages.

4.5.2 Task Execution

When the user invokes a new task, a copy of the template is instantiated in the
PENDING TASKS realm and connected to the user’s AGENDA. Control trans-
fers to the EXECUTION package, which initializes the task’s parameters. The

4.5 The Flow of Control 23

preconditions of this new task (and its parent task, if any) are examined as pa-
rameters are modified: discrepancy activates the failure-recovery code (described in
Section 4.5.3).

Next, the goals and assertions are checked. If these are all true, the task is
averted:® it is marked “successfully performed,” and the scheduler selects the next
step to perform.

Now the preconditions are checked: if any precondition is false, the task cannot
begin. A top-level task is suspended; for any other task, the failure-recovery facility
is activated.

The task body is now performed:

e primilive tasks: the corresponding VAX/VMS command is sent to the VMS
Agent. The user’s terminal handles any required input or resulting output.
When the command finishes, its status code (returned by the Agent) is stored
in the $STATUS PARAMETER.

o composite tasks: the scheduler selects a subtask according to the subtask list
operator. For the CONCAT operator, each subtask is performed in sequence.
SHUFFLE subtasks are performed in arbitrary order until all succeed; if no
unfinished subtask can be performed, the failure-recovery facility is activated.
For the CHOOSE operator, the scheduler only performs one subtask; failure
recovery is used only when no subtask can be performed successfully.

Precondition/goal information is used to schedule subtasks intelligently, as
discussed above and in Section 3.3. In particular, this information is used to
choose among subtask alternatives. SHUFFLE subtasks whose preconditions
are not satisfied are delayed until other subtasks are performed. CHOOSE
subtasks with unsatisfied preconditions are not even considered.

The goals are again checked when the task body finishes. If any goal is false,
failure recovery is started; otherwise, all assertions are posted to the user’s journal
and the task is marked “successful.” The scheduler now selects another subtask.

SIf no goals are specified in the task definition, the task will not be averted, since it is not known
what the task accomplishes.

24 4 TASKMAN

When a top-level task finishes successfully, its entire PENDING TASKS structure
is deleted, and the user returns to the command processor.

The user may interrupt an active task (or TASKMAN command) by pressing
CONTROL-C. Control immediately returns to the command processor. The active
task is now pending. It can be continued or stopped with an appropriate command.
If not explicitly stopped, it will remain pending indefinitely.

4.5.8 Failure Recovery

Execution may be thought of as a process of pulling the nonlinear plan through
a hole that can only accept one step at a time. As each step is pulled through,
the remaining plan is deformed into a new structure. [Sac77]

We mentioned earlier (Section 3.3) that the task definition represents a partial
solution: the actual subtask sequence invoked by the scheduler may differ signifi-
cantly from the original task body. We have just described (Section 4.5.2) how the
scheduler uses constraint information to refine the subtask sequence specified in the
task template. Now we will examine how TASKMAN responds when this subtask
sequence fails entirely.

Section 4.5.2 mentions several situations in which failure to satisfy constraints
precludes following the usual subtask sequence. The failure-recovery mechanism
resolves the difficulty by selecting one or more tasks whose goals or assertions sat-
isfy the problematic constraints. These tasks are inserted into the task instance
hierarchy” under the CONCAT operator and executed. This should permit the
scheduler to reexecute the task which failed.

TASKMAN uses several heuristics to identify and assign priorities to remedial
tasks. The underlying criteria are relevance to the current task and execution cost.
The heuristics:

e The current task hierarchy is searched first.

7The task template is not affected; but see Section 5.6.

4.5 The Flow of Control 25

e Within the current hierarchy, the failure-recovery mechanism will first look
for a task in the current subtask list, then in the parent subtask list, and so
on until the top-level task is reached. Other subtask lists are then searched
in depth-first order.

e Within a CONCAT expression, earlier-scheduled tasks are preferable to later
ones. Within other subtask lists, there is no inherent preference.

o If a task specifies one of the problematic constraints as a precondition, the
task is immediately removed from consideration.

e If no remedial tasks are identified within the current task hierarchy, the entire
task library is searched.

e Once a set of tasks has been identified, primitive tasks are ordered before
composite tasks.

If only one candidate is identified, the user is asked to confirm its execution.
Otherwise, the three most preferable tasks are presented to the user in 2 menu. He
may select a menu option, “scroll” the menu to see the other candidates, or suspend
execution of the top-level task.

4.5.4 The Unified Control Structure

It is now clear that TASKMAN’s control structure does not firmly separate the plan
construction and plan execution steps. The scheduler expands each “node” of the
task hierarchy (from an UNINSTANTIATED TASK to a full TASK structure) when
that node is needed. The failure-recovery mechanism, a logical part of scheduling, is
invoked as needed during execution to alter the basic plan structure. This concurs
with Sacerdoti:

The basic strategy of hierarchical planning is to create a cheap, if incor-
rect, plan by throwing much information away. Then the cheap plan is
expanded into a more detailed plan. The process of expansion continues,
building ever more detailed plans until a sufficiently accurate one has
been built. [Sac77]

26 4 TASKMAN

The criteria used by the scheduler and failure-recovery mechanism effectively
constitute planning critics [Sac77). These critics refine the partial solution (Sec-
tion 3.3) during task execution, developing a structure appropriate for this instance
of the task.

4.6 The Test Domain: Software Development

Bonar and Soloway [BS83] discuss programming as essentially a planning process.
The entire software development process is a particularly interesting planning do-
main because of its non-algorithmic nature. A programmer edits his source code
“some number” of times before the code compiles successfully. He then performs
several test-and-edit cycles. Some tests will require prior preparation of external
procedures or data files. The programmer may, in fact, be developing several pro-
grams concurrently, jumping from one task to another.

Obviously, software development cannot proceed in totally arbitrary fashion.
There are inherent constraints, such as the linker requiring object code. There can
also be artificial constraints: a manager requires that a user requirements document
be submitted before design begins; programs which manage financial transactions
must compile without any errors, even informational messages.

The critical feature in a software development environment is flexsbslity. Cre-
ating software is not a linear task. A good development environment guides the
programmer through his work. It provides for deviation from the normal “tool
path” when appropriate, even mandating such deviation when necessary. Impor-
tantly, the environment does not penalize the programmer for these deviations, by
making him remember “where he was” and retype commands.

To do all this, the environment needs to know the nature of the programming
task. This includes the nature of the individual tools and how they interact. It also
includes the ability to record the status of ongoing development tasks.

The software development domain is well suited to TASKMAN, since software
tasks can be represented as a series of computer commands. These commands can
include mail transmission, database operations, and text processing, in addition to
software manipulation. This domain was therefore chosen for testing TASKMAN.

4.7 Observations 27

We have written task descriptions in which TASKMAN models a simple soft-
ware development environment. This environment supports the basic steps of the
entire software development process. Emphasis was placed on using constraints to
pass information among tasks and control scheduling. The tasks are described in
Appendix B.

4.7 Observations

The POISE design provides for distinguishing among multiple instances of a task
within a subtask hierarchy, e.g., several EDIT’s as subtasks of MODIFY_LIBRARY.
There is no provision for doing this in TASKMAN. This does not reduce the set of
definable tasks, since arbitrary portions of a subtask hierarchy can be redefined as
independent tasks.

It #s possible that the failure-recovery mechanism will select a remedial task
which is already within the top-level task’s hierarchy, leading to ambiguous inter-
pretations of “subtask X.” Excluding extant subtasks from the set of remedial tasks
could lead to irrecoverable situations. This issue deserves further study.

28 5 FURTHER DIRECTIONS

5 Further Directions

5.1 Integration with POISE

TASKMAN has concentrated solely on improving the planning aspect of POISE.
A substantial portion of POISE is concerned with task recognition, a multifaceted
topic. POISE typically maintains several possible interpretations for a series of task
instances. Each interpretation is modeled as task hierarchy; the root task represents
the user’s highest-level goal. As each task is performed, the POISE interpreter tries
to connect it to an interpretation where the task is expected. If the task cannot
be integrated into any existing interpretation, a new interpretation is constructed.
During this recognition process, task parameters are propagated up and down the
interpretation hierarchies. Parameter constraints serve as additional criteria for
selecting the “correct” interpretation.

This process will generally lead to an abundance of possible plan interpretations.
POISE’s focuser selects the most likely interpretations, based on several planning

heuristics. As recognition proceeds, interpretations will shift into and out of the
focus set. [ML83]

The recognition facility would unquestionably benefit from adding precondition
and goal information, as well as journals containing implicit constraints. This in-
formation could substantially reduce the size of the focus set as well as the set of
possible plan interpretations,

Combining POISE and TASKMAN is [pardon the expression] a substantial
task. It includes, among other things, interleaving two plan schedulers, POISE’s
interpreter and focuser, TASKMAN’s failure-recovery facility, and two parame-

ter/constraint management systems. It is more advisable to integrate desired por-
tions of TASKMAN into POISE in stages.

5.2 The Task Database

The task management database is a significant aspect of TASKMAN. It is perhaps
the easiest feature to add to POISE. Each POISE form which manipulates a TASK

5.3 A Task Definition Facility 29

structure (or substructure) is translated to a call to an appropriate routine in the
TASK.MANAGEMENT cluster. The database schema would be modified to in-
clude POISE’s task-description syntax. Any code to be added would be concerned
solely with data management, not task execution; the overall database integration
is thus substantial, but not technically complex.

5.3 A Task Definition Facility

Section 3.2 discussed how TASKMAN users can define their own tasks. This is, in
fact, how TASK templates are constructed: after TASKMAN is interrupted by a
VAX LISP breakpoint, task definitions, written as LISP function calls, are loaded
from a file. A formal task definition facility should feature a more structured task

definition language and a load command. Security features should prevent users
from casually modifying the PUBLIC CATALOG.

5.4 Cooperative Work

The use of a common task-management database allows users to cooperate on tasks.
In the simplest version of cooperative work, each task belongs to one user, who can
dispose of it as he pleases: he can work on the task, abort it, or transfer it to
someone else. Task ownership is represented by the AGENDA to which the TASK
is connected: ownership is transferred by simply reconnecting the TASK to another
AGENDA. The TASK-passing mechanism must also deal with journal entries re-
lated to the task, including file names which refer to different files in different users’
environments. This corresponds to Chang’s concept of a weak participant system:
“...users interact with a system in the performance of shared tasks without essential
communication between them.” [Cha85)

TASKMAN is also capable of more complex forms of cooperation. The con-
trol structure could use a negotiations management tool [MC85] to directly control
user participation in task execution. TASKMAN commands, or perhaps the tasks
themselves, would mediate the necessary interuser communications. Distributed
planning and execution become feasible objectives.

30 5 FURTHER DIRECTIONS

5.5 Goal-oriented Planning

TASKMAN provides procedure-oriented planning: the user selectsa task to perform.
[LC85] also discusses goal-oriented planning: the user specifies the goal(s) he wants
to achieve, and the system invokes one or more tasks to achieve those goals.

Goal-oriented planning can be added to TASKMAN very easily. In one scenario,
the user issues an achieve command. TASKMAN queries for a goal set, a named list
of implicit constraints. The scheduler instantiates a new TASK with the specified
name and GOALS. The failure-recovery facility then selects appropriate subtasks
to achieve these goals.

5.6 Learning Better Subtask Sequences

Nilsson [Nil73] characterizes two broad classes of events that an execu-
tion monitor must handle: failures and surprises. Failures occur when
the execution of an action fails to update the real world in the way that
the model of the action updates the model of the world. Surprises occur
when some fact, unrelated to the current action, becomes known. Sur-
prises may indicate that some future steps will be unnecessary, or that
they will no longer be appropriate, or that they will fail. [Sac77]

The failure-recovery mechanism modifies individual TASK instances to deal with
unexpected situations. This is sufficient for a surprise event. However, for a fail-
ure, as defined by Nilsson, we may want TASKMAN to permanently revise the
task template. This can be a straightforward modification of the task body (e.g.,
removing a subtask which is always skipped) or a refinement of the constraints

(insertion/deletion). It can also be a more exotic change: renaming a user-written
task which is shadowing its namesake in the PUBLIC CATALOG.

A learning facility should be modeled as an execution critic, monitoring the
scheduler. When any exception occurs, whether or not the failure-recovery mech-
anism is invoked, the critic decides whether a template change is warranted. In
practice, one exceptional event does not warrant a permanent change. An effec-

5.7 In-depth Plan Criticism 31

tive critic would maintain a history of significant exceptions, using event frequency,
exception severity, and recovery expense to determine what action to take.

Two users may display different execution patterns for the same task. A learning
facility can customize a shared task to each user, depositing new TASK templates
in each user’s personal CATALOG.

5.7 In-depth Plan Criticism

The control structure criticizes the task hierarchy using the characteristics of the
top-level task. This implicitly assumes that these characteristics — subtask sequen-
ces, preconditions, goals — are consonant with the characteristics of the subtasks
themselves. If this is not the case, the control structure will modify the execution
sequence accordingly.

Sacerdoti [Sac77] discusses constructive critics which examine an entire plan
hierarchy. These critics look for inconsistencies and contradictions among the sub-
tasks. A task is scheduled on the basis of its neighbors’ characteristics, as well as its
own. This in-depth criticism might be helpful for TASKMAN. There is a trade-off
of time spent on plan criticism vs. time consumed executing unnecessary, possibly
destructive tasks.

32 6 ACKNOWLEDGEMENTS
6 Acknowledgements

Many people had a hand in this project. The initial design of TASKMAN was
done with Bruce Croft. Victor Lesser helped with the design and implementation
of the task management structures, and provided information on constraints. Jack
Wileden and Alex Wolf furnished material on software development environments.
Dan Corkill and Tom Gruber were indispenable in helping the author master the
intricacies of VAX LISP. Larry Lefkowitz answered numerous questions on POISE
task structures; Roger Thompson provided aid with database management. Both
Lefkowitz and Thompson helped with the preparation of this report. The author
again thanks Bruce Croft and Jack Wileden, for lending their time and support to
the TASKMAN project.

A The TASKMAN Command Set

The TASKMAN system is intended for intelligent task execution; users are not
expected to use TASKMAN’s “operating system” for much work. Accordingly,
TASKMAN provides a small set of commands, mostly oriented towards task man-
agement.

The command processor recognizes TASK names as commands to start a new
instance of the corresponding task. If parameter values are required, TASKMAN
will query the user. The user can suspend the currently-active task by pressing
CONTROL-C. Any number of tasks may be pending (suspended) at a time; each
pending task is assigned a number. A pending task can be restarted from the point
of interruption® by specifying its number as a command. A task automatically
deletes itself after successful completion.

The TASKMAN command set is described in Table 2. Note that using a question
mark in place of an argument generally displays a list of possible arguments.

8There is no differentiation among a task which never began, a task which was interrupted during
processing, and a task which completed unsuccessfully; all are marked as “not performed.” However,
subtasks of a composite task do retain their “performed” status when a parent task is interrupted.

When a composite task is restarted, the scheduler may start a different subtask than the one
which was executing at the time the task was interrupted.

34

A THE TASKMAN COMMAND SET

Table 2: TASKMAN Commands.

Command Description
/Argument
COMMENT Appends MESSAGE to the user’s comment file.
MESSAGE
HELP Displays general information about TASKMAN.
(also “?”)
PRINT Prints OBJECT on the default printer queue.
OBJECT
SET Assigns a value to VAR, a TASKMAN variable.
VAR Variables include: the names of the comment and
script files; the default printer queue;
the control directory (default for comment and
script files); and the working directory
(default for the user’s work files).
SHOW Displays the specified item. Possibilities include:
ITEM a list of TASKMAN commands;
the values of variables which can be SET;
the contents of the comment and script files;
a list of TASKs in the TASK LIBRARY;
a description of any particular TASK;
and a list of pending TASKs.
START The START and STOP commands begin and
SCRIPT terminate scripting of (portions of)
STOP the TASKMAN session.

SCRIPT

B Software Development Tasks

TASK NAME TYPE
DESCRIPTION

COMPILE_PROGRAM primitive

Compiles a source-language program into object code.

LINK_PROGRAM primitive
Links object code into an executable image.
RUN_PROGRAM primitive

Executes an image.
MAKE_PROGRAM composite
Creates a program.
EDIT_.PROGRAM composite
Edits a program’s source code.
EDIT.DOCUMENT composite
Edits a document’s text.

EDIT_FILE primitive
Edits an arbitrary file.

PRINT_FILE primitive
Prints a file.

PRINT_IN_OFFICE composite

Prints a file on the high-quality office printer.
LIST-FILES primitive

Displays the contents of the user’s work directory.

35

36 C SAMPLE TASK DESCRIPTIONS

C Sample Task Descriptions

Task name: LINK_.PROGRAM

Type: Primitive

Text description: Links object code into an executable image.

Parameters: OBJECT.FILE (file name; ask user for value)
THE_PROGRAM (file name)

Run description: “Linking ” THE_.PROGRAM “.”

Display subtask run description:
Yes.

Primitive call elements: “LINK” OBJECT.FILE
Preconditions:

(PROGRAM_COMPILED THE_.PROGRAM)
Requirements:

(HAS.FILE.NAME THE_PROGRAM OBJECT.FILE)
Assertions:

(PROGRAM_LINKED THE_.PROGRAM)

Task name:
Type:

Text description:
Parameters:

Run description:

MAKE.PROGRAM

Composite

Creates a program.

SOURCEFILE (file name; ask user for value)
THE_.PROGRAM (file name)

“Making program ” THE_.PROGRAM «.”

Display subtask run description:

Yes.

Composite subtasks:

Requirements:

—CONCAT—
EDIT.PROGRAM
COMPILE.PROGRAM
LINK.PROGRAM
RUN_PROGRAM
EDIT.DOCUMENT

(HAS_FILE.NAME THE_.PROGRAM SOURCE_FILE)
(EQUALS SOURCE.FILE EDIT_.PROGRAM.SOURCE_FILE)

(EQUALS SOURCE.FILE COMPILE_ PROGRAM.SOURCE_FILE)
(EQUALS THE.PROGRAM LINK_.PROGRAM.OBJECT.FILE)
(EQUALS THE.PROGRAM RUN_PROGRAM.EXECUTABLEFILE)
(HAS_FILE.NAME EDIT.DOCUMENT.TEXT_FILE THE_.PROGRAM)
(HAS_FILE.TYPE EDIT.DOCUMENT.TEXTFILE “XXX.TXT")

Goals:

(PROGRAM.LINKED THE_PROGRAM)

37

38

REFERENCES

References

[Bac69)
[BS83]

[BWs3]

[Cha85]

[CL84]

[CLLHS2)

[DCT7)

[DLCS85]

[Gis81]

C. Bachman. Data structure diagrams. ACM Data Base, 1(2), 1969.

Jeffrey Bonar and Elliot Soloway. The Bridge from Non-programmer
to Programmer. Technical Report 83-18, Department of Computer and
Information Science, University of Massachusetts at Amberst, 1983.

Peter C. Bates and Jack C. Wileden. High-level Debugging of Distributed
Systems: The Behavioral Abstraction Approach. Technical Report 83-29,
Department of Computer and Information Science, University of Mas-
sachusetts at Amherst, 1983. Appeared in Journal of Systems and Soft-
ware 3, 1983, pp. 255-264.

Ernest Chang. Participant Systems. Technical Report, Advanced Tech-
nologies, Alberta Research Council, Calgary, Alberta, December 1985.

W. Bruce Croft and Lawrence S. Lefkowitz. Task support in an office
system. ACM Transactions on Office Information Systems, 2(3):197-
212, July 1984.

W. Bruce Croft, Lawrence S. Lefkowitz, Victor R. Lesser, and Karen E.
Huff. POISE: An Intelligent Interface for Profession-based Systems.
Technical Report 82-19, Department of Computer and Information Sci-
ence, University of Massachusetts at Amherst, 1982.

P. R. Davis and R. T. Chien. Using and re;using partial plans. In
5th International Joint Conference on Artificial Intelligence, Cambridge,
MA, 1977. vol. 1.

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coher-
ent Cooperation Among Communicating Problem Solvers. Technical Re-
port 85-15, Department of Computer and Information Science, Univer-
sity of Massachusetts at Amherst, 1985.

J. Gischer. Shuffle languages, petri nets, and context-sensitive gram-
mars. Communications of the ACM, 24(9):597-605, September 1981.

REFERENCES 39

[AL82]

[LC85)

[MC85]

[ML383)

[Nil73]

[Sac77]

[WR82]

Karen E. Huff and Victor R. Lesser. Knowledge-based Command Un-
derstanding. Technical Report 82-6, Department of Computer and In-
formation Science, University of Massachusetts at Amherst, 1982.

Lawrence S. Lefkowitz and Norman F. Carver. POISE — The Archntec-
ture. 1985. Unpublished working paper.

D. Marca and P. Cashman. Towards specifying procedural aspects of co-
operative work. In 3rd International Workshop on Software Specification
Proceedings, IEEE Publishers, August 1985.

Daniel McCue and Victor Lesser. Focusing and Constraint Management
in Intelligent Interface Design. Technical Report 83-36, Department
of Computer and Information Science, University of Massachusetts at
Ambherst, 1983.

N. J. Nilsson. A Hierarchical Robot Planning and Ezecution System.
Technical Note 76, Artificial Intelligence Center, Stanford Research In-
stitute, Menlo Park, CA, April 1973.

Earl D. Sacerdoti. A Structure for Plans and Behavior. Elsevier, New
York, 1977.

Rajendra S. Wall and Edwina L. Rissland. Scenarios as an aid to plan-
ning. In Proceedings of the National Conference on Artificial Intelhgence
pages 176-180, Pittsburgh, 1982.

