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ABSTRACT

Information about the manner in which transactions access objects in a database has been
ignored by the majority of the literature on database consistency theory. Consequently, the
potential concurrency of the system is not fully exploited. In this paper, we propose a locking
scheme in which the underlying structure of the database, as well as the locking behaviour of
transactions, are both considered, thus achieving higher concurrency than is made possible by
earlier schemes. This is done while ensuring both serializability and deadlock freedom of the
system.

Intuitively, the consistency theory and the deadlock theory should be closely related
because both are theories on resource allocation. In this paper we formalize this intuition and
prove that the dependency relation developed in consistency theory is equivalent to the wait-for
relation used in deadlock theory if a locking scheme can guarantee both serializability and
deadlock freedom.
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1. Introduction

A database is said to be consistent if it meets a set of pre-specified constraints. A
transaction is a sequence of operations performed on the database such that complete execution

of .he sequence will leave the database in a consistent state if the database was consistent before
the transaction.

When a set of transactions execute concurrently, the database may be left in an
inconsistent state or some transactions may receive an inconsistent view of the database if the
operations of the transactions are not properly interleaved. To prevent this, the execution
ordering of transaction operations has to be controlled. This ordering of execution of operations
for a set of transactions is known as a schedule of the operations in the transactions.

Given that every transaction leaves the database in a consistent state if executed by itself,
then if a set of transactions are executed serially, then they will leave the database in a consistent
state and each of the transactions will receive a consistent view of the database. Such schedules
are called serial schedules. A schedule is said to be serializable if it leaves the database in a

consistent state and lets each transaction receive the same view of the database as some serial
schedule.
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Although, besides serializable schedules, there could be other (types of) schedules which
could leave the database in a consistent state and let each transaction receive a consistent view of
the database, the majority of the literature in this area concerns sufficient conditions for
serializable schedules. This paper is no exception. The reason for looking for different sufficient
conditions for the serializable schedules is twofold: some conditions may be casier to implement
than others; and some may achicve higher concurrency than others.

Eswaran et al. [Eswaran et al. 76] first gave a sufficient condition, two phase locking,
for serializable schedules. Stated simply, the two phase locking condition says that if each
transaction starts unlocking entities only after it locks all the entities it needs, then the schedules
are serializable. The two phase locking scheme guarantees the serializable schedules. However,
it could result in reduced concurrency. For example, consider the "Accounts” database in a
bank. A transaction, observing the two phase locking scheme, calculates the interest for each
account and summaries them. Using the two phase locking scheme, this transaction will have to
lock all the accounts, then release them. Meanwhile it is impossible for other transactions to run
on those accounts, even if an another transaction is willing to just follow the interests calculation
transaction (i.e., only locking an account after the interests calculation transaction has finished
using it). This suggests that if we utilize the behaviour of transactions, it should be possible to
improve concurrency. In this paper, we address this suggestion and present a locking scheme -
based on this suggestion.

[Eswaran et al. 76) formally gave a general condition for the serializable schedules: If for
a given schedule of a set of actions the dependency relation is acyclic, then the schedule is
serializable. Yannakakis [Yannakakis 84] further proved that the acyclicity of the dependency
relation under a locking scheme is a necessary and sufficient condition for the sub-schedules
(i.e., schedules involving a subset of the transactions) to be serializable. Althou gh this general
condition has been discovered for a database with arbitrary structure, a general locking scheme
which can achieve higher concurrency than the two phase scheme has not been reported.

However, research efforts in this area continued with the consideration of the underlying
structures of database systems. Silberschatz and others [Silberschatz and Kedem 80],
[Silberschatz and Kedem 82], and [Kedem and Silberschatz 83] suggest a family of non-two-
phase locking schemes for databases structured as directed acyclic graphs. In [Mohan et al. 85],
the issue of lock conversion for that family of locking schemes is discussed. Korth [Korth 82a],
[Korth 82b}, and [Korth 83] proposes non-two-phase locking schemes for database systems
with acyclic structures [Gray 78). The difference between the structures of Silberschatz er al.
and Korth is that in Korth's work, data are not associated with internal (i.e., non-terminal)
nodes, but in the former, they are. All schemes proposed in [Silberschatz and Kedem 80],
[Silberschatz and Kedem 82), [Korth 82a], and [Korth 82b] generate serializable schedules and
guarantee deadlock freedom. :

On the other hand, we not only consider the underlying structure of the database, but
also the locking and unlocking behaviour of transactions. As a result we are able to achieve
higher concurrency than the above schemes.

It is interesting to note that several locking schemes such as [Silberschatz and Kedem
80], [Silberschatz and Kedem 82], [Korth 82a], [Korth 82b] and ours can guarantee
serializability and deadlock freedom at the same time. Intuitively, deadlock theory and
consistency theory should have some tight relationship because both are based on the ordering
of the resource allocations. We prove in this paper that the dependency relation developed in
consistency theory and the wait-for relation used in deadlock theory are equivalent if a locking
scheme guarantees both serializability and deadlock freedom. This results in simpler préofs of

_the correctness of our scheme. Further, it is hoped that this result may lead an effective
combination of the two theories.

The rest of this paper is organized as follows: Section 2 defines our database and
transaction model. Section 3 deals with the locking scheme. Section 4 shows the equivalence



between the dependency and wait-for relations and proves the correctness of our locking
scheme. Section 5 compares our study and the previous work, suggests the possible extensions
and discusses the meaning of the equivalency between dependency relation and wait-for relation.

2. A Formal Transaction Model

2.1. The Structure of the Database

The database is structured as a tree. Data are associated only with the leaves of the tree
and the internal nodes represent components of the database at different granularities. For
example, a national bank's "accounts" database may consist of one sub-database for each city;
each city's database having sub-databases, one per branch in that city; each branch having one
sub-databases per account type, etc. Leaves are numbered sequentially, left to right, starting at 1
and ending at the "maximum leaf". The identity of a leaf is the number associated with it.

2.2. Ordered and Disordered Transactions

We recognize two classes of transactions, ordered and disordered. Intuitively, an ordered
transaction locks a portion of the database, that is, leaves, in the order in which they are
numbered. A disordered transaction, on the other hand, may lock data without this limitation. A
disordered transaction in this paper is the same as the traditional “transaction", as defined in
(Korth 82a] and [Korth 82b). Transactions in each class observe locking rules applicable to that
class. These rules are introduced in the next section. First, we formally define the transactions
and related terms.

A transaction is ordered, if

a) it locks leaves in the order they are numbered,

b) it unlocks leaves in the same order it locks them, and

¢) in locking internal nodes, it observes a top-down locking scheme, described in
Section 3.

The leaves locked by an ordered transaction form its range: [L, U], where L is the leaf
with minimum identity locked by the ordered transaction and U is the leaf with the maximum
identity. Thus, the range of an ordered transaction identifies the contiguous set of leaves that will

be locked by the transaction.

Associated with each sub-tree accessed by an ordéred transaction are two pairs of
bounds: The dynamic lowerlupper bounds, denoted as [DL, DU] and the static lowerlupper
bounds, [SL, SU). They are defined as follows:

a) SL, the static lower bound for an ordered transaction, is the leaf with the smallest
dentity locked by the transaction, in the sub-tree;

b) SU, the static upper bound for an ordered transaction, is the leaf with the largest
identity locked by the transaction, in the sub-tree;

¢) DL, the dynamic lower bound for an ordered transaction, is the leaf with the
smallest identity currently locked by the transaction, in the sub-tree;

d) DU, the dynamic upper bound for an ordered transaction, is the leaf with the
largest identity currently locked by the transaction, in the sub-tree.

Let SL(T) dt;,notc SL for transaction T. Similarly for SU, DL, and DU.
Notice that for a given sub-tree, the leaves in [DL, DU] are contained in [SL, SU]. Also,

the range [L, U] defined above is equivalent to [SL, SU] for the whole tree. [SL, SU] for a
given sub-tree is equal to the intersection of [L, U] and all the leaves of the sub-tree.



Example 1 Consider the tree in Figure 1. If an ordered transaction T locks leaves 4 to 7 in that
order, then we have the following:

L=4,U=7,

SL =4 and SU =7, for the sub-tree rooted at (o
SL =4 and SU = 5, for the sub-tree rooted at f;
SL = 6 and SU =7, for the sub-tree rooted at g

Suppose, T first places locks on leaves 4 and 5.
Then DL =4 and DU = 5 for the sub-tree rooted at f;
If after accessing leaf 4, T unlocks it, then

DL =5 and DU =5 for the sub-tree rooted at . []
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Figure 1: Tree Representing a Database

For disordered transactions, we assume that information about the static lower and upper
bounds of the transaction with respect to a sub-tree are available when the transaction begins

accessing the sub-tree. Because a disordered transaction can lock the nodes in [SL, SUJ in any
order, no [DL, DU] is associated with such a transaction. .

2.3. Follower Relation for Transactions

A transaction is said to be active in a sub-tree if its [SL, SU] covers more than one sub-
tree of that sub-tree. That is, it will lock (perhaps with intention locks) at least two nodes at the
level right below the root of the sub-tree. For example, transaction T in Example 1 may be active
in the sub-trees rooted at c, f, and g, but cannot be active in the tree rooted at a.

. For the purpose of controlling the execution of concurrent transactions, we define a
relationship, called the Follower Relation, denoted as FR, among the transactions in a sub-tree.
This relation holds between two transactions only if at least one of the transactions is ordered
and at least one of the transactions is active in that sub-tree. '

. The purpose of the FR relation.is to force an order among conflicting actions. Since the
locking rules for disordered Iransactions are sufficient to impose an ordering between two
disordered transactions, there is no FR relation among any two disordered transactions, Also, in



a given sub-tree, two transactions are not related by the FR relation unless at least one is active
in that sub-tree. This ensures that ordering is imposed only when needed to avoid conflicts,

When a transaction arrives at ((intention) locks) the root of a sub-tree, an FR relation will
be established between the newly arrived transaction and those which are already active in the
sub-tree: Let Ty, be an old active transaction and Tn a newly arriving transaction. We define that

if (SL(Ty) < SU(T,)) and (SU( I'p) 2 SL(Ty)) then Ty, FR T.

Thus, the two transactions are related through FR if and only if the leaves accessed by
them intersect. In addition, all transactions observe the following rule: In a sub-tree, if T; FR Tj,
then Tj can never lock a leaf which has an identity larger than or equal to DL of Tj (or SLif Tjis
disordered) until Tj leaves the sub-tree.

Note that the FR relationship propagates down the database, i.e., the tree. If in a sub-tree
T; FR Tj, then in any sub-tree of the sub-tree, either T; FR T;, or T; and Tj have no FR relation.
The latter is possible only if either T; or Tj (or neither) does not access the sub-tree. This
propagation makes it much less expensive to implement this relation in a database.

3. Locking Schemes

Here we assume that an ordered transaction typically places intention locks on non-leaf
nodes and exclusive locks on the leaf nodes that it needs to access. A disordered transaction can
however place an exclusive lock on the root node of a sub-tree if it needs to access all the leaves
of that sub-tree. We believe that extensions to our scheme to handle shared locks are
straightforward.

The disordered transactions observe the locking rules specified in [Korth 82a] and
[Korth 82b]:

a) Each disordered transaction always halts in finite time if run serially;

b) Each disordered transaction locks the nodes in the root-to-leaf order;

c) Each disordered transaction unlocks the nodes in the leaf-to-root order;

d) Each disordered transaction locks a non-root node n only if it holds a lock on the
edge (m, n) where m is the parent of n;

e) Each disordered transaction requests locks on a node n and its out-going-edges (n,
P1)s -, (0, Px) simultaneously, where P1, ---» Pk are the children of n and are
needed by the disordered transaction.

For ordered transactions, the locking rules are as follows:

a) Each ordered transaction always halts in a finite time if run serially;

b) Until it becomes active, each ordered transaction intention locks the root of sub-tree
and locks the out-going-edge simultaneously in a top-down manner;

¢) As soon as an ordered transaction becomes active in a sub-tree, it does not lock
edges any more. It locks the needed nodes of the sub-tree in the depth first order.
An ordered transaction will always intention lock an internal node, never exclusive
lock it.

In addition, both classes of transactions will observe the rule specified by FR
rclationship, that is (as stated in the previous section): in a sub-tree, if T1 FR T, then ’I"l is not
allowed to lock a leaf with an identity larger than or equal to that of DL(T5) (SL(Ty) if T2 is
disordered) until T, leaves the sub-tree. ' ,



Example 2 This example shows that the scheme devcloped in [Korth 82a] and [Korth 82b]
restricts the potential concurrency of transactions. The database consists of a two level tree of
four leaves (Figure 2).

Assume that T} wants to use data nodes d3 and d4 and that T, and T3 want to use data
nodes dj, d2, d3 and d4. Ty comes into the system (intention locks root O) before Ta. T2 comes
before T3. Here is one scenario:

t;: T; intention locks root:d (o) a?g e(cilg)cs (O, d3) and (O, dg).

t2: Tp locks d3, releases edge (O, d3).

t%: T; tries to intention lock root O and edges (O, dj), (O, dg), (O, d3), and (O, dg).
But fails, because (O, dg) is held by T;. T2 must wait until the lock on edge (O,
dg) is rekzadsed.l edge (O, ds)

: T locks dg, releases edge (O, ds).

g: T; intention locks root O and all out-going-edges (O, dy), (O, d2), (O, d3), and

(O, dg), and so on.

Figure 2: An Example Database

Note that until T; has released edge (O, d4), T2 cannot proceed, even if T, first needs to
access nodes d; and d which are not being used by T}. Similarly, T3 cannot come in until Ta
has locked all the data nodes it needs and releases ail the edges, even if T3 is designed to follow
Tz to lock all the data nodes.

Example 3 We now show how our scheme exploits the available concurrency in a set of
transactions.

_. The same transactions working on the same database as in the previous example. In
addition, we assume that T2 and T3 are ordered transactions. Our locking scheme will allow Ty
to intention lock root O and then lock data nodes dj and dz immediately after T comes into the
system. T3 is allowed to lock each data item, d to dg, as soon as T releases it. Thus, the
addition of the notion of ordered transactions and lockin g rules appropriate for them allows us to
execute more transactions in parallel than the scheme proposed in [Korth 82a] and {Korth 82b).

4. Proofs of Deadlock Freedom and Serializability

In this section, we shall prove that the locking scheme proposed in the last section
ensures deadlock freedom and serializability. We first define the dependency relation and the
wait-for relation and show that they are equivalent if a locking scheme can guarantee
serializability and deadlock freedom at the same time. Then we prove that the locking scheme



proposed in Section 3 ensures deadlock freedom. Since the dependency relation and wait-for
relation are equivalent in our locking scheme, this implies that our locking scheme also ensures
serializability.

4.1. Dependency and Wait-for Relations

Let NODES(T) be the set of nodes accessed by T. If the intersection of NODES(T;) and
NODES(T;) is not empty and for each node in the intersection, T; accesses the node only after T;

has accessed it for the last time, then we say that Tj depends on T;. This is denoted by T; > Tjor
Tj <T;.

If it is possible that a transaction T; is waiting to access a node locked by another
transaction Tj, we say that T; possibly waits for Tj, and denote it by T; PW T;.

Both the dependency and wait-for relations are fundamental to consistency theory and
deadlock theory respectively. Both theories are used for the synchronization of transactions and

determine how resources are allocated to transactions. The two theories are closely tied as
indicated by the following theorem.

Theorem 1 If a locking scheme ensures serializability and deadlock freedom, then the

dependency relation and the wait-for relation are equivalent, i.e., for all i and J» Ti<Tjif and
only if T; PW Tj.

Proof If a locking scheme ensures serializability and deadlock freedom, and Tj < Tj, then Tj

PW Tj since Tj depends on the changes made to the data by Tj and hence may have to wait until
Tj finishes using the shared resources.

On the other hand, if T; PW Tj, because of the ensured serializability and deadlock
freedom, Tj has to acquire all the resources it shares with T; before T;. This implies that Tj < T;.
0

The converse of the theorem does not always hold. In fact, we have the following
theorem.

Theorem 2 If under a locking scheme, dependency relation and wait-for relation are

equivalent, then the locking scheme ensures either both serializability and deadlock freedom, or
neither of them.

Proof Serializability requires an acyclic dependency relation; and deadlock freedom requires

an acyclic wait-for relation. If both relations are equivalent, then either both are acyclic, or
neither one is. [J

Theorems 1 and 2 are establish the relationship between consistency theory and
deadlock theory. An immediate implication is that if under a locking scheme, then two relations
are proved to be equivalent and one of the serializability and deadlock freedom is ensured, then
another is automatically guaranteed. This will simplify the proof of correctness of our locking
scheme.

4.2. Deadlock Freedom

Under our locking scheme, the following lemmas can be easily proved. The proofs are
not provided here due to the space limit.

Lemma 1 In a sub-tree, if Tj PW Tj and at least one of Tj and Tj is an ordered transaction,
then



Ti FR Tj.

Lemma 2 If Tj and T; are disordered transactions, and Tj a.cquires some nodes in the
intersection of NODES('I)i) and NODES(Tj) before Tj, then Tj acquires the root before Tj.

This lemnma is actually Lemma 4.4 of {Korth 82b].

Lemma 3 If T; FR Tj, then T; arrives at every sub-tree, in which T; and Tj share leaves, later
than Tj.

Lemma 4 If there is a waiting chain in a sub-tree
T; PW T2 PW T3 PW ...... PW T,
then T arrives at the sub-tree later than Ty,
Lemma 4 implies that the wait-for relation under our locking scheme is acyclic, hence

Theorem 3 Our locking scheme is deadlock free.

4.3. Serializability

Lemma 5 With our locking scheme, for any two transactions T; and Tj, Tj < Tj if and only if
Ti PW Ti;.

Proof The proof for the "only if" part is trivial. We just prove the "if" part.

First Tj PW Tj means that the intersection of NODES(T;) and NODES(T j) is not empty.
Assume that T; PW Tj, and let n be the node locked by Tj which T; is waiting for.

,_ If both Tj and Tj are disordered, by Lemma 2, Tj must acquire the root of the whole tree
before Tj. Because of this, for any other node in the intersection of NODES(T;) and
NODES(Tj), Tj must be able to acquire it before T;. Therefore T; < Tj.

If at least one of Tj and Tjis ordered, by Lemma 1, the fact that T; PW Tj means that T;
FR T;. From our locking scheme, because T; can never lock beyond Tj's lower bound, it is

i%uaraﬁtecd that any node in the intersection of NODES(T;) and NODES j) is acquired by Tj
Ist.

~ Theorem 4 Our locking scheme ensures serializability.

Proof Lemma 5 establishes equivalence between the dependency relation and the wait-for
relation under our locking scheme. This theorem, then, follows from Theorems 2 and 3. []

5. Conclusions

In this paper, we have presented a locking scheme for ordered and disordered
transactions. In the development of the locking scheme, we have considered the possible locking
behaviours of the ordered ransactions as well as the underlying structures of the database
system. Our scheme can achieve higher concurrency than the two phase locking scheme
(Eswaran et al. 76] and the non-two-phase locking schemes proposed in [Korth 82a] and [Korth
82b]. In fact, these locking schemes require a transaction such as our ordered transaction to lock
all edges from a node to all the children nodes accessed by the transaction even if it is not going
to access them immediately. Our scheme, on the other hand, requires locking only the nodes
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immediately needed by an ordered transaction. Our scheme achieves this while being serializable
and deadlock free.

This paper describes work currently in progress. There are many possible extensions.
For example, we have assumed only exclusive access mode to data nodes. It should not be too
difficult to extend the scheme to handle more than one access mode. Also it should be possible
to extend our scheme to deal with databases which have general acyclic graph structures as do in
[Gray et al. 75], [Korth 82a], and [Korth 82b]. One of the issues we are currently addressing is
the implementation of this algorithm in a tree structured distributed database system. Efficient
implementation of the FR relation is an important consideration here.

In this paper, we have also proved the equivalence between the dependency and wait-for
relations. We have showed how this equivalence simplifies the proof of serializability for our
locking scheme. More importantly, it reveals why locking schemes such as ours and those of
[Silberschatz and Kedem 80), [Silberschatz and Kedem 82}, [Korth 82a), and [Korth 82b] can
guarantee serializability while ensuring deadlock freedom, and vice versa. A common

characteristic inherent in these locking schemes is that the transactions are strictly “ordered"! ,
therefore, it is impossible for a transaction to “jump ahead" to another transaction if they share
some resources and the latter has acquired some. As far as we know, our result is the first to
formally establish a relationship between serializability and deadlock freedom. The establishment
of the relationship between the two theories may prove helpful in applying results from one area
to another, or in developing a uniform theory for both.
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