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“What have you lost, Mulla?”

“My key,” said Nasrudin.

“Where did you drop it?”

“At home.” 4
“Then why, for heaven’s sake, are you looking here?”
“There is more light here.”

— A Sufi Parable
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ABSTRACT

Diagnosing Problem-Solving System Behavior
February 1986
Eva Hudlicka

BS, Virginia Polytechnic Institute and State University
MS, The Ohio State University

PhD, University of Massachusetts

Directed by: Professor Victor Lesser

The complexity of man-made systems is rapidly increasing to the point where it
is becoming difficult for us to understand énd maintain the systems we build. Al
problem-solving systems are particularly susceptible to this information overload
problem, due to their often ad hoc design, large knowledge-bases, and decentral-
ized control mechanisms. This has recently resulted in a trend towards more
autonomous systems; systems that can explain their behavior, aid the develop-
pers with debugging, and monitor and adapt their behavior, in order to function
well in a changing environment. Central to all these functions is the ability of the
problem-solving system to reason about its own behavior.

This dissertation describes a system component, the Diagnosis Module (DM),

that enables a problem-solving system to reason about its own behavior. The
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problem-solving sfstem being diagnosed is a distributed interpretation system,
the Distributed Vehicle Monitoring Testbed (DVMT). The DM uses a causal
model of the expected behavior of the DVMT to guide the diagnosis. The aim of
the diagnosis is to identify inappropriate control parameters or faulty hardware
components as the causes of some observed misbehavior. The DM has been
implemented and successfully identifies faults in the DVMT.

Causal model based diagnosis is not new in AI. What is different about this
work is the application of this technique to the diagnosis of problem-solving sys-
tem behavior. Problem-solving systems are characterized by the availability of
the intermediate problem-solving state, large amounts of data to process, and,
in some cases, lack of absolute standards for behavior. We have developed diag-
nostic techniques that exploit the availability of the intermediate problem-solving
state and address the combinatorial problem arising from the large amounts of
data to analyze. We have also developed a technique for dealing with cases where
no absolute standard for correct behavior is available. In such cases the system
selects its own “correct behavior criteria” from objects within the DVMT which

did achieve some desired situation.
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Chapter 1

OVERVIEW

‘You may call it *nonsense® if yoil like,’ she said,
‘but I've heard nonsense, compared with which
that would be as sensible as a dictionary!’

- Lewis Carroll, in Through the Looking Glass

This chapter is a high-level overview of the research described in this disser-
tation. It discusses the motivation for this research, defines the problem, and
justifies the approach selected for solving it. The contributions are outlined at

the end of the chapter.

§1. Motivation: Need for more Autonomous Systems

The role of man-made systems is rapidly shifting, from that of mere tools,
performing simple, tedious tasks, to that of partially autonomous assistants. As
the system complexity increases, so does the amount of information that needs to
be processed, both by the system developer and by its users. It would therefore
be of great help if the system could take on greater responsibility for its own
behavior, including more sophisticated control, some system maintenance tasks,

and the ability to explain and justify its behavior.
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Artificial Intelligence (AI) systems have followed this trend towards greater
complexity. Problem-solving systems encoding expertise in some domain® are
called upon to help make decisions and to perform complex interpretation tasks.
As the difficulty of the tasks increases, more k.nowledge is necessary to solve them.
In addition to task specific knowledge (also called domain knowledge), knowledge
about the problem-solving process itself becomes necessary, in order to manage
the various resources, including the domain knowledge. This problem of parti-
tioning the task, deciding which portion to work on next, and what knowledge
is applicable at each stage constitutes the control problem in Al The type of
knowledge necessary for making control decisions is called control knowledge.?
It is often difficult to decide on an suitable control strategy for some problem-
golving task a priori. For this reason, Al systems requiring complex control
are often parametrized to allow easy modification of their control strategies. In
some applications, in addition to controlling the problem-solving strategies, the

parameters may control various hardware components, such as processors, com-

munication channels, sensors, or effectors.

Ideally, such sophisticated problem-solving systems would function in an in-
dependent manner, working on their tasks without the help of a human overseer.
They could monitor their own behavior and adjust the various parameters as
necessary, in order to function optimally in a changing environment. At one ex-

treme of this self-sufficiency spectrum is a fully adaptive system; one that has

1This includes knowledge-based or expert systems.
3The control problem has received much attention recently [8,16,35].
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Figure 1: Architecture of a Fully Fault Tolerant Problem-Solving
System

A fully fault tolerant problem-solving system would contain a detection, a diag-
nosis , and a correction component. The detection component would monitor the
problem-solving system behavior and would detect any deviations from expected
behavior. The diagnosis component would receive reports of such misbehaviors
and would identify the faults which caused them. The correction component
would correct the faults in the problem-solving system.

gome expectations for its own behavior, is capable of monitoring its behavior,
and can detect, diagnose, and correct inappropriate behavior. Such systems are
called fault tolerant in the computer hardware literature, because they can toler-
ate some degree of component failure. Figure 1 shows the system components in
a fully fault-tolerant architecture.

Making a system fully fault tolerant requires three things:

1. First, the criteria for appropriate system behavior must be developed. These
allow the system to monitor itself and to detect discrepancies between the
actual and the expected behavior. Such criteria are often difficult to de-
termine. In a problem-solving system, for example, one does not know the
correct answer with which to compare the system’s answer. These criteria

must therefore be based on indirect methods of judging appropriate behav-



ior, such as internal system consistency.

2. Second, once a problem is detected, the system must diagnose what caused
it. The causes are some predefined categories of faults. Usually these are
related to the available methods for correcting the failures. The aim of
diagnosis is to find an explanation for the observed misbehavior in terms of

repairable components of the system.

3. Finally, the correction process must begin. In some cases, for example tradi-
tional distributed processing systems, this phase begins with the restoration
of a consistent system state among the various processors. The system then
proceeds to adjust its parameters or to replace the faulty hardware compo-

nent and continues in its normal functioning.

The original intent of this work was to construct a fully fault tolerant problem-
solving system. However, this proved to be a task well beyond the scope of a
single dissertation. A portion of this task, the diagnosis problem, was therefore

selected as the focus of this research. This dissertation describes progress made

~ toward making a problem-solving system capable of diagnosing its own behavior.

The rest of this chapter further defines the problem of diagnosis, especially in
the context of problem-solving systems. This is followed by a discussion of the
current Al approaches to diagnosis and a motivation for our selection of the causal
model based approach. Finally, the implementation of the diagnostic component

is briefly discussed and the contributions of this research are outlined.



§2. Problem Deflnition: What is Diagnosis?

The problem of diagnosis is to identify the causes of some inappropriate behav-
ior. Diagnosis begins when some undesirable situation (a symptom) is observed,
and proceeds by trying to determine the causes of that symptom. A successful
diagnosis consists of explaining the symptom in terms of causes for which cor-
rective actions are known. In medicine, for example, such causes would be some
diseases with known therapies. In hardware, they would Se various replacea.ble-
components, such as circuit boards or system modules. In a problem-solving
system, diagnosis would explain the observed symptom in terms of some faulty
control parameter setting, a software bug, a problem with the knowledge-base,
or some failed hardware component, such as a processing node, a channel, or a
gensor. |

The goal of this work was to construct a component of a problem-solving sys-
tem capable of diagnosing the system’s behavior and identifying the causes for
inappropriate behaviors. By inappropriate behavior we mean the lack of a com-
plete solution, a solution th—at does not satisfy some user imposed constraints,
(such as time or quality), or a poor problem-solving strategy. Figure 2 illus-
trates an example of a system in dire need of an ability to monitor and adjust
its problem-solving control strategy. The result of the diagnosis is a set of faults,
which explain the initial symptom. The types of faults the diagnostic compo-
nent finds are discussed in detail below. (Note that we are not attempting to

solve the detection problem; that is, to automatically determine when diagno-
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Figure 2: Problem-Solving Control Errors
This figure illustrates a poor control strategy in a particularly primitive problem-
solving system.



gis is appropriate. The initial symptoms are provided as data to the diagnostic

component.)

A component capable of diagnosing problem-solving system behavior would

be useful for a number of applications:

ADAPTIVE PARAMETER CONTROL. Although most problem-solving
systems are highly parametrized, they rarely adapt their parameters to
changes in the problem-solving environment. The parameters are generally
set at the beginning of each task. If either the system or the task charac-
teristics change during the run the system cannot adapt to this change and
its performance may degrade. The ability to diagnose its own behavior and
to identify the faulty parameters is the first step in adapting to a changing
environment. The diagnosis component is thus an integral part of a fully

fault-tolerant system architecture

DEBUGGING. Problem-solving systems are becoming more complex and the
amount of information that has to be processed by their designers and
developers is enormous. A component of a problem-solving system that
could diagnose the system’s behavior would serve as an assistant during the

system development phase.

EXPLAINING SYSTEM BEHAVIOR. Problem-solving systems often gen-
erate large traces of their behavior. These traces must be interpreted in
order to understand why the system behaved as it did. Due to the system
complexity, such trace interpretation is a time-consuming, tedious task. A
component capable of explaining the system’s behavior would make this
task much easier. The diagnostic component described here can also be

used to explain system behavior.

3
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§2.1 Diagnosis of Problem-Solving Systems

The original motivation for this research came from our experience with a
particular problem-solving system: the Distributed Vehicle Monitoring Testbed
(DVMT) [23]. The DVMT is a testbed for investigating how to organize and
control distributed problem solving systems. A detailed description of the DVMT
is in Chapter II. Briefly, the DVMT’s task is to interpret acoustic signals generated
by vehicles moving through the environment and to produce a map identifying
the types of vehicles and describing the paths they took. The acoustic signals

are sensed by sensors which are distributed throughout the environment. The

- sensors send their signals to processors, which integrate the discrete sensory data

into descriptions of the vehicle types and their movements. Since each processor
typically senses only a portion of the data, communication among the processors
is necessary in order for the system to construct a map of the overall environment.
The system thus consists of 2 number of autonomous processors, each working
on its part of the overall task.

Numerous parameters are responsible for establishing the control strategy
for a particular interpretation task and system configuration. These parameters
determine, for example, which processor works on what data, who communicates
with whom and what types of messages are transmitted, and what knowledge
is available at each processor. Errors in these parameter settings can cause the
cooperating processors to work at cross-purposes or to fail to work on important

portions of the developing solution. Examples of such errors are: inappropriate



communication decisions (a processor sending messages to another processor that
cannot react to them), inappropriate focus of attention (a processor is externally-
directed when internal direction would be more appropriate), or inappropriate
task allocation (processors are assigned work in the wrong areas). Since these
parameters are responsible for the control of the problem-solving in the DVMT,
we refer to their faulty settings as problem-solving control failures.

Currently, these control parameters are set at the beginning of each experi-
ment and the system is allowed to run to completion, each processor generating
as much of the overall vehicle map as possible, given its data and control pa.ran:x-
eters. In a fully functional distributed problem-solving system however, these
parameters would be set by the control component of the system and would be
updated as necessary.

There are many situations in the DVMT where the ability of the system to
diagnose its own behavior would be useful:

o The numerous parameters may be set inconsistently to begin with. This

is typically not discovered until the experiment is completed, resulting in

much wasted effort, both on the part of the experimenter and the machine.

e The parameters are set correctly for the initial data and system configura-
tion, but both of those may changé during the experiment; different types of
data arrive or some of the hardware components fail. The fixed parameter
settings result in poor use of the system resources at best, and lack of the

final answer at worst.

e Once the experiment is finished, the results must be analyged. This analysis

is a time consuming process, involving detailed examination of the system

3
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traces. During the development phase, each experiment must be analyzed in
detail, in order to make sure the system is behaving correctly. Whenever the
system did not perform as expected, for whatever reasons, the experimenter
must spend hours examining detailed system traces in order to find out what

caused the discrepancy.

All of the above tasks would be made much easier if the system was capable of
diagnosing its own behavior and explaining it in terms of various primitive causes,
such as inappropriate parameter values or faulty hardware components. These

could then be adjusted, either by the system itself, or by a human.

§2.2 Types of Faults Found in a Problem-Solving System

What faults need to be diagnosed in a problem-solving system? There are four

categories of faults (primitive causes), which could lead to an observed symptom.

1. Faulty hardware components such as sensors, communication channels, or

failed processors; the hardware failures.

2. Faulty settings of the parameters controlling the type of processing at each
node (e.g., da.ta.-directc;d vs. goal-directed, breadth-first vs. depth-first
search), the distribution of data among the processors, the communication
among the processors, and the application of knowledge to the problem.
Since most of these parameters are responsible for the control of the problem

solving process, we call these types of faults problem-solving control
failures.

3. Software bugs in the problem-solving system code.

4. Insufficient facts to solve the problem. This might be missing data or lack
of appropriate knowledge.
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Although these are clearly very diﬁ'érent types of failures, their manifestations
in the DVMT system are indistinguishable. They result in identical symptoms,
such as lack of the overall interpretation of the environment, or wasteful problem-
golving process. For example, the fact that a processing node failed to derive a
hypothesis describing the motion of some vehicle may be due to one or more of

the following causes:
o a failed sensor that did not sense the data (hardware failure);

e a failed channel that did not transmit the necessary data sent from another

node (hardware failure);

e a missing knowledge source® that prevented the node from deriving the

answer (problem-solving control failure);

o a faulty parameter setting did not allow the node to process part of the

input data (problem-solving control failure).

We are primarily interested in diagnosing problem-solving control failures,
caused by inappropriate parameter values. However, since the manifestations of
these failures are indistinguishable from hardware failureé,‘ such as a failed sensor

or channel, we can use the same mechanism to diagnose both failure types.

3A knowledge source is a piece of code performing some well-defined function.

4This is also true for hardware and software errors (31]. Although we have chosen not to diagnose
software errors, we believe that our approach could handle those as well.
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§3. Selection of a Diagnostic Method

Diagnosis is not a new problem for Artificial Intelligence. Much work has
been done in medical diagnosis, in diagnosis of computer systems, digital circuits,
electronic devices, as well as larger systems such as nuclear reactors. This work,
and its relationship to the diagnostic component described here, is discussed in
Chapter VII. The approaches to diagnosis fall onto a spectrum. At one end is
the approach involving knowledge about‘the symptoms—fault associations but no
knowledge about the structure and expected behavior of the diagnosed system;
this is termed fault dictionary based diagnosis. A fault dictionary consists of
a collection of symptom—fault pairs (rules), which represent the associations be-
tween the observed symptoms and the faults that caused them. At the other end
is the approach involving knowledge about the system’s structure and function,
which allows reasoning about a large subset of the possible system behaviors,
both correct and faulty. For a given situation, the expected modes of behavior
will typically be a small subset of the possible behaviors. Diagnosis using such a
representation is termed caﬁu] model based diagnosis. Causal model based
diagnosis does not necessarily differentiate between modeling failure modes and
correct processing. Since faulty behavior can occur, it should be represented by a
causal model as one of the possible behaviors. What distinguishes a causal model
from other representations, is that it represents the structure and function of the
system’s components and the relationships among them. Unlike fault dictionary

based diagnosis, causal model based diagnosis does not view the system as a
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black-box with only a few observable inputs and outputs. Figure 3 illustrates the
difference between the types of knowledge used by these two approaches.

The difference between these two approaches is analogous to the recently
discussed difference between shallow and deep models of domain khowledge in
knoﬁledge—ba.sed systems [9,26]. This difference is best illustrated by the follow-
ing example. A student can go into an exam anticipating all the questions asked
and just recalls the memoriged answer. This may be more efficient than actually
_ thinking about the problems, and such a student may appear impressive. How-
ever, since he cannot always anticipate all the questions, this student, not having
any real understanding of the subject matter, will not be able to answer questions
he has not anticipated and will therefore not do well in the long-run. Similarly, a
knowledge-based system with shallow knowledge about its task can do very well
in a narrow domain of expertise but does not posses any real understanding of
the domain and will not be able to handle any new problems for which it does
not have an explicit rule.

In contrast, a student who knows the principles behind the subject matter, but
not the answers to many specific questions, m-ay take longer to answer a particular
question, but will be able to solve a much larger set of problems. This type of
knowledge representation and reasoning is what deep (causal) models of a domain
strive for. Because of the additional knowledge of the problem, knowledge-based
systems with deep models are capable of graceful degradation when they reach
the limits of their expertise, unlike their shallow rule counterparts. The difference

between the two approaches is the level of information included in the system and
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Pigure 3: Difference Between a Fault Dictionary and a Causal

Model Representations of System Behavior
Part A shows a fault dictionary representing the symptom-fault pairs and the

associated probabilities. Part B shows a state transition diagram representation
of the same system. This causal model representation makes the system structure

explicit and can thus support reasoning from first principles about the system
behavior.
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the amount of reasoning necessary to use the information.

The two approaches can be compared along two dimensions:

1. The amount of work necessary to prepare the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>