~— _g f g . T - ‘x? %] % g T g \ g

DIAGNOSING PROBLEM-SOLVING
SYSTEM BEHAVIOR

EvAa HUDLICKA

COINS Technical Report 86-03
February 1986

Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
February 1986

Computer and Information Science

y 3

This research was sponsored, in part, by the National Science Foundation under Grants
NSF# DCR-8500332 and NSF# DCR-8318776 and by the Defense Advanced Research Projects
Agency (DOD) monitored by the Office of Naval Research under Contract N00014-79-C-0439,
P00009.

©

Eva Hudlickd

All Rights Reserved

ii

1986

3 3 3 3

3 3

3

' _é? \._.g .__._g

To my parents and YF

“What have you lost, Mulla?”

“My key,” said Nasrudin.

“Where did you drop it?”

“At home.” 4
“Then why, for heaven’s sake, are you looking here?”
“There is more light here.”

— A Sufi Parable

iv

.31 1 __.13

.k

3

4

Acknowledgements

I would like to thank my committee:
Victor Lesser for his direction; this dissertation has been greatly influenced by
him.
Daniel Corkill for time, advice, and criticism, as well as for the Clisp and Im-
ageTalk environments, and for figures 7 and 9. Dan made many valuable sugges-
tions, both during the development of the ideas presented here and during the
writing.
John Stankovic for careful reading of the early drafts and for his down to earth
comments.
Al Hanson for asking the right questions about this work.

I also want to thank Alex Wolf for TEX advice and his thesis macros.
David Stemple and M for helping me keep the correct perspective on AL
Srini for encouragement and proposal reading.
Alan for the Macintosh, for showing me that while this may have been useful, it
was not necessary, and for hastening, in many ways, the writing of this disserta-
tion.
K for reminding me that there is life after (or even during) graduate school, and
for encouragement and support during this past year.
And, last but not least, I thank my cats for providing continuous entertainment.

I am sure they will find their own uses for this document!

A 1plné nakonec, ale vubec ne nejmén&, chci pod&kovat rodi¢um, za jejich
rozhodnuti pfed skoro osumnicti lety a za jejich trp&livost t&hle dlouhych Zest

let, a tet& Dang, za to, e Ceskoslovensko je pofdd jest& domovem!

ABSTRACT

Diagnosing Problem-Solving System Behavior
February 1986
Eva Hudlicka

BS, Virginia Polytechnic Institute and State University
MS, The Ohio State University

PhD, University of Massachusetts

Directed by: Professor Victor Lesser

The complexity of man-made systems is rapidly increasing to the point where it
is becoming difficult for us to understand énd maintain the systems we build. Al
problem-solving systems are particularly susceptible to this information overload
problem, due to their often ad hoc design, large knowledge-bases, and decentral-
ized control mechanisms. This has recently resulted in a trend towards more
autonomous systems; systems that can explain their behavior, aid the develop-
pers with debugging, and monitor and adapt their behavior, in order to function
well in a changing environment. Central to all these functions is the ability of the
problem-solving system to reason about its own behavior.

This dissertation describes a system component, the Diagnosis Module (DM),

that enables a problem-solving system to reason about its own behavior. The

vi

——

1

3

problem-solving sfstem being diagnosed is a distributed interpretation system,
the Distributed Vehicle Monitoring Testbed (DVMT). The DM uses a causal
model of the expected behavior of the DVMT to guide the diagnosis. The aim of
the diagnosis is to identify inappropriate control parameters or faulty hardware
components as the causes of some observed misbehavior. The DM has been
implemented and successfully identifies faults in the DVMT.

Causal model based diagnosis is not new in AI. What is different about this
work is the application of this technique to the diagnosis of problem-solving sys-
tem behavior. Problem-solving systems are characterized by the availability of
the intermediate problem-solving state, large amounts of data to process, and,
in some cases, lack of absolute standards for behavior. We have developed diag-
nostic techniques that exploit the availability of the intermediate problem-solving
state and address the combinatorial problem arising from the large amounts of
data to analyze. We have also developed a technique for dealing with cases where
no absolute standard for correct behavior is available. In such cases the system
selects its own “correct behavior criteria” from objects within the DVMT which

did achieve some desired situation.

vii

Table of Contents

ACKNOWLEDGEMENTS . & v v v v vt v v v o o vt ot s ot o oot e oo a
LIST OF FIGURES . . v v v v v v it i ittt ot o oot otne oo n e

CHAPTER

I. OVERVIEW

§2.1 Diagnosis of Problem-Solving Systems
§2.2 Types of Faults Found in a Problem-Solving System .

§3. Selection of a Diagnostic Method P
84. Implementation
85. Assumptions ¢ v i it it e e

§5.1 Practicality and Feasibility of Model Construction . .
§6. Contributionsof this Work
87. A GuidefortheReader

88, Summaryt e e e e e e e e e e e e e e

II. THE DVMT AND EXAMPLES OF FAILURES

§1. The Distributed Vehicle Monitoring Testbed
§1.1 The Taskof the DVMT
§1.2 Node Architectureo
§1.3 DVMT System Organization
§2. Unique Characteristics of the DVMT System
§2.1 The Complexity of the DVMT System.

viii

10
12
19
22
23
27
33
34
37
37

39
43
50

51
53

S

.3 13

S

2

§2.2 Availability of the Intermediate DVMT States 54

§3. Examples of DVMT Failures DM Can Diagnose 55
§3.1 Example I: Four-Node System without Communica-
tion Knowledge Sources 56
§3.2 Example II: Single-Node/Two-Sensor System with a
Failed Sensor, 60
B4, SUMMATY . . v v v v v v v v v et ot ot vt e o e e e e 65
III. MODEL STRUCTURE 68
§1. Introduction e 68
§2. Hierarchical State Transition Diagrams 73
§2.1 Predicate States 74
§2.2 Relationship States 7
§2.3 Primitive States 78
§2.4 Transition Arcs Linking the States 79
§2.5 Data-Dependent Choice of Neighboring States 83
§2.6 Organizing the States into a Hierarchy. 84
§3. Abstracted Objects 89
§4. Constraint Expressions among the Abstracted Objects ... 95
§5. Object-State Links. 97
§6. Model Instantiation 97
§7. SUMMATIY . .« « « v o v v e et e e e e e e 102
IV. MODEL USE 104
§1. Introduction e 105
§2. A Dammed Metaphor, . 107
§3. Backward Causal Tracingo vt 114
§4. Forward Causal Tracing.« ¢ oo v v v 126
§5. Comparative Reasoningo v v v 132
§6. Situation Matching Reasoning 138

ix

3

—

§7. Unknown Value Derivation 142 j
§8. Inconsistency Resolving 148 =
§9. Use of Underconstrained Objects 150 :
§10. Checking Global Consistency via Path Values 152 'ﬂ
B11.Summary e e e e e e e e 156
V. EXAMPLES OF MODEL USE FOR DIAGNOSIS 158 w‘(
81. Introduction it 158 .
§2. EXAMPLE I: Missing Communication Knowledge Sources . 163 "”j
§2.1 Diagnosisfor Node #1 166 -
§2.2 Diagnosisfor Node #2 171 |
§2.3 Diagnosisfor Node #3 179
§2.4 Diagnosisfor Node #4 180 m-!
§2.5 Diagnosis for the Pending Symptoms at Node #2 . . 180 -
‘ §3. EXAMPLE II: Low Sensor Weight and Malfunctioning Sen- "‘
T 185
§4. Reducing the Complexity of the Diagnosis 202 m’
§4.1 Object Grouping v v v v i vt e et 204 -
§4.2 Underconstrained Objects 208 |
8§43 Hierarchy 210 |
85. SUMMATY . & . ¢t o vttt e e e e e e e e e 212 Wj
VI. BUILDING A CAUSAL MODEL 214 =
§1. ChoosingtheStates 215 l
§2. Organizing the States into a Hierarchical Model 219 ™
§3. Choosing the Abstracted Objects 225
§4. Constructing the Constraint Expressions Among the Objects 229 ' 'ﬂl
§5. Types of Abstraction Necessary to Reduce the DVMT Sys-
tem Complexity 232 ™
§6. Summary and Conclusions 245 |
X

VIL. RELATED WORK

§1.
§2.
§3.
§4.
§5.
§6.

Introduction . .

ooooooooooooooooooooooooo

Medicine: CASNET i i v i i e e e e et e e e s

Medicine: ABEL

Digital Circuits: DART

Hardware: Davis’s circuit analyzer

Summary of Comparisons of AI Diagnostic Systems

VIII. IMPLEMENTATION DETAILS

§1.
§2.
§3.
§4.
§5.
§6.
§7.

Introduction . .

Abstracted Objects

Constraint Expressions

The State Transition Diagram

State Transition Arcs & v v v v v b i e e e e e

IX. CONCLUSIONS AND CONTRIBUTIONS

§1.
§2.
§3.
§4.
§5.
§6.
§7.

Introduction . .

ooooooooooooooooooooooooo

Defining the Problem

Solving the Problem

Major Difficulties Encountered

Contributions of this Research

X. FUTURE RESEARCH
§1. The Best of All Possible AISystems
§2. Extensions to the DM« v v v v v v v v o e oo e ee

xi

248
248
252
256
262
266
266

§2.1 Detection v vt vt vt e e 336
822 Diagnosis i e e e 338
§2.3 Correction i it e 340
§2.4 Distribution of the Diagnostic Interpreter 342
§2.5 Availability of the DVMT Intermediate States 343
§3. Augmenting the System Behavior Model 343

§3.1 Extend the Degree of DVMT Behavior Represented
intheModel, 344
§3.2 Automatic Hierarchy generation 344
§3.3 Automatic Extensionof Model 345

§3.4 Extending the Type of Knowledge Represented by the
Model it 346
§4. SUMMATY . . .« v v v i e e e e e e e e e 346
BIBLIOGRAPHY . . v v v v v e v ot v o ottt t oo o st s o oot oo o s 348

APPENDIX .

A. GLOSSARY 352
B. THE SYSTEM BEHAVIOR MODEL 360
81. Imtroduction i i e 360
§2. Answer Derivation Cluster 361
§3. Ksi SchedulingCluster 370
§4. CommunicationCluster 377
§5. Ksi Rating Derivation Cluster 383
C. DETECTION OF A PROBLEM 388
§1. The Detection Problem 388

D. THE DIAGNOSIS MODULE TRACES FOR THE EX-
AMPLES 392
81. Introduction, 392
§2. Trace Format Description. 393

xii

.4

e

3 .2

.3 _3

-

W»&"

§3. Traces for ExampleIo 400
§3.1 Node #1: PT to MESSAGE-ACCEPTED 400
§3.2 Node #1: MESSAGE-ACCEPTED to MESSAGE-
SENT ... i ittt ittt ittt it ane e 403
§3.3 Node #2:PT1-VT5o 407
§3.4 Node #2: PT3-PT1 True-False Pair 410
§3.5 Node #2: Pending Symptoms 415
§4. TracesforExampleIl 422
xiii

10.
11.
12.
13.
14.
15.
16.
17.
18.

List of Figures

. Architecture of a Fully Fault Tolerant Problem-Solving System

Problem-Solving Control Errors e e e e e e

Difference Between a Fault Dictionary and a Causal Model Represen-
tations of System Behavior,

. Architecture of the Diagnosis Module

. Relationship Between the Diagnosis Module and the DVMT System . .

Alternative Points of Model Construction in the System Development
Cycle i e e e e e e e e

The Distributed Vehicle Monitoring Testbed

A High-Level View of the Data Transformation

. System Signal Grammart

Graph of the Data Transformation
The Structure of Objects in the DVMT System
The Structure of Processing at Each Node in the DVMT System

Relationship between DVMT and DM Systems and Their Domains . .
Scenariofor Example I, e e e e
Scenariofor Example II. i
A High Level View of the Modeling Formalism.
Legend for Figures in the Dissertation

Illustrating the Modeling Formalism

xiv

61

3 1 _3 3 _3

3

3

3

—% ~ 3 ~ 3 T3 738 T3 T3 73 T3 T T3 —3%8 T3 T3 T T3 T3

~— 3 "1’

19.
20.
21.
22.

23.

24.
25.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

State Transiticzm Diagram Illustrating Relationship States. 78
Relationships Among the State Neighbors 82
Linking Clusters at Different Levels of the Hierarchy 86
The Different Types of Neighbors a State May Have 87
Relationship Among the DVMT system, the Abstracted Objects, and

the State Transition Diagrams 91
Different States Can Refer to the Same Object 92
Dummy Double pagefigure 98
The Model Clusters Representing the DVMT Behavior 99
A Canal System Analogy for the DVMT Diagnosis 108
The Types of Reasoning Used bythe DM 113
Causal Relationships Among States 116
Causal Pathways in the Instantiated SBM e e e e e e 118
BCT Search Strategy it ittt it 119
Algorithm for Backward Causal Tracing 120
BCT Terminating Conditions 122
BCT-Constructed Causal Pathways 125
Search Strategy Imposed on the SBM Instantiation by FCT 129
Algorithm for Forward Causal Tracing, 130
Algorithmfor CR i i i i ittt et e e 135
Exampleof CRo e e e e . 136
Example of Unknown Value Derivation 145
A Situation Where UVD Fails 146
List of Abbreviations Used Throughout This Chapter 160
Interest Areasfor Example I 164

XV

42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

Instantiated SBM for Diagnosisin Node #1 167
Instantiated SBM for Diagnosis in Node #2-PartI 172
Instantiated SBM for Diagnosis in Node #2-Part II 175
Instantiated SBM for Diagnosis of Pending Symptoms in Node #2 . . 182
Instantiated SBM for Example II-Part I 188
Instantiated SBM for Example II-Part II 190
Instantiated SBM for Example II-Part IIT 192
Reduction of the Number of States by Object Grouping. 205
Maximum # of States Created for Each Cluster 208
Strategies for Choice of Statesinthe SBM 217
Two Versions of the SBM Modeling the Same Process. 220
Construction of Causal Pathways 223
The Types of Abstractions Used in Model Construction and Reasoning 234
Representing a Class of Objects in the Uninstantiated Model 236
Representing a Series of Steps in the Uninstantiated Model 239
The Iterative Object Grouping Process 243
DVMT Object and its Abstracted Object Representation 273
A List of the Abstracted Object Fixed Attributes 274
Variable Object Attributes 276
The Grammar for the Constraint Expression Syntax 280
The Types of Dependencies Among Attributes 281
Illustrating the Use of Path Expressions 282
Constraint Expressions« v v v i i it e e 284
Multiple Path Valuesofa State 288
Illustrating the Path Value Calculation 291

xvi

o]

3

4 3

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.

Syntax of the ‘Object Grouping Specification 295
State Attributes o L L o o oo 298
Grammar for the Neighbor List Specification. 299
Motivating the Need for the PrefOR Logical Operator 303
Data Dependent State Neighbors in Ksi Scheduling Cluster 306
Illustrating the Specification of the Dynamic Neighbor Names 307
Uninstantiated VT State e e e e e 309
Uninstantiated VT-HYP-OB Abstracted Object 310
Instantiated VT-HYP-OB Abstracted Object 311
Instantiated VT State 312
Instantiated SBM e e 315

A Possible Architecture of an Autonomous Knowledge-Based System . 333

xvii

Chapter 1

OVERVIEW

‘You may call it *nonsense® if yoil like,’ she said,
‘but I've heard nonsense, compared with which
that would be as sensible as a dictionary!’

- Lewis Carroll, in Through the Looking Glass

This chapter is a high-level overview of the research described in this disser-
tation. It discusses the motivation for this research, defines the problem, and
justifies the approach selected for solving it. The contributions are outlined at

the end of the chapter.

§1. Motivation: Need for more Autonomous Systems

The role of man-made systems is rapidly shifting, from that of mere tools,
performing simple, tedious tasks, to that of partially autonomous assistants. As
the system complexity increases, so does the amount of information that needs to
be processed, both by the system developer and by its users. It would therefore
be of great help if the system could take on greater responsibility for its own
behavior, including more sophisticated control, some system maintenance tasks,

and the ability to explain and justify its behavior.

-3 -3 _3 3 . 13

-3

3

3

3

[,

—% —® ~—3 T3 3 ~3 38 % ~3 "3 ~—3 3 —3F —TF T3 3 Y

—3 T3

Artificial Intelligence (AI) systems have followed this trend towards greater
complexity. Problem-solving systems encoding expertise in some domain® are
called upon to help make decisions and to perform complex interpretation tasks.
As the difficulty of the tasks increases, more k.nowledge is necessary to solve them.
In addition to task specific knowledge (also called domain knowledge), knowledge
about the problem-solving process itself becomes necessary, in order to manage
the various resources, including the domain knowledge. This problem of parti-
tioning the task, deciding which portion to work on next, and what knowledge
is applicable at each stage constitutes the control problem in Al The type of
knowledge necessary for making control decisions is called control knowledge.?
It is often difficult to decide on an suitable control strategy for some problem-
golving task a priori. For this reason, Al systems requiring complex control
are often parametrized to allow easy modification of their control strategies. In
some applications, in addition to controlling the problem-solving strategies, the

parameters may control various hardware components, such as processors, com-

munication channels, sensors, or effectors.

Ideally, such sophisticated problem-solving systems would function in an in-
dependent manner, working on their tasks without the help of a human overseer.
They could monitor their own behavior and adjust the various parameters as
necessary, in order to function optimally in a changing environment. At one ex-

treme of this self-sufficiency spectrum is a fully adaptive system; one that has

1This includes knowledge-based or expert systems.
3The control problem has received much attention recently [8,16,35].

symptoms

fauits
DETECTION DIAGNOSIS ﬁ CORRECTION

PROBLEM-SOLUING SYSTEM

T

INPUT ouTPUY

Figure 1: Architecture of a Fully Fault Tolerant Problem-Solving
System

A fully fault tolerant problem-solving system would contain a detection, a diag-
nosis , and a correction component. The detection component would monitor the
problem-solving system behavior and would detect any deviations from expected
behavior. The diagnosis component would receive reports of such misbehaviors
and would identify the faults which caused them. The correction component
would correct the faults in the problem-solving system.

gome expectations for its own behavior, is capable of monitoring its behavior,
and can detect, diagnose, and correct inappropriate behavior. Such systems are
called fault tolerant in the computer hardware literature, because they can toler-
ate some degree of component failure. Figure 1 shows the system components in
a fully fault-tolerant architecture.

Making a system fully fault tolerant requires three things:

1. First, the criteria for appropriate system behavior must be developed. These
allow the system to monitor itself and to detect discrepancies between the
actual and the expected behavior. Such criteria are often difficult to de-
termine. In a problem-solving system, for example, one does not know the
correct answer with which to compare the system’s answer. These criteria

must therefore be based on indirect methods of judging appropriate behav-

ior, such as internal system consistency.

2. Second, once a problem is detected, the system must diagnose what caused
it. The causes are some predefined categories of faults. Usually these are
related to the available methods for correcting the failures. The aim of
diagnosis is to find an explanation for the observed misbehavior in terms of

repairable components of the system.

3. Finally, the correction process must begin. In some cases, for example tradi-
tional distributed processing systems, this phase begins with the restoration
of a consistent system state among the various processors. The system then
proceeds to adjust its parameters or to replace the faulty hardware compo-

nent and continues in its normal functioning.

The original intent of this work was to construct a fully fault tolerant problem-
solving system. However, this proved to be a task well beyond the scope of a
single dissertation. A portion of this task, the diagnosis problem, was therefore

selected as the focus of this research. This dissertation describes progress made

~ toward making a problem-solving system capable of diagnosing its own behavior.

The rest of this chapter further defines the problem of diagnosis, especially in
the context of problem-solving systems. This is followed by a discussion of the
current Al approaches to diagnosis and a motivation for our selection of the causal
model based approach. Finally, the implementation of the diagnostic component

is briefly discussed and the contributions of this research are outlined.

§2. Problem Deflnition: What is Diagnosis?

The problem of diagnosis is to identify the causes of some inappropriate behav-
ior. Diagnosis begins when some undesirable situation (a symptom) is observed,
and proceeds by trying to determine the causes of that symptom. A successful
diagnosis consists of explaining the symptom in terms of causes for which cor-
rective actions are known. In medicine, for example, such causes would be some
diseases with known therapies. In hardware, they would Se various replacea.ble-
components, such as circuit boards or system modules. In a problem-solving
system, diagnosis would explain the observed symptom in terms of some faulty
control parameter setting, a software bug, a problem with the knowledge-base,
or some failed hardware component, such as a processing node, a channel, or a
gensor. |

The goal of this work was to construct a component of a problem-solving sys-
tem capable of diagnosing the system’s behavior and identifying the causes for
inappropriate behaviors. By inappropriate behavior we mean the lack of a com-
plete solution, a solution th—at does not satisfy some user imposed constraints,
(such as time or quality), or a poor problem-solving strategy. Figure 2 illus-
trates an example of a system in dire need of an ability to monitor and adjust
its problem-solving control strategy. The result of the diagnosis is a set of faults,
which explain the initial symptom. The types of faults the diagnostic compo-
nent finds are discussed in detail below. (Note that we are not attempting to

solve the detection problem; that is, to automatically determine when diagno-

3 3 1 _3

~3 __3

-3 _3

3

3

Figure 2: Problem-Solving Control Errors
This figure illustrates a poor control strategy in a particularly primitive problem-
solving system.

gis is appropriate. The initial symptoms are provided as data to the diagnostic

component.)

A component capable of diagnosing problem-solving system behavior would

be useful for a number of applications:

ADAPTIVE PARAMETER CONTROL. Although most problem-solving
systems are highly parametrized, they rarely adapt their parameters to
changes in the problem-solving environment. The parameters are generally
set at the beginning of each task. If either the system or the task charac-
teristics change during the run the system cannot adapt to this change and
its performance may degrade. The ability to diagnose its own behavior and
to identify the faulty parameters is the first step in adapting to a changing
environment. The diagnosis component is thus an integral part of a fully

fault-tolerant system architecture

DEBUGGING. Problem-solving systems are becoming more complex and the
amount of information that has to be processed by their designers and
developers is enormous. A component of a problem-solving system that
could diagnose the system’s behavior would serve as an assistant during the

system development phase.

EXPLAINING SYSTEM BEHAVIOR. Problem-solving systems often gen-
erate large traces of their behavior. These traces must be interpreted in
order to understand why the system behaved as it did. Due to the system
complexity, such trace interpretation is a time-consuming, tedious task. A
component capable of explaining the system’s behavior would make this
task much easier. The diagnostic component described here can also be

used to explain system behavior.

3

3 3

~3

3

3

3

§2.1 Diagnosis of Problem-Solving Systems

The original motivation for this research came from our experience with a
particular problem-solving system: the Distributed Vehicle Monitoring Testbed
(DVMT) [23]. The DVMT is a testbed for investigating how to organize and
control distributed problem solving systems. A detailed description of the DVMT
is in Chapter II. Briefly, the DVMT’s task is to interpret acoustic signals generated
by vehicles moving through the environment and to produce a map identifying
the types of vehicles and describing the paths they took. The acoustic signals

are sensed by sensors which are distributed throughout the environment. The

- sensors send their signals to processors, which integrate the discrete sensory data

into descriptions of the vehicle types and their movements. Since each processor
typically senses only a portion of the data, communication among the processors
is necessary in order for the system to construct a map of the overall environment.
The system thus consists of 2 number of autonomous processors, each working
on its part of the overall task.

Numerous parameters are responsible for establishing the control strategy
for a particular interpretation task and system configuration. These parameters
determine, for example, which processor works on what data, who communicates
with whom and what types of messages are transmitted, and what knowledge
is available at each processor. Errors in these parameter settings can cause the
cooperating processors to work at cross-purposes or to fail to work on important

portions of the developing solution. Examples of such errors are: inappropriate

communication decisions (a processor sending messages to another processor that
cannot react to them), inappropriate focus of attention (a processor is externally-
directed when internal direction would be more appropriate), or inappropriate
task allocation (processors are assigned work in the wrong areas). Since these
parameters are responsible for the control of the problem-solving in the DVMT,
we refer to their faulty settings as problem-solving control failures.

Currently, these control parameters are set at the beginning of each experi-
ment and the system is allowed to run to completion, each processor generating
as much of the overall vehicle map as possible, given its data and control pa.ran:x-
eters. In a fully functional distributed problem-solving system however, these
parameters would be set by the control component of the system and would be
updated as necessary.

There are many situations in the DVMT where the ability of the system to
diagnose its own behavior would be useful:

o The numerous parameters may be set inconsistently to begin with. This

is typically not discovered until the experiment is completed, resulting in

much wasted effort, both on the part of the experimenter and the machine.

e The parameters are set correctly for the initial data and system configura-
tion, but both of those may changé during the experiment; different types of
data arrive or some of the hardware components fail. The fixed parameter
settings result in poor use of the system resources at best, and lack of the

final answer at worst.

e Once the experiment is finished, the results must be analyged. This analysis

is a time consuming process, involving detailed examination of the system

3

.3 3 _3 .3 -3

3

~ 3

3

10

traces. During the development phase, each experiment must be analyzed in
detail, in order to make sure the system is behaving correctly. Whenever the
system did not perform as expected, for whatever reasons, the experimenter
must spend hours examining detailed system traces in order to find out what

caused the discrepancy.

All of the above tasks would be made much easier if the system was capable of
diagnosing its own behavior and explaining it in terms of various primitive causes,
such as inappropriate parameter values or faulty hardware components. These

could then be adjusted, either by the system itself, or by a human.

§2.2 Types of Faults Found in a Problem-Solving System

What faults need to be diagnosed in a problem-solving system? There are four

categories of faults (primitive causes), which could lead to an observed symptom.

1. Faulty hardware components such as sensors, communication channels, or

failed processors; the hardware failures.

2. Faulty settings of the parameters controlling the type of processing at each
node (e.g., da.ta.-directc;d vs. goal-directed, breadth-first vs. depth-first
search), the distribution of data among the processors, the communication
among the processors, and the application of knowledge to the problem.
Since most of these parameters are responsible for the control of the problem

solving process, we call these types of faults problem-solving control
failures.

3. Software bugs in the problem-solving system code.

4. Insufficient facts to solve the problem. This might be missing data or lack
of appropriate knowledge.

11

Although these are clearly very diﬁ'érent types of failures, their manifestations
in the DVMT system are indistinguishable. They result in identical symptoms,
such as lack of the overall interpretation of the environment, or wasteful problem-
golving process. For example, the fact that a processing node failed to derive a
hypothesis describing the motion of some vehicle may be due to one or more of

the following causes:
o a failed sensor that did not sense the data (hardware failure);

e a failed channel that did not transmit the necessary data sent from another

node (hardware failure);

e a missing knowledge source® that prevented the node from deriving the

answer (problem-solving control failure);

o a faulty parameter setting did not allow the node to process part of the

input data (problem-solving control failure).

We are primarily interested in diagnosing problem-solving control failures,
caused by inappropriate parameter values. However, since the manifestations of
these failures are indistinguishable from hardware failureé,‘ such as a failed sensor

or channel, we can use the same mechanism to diagnose both failure types.

3A knowledge source is a piece of code performing some well-defined function.

4This is also true for hardware and software errors (31]. Although we have chosen not to diagnose
software errors, we believe that our approach could handle those as well.

3

-3

_.3

~-3

12

§3. Selection of a Diagnostic Method

Diagnosis is not a new problem for Artificial Intelligence. Much work has
been done in medical diagnosis, in diagnosis of computer systems, digital circuits,
electronic devices, as well as larger systems such as nuclear reactors. This work,
and its relationship to the diagnostic component described here, is discussed in
Chapter VII. The approaches to diagnosis fall onto a spectrum. At one end is
the approach involving knowledge about‘the symptoms—fault associations but no
knowledge about the structure and expected behavior of the diagnosed system;
this is termed fault dictionary based diagnosis. A fault dictionary consists of
a collection of symptom—fault pairs (rules), which represent the associations be-
tween the observed symptoms and the faults that caused them. At the other end
is the approach involving knowledge about the system’s structure and function,
which allows reasoning about a large subset of the possible system behaviors,
both correct and faulty. For a given situation, the expected modes of behavior
will typically be a small subset of the possible behaviors. Diagnosis using such a
representation is termed caﬁu] model based diagnosis. Causal model based
diagnosis does not necessarily differentiate between modeling failure modes and
correct processing. Since faulty behavior can occur, it should be represented by a
causal model as one of the possible behaviors. What distinguishes a causal model
from other representations, is that it represents the structure and function of the
system’s components and the relationships among them. Unlike fault dictionary

based diagnosis, causal model based diagnosis does not view the system as a

13

black-box with only a few observable inputs and outputs. Figure 3 illustrates the
difference between the types of knowledge used by these two approaches.

The difference between these two approaches is analogous to the recently
discussed difference between shallow and deep models of domain khowledge in
knoﬁledge—ba.sed systems [9,26]. This difference is best illustrated by the follow-
ing example. A student can go into an exam anticipating all the questions asked
and just recalls the memoriged answer. This may be more efficient than actually
_ thinking about the problems, and such a student may appear impressive. How-
ever, since he cannot always anticipate all the questions, this student, not having
any real understanding of the subject matter, will not be able to answer questions
he has not anticipated and will therefore not do well in the long-run. Similarly, a
knowledge-based system with shallow knowledge about its task can do very well
in a narrow domain of expertise but does not posses any real understanding of
the domain and will not be able to handle any new problems for which it does
not have an explicit rule.

In contrast, a student who knows the principles behind the subject matter, but
not the answers to many specific questions, m-ay take longer to answer a particular
question, but will be able to solve a much larger set of problems. This type of
knowledge representation and reasoning is what deep (causal) models of a domain
strive for. Because of the additional knowledge of the problem, knowledge-based
systems with deep models are capable of graceful degradation when they reach
the limits of their expertise, unlike their shallow rule counterparts. The difference

between the two approaches is the level of information included in the system and

.3 -3 .3 -3 _1 _3

3

—3

14

SYMPTOM FRULT PROBABILITY
$22 St .3
$3 .2
$2 .4
1! .05
§$? .09
$20 sti 4
3 .3
sis8 s? .5
S1 .2
$2 .3

FAULT DICTIONARY REPRESENTATION OF SYSTEM BEHAUIOR

PART A

q
5.3\=——

sS4 s12

's19

$22

st

59 S$18
time ;

CAUSAL MODEL REPRESENTATION OF SYSTEM BEHAUIOR
PART B

Pigure 3: Difference Between a Fault Dictionary and a Causal

Model Representations of System Behavior
Part A shows a fault dictionary representing the symptom-fault pairs and the

associated probabilities. Part B shows a state transition diagram representation
of the same system. This causal model representation makes the system structure

explicit and can thus support reasoning from first principles about the system
behavior.

15

the amount of reasoning necessary to use the information.

The two approaches can be compared along two dimensions:

1. The amount of work necessary to prepare the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>