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ABSTRACT

The complexity of man-made systems is rapidly increasing to the point where it is
becoming difficult for us to understand and maintain the systems we build. Al problem-
solving systems are particularly susceptible to this information overload problem, due to
their often ad hoc design, large knowledge-bases, and decentralized control mechanisms.
This has recently resulted in a trend towards more autonomous systems; systems that
can explain their behavior, aid the developers with debugging, and monitor and adapt
their behavior, in order to function well in a changing environment. Central to all these
functions is the ability of the problem-solving system to reason about its own behavior.

We describe a system component, the Diagnosis Module (DM), that enables a problem-
solving system to reason about its own behavior. The problem-solving system being diag-
nosed is a distributed intefpretation system, the Distributed Vehicle Monitoring Testbed
(DVMT), which is based on a blackboard problem-solving architecture. The DM uses a
causal model of the expected behavior of the DVMT to guide the diagnosis. The aim of the
diagnosis is to identify inappropriate control parameters or faulty hardware components as
the causes of some observed misbehavior. The DM has been implemented and successfully
identifies faults in the DVMT.

Causal model based diagnosis is not new in AL. What is different about this work is the
application of this technique to the diagnosis of problem-solving system behavior. Problem-
solving systems are characterized by the availability of the intermediate problem-solving

state, large amounts of data to process, and, in some cases, lack of absolute standards



for behavior. We have developed diagnostic techniques that exploit the availability of the
intermediate problem-solving state and address the combinatorial problem arising from
the large amounts of data to analyze. We have also developed a technique for dealing
with cases where no absolute standard for correct behavior is available. In such cases the
system selects its own “correct behavior criteria” from objects within the DVMT which

did achieve some desired situation.

[SV]



1. Introduction

The role of man-made systems is rapidly shifting, from that of mere tools, performing
simple, tedious tasks, to that of partially autonomous assistants. As the system complexity
increases, so does the amount of information that needs to be processed, both by the system
developer and by its users. It would therefore be of great help if the system could take
on greater responsibility for its own behavior, including more sophisticated control, some
system maintenance tasks, and the ability to explain and justify its behavior. Central to
all these tasks is the ability of a system to reason about its own behavior. In this
paper we describe a component of a problem-solving system, the Diagnosis Module (DM),
that reasons about a problem-solving system’s behavior in order to diagnose the faults
responsible for inappropriate system behavior. By faults we mean either hardware failures
or inappropriate parameter settings which we call problem-solving control errors.
The DM has been implemented and successfully diagnoses faults in a distributed problem-
solving system: the Distributed Vehicle Monitoring Testbed [11). The DM consists of
about 5000 lines of code (including comments). It is written in a local dialect of lisp called

CLISP and runs on VAX a 11/750 under the VMS operating system.

Why diagnose problem-solving system behavior? Diagnosis is a major activity at
various stages of a system’s life-cycle. During development, diagnosis is involved in de-
bugging. Debugging is a time consuming, knowledge-intensive activity, requiring that the

system designer have expectations about the system behavior as well as an understanding



of its structure.

During execution, diagnosis can be used by a problem-solving system as part of its
control mechanism. In complex problem-solving system, a large portion of the system’s
resources (knowledge and processing) is spent on the control problem: deciding what to do
next. The control problem is difficult and often a fixed control strategy is inappropriate.
In order to allow a wider range of behaviors (more flexible control strategies), problem-
solving systems are often parametrized. In the DVMT, for example, parameters control
different aspects of control, such as load and knowledge distribution among the processing
nodes, the search strategies within each node (top-down or bottom-up), and communi-
cation among the nodes. Deciding on the appropriate parameter values is a non-trivial
task. AI still has no solutions for the problem of matching tasks to optimal (or even rea-
sonable) control strategies. Usually, this is done by the system designers who empirically
adjust the parameters, based on their own experience with the task and the system. Such
“parameter twiddling” is tedious and time consuming. It requires an expert in both the
task domain and the structure of the system itself. Not only is such manual parameter
adjustment time-consuming but it may also be ineffective: there is no guarantee that the
strategy selected will continue to be appropriate, because the characteristics of the sys-
tem or the task may change. What is needed is a system that automatically adapts its
own control strategies. Again, diagnostic reasoning is needed. During she fine-tuning of a
system, diagnosis is involved in parameter adjustment, and helps to automatically

determine which parameters caused some undesirable behavior and should therefore be



changed. Since these parameters determine the system control strategies, we can speak
about meta-level control via parameter adjustment 7).

As Al systems take on expert tasks, they, like their human counterparts, are often
called upon to explain and justify their conclusions. In order to do this, a system must
have some understanding of its own structure and behavior and the ability to reason about
its problem-solving in order to explain how and why it derived its results. Again then we
see that diagnosis is involved in behavior explanation.

In conclusion, a system that can reason about its own behavior, has greatly enhanced
capabilities which allow it to perform:

e debugging,

¢ meta-level control through parameter adjustment,

¢ explaining its own behavior.

What is Necessary to Diagnose Problem-Solving System Behavior? Diagnosis
is not a new problem for AI. Many systems exist for diagnosing digital circuits [6,9,4],
electrical devices [12], and large systems such as nuclear reactors [13]. There are of course
numerous systems for medical diagnosis [14,16]. Is diagnosis of problem-solving behavior
different from the techniques used in these domains? In our work we have found that while
some diagnostic techniques are generally applicable across all domains! there are aspects

of problem-solving system behavior that require new diagnostic techniques.

1Given a symptom, go back through the events that led up to it until the cause is found.



We will focus on the following features of a system and will show how each requires

different diagnostic techniques.
1. Is the internal structure of the system known?

2. Can the internal state of the system be determined directly or must it be deduced
from observable inputs and outputs?

3. Does a fixed standard for behavior always exist?

4. Is the amount of data to analyze manageable?

Most Al diagnostic systems exist in medicine. Medical diagnostic systems must deal
with uncertain knowledge since medical knowledge is often expressed in empirically ob-
served associations rather than known internal system structure. In addition to this source
of uncertainty, these systems cannot always determine exactly what the internal state of
the system is, due to unreliable or unavailable tests. Medical Al systems therefore need
to address the issue of uncertain knowledge. This is done in different ways: uncertainty
factors in MYCIN, weights associated with causal links in CASNET [16], and complex
methods for optimal test selection in ABEL [14). The main difference between our work
and diagnosis in medicine is that we do not have to deal with uncertain knowledge.

Many Al systems exist for diagnosing digital circuits {6,4,9]. Unlike the human body,
the internal structure of a circuit is completely known. The internal states however, are
not accessible and the focus of digital circuit diagnosis is therefore to devise discriminatory
tests based on the observable inputs and outputs, which are then used to identify the faulty
components. Our work differs from the work in digital circuit diagnosis, as exemplified

by Genesereth and Davis, in several ways. While they use causal models which support



different types of reasoning (forward and backward chaining), their systems are much
simpler. They stop with the fault identification whereas the Diagnosis Module described
here simulates the effect of a fault on future system behavior. In short, the focus of the
work in digital circuit diagnosis is on determining the internal system state. The focus of
our work is handling the combinatorial problems and analyzing situations for which no a
priori standards exist.

What characterizes problem-solving systems is:

e Complete knowledge of the internal system structure.

e Availability of the intermediate problem-solving state.

e In many cases, lack of absolute standards for correct behavior.

o Large amount of data to process during diagnosis.

Since the structure of the system is known we can use a causal model of the system and we
do not need to address the issue of uncertain knowledge. Since the internal system state
is available (by directly examining the system data structures), we do not need to address
the problem of determining the internal state from the inputs and outputs.? The lack
of absolute standards for behavior requires that the system autématically selects its own
model for correct behavior. We have developed a technique which we call Comparative

Reasoning, which addresses this problem. This is discussed in detail in Section 4. Finally,

3Many other diagnostic systems have dealt with the type of reasoning necessary given a black-box view
of the system (Genesereth’s DART [6] and Davis’s digital circuit analyzer [4] systems deal mainly with
the problems associated with this view), and our formalism certainly supports this type of reasoning.
What this availibility of the intermediate states has allowed us to do was to get beyond these reasoning
mechanisms and explore other interesting problems associated with diagnosing the behavior of complex
systems.



diagnosis of a problem-solving system requires manipulating vast quantities of data. We
have developed techniques for handling the resulting combinatorial explosion. For example,
the formalism for modeling the problem-solving system allows the representation of a class
of objects. During diagnosis, the DM can then reason about an entire class of situations
rather than the individual cases.

To summarize, problem-solving system diagnosis is different from other diagnostic tasks

in the following ways.

o The system is complex but, unlike medicine, internal states are accessible, testing is
cheap, and no uncertainty is involved.

¢ We cannot always know the correct standard for behavior a priori and must therefore
construct the diagnostic system so that it automatically chooses its own standards
for appropriate behavior

Y

e Large number of objects to analyze creates combinatorial explosion. We therefore
needed to develop techniques for making the representation and reasoning more ef-
ficient.

The next section describes the DVMT system and outlines by way of examples the
types of diagnostic reasoning we would like to DM to perform. The structure and use of
the DVMT model is described in Sections 3 and 4. A detailed déscription of the diagnosis
is in Section 5. Section 6 discusses the methods we have developed for reducing the
combinatorics in diagnosis. Section 7 summarizes the work and outlines some directions

for future research.



2. Context and Motivating Examples

The problem-solving system we model and diagnose is the Distributed Vehicle Moni-
toring Testbed (DVMT). DVMT is distributed problem-solving system where a number of
processors cooperate to interpret acoustic signals. The goal of the system is to construct
a high-level map of vehicle movement in the sensed environment. The data is sensed at
discrete time locations at the signal level. The final answer is a pattern track describing
the path of a group of one or more vehicles, moving as a unit in some fixed pattern for-
mation. In order to derive the final pattern track from the individual signal locations the
data undergoes two types of transformation. The individual locations must be aggregated
to form longer tracks, and both the tracks and the locations must be driven up several
levels of abstraction, from the signal level, through the group and vehicle levels, up to
the pattern level. Figure 1 illustrates the different levels of abstraction as well as all the
possible pathways fcr deriving the final answer from the input data.

Each processor in the DVMT system is based on an extended Hearsay-II architecture
where data-directed and goal-directed control are integrated [1]. The problem-solving cycle
at each processor consists of creating a hypothesis that represents the position of a vehicle.
Hypotheses generate goals that represent predictions about how the existing hypotheses
can be extended by incorporating more of the sensed data. A hypothesis together with a
goal triggers the scheduling of a knowledge source (knowledge source instantiation) whose
execution will satisfy the goal by producing a more encompassing hypothesis (one which

includes more information about the vehicle motion). This cycle begins with the input data
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Figure 1: Levels of Abstraction in the DVMT Data Transformations
The data blackboard has eight levels of abstraction. The input data, acoustic signals
representing vehicle positions at discrete time intervals, come in at the signal level (sl).
The final answer, at the pattern track level, is an integrated picture of the “raw” sl data
representing how the vehicles move through the environment.



and repeats until a complete map of the eftvironment is generated. Figure 2 illustrates the
processing structure at each node. This process begins with the input data and repeats
until a2 complete map of the environment is generated or until there are no more knowledge

source instantiations to invoke.

2.1 Examples Motivating the Diagnostic Techniques

In the introduction we mentioned that diagnosis of problem-solving systems requires
techniques for dealing with the combinatorial explosion and for dealing with lack of fixed
standards for behavior. Here we present two fault scenarios where the use of these tech-

niques is illustrated. Both of these examples are discussed in more detail in Section 5.

Fault Scenario ‘#1: Missing Knowledge Sources. This example illustrates the
use of Underconstrained Objects to represent and reason about a class of objects. This
capability is then applied to simulating the effects of an identified fault on system behavior.
Suppose the DVMT system is configured such that there are four nodes, each receiving a
portion of the environmental data. Since each node has a limited view of the environment,
inter-node communication is necessary in order for the system to derive the overall map
of the vehicular movement. Figure 3 shows such a system configuration.

The knowledge source (ks) allocation in the DVMT is controlled by parameters which
are set at the beginning of each run. It is quite common for the system user to make a mis-
take, and omit an essential knowledge source (or include an undesirable one). In the above

scenario, communication among the processing nodes is accomplished by communication
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Figure 2: The Structure of Processing at Each Node in the DVMT System
The DVMT begins its interpretation task with the arrival of the sensed data. All data is
represented by hypotheses and stored on the data blackboard. The arrival of a hypothesis
stimulates the creation of a goal, which represents a prediction of how the hypothesis might
be extended in the future. A hypothesis together with a goal stimulate the instantiation
of a knowledge source (ksi). Each such instantiation is rated and, if this rating is high
enough, the ksi is inserted onto the scheduling queue. At the beginning of each system
cycle the highest rated ksi executes and produces additional hypotheses. This cycle repeats
until the final answer is derived or until there is no more data to process.
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Figure 3: DVMT Configuration for Fault Scenario #1
The upper part of the figure shows the overall view of the four nodes and the data. The
lower part shows the pattern track segments derived at each individual node.
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knowledge sources (cks’). If these cks’ are omitted from the nodes, each node will have only
its local data available and the system will not derive the overall map of the environment.
We would like for the DM to trace this lack of the overall map, represented by a specific
hypothesis that is missing, to the fact that no communication occurred among the nodes,
and, further, that this was caused by the lack of the cks’ responsible for transmitting the
messages (in this case hypotheses) among the nodes. Once the DM identifies fault, we
would like it to predict that no communication of messages will occur as a result of the
fault. In order to do this efficiently, the DM must reason about the entire class of objects

(messages) affected by the missing cks.

Fault Scenario #2: Low Rated Hypothesis This example illustrates the use of
Comparative Reasoning to track the low rating of a knowledge source instantiation (KSI)
to a low rated hypothesis at an early point in the data transformation. The diagnosis
begins with a missing high level hypothesis at the pattern track (pt) level. The Diagnosis
Module reconstructs, based on a causal model of processing in the DVMT, the internal
events and intermediate results that would be required to genefa.te the desired data. As
a result of this backward trace, it discovers that the desired hypothesis was not derived
because lower level location hypotheses were never produced. Specifically, while hypotheses
did exist at the group location (gl) level, they were never driven up to the next level, the
vehicle location (vl). The Diagnosis Module further determines that this was due the fact
that the KSI that would have created the desired vl hypotheses never executed, because

its rating was too low. Recall that it is always the highest rated ksi on the scheduling
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queue that executes. It is thus possible for a KSI with a low rating to remain on the queue
for a long time.

The point of the diagnosis here is to determine what caused the ksi rating to be low.
The DM has a model of how a ksi rating is derived from its components: a ks parameter
called ks-goodness, the goal that is to be satisfied by the hypotheses produced by the KSI,
and the data the KSI is to use. However, it is impossible to evaluate the individual ratings
in terms of some standard measures of “goodness”, since the “lowness” or “highness” of
a KSI rating is relative, depending on the ratings of the other KSIS’ on the queue; we do
not have a fixed standards for normal ksi rating. What is needed here is to examine the
queue, select a “successful” ksi, that is a high rated ksi which is about to run, and use this
ksi as a model with which to compare the low rated one. This is exactly the aim of what
Comparative Reasoning (CR).

In this case, CR examines the factors influencing the ksi rating for both the problem
ksi and a model ksi selected from the queue. It notes that both the ks goodness parameters
and the goal components are identical but that the data component rating is lower for the
low rated ksi. This then is identified as the cause of the low rating. The next step is to trace
back through the derivation of this low hypothesis rating and determine why is rated low.
Again, the hypothesis from the model ksi are used as a standard with which to compare
the low rated hypothesis. This continues through several levels of abstraction until either
a primitive node in the model is reached which is responsible for the low rating (in this

case, a low sensor weight or low rated data is identified), or, if the search is unsuccessful,

13



until the causal pathway can no longer be extended.

3. Structure of the System Behavior Model

This section describes the modeling formalism used to represent the possible behaviors
of the DVMT system. By representing the internal structure of the DVMT and the causal
relationships among events in the DVMT, the System Behavior Model (SBM) supports
different types of reasoning. This makes it possible to use it not only for diagnosis but also
for simulation of the system behavior. Unlike some other causal models, such as CASNET
[16], which represent causal relationships among pathological states, the SBM represents
the normal system behavior. The errors are represented as deviations from the expected
situations that were not achieved by the system. The model can thus reason both about
the causal sequences of expected events, and thereby simulate the correct system behavior,
and about the sequences of abnormal events, and thereby diagnose faulty system behavior.
Figure 4 contains the legend for the figures in this paper.

The SBM consists of three major components:

HIERARCHICAL STATE TRANSITION DIAGRAMS which represent the pos-
sible system behaviors at various levels of detail. The causal relationships among

events in the system are represented as sequences of states in the model.

ABSTRACTED OBJECTS which represent individual objects (i.e., data structures)
or classes of objects in the DVMT system.

CONSTRAINT EXPRESSIONS among the different attributes of the abstracted ob-

jects which represent the relationships among the objects.

14
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Figure 5 illustrates a high level view of the modeling formalism and its relationship to the
DVMT system. We can view the model as two parallel networks. At the higher level is
the state transition diagram, consisting of states and directed state transition arcs. At the
lower level is the network consisting of the abstracted objects whose attributes are linked
by the constraint expressions that capture the relationships among the object attributes.
The constraint expressions relating the attributes of two abstracted objects are shown in
Figure 6. The two networks are connected by state-object links.

The system behavior consists of a series of events. Each event results in the creation of
an object (e.g., hypothesis, goal, or knowledge source instantiation) or the modification of
the attributes of some existing object. The states in the model represent the results
of such events in the DVMT system. Depending on what we want to model, a state
may represent simply whether some event has occurred or it may represent some finer
aspect of the event’s outcome.3

States are linked to other states so as to represent the desired sequence of events in the
system and to capture the causal relationships among these events. If an event is influenced
independently by a number of preceding events, then the states representing these events
will be ORed. That is, any one of the preceding events determines the outcome of the event
in the same manner. If the outcome of an event is influenced by a number of preceding

events acting together, then the states representing these events will be ANDed. The state

3 .
There are two types of states in the model. Predicate states, which represent whether an event has
occurred or not, z‘md relationship states, which represent the relationship among two objects in the
DVMT. The relationship states are used in Comparative Reasoning.

16
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Figure 5: A High Level View of the Modeling Formalism

The SBM modeling formalism consists of three major components: the state transition dia-
gram clusters, representing the expected sequences of events in the DVMT, the abstracted
objects, representing the DVMT objects such as hypotheses or goals, and the constraint
expressions, representing the relationships among the attributes of neighboring abstracted
objects. The SBM can thus be viewed as two parallel networks: one containing the state
transition diagrams, the other containing the abstracted objects and the constraint expres-
sions.
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This attribute points to objects that exist in the DVMT. If no such objects exist, it is
false.
((vat-ids (f phd:find-track-hyps

(path eel? tize-location-1ist)

(path self event-class)

(path self node)

pt))

This attribute represents the path of the vehicle.

(tizme-location-list
(((pt message-ob) (path xi tll/trl))
((pt vt-hyp-ob) (path x1 tine-location-list))
((pt pl-hyp-ob) (path x1i time-location-1ist))

This attribute represents a creation of shorter pt segments that could produce the desired
segment. The function create-trace-segments looks for existing shorter segments and then
chooses the longest non-overlapping ones for instantiation.

{(pt pt-hyp-ob) (f create-track-segments
(path x1 time-location-list)
(path xi event-class)

pt
(path x1 node)))))

This attribute represents the specific type of signal. The function phd:higher-level-event- .
classes determines the event classes for the pattern level from the vehicle level according
to the system signal grammar.

.

(event-class  (((pt message-ob) (path x1 event-classes))
((pt vt-hyp-odb)
(f phd:higher-level-event-classes
vt

(path x1 event-class)))
((pt pt-hyp-ob) (path x1 event-class))
((pt pl-hyp-ob) (path xi event-class))))
(level pY)
(node (path x1 node)))-:

Figure 8: Constraint Expressions Among Abstracted Objects

The constraint expressions linking the abstracted object attributes allow the DM to de-
termine the attribute values of one object based on the attribute values of any of its
neighboring objects. This figure shows the relationship among the attributes of the object
representing a pattern track hypothesis and its neighboring objects: shorter pattern tracks
(pt-hyp-ob), pattern location hypotheses ( pl-hyp-ob), vehicle track hypotheses (vt-hyp-
ob), and received pattern tracks (message-ob). The first part of each constraint expression
specifies the context: the current state and the neighbor whose values are to be used.
For example, (pt message-ob) means that the current state is pt and the object whose
values are to be used is the neighboring message object. The second part of the expression
specifies which of that object’s attribute values should be used. For example, (path x1I
tll/trl) specifies the til/trl (time-location-list/time-region-list) attribute of the neighboring
object (represented by the variable x1 which always refers to the neighbor object that was
instantiated most recently and whose values are to be used).

18
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Figure 7: The Answer Derivation Model
This model cluster represents the data transformation the DVMT is expected to perform;
that is, to produce pattern track (pt) hypotheses from the incoming sensor data at the
signal level (sl). The arrival of the initial data depends on the sensor functioning (SENSOR-
OK state) and the data’s existence (DATA-EXISTS state). The SENSED-VALUE state

represents a separate sensed signal for each sensor. The structure of the rest of the model
parallels the data blackboard structure shown in Figure 1.

transition diagram is thus an AND /OR graph. Figure 7 shows a part of the system model.

The states are linked to the abstracted objects whose behavior they represent. The
objects are represented as separate entities for efficiency reasons, to avoid the duplicate
representation of similar sets of attributes. Since each state represents some aspect of the
behavior of a DVMT object, that object must be represented somewhere in the system;
either as part of the state or as a separate data structure. Since several states’may need to
refer to the same object, it is more convenient to represent that object as a separate éntity
rather than to repeat its representation in each state that refers to it. An abstracted
object may represent an individual object or it may represent a whole class of objects.
An abstracted object representing a class of objects is called an underconstrained object.

For example, an underconstrained hypothesis object could have a list of levels in its level

19



attribute and thus represent the entire class of hypotheses at any of those blackboard
levels. An abstracted object, underconstrained or not, represents an object which may
or may not actually exist in the DVMT system. The states and the abstracted objects
contain information necessary to instantiate the model for a specific situation in the DVMT
system.

The state transition diagram representing the system behavior is organized into small
clusters for manageability. These clusters are then organized into a hierarchy corresponding
to increasingly detailed views of the system. Thus a high-level cluster represents selected
events as contiguous states while a more detailed cluster represents other events which
occur in between these states. Such hierarchical representatibn allows reasoning at different
levels of abstraction. This is useful during diagnosis Beca.use it allows the system to focus
quickly on the problem by postponing a more detailed analysis until it is necessary. For
example, consider the case when the DM tries to determine why some hypothesis was
not constructed. Rather than looking for the knowledge source instantiation that could
have produced that kind of hypothesis, the DM first looks for the necessary supporting
data and only if this data exists does it investigate the knowledge source instantiations
to see whether they were scheduled and if so, why they did not run. This means that
the diagnosis is first done using the Answer Derivation Cluster and only later using the
Ksi Scheduling Cluster* (see Figure 8). A subset of the states, designated as primitive,

represents reportable faults during diagnosis.

“The Ksi Scheduling Cluster represents the events that occur in between each pair of states in the Answer
Derivation Cluster.
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The SBM thus represents a generalized description of selected aspects of the DVMT

system behavior. Figure 8 shows the set of model clusters we have constructed.

4. Use of SBM in Reasoning about DVMT Behavior

Reasoning about DVMT behavior consists of instantiating the part of the SBM that
represents the system behavior relevant to the situation being analyzed. Reasoning in this
context thus means the different strategies for model instantiation and the different uses of
the information contained in the instantiated model. If we view the uninstantiated model
as a representation of all the expected system behaviors, then instantiating a part of the
model represents a search through this space. The instantiated model thus represents a
small subset of the expected DVMT behaviors. Each reasoning type imposes a different
search strategy on the model instantiation. The search stops when all possible pathways
relevant to the situation being analyzed have been explored. For example, in order to
determine why some hypothesis was not constructed, the DM must examine all possible
ways in which it could have been generated; that is, via several pathways within a node,
from locally available data, or from data received from other nodes. Within the instantiated
model, the analysis is done exhaustively by a depth-first search. Exhaustive search is
feasible here because the search space has already been reduced by the methods to be
discussed in Section 6. For example, grouping together objects that behave similarly, using
underconstrained objects to reason about a class of objects rather than the individual cases,

and using existing data to constrain the search.
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Figure 8: The Model Clusters Representing the DVMT Behavior
This figure shows the diagrams of all five mode] clusters used in diagnosis. At the highest
level are the Answer Derivation Cluster and the Communication Cluster. The Ksi Schedul-
ing and Comm Ksi Scheduling Clusters represent the events that take place in between
each pair of states at the higher level models. The Ksi Rating Derivation Cluster repre-
sents the additional knowledge about value relationships among the rating components of

the various objects.
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The aim of all the different reasoning types is to explore the causes, or the effects,
of an initial situation, provided as input to the DM.?® This situation is represented by an
instantiated state and its abstracted object; that is, a state and object whose attributes
have been evaluated (see Figure 9). The DM propagates these known values through
the SBM, using the constraint expressions among the abstracted objects, and thereby
instantiates a sequence of states causally related to the initial situation. We call such a
sequence a causal pathway.

When the initial situation represents some desirable event in the DVMT that never
occurred, we call it a symptom. A symptom represents an object that was never cre-
ated by the DVMT, usually a hypothesis.® Upon receiving a symptom, the DM traces
back through the SBM in order to find out at which point the DVMT stopped working
“correctly”. This is done by comparing the behavior necessary for the desired situation
to occur, as represented by the instantiated model, with what actually did occur in the
problem-solving system, as determined from the DVMT data structures. The aim is to
construct a path from the symptom state to some false primitive states which caused it and
thus explain, in terms of these primitive causes, why the DVMT system did not behave as
expected. This type of diagnostic reasoning thus consists of backward chaining through
the SBM. Since it constructs a causal pathway linking the initial symptom to the faults

that caused it we call this type of reasoning Backward Causal Tracing (BCT). Figure

5Currently this is done by hand. In a fully fault tolerant system the input would come from a detection
component.

6A symptom could also represent a class of objects, such as all hypotheses at some blackboard level. This
would be done using underconstrained objects.

24



State MESSAGE-SENTO0111

(p:or (message-received0110)) ; front neighbor

b-n (p:or (message-exists0217)))  ; back neighbor
value F ; state is false
object-ptrs message-ob0071 ; abstracted object

Abstracted Object MESSAGE-OB0071

vmt-ids F :
from-node 2 f“"
message-type hyp-ob (
tll/trl ((5 (14 10)) (6 (16 12)) (7 (18 14)) (8 (20 16)))
event-classes 1

level vt i
node 2 ‘
to-node 3

Figure 9: A Symptom Represented by an Instantiated State and

an Abstracted Object

A situation in the DVMT is represented by an instantiated state and its associated ab-
stracted object. This figure shows an instantiated MESSAGE-SENT state and its object
MESSAGE-OBJECT. The object represents a hypothesis at the vehicle track (vt) level
that was to be sent from Node #2 to Node #3. The fact that this hypothesis was never
sent is represented by the value attribute of the state, which is f (false). Only a subset of
the attributes is shown. '
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Figure 10: BCT-Constructed Causal Pathways

An instantiated Answer Derivation Cluster where BCT traced the lack of a vehicle track
(vt) 1-3 hypothesis to a failed sensor, represented by the false SENSOR-OK state. The
instantiated model shows the intermediate states that form the causal pathway from the
false symptom state VT to the primitive false state SENSOR-OK. These intermediate
states are: the VL state representing the three necessary locations and, similarly, the GL
and SL states, and the SENSED-VALUE state, representing the signals sensed by the
individual sensors (in this case there is only one sensor and therefore only one sensed
value).

10 shows a BCT-constructed causal pathway.

In addition to a symptom, an initial situation may represent an arbitrary event in the
DVMT whose effect on the DVMT behavior needs to be simulated. This is done, for
example, when the DM needs to see what effects some identified fault, such as a faulty
parameter setting or a failed hardware component, has on the DVMT system. This type of
simulation thus consists of forward chaining through the SBM. Here the DM constructs a
causal pathway which links the initial situation to all situations caused by it. We therefore
call this type of reasoning Forward Causal Tracing (FCT). FCT uses underconstrained
objects to reason about the class of problems caused by the fault, rather than just the

individual cases.
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Both BCT and FCT are more complex than simple backward and forward chaining
because the model is hierarchical and the interpreter must decide when to change the-
level of resolution; i.e., when to reason at different levels of abstraction. In addition to
BCT and FCT, we have also found the need for a new type of diagnostic reasoning we
call Comparative Reasoning (CR). CR uses relationship states rather than predicate
states.) CR compares two situations in the DVMT system and to explain why they are
different. This is necessary due to the lack of absolute standards for behavior in a problem-
solving system we cannot always understand the system behavior by looking at an isolated
object in the system and comparing that object to some fixed standard. Instead we may
have to compare the behavior of the faulty object to a similar object that seemed to behave
properly. In understanding why these objects differ we often uncover a fault. CR brings
up many interesting problems. The choice of a good object to use as a model for the
object of interest is a nontrivial task, as is the matching up of the parallel states in the

two instantiated models during this type of comparative diagnosis.

5. Examples

This section describes in more detajl the diagnosis done by‘ DM to analyze the two
failure scenarios described in Section 2. We will be following the convention of representing
both symptoms and faults (i.e., any undesirable situations) by false states, in the case of
predicate states, and by lower-than or higher-than, in the case of relationship states. For

example, a lack of some hypothesis at the vehicle track (vt) level will thus be represented
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by a false state VT which will have an associated abstracted object with attribute values

representing the vt hypothesis.

Details of Diagnosis for Scenario #1 We will assume that the DM has already
identified the cause of a missing spanning hypothesis at Node #3 as the lack of a sent
message from Node #2. Here we will show how the cause of this false MESSAGE-SENT
state is traced the lack of a communication knowledge source (cks) and how this fault is
then propagated forward, via an underconstrained object representing the class of messages
at the vehicle track level, to account for any existing MESSAGE-SENT symptoms pending
diagnosis. The instantiated model for this diagnosis is in Figure 11, part A.

Diagnosis begins with MESSAGE-SENT111, which represents the vt 5-8 hypothesis
that was expected but never received by Node #3. Since this state is false, Backward
Causal Tracing is invoked to instantiate the back neighbor of this state, this results in the
creation of the state MESSAGE-EXISTS217. This state is true, since a vt 5-8 hypothesis
does exist at Node #2. The problem must therefore occur in between these two states and
the lower Communication Ksi Scheduling Cluster is therefore instantiated next. The front
lower neighbor of the true state MESSAGE-EXISTS217 is instantiated, the state COMM-
KSI-RATED221. The DM instantiates the back neighbor of the COMM-KSI-RATED221
state, the state COMM-KS-EXISTS220. This is a primitive state and represents the
identified failure: the missing communication knowledge sources hyp-send:vt and hyp-
reply:vt.

At this point the FCT is invoked to simulate the effects of the identified failures on
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Figure 11: Instantiated SBM for Diagnosis of Pending Symptoms
in Node #2
The upper part of the figure shows how BCT traced the cause of the false MESSAGE-
SENT111 state to the lack of a communication ks (false primitive state COMM-KS-
EXISTS220). The lower part of the figure shows how FCT propagated the effects of
this fault forward, using underconstrained objects, and thereby accounted for all pending
MESSAGE-SENT symptoms.
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system behavior and thereby account for both pending and future symptoms caused by
this failure (see Figure 11, part B). Such future symptoms are any states that are in some
way effected by the false COMMS-KS-EXISTS220 state. In terms of the system behavior,
these are any events in some way dependent on the existence of these two cks’. In this
case, these would be any events regarding the scheduling or execution of these cks’s and
any messages relying on these cks’s for transmission. In terms of the SBM, the affected
states are any states forward of the KS-EXISTS state, where forward means both at the
same level of the model hierarchy and at any higher levels.

Recall that FCT works by propagating forward an underconstrained abstracted object
which represents the whole class of objects affected by the fault. At each step in the
diagnostic cycle, that is each time a new object/stafe is created, any abstracted objects
associated with pending symptoms are checked to see whether they overlap with the newly
created underconstrained object. If so, then their pending symptom has been successfully
explained by the identified fault and need no longer be diagnosed.

Getting back to the example, FCT first creates underconstrained objects representing
the missing communication knowledge sources. These are the objects COMM-KSI-OB129
and COMM-KSI-OB130, representing the hyp-send:vt and hyp-reply:vt cks’s respectively.
The corresponding state is then created, COMM-KS-EXISTS222. (In the diagrams, the
states attached to underconstrained objects are represented by two concentric circles, in-
stead of the usual single circle.) FCT continues simulating the fault’s effect on the DVMT

by expanding the front neighbors of this state. This results in the creation of the state
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COMM-KSI-RATED223. This state is false and could not have been achieved via any
other pathway. This means that any pending symptom states which overlap with this one,
via their abstracted objects, can be explained by the simulated fault. In this case there
aren’t any overlapping COMM-KSI-RATED symptoms and FCT continues forward. The
states COMM-KSI-SCHEDULED224 and COMM-KSI-EXECUTED?225 are instantiated
next. Both are false, since no cksi’s exist, either on the scheduling queue or already ex-
ecuted, for the two missing cks’s. Since the state COMM-KSI-EXECUTED225 has no
forward neighbor at the same level, its forward upper neighbor is expanded,. This is the
MESSAGE-SENT state in the Communication cluster above. Here FCT creates another
underconstrained object, a MESSAGE-OBJECT representing any hypothesis at the vehicle
track level. The object’s level attribute is set to vt and'all other attributes are left empty.
The resulting underconstrained object represents the class of objects affected by the miss-
ing cks’s, namely all message hypotheses at the vt level. This time the underconstrained
MESSAGE-OBJECT does overlap with the MESSAGE-OBJECTS associated with the
various pending MESSAGE-SENT symptoms. The FCT state MESSAGE-SENT226 is
created and and BCT is used to ascertain that there is no other way to achieve this state.
This does indeed turn out to be the case and as a result all MESSAGE-OBJECTS which
overlap with the underconstrained MESSAGE-OB can be accounted for by the identified
faults, the missing cks’s. This means that their associated MESSAGE-SENT states that
have been pending diagnosis at Node #2 are now explained by the failure. This explanation

of the pending symptoms terminates diagnosis at Node #2.
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Details of Diagnosis for Scenario #2 We will assume that the DM has identified the
low rating of a knowledge source instantiation between the gl and vl levels as the reason
for the lack of spanning hypothesis at the pt level. This situation is represented by the
state KSI-RATING15. This is a ~rela,t;ionship state and its value is low. The DM now
switches to Comparative Reasoning (CR) and to a cluster representing the derivation of
the ksi rating, the Ksi Rating Cluster, shown in Figure 12. At this point the DM invokes
CR to determine the causes of this low rating. Let us call the low rated ksi the problem
ksi and the maximally rated ksi on the queue the model ksi.

Before .CR can continue, a model object must be found for the low rated ksi. Such
an object must be of the same type of the problem object and it must of course be rated
higher than the problem object. In this case we are looking for a ksi that takes a hypothesis
at the gl level and produces a corresponding hypothesis at the vl level. The model ksi is
represented by the state KSI-RATING19.

Notice t};at there are now two parallel instantiations of the Ksi Rating Cluster; one
for the problem ksi and one for the model ksi. The two clusters will be instantiated one
state at a time and compared, in an attempt to find an explanation for the low rating of
the problem ksis. The search through the model (i.e., which neighbors will be expanded
next) is now determined by the type of relationship found among the problem state and
the model state (i.e., <, +, or >), rather than the state value (true or false), as was the
case with predicate states. CR continues to expand back neighbors, as long as they can

explain the current state’s relative value with respect to the parallel state. A state’s relative
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Figure 12: Instantiated SBM for Fault Scenario #2
Instantiated SBM for diagnosis of low ksi rating by Comparative Reasoning. Comparative
Reasoning works by instantiating two copies of a model cluster, in this case the Ksi Rating
Derivation Cluster, and comparing the “problem object rating” with the “model object
rating”. The “model object” is chosen by the Diagnosis Module based on selection criteria
contained in the SBM. Here the low KSI-RATING1S is traced to the low HYP-RATING30
of an sl hypothesis.
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value is explained by its predecessor states’ values if they have the same relationship. For
example, a < state is explained by its preceding < states, but not by > or by = states.

The value for state KSI-RATING1S5 is of course < (this is guaranteed by the process
selecting the model object; if no appropriate model exists, no object will be instantiated,
the problem state will not have a parallel state and diagnosis will stop.) In order to
understand why KSI-RATING15 is low’ the DM expands its back neighbors to see if any
of them are abnormally low. Since a ksi rating is a function of the ks goodness (a parameter
which determines the quality of a knowledge source) and the data component (the ratings
of the hypotheses the ksi is working with), the back neighbors of the state KSI-RATING
are KS-GOODNESS and DATA-COMPONENT. These are instantiated and their values
are determined from the values of their corresponding objects in the DVMT system. The
resulting states are KS-GOODNESS20 and DATA-COMPONENT?21.

Similarly, the back neighbors of the model ksi rating state, KSIF-RATING19 must be
expanded, so that the comparisons can continue. This expansion produces the states KS-
GOODNESS22 and DATA-COMPONENT?23. Before the values of these states can be
determined, the parallel states must be matched. (Recall that the value of relationship
states is determined by comparing the ratings of the problem and model objects.) This is
done by evaluating the parallel-state attribute of each of the problem states. This attribute
specifies the criteria for state matching in a declarative fashion so it can be changed easily.

Currently the criteria are that the state must be of the same type, if the state represents a

"Low here really means “lower than the model object” since there is no such things as absolutely low or

high.
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hypothesis, the parallel hypotheses must be at the same level, and the value of the model
object must be higher than the problem object. In the case of the ksi rating, the state
matching is easy, since we have only one state of each type on both sides (the problem
and the model) of the diagnosis. Evaluating the expression in the parallel-state attribute
of the expanded states results in the matching up of the problem state KS-GOODNESS20
with the model state KS-GOODNESS22, and the problem state DATA-COMPONENT21
with the model state DATA-COMPONENT23. The relationship of = is found for the
KS-GOODNESS states, because the ks goodness values are identical. The relationship of
the DATA-COMPONENT states is <, because the value of the data component rating of
the problem ksi is lower than the value of the data component rating of the model ksi.
The next step is to select a subset of the expanded back neighbors to expand further.
As in BCT, we want to continue expanding only those states that explain the current
problem. The current problem is a low ksi rating and we have determined that one of the
components influencing this rating is normal (ks goodness) and one is below normal (data
component); where “normal” means “same as the parallel state”. Clearly the normal value
could not have caused the ksi rating to be low. The KS-GOODNESS20 state is therefore a
dead-end as far as the diagnosis is concerned, because this state is not causally related to
the KSI-RATING15 state. The low DATA-COMPONENT?21 state however is responsible
for the low KSI-RATING15 and we therefore follow this state backward, by expanding its

back neighbors.

The value of the data component of a ksi is a function of the data (i.e., the stimulus and
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the necessary hypotheses). In this case, there were three gl hypotheses, one for each event
class, whose rating determined the rating of the data component. (Knowledge sources
that transform lower level hypotheses into higher level ones often combine several low
level hypotheses of different event classes into one higher level one.) The back neighbor
of DATA-COMPONENT, HYP-RATING, is therefore instantiated into three states, one
for each of the three hypotheses of the problem ksi.® These states are HYP-RATING24,
HYP-RATING25, and HYP-RATING26. Their associated abstracted objects are objects
representing group location hypotheses, GL-HYP-OB:s.

The state matching is more difficult here than before because there are three paral-
lel states to choose from on the model side; each problem HYP-RATING state has to
select one of the model HYP-RATING states. In this case a heuristic is used to select
the appropriate model state: the DM looks for a model state that minimizes the, differ-
ence between the ratings of the two objects while maintaining the constraint that the
model rating must be higher than the problem rating. (This is discussed in more detail
in [8].) In the current example, this difference minimization results in the following state
pairs: HYP-RATING24 and HYP-RATING29, HYP-RATING25 and HYP-RATING27,
and HYP-RATING26 and HYP-RATING28. The values of these states are <, since all
the hypotheses ratings are lower than the model hypotheses ratings. Diagnosis therefore
continues with the expansion of the back neighbors of these states. We begin with the

state HYP-RATING24 and expand its back neighbors. The back neighbor of this state

8No grouping of similarly behaving objects is done during CR. Therefore a state is created for each object,
resulting in three HYP-RATING states.
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is another HYP-RATING state, representing the rating of the hypothesis at the sl level
from which the gl hypothesis referred to by the state HYP-RATING24 was derived. The
resulting state is HYP-RATING30. We also expand the back neighbor of the parallel
state which results in the instantiation of the state HYP-RATING31. The state matching
is trivial here since there is only one model state to choose from. The two states are
matched, the value of state HYP-RATING30 is determined to be lower than its parallel
state HYP-RATING31, and diagnosis continues by expanding the back neighbors of this
state. Thus the low rating of a ksi at the vl level has been traced to a low rated hypothesis
at the sl level. We will end the diagnosis here although it could continue all the way to
the SENSOR-WEIGHT and DATA-SIGNAL states, which represent the primitive causes

that are ultimately responsible for the hypotheses ratings. See [8] where this example is

discussed in more detail.

6. Reducing the Combinatorial Problems in Diagnosis

In a typical run, the DVMT creates hundreds of objects in each of its processing nodes.
In order to diagnose a given situation, a subset of these objects has to be represented in
the instantiated SBM, the model then has to be searched in an attempt to find the causes
for the situation. This section describes the methods for dealing with this combinatorial
explosion. These methods fall into two broad categories: those used in constructing the
model, which we call representation abstractions and those used in instantiating and

using the model, which we call reasoning abstractions. Below is a list of these methods:
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1. Parametrizing a group of objects in order to represent the entire group by one

parametrized abstracted object (occurs during model construction).

2. Parametrizing groups of states in order to represent them by one state in the model

(occurs during model construction).

3. Allowing the existing data to constrain the search during diagnosis (occurs during

model instantiation).

4. Selecting a representative from a group of related objects and reasoning about it

(occurs during model instantiation).

5. Grouping similar object together and reasoning about them as a group in order to

reduce the search (occurs during model instantiation).

6. Abstracting the common characteristics of a group of objects in order to represent
and reason about the group by one abstracted object, usually an underconstrained

object (occurs during model instantiation).

This rest of this section describes and motivates each of these methods for reducing the

comrbinatorics. Figure 13 illustrates these broad categories and their relationship to the

DVMT system, the SBM, and the instantiated SBM.

Representing Groups of Objects as one. Abstracted Object. Much of the DVMT
system behavior varies depending on the system parameters and the data. One problem
we had to face in modeling the system was the construction of an concise abstraction of the
wide range of possible system behaviors as the data and the system parameters change. In

our formalism this translates to constructing a concise representation of a variable number
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Figure 13: The Types of Abstractions Used in Model Construction

and Reasoning

This figure shows the types of abstractions necessary to represent a complex system. The
bottom part of the figure represents the DVMT. The middle part represents the uninstan-

tiated SBM, and the upper part represents two instantiations of the SBM.

39



of objects in the DVMT system. We have solved this problem by grouping certain objects in
the DVMT system into classes and representing the entire class as one abstracted object
in the system model. This object is parametrized with respect to the data dependent
attributes, whether they be the actual input data (the sensor signals) or whether they be
system characteristics such as the signal grammar, the number of nodes in the system, or
the number of knowledge sources in a node.

For example, consider the aggregation of locations into tracks. The model needs to be
able to represent tracks of arbitrary lengths. One way to do this is to represent tracks of all
possible lengths as separate objects and then represent their relationship to the locations.
Figure 14, part A illustrates how this might be done. This is clearly not a very efficient
way to represent the simple fact that we need n locations to form a track of length n.
We therefore chose an alternative representation, shown in Figure 14, part B. In order to
represent the location to track transformation for a general case, we model the group of
locations as one state/object pair and a track of arbitrary length as another state/object
pair. We are thus collapsing tracks of arbitrary length into one state/object and the
variable number of locations into another state/object. When the exact number of locations
becomes known during model instantiation, we create as many objects as necessary in
order to represent each of the locations. In this way we can represent relationships among
variable number of objects. There are three classes of data-dependent objec.ts which need

to be parametrized:

1. those depending on some system parameters such as the signal grammar or the
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Figure 14: Representing a Class of Objects in the Uninstantiated Model
This figure shows how we deal with representing many related objects. For example,
when representing the numerous locations necessary to derive a track, we represent all
locations by one parametrized object in the uninstantiated SBM. At instantiation time,
when the number of locations becomes known, the actual number of objects is created.
The abstracted object attribute that determines the actual number of objects instantiated
is called a splitting attribute. Part A of the figure shows a non-parametrized way of
representing a variable number of objects. Part B shows the parametrized method.
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number of nodes in the system,

2. those depending on the relationship among the object structures and the desired data

(track to location parametrization);

A

3. those depending on the existing data (longer tracks to shorter track segments).

We have thus encoded a group of objects in the DVMT as one abstracted object in
the SBM. Such parametrized objects require a special procedure when they are instanti-
ated since one abstracted parametrized object may expand into a number of abstracted
instantiated objects, corresponding to their actual number in the DVMT system. What
we need here is to recognize when this should occur and know how many objects need to
be created. In other words, we need to know the names of the object attributes which are
data-dependent (and therefore parametrized) and whose values will determine the num-
ber of the actual instantiated objects. This information is contained in one of the control
attributes in each abstracted object, called the splitting-attributes. This attribute con-
tains the names of all the object’s variable attributes that have been parametrized. During
the object instantiation, when one of those attributes is evaluated, the number of values
obtained determines the number of objects to instantiate. A separate object is then created
and the parametrized attribute receives one of the values obtained initially. This causes a
split in the branching of the graph, these attributes are called splitting attributes. Splitting
attributes are thus attributes which have been parametrized for concise representation of

objects in the system model. Examples of splitting attributes are time-location-list and

event-classes of object hypothesis, goal-type of object goal, ks-type of object ksi, sensor-id

42



of object sensed-value, and nodes of object message. This type of abstraction which is
many-to-one during the model construction and one-to-many during the model instantia-

tion is called type I in Figure 13.

Representing Groups of States as One State. In the above example we grouped a
number of objects into a class and represented that class by one abstracted object. In the
following example we will illustrate a similar technique, but this time we will group together
states and represent a number of possible series of events as one state in the model. This
is necessary in cases where the number of the possible series of events is very large and we
cannot represent all the possible series of steps of some process. A good candidate for this
type of representation is the aggregation of shorter track segments and locations into longer
tracks because the number of ways in which the shorter track segments and locations can
be combined to form longer tracks is very large. The two choices here are shown in Figure
15. Notice that these states (the track states) point to themselves (the back neighbor of a
track state is the state itself) and are therefore called reflexive states. During the model
instantiation this state is expanded into as many states as necessary to represent how the
longer track was derived from the shorter segments and individual locations. Reflexive
states provide a mechanism for grouping a variable number of sequential states into one

when representing the individual states explicitly would be too expensive.
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