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Abstract

The Gutenberg system is a port-based, object-oriented operating system kernel de-
signed to facilitate the design and structuring of processes in distributed systems. This
is achieved by providing primitives for structuring processes through controlled process
interconnections and through controlled access to shared resources. Only shared re-
sources are viewed as protected objects and hence, all shared resources can be accessed
only by specific operations defined on them. Processes communicate with each other
and access protected objects through the use of ports. Each port is associated with
an abstract data type operation and can be created by a process only if the process
possesses the privilege to execute that operation. Privileges are represented by one or
more capabilities. Thus, access control to shared resources is achieved by controlling
acquisition of capabilities to create ports by processes.

Capabilities to create ports for requesting operations are contained in the capabil-
ity directory which is a kernel object, i.e., is maintained and manipulated only by the
kernel. The purpose of the capability directory is to restrict the use of capabilities in a
consistent and orderly way. At any time, each process is associated with a single sub-
directory of the capability directory designated as its active directory. The protection
domain of a process is defined by the set of stable capabilities in its active directory
and of transient capabilities in its capability list. Unlike stable capabilities, transient
capabilities exist only for the lifetime of the process that owns them.

This paper describes the design philosophy and the structure of the Gutenberg
kernel. First, it discusses the principles and motivations behind the Gutenberg design
in some depth. Then, it presents the structure, contents and operations of kernel
objects and discusses their use in structuring acess to protected user-defined objects.
The management of processes is also discussed. It concludes with an example of
controlled interprocess communication using the Gutenberg mechanisms.
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1 INTRODUCTION

In the design of distributed systems, the protection of resources in the system, in spite
of their shared use, is an important issue. The protection problem is exacerbated in
distributed systems by three factors:

1. Processes that use a resource and the resource itself may be placed on separate nodes
in the system. This implies that authorization checks may involve communication

overheads.

2. Communication links that connect the nodes themselves are shared resources and
hence have to be protected. This introduces further overheads.

3. The protection facility itself needs to be distributed to ensure its continuous, reliable
performance. This requires the cooperative interaction of the nodes of the system in

which control is decentralized.

These point to the need for an efficient mechanism that achieves protection of shared
resources in a distributed system with minimal overheads.

This paper deals with the design of such a mechanism, the distributed Gutenberg kernel
[Stemple et al. 83, 85, 86, Ramamritham et al. 83, 85, 86]. The Gutenberg Operating
System Kernel currently being developed at the University of Massachusetts takes a unique
approach to protection. Three features of Gutenberg facilitate the realization of a coherent
decentralized protection scheme and should contribute to its better performance compared

to previous protection schemes:

e the adoption of port-based protection, whereby control of access to shared resources
is achieved efficiently by controlling the creation of ports (communication links)
connecting processes using a resource to the process managing the resource;

e the adoption of non-uniform object-orientation, whereby only shared resources need
be structured as objects, i.e., entities that can be accessed only via specific operations

defined on them; and

o the use of a capability directory, which is a distributed repository of persistent pro-
tection information and is maintained and manipulated only by the kernel.

The primitives provided for the control of interprocess communication and access to
shared objects support the design and structuring of distributed computations. Typically,
sharing of resources in protected systems is achieved through the distribution of access
rights, i.e. privileges, to subjects. Information about accessors’ rights may be stored with
the objects being shared, as in the case of access lists [Saltzer 74] or with the accessor,
as in the case of capabilities [Dennis et al. 66). (Capabilities are unforgeable tickets that



authorize their possessor to access a named object via a subset of the operation defined by
the object’s type.) In either case, protection is achieved by checking that the accessor has
previously been granted the right to perform the operation.

The protection scheme used in Cambridge File Server (CFS) [Dion 80] is typical of
capability-based protection schemes. Along with an access request, a process sends the
appropriate capability to the file server via a communication link. If the capability is valid,
the server satisfies the request. This scheme requires protected communication channels
because they are used to transmit capabilities. In such systems, the steps involved in ac-
cessing a remote protected resource are: (1) A process on a node in the distributed system
presents a capability for the appropriate communication channel; (2) Via the communica-
tion channel, the process sends a capability for the resource and the request to the remote
process that manages the resource; (3) The resource manager process authenticates the
capability provided by the user process; (4) The resource manager process responds to
the request. Thus, one local capability check, one remote capability check, and a two-way
communication are needed to access a remote protected object. This represents a signifi-
cant overhead. In the next section we propose an approach to protection which incurs less
overheads than a typical capability-based scheme, but affords similar benefits.

Proposed Approach to Protection in Distributed Systems. The principle un-
derlying our port-based approach to protection can be summarized as follows: Permit a
user process to create a port (a communication channel) to the process managing a remote
protected resource only tf the user process has the right to access the resource. If such
checks are placed on port creation, then the only check that needs to be made when a
process requests access to a remote resource via a port is whether the port belongs to that
process and whether its intended use is in the manner specified at the time the channel was
created. In Gutenberg, this required check is done at the node in which the user process
resides; it is a local check.

All shared resources in Gutenberg are structured as objects and hence can be accessed
only via specific operations defined on them; a process may access a shared resource only
if it has access to a port that is specifically associated with a specified operation on a
resource of a specified type, and is connected to the resource’s manager. This association
of operations on a resource (i.e. object) and ports gives Gutenberg an object-orientation.
However, in Gutenberg this object-orientation is non-uniform in that it is required only at
the level of resources shared between processes.

We believe that conventional mechanisms for protecting unshared data (e.g., local vari-
ables) are adequate and desirable, from both a downward compatibility and an efficiency
viewpoint. Conventional memory protection mechanisms (e.g. page tables) ensure that
the local data of processes are not accessible to other processes. Gutenberg depends on
programming languages to provide static type-checking for self-protection. Thus, although
local data are not necessarily object-oriented (depending on the programming language),
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shared data are required to be object-oriented. As a result of this non-uniform object
orientation, Gutenberg will not suffer from the performance problems that arise from dy-
namic access authorization for all accesses to objects, as with uniform object-orientation,
e.g. Hydra [Wulf et al. 74] and iMAX [Cox et al. 81].

Gutenberg controls the creation and use of ports through the use of capabilities. The
control of capabilities is a central theme in Gutenberg. Our approach to this control
can be summarized as follows: Capabilities for potentially sharable objects are maintained
in a physically distributed but logically unified structure to ensure that they are accessed
in a controlled and reliable manner. Being physically distributed, this structure, called
the capability directory, can be designed to ensure availability and reliable access despite
communication and node failures. However, since it is logically unified, i.e., appears as
a single globally addressable entity, the physical distribution will be transparent to its
accessors.

The purpose of the capability directory is to restrict the use of capabilities in a consis-
tent and orderly way. At any time, each process is associated with a single subdirectory
of the capability directory designated as its active directory. The protection domain of a
process is defined by the set of stable capabilities in its active directory and of transient
capabilities in its capability list. Unlike stable capabilities, transient capabilities exist only
for the lifetime of the process that owns them.

In addition to the performance enhancements made possible by the use of port-based
protection and non-uniform object-orientation, use of the capability directory, which is
maintained and manipulated only by the kernel, contributes to the efficacy of protection
in Gutenberg.

Communication and Protection in Related Systems. A few systems provide
port-based communication facilities using functional addressing [Stemple et al. 86], but
none tie protection so closely to communication as does Gutenberg. The Accent system is
port-based and supports asynchronous communication with process transparency [Rashid
et al. 81]. Communication in Gutenberg is also similar to the mechanisms used in Intel
iAPX-432 [Cox et al. 81], DEMOS [Baskett et al. 77] and NIL [Strom et al. 83). In all
these systems, apart from NIL, even though a communication link could be typed, thus
restricting its use, they do not support the concept of restricting access to shared objects
by restricting the creation of communication channels, as in Gutenberg.

A distinguishing feature of procedure invocation in systems such as Hydra (and the
iAPX 432) is the creation of a local name space (LNS) with each (protected) procedure
invocation. This LNS defines the protection domains for the execution of the procedure.
It is composed of the union of the capabilities for actual parameters passed in the in-
vocation and the capabilities possessed by the inactive procedure itself. The creation of
local name spaces greatly increases the cost of a procedure call. Since accessing a shared
object involves communication between processes in Gutenberg, local name spaces in these



systems correspond to process name spaces and appropriated process protection domains
in Gutenberg, and the creation of a local name space corresponds to a context switch
in Gutenberg. This approach has been taken in other systems, such as with the NIL
programming language [Strom et al. 83]).

We believe that the Gutenberg approach has two benefits. First, by encapsulating
objects in active entities (processes) instead of passive entities (procedures), the requestor
of an operation on an object can execute concurrently with the execution of the operation.
When accessing a remote object using asynchronous communication, a context switch can
be avoided altogether. The exploitation of concurrency was a major motivation for the use
of resource managers in Gutenberg and the selection of communication primitives. And
second, processes in Gutenberg are able to change their protection domain by changing
their active directories, i.e., their points of reference within the capability directory. This
change is expected be very inexpensive compared with the creation of an LNS.

As mentioned earlier, a unique feature of Gutenberg is the capability directory, which
contains stable capabilities in a unified structure controlled by the kernel. Other systems,
such as Hydra, iAPX 432, and CAL [Lampson et al. 76] allow capabilities to be stored in
inactive objects (i.e., data structures, as opposed to processes) that are not kernel objects.
The problem of how to allow such objects to be permanently stored in secondary memory
is noted in [Lampson et al. 76]. Having a unified structure for stable capabilities that is
separate from user-managed data facilitates their management by the kernel and their use

by application processes.

2 PRINCIPLES UNDERLYING THE GUTENBERG KERNEL

The Gutenberg system evolved from a series of design decisions concerning the nature of
protection and communication in the system. We discuss these now.

Limit the responsibilities of the kernel. Operating systems that support the definition
and protection of arbitrary objects traditionally have had performance problems because
of the maintenance of protection domains and the overhead of dynamic access checks. We
hoped to restrict the overheads of the kernel by taking a non-uniform object orientation, in
which only resources shared by different processes need to be structured as objects at the
operating system level. An underlying assumption in Gutenberg is that the granularity
of objects is medium to large, a size adequate to amortize the cost of the interprocess
communication required to access the object.

Programming language independence. There should be no requirement that a specific
programming language or that only object-oriented languages run under the Gutenberg
system kernel. In fact, non-object-oriented languages can achieve an object oriented view
through the use of kernel primitives [Stemple et al. 83]. The system is designed to support
applications implemented in any programming language.
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Resources are directly manipulated only by their managers. Managers are processes
that synchronize the operations on an object (i.e., a shared resource). A process managing
an object is the only subject able to directly manipulate the object. The process performs
the operations, in part, by invoking kernel primitives for manipulating kernel objects.

Object sharing is via interprocess communication. Processes do not share address
spaces. They can interact only through interprocess communication using explicit message
passing. An operation can be performed on the object only as a result of a request from an-
other process via interprocess communication. Processes are provided with communication
primitives allowing both synchronous and asynchronous communication.

Interprocess communication connections are established using functional addressing
[Vinter et al. 83, Stemple et al. 86]. Processes use communication channels called
ports to request operations on objects. A port can be used to request an operation only if
it was created for that purpose. Ports are created by indicating the function of the port
(viz., to request an operation), not by identifying a particular process.

The kernel controls access to shared objects by controlling interprocess communication.
An operation may be requested only by transmitting the operation request over a port to
the object’s manager. By limiting the use of ports and constraining their use to request a
specific operation on a specific object, access to the object is controlled.

Details of the implementation of the communication mechanism are hidden from the
processes using it. Ports are themselves objects with a small set of operations defined on
them. They are managed by the kernel. The representation of ports and details of message
transmission and reception are hidden from communicating processes.

Privileges persist in a single kernel-managed structure. Gutenberg recognizes that priv-
ileges need to persist in the system independent of the execution of processes. Rather than
allowing privileges to be placed on secondary storage in user objects (hidden from the view
of the kernel), privileges that are not dependent on the existence of a process are stored
in a kernel managed structure called the capability directory. This directory is shared by
the processes in the system. Transient capabilities of a process, i.e., capabilities that exist
only as long as the process is active, are kept in the process’ ¢-list.

The above design principles made it possible to use Gutenberg as the basis for a dis-
tributed operating system for the following reasons. The use of resource managers is a
common approach to structuring software in distributed systems. Second, the logical sep-
aration of process address spaces in Gutenberg corresponds to the physical realization
of processes in a distributed system. Third, the close association of communication and
protection contributes to decentralized access authorization. And last, the intent to in-
crease concurrency by using asynchronous communication is appropriate in a distributed
system, where communication delays increase overheads and there is great opportunity for

parallelism.



3 GUTENBERG KERNEL OBJECTS

In the non-uniform object model adopted in Gutenberg, the kernel primitives invoked by
processes to manipulate kernel objects are viewed as abstract data type operations on
kernel objects. Thus, the kernel is viewed as an abstract data type manager of kernel
objects implemented within its address space. This view is common to both the kernel
and the processes that invoke the primitives; just as user object managers cannot view
the internals of the kernel, the kernel cannot view the internals of the object managers.
This implies that control of a user object is strictly within the jurisdiction of the user
object manager. This uniform view is expected to simplify and improve the correctness of
both the kernel implementation as well as the structuring of the other processes within the
system, since it leads to an inherently modular system which supports information hiding
and controlled interface. The kernel consists of individual modules that manage each of the
kernel objects. There are four types of kernel objects: processes, ports, capability directory

and transient capabilities.

3.1 Processes

A process is an independently schedulable unit of computation, with access to protected
objects. Each process is represented by a unique process control block, abbreviated PCB,
which resides within the kernel address space. Processes can be classified into system
processes and user processes. System processes together with the kernel form the operating
system, which is viewed as a cooperative set of managers of the system objects. Typically
all system objects are protected. An example of a system process is the file manager. User
processes are not part of the operating system, but manage shared, user-defined objects.
This is achieved in the same way as with system processes, by accepting operation requests,
executing the operations and returning the results to the requesting processes. To help
distinguish between requests to the kernel and request to access protected objects, user-
defined or system-defined, we say that processes execute kernel primitives to manipulate
kernel objects, and request operations to manipulate protected objects.

It becomes clear from the above that user processes interact with both system processes
and with other user processes. In Gutenberg, processes can only communicate through
explicit message exchanges over communication channels called ports. As a result, processes
do not share address spaces, eliminating the need for synchronization in memory access
and generalizing the process interactions in a distributed system. Other systems, e.g. NIl
[Strom et al. 83] and Accent [Rashid et al. 81], adopt a similar model for processes in

their system.

3 __3

— 13

3 3

1 3

3



3 "4 "3 —T3a T3 T3 T3

[ Port Type | Client Primitives TServer Primitives |

5 SEND RECEIVE |
REVOKE REFUSE
R RECEIVE SEND
REFUSE
SR | SEND-RECEIVE | GETDETAILS
REVOKE SEND
... ..l _REFUSE

Figure 1: Port primitives used by clients and servers for each port type

3.2 Ports

A port is a kernel object that processes manipulate by invoking kernel primitives. As
described above, a port is a communication channel between a pair of processes in one-
to-one topology. Thus, a port connects just one pair of processes at a time. One process
has the privilege to place messages on the port, which behaves as a queue of messages
awaiting delivery. The other has the privilege to remove messages. This communication
can be either synchronous or asynchronous.

The basic interprocess communication of the Gutenberg system is based on the
client/server model, in which the creator of a port, called the client, communicates with
the port server, the manager of some shared object, for the purpose of requesting an opera-
tion on the object. A port is established with functional addressing; a client creates a port
by naming the service it would like to request using the port rather than by identifying
the server process. As a result, the server process does not have to be in existence prior
to the creation of the port. The advantage of this strategy is that it allows the dynamic
creation of server processes. In fact, in Gutenberg, process creation and destruction are
byproducts of port operations. There are no primitives for process creation and destruc-
tion: processes are hidden from the programmers, the lowest level of abstraction being the
level of operations on the ports.

The only way a process can request an operation on a shared object is to create a port
and execute a kernel primitive on that port. 3 The possible kernel primitives on ports that
a client is entitled to, include SEND, RECEIVE, and SEND-RECEIVE (to receive the result
of an operation based on the parameters sent).

In order to restrict the use of ports to the functionality for which they have been created,
a port is typed as either a Send, Receive, or Send-receive port. This typing specifies the

30One implication of port creation requests being satisfied by the kernel in Gutenberg is that once a port
is created, it is not possible to automatically control the number of times a specific port is used. Such a
facility must be explicitly programmed into servers in Gutenberg.



directionality of the port and the kernel primitives used by the client to transmit messages
through it. Consequently, it specifies the kernel primitives that the server of the port may
use. Figure 1 shows the port primitives used by clients and servers for each port type.
Send and Receive ports are unidirectional. Send-receive ports are bidirectional, allowing
the port’s client to send a message and receive a response from the port’s server.

Port typing also determines the format of messages that may be placed in the port
and the object operation associated with this, which identifies the operation that will
be requested via the port. Each port is represented by a unique channel control block,
abbreviated CCB, which resides within the kernel address space. CCB contains the port
type along with information about the status of the client and server processes and the
owner of the port. Ownership represents the privilege to destroy the port. The creator
of the port becomes the initial owner of the port. As part of the sharing mechanism
supported by the Gutenberg system, a process may transfer part of its privileges, including
port privileges, to another, over ports.

Here is a short summary of the purposes of kernel primitives on ports. (Details con-
cerning the primitives may be found in [Ramamritham et al. 83]).

CREATE-PORT (only a client primitive) creates a port of a specific type. The type is
specified via a parameter to the call.

DESTROY-PORT (only a client primitive) destroys a port. The caller must be the
owner of the port. The port-id is specified via a parameter to the call.

SEND puts a message on a port. The system has two kinds of SEND primitives:
acknowledge-SEND and no-acknowledge-SEND. If the SEND is an acknowledge-SEND,
the sending process is informed when its correspondent over the port receives the
message, and can choose to block until the receipt of the acknowledgement.

RECEIVE requests the next message from the port. The caller elects via a parameter to
the call, to either block, if there is no message on the port, or execute concurrently

with the servicing of the request.

SEND-RECEIVE (only a client primitive) puts information, termed request details, on
a port for the server to use in satisfying the request. When the server responds to
the request by executing a SEND, the server’s reply is returned to the client as in
RECEIVE. The caller may block until the server replies, or execute concurrently with
the servicing of the request.

ACCEPT-REQUEST (only a server primitive) is used to obtain access to newly created
ports and to query a set of existing ports to see if new messages have arrived. The
caller may block until the kernel replies, or execute concurrently with the servicing

of the request.
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GETDETAILS gets request details from a port. The caller (the port’s server) may block
if there is no pending SEND-RECEIVE, and thus no request details, on the port, or
it may execute concurrently with the satisfaction of its request.

REFUSE rejects a client’s request for service as unsatisfiable and notifies the requester
by setting a status.

REVOKE revokes privileges sent as part of request details by a SEND-RECEIVE or in a
SEND message up to receipt of the message *.

The choice of these primitives during system design was based on the desire to keep
their number and complexity to a minimum while providing users a set of primitives
for building systems of communicating processes in arbitrary topologies (see [Vinter et
al. 83]) with reasonable ease. Thus, we have added to the basic SEND and RECEIVE
primitives the bidirectional SEND-RECEIVE and its receiving reciprocal GETDETAILS in
order to allow such functions as reading a record with a given key (the key being sent
as request details) or a remote procedure call (the procedure’s parameters being sent as
request details) to be implemented by a single primitive. However, it should be noted that
the asynchronous mode makes the SEND-RECEIVE operation more robust and flexible
than a remote procedure call semantics.

3.3 Capability Directory

Gutenberg controls the creation and use of ports through the use of capabilities. All ca-
pabilities for accessing potentially sharable objects are maintained in a logically unified
structure called the capability directory. Thus, the capability directory expresses all po-
tential process interconnections in the system. This is similar to the UNIX file directory
[Ritchie et al. 74] which provides uniform treatment of files, devices and interprocess
communication. The capability directory is a stable structure in that its existence does
not depend on the existence of any process. It is also shared since more that one process
may concurrently access the same segment of the directory. It should be noted that no
portion of the directory is owned by any process at any time.

3.3.1 Capability Directory Nodes

Capabilities within the capability directory are further organized into groups called the
capability directory nodes, abbreviated cd-nodes. They are identified by both a system-wide
unique name created by and visible only to the kernel, and by user-specified names. In
general, cd-nodes contain other information along with capabilities. Cd-nodes are linked to

4A scheme for revoking transferred capabilities anytime after the transfer is discussed in [Ramam-
ritham et al. 86]



other cd-nodes through capabilities. The same cd-node may be linked to several cd-nodes
under possibly different user-specified names. All capabilities point to a cd-node have
equal status. That is, cd-nodes are unique and are not contained within other cd-nodes.
A cd-node exists independently of any other cd-node and disappears along with the last
capability link to it, if it is not explicitly destroyed. In this way the capability directory is
structured as a graph in which nodes ( each node corresponds to a cd-node) are connected
by edges corresponding to capabilities. Figure 2 shows an example of capability directory
segment which implements the mail facility in a system. The capability directory may
contain two kinds of cd-nodes: subdirectories and manager definitions.

A subdirectory is a list of capabilities (see figure 3). It is merely an organizational unit
of the capability directory, similar to a file directory in a file system. At any time, every
process in the system is associated with a single subdirectory in the capability directory
designated as its active directory. The active directory of a process is the set of capabilities
from the capability directory that a process may use or exercise.

The active directory of a process is one component of a process protection domain.
The other component is its current set of transient capabilities; this is discussed later. A
process may dynamically switch from one protection domain to another by changing to a
new active directory or changing the contents of its current active directory, if it has the
privilege to do so.

Manager definitions constitute one of the novel features of the Gutenberg system. All
processes in the system are instantiated from manager definitions (figure 4). Thus, a
manager definition provides information necessary for instantiating the manager process,
as, for example, a capability for the file containing the executable image (object module)
of the process, and the initiation protocol (see section 4.2) for determining the manner
in which ports are connected to manager processes. It also includes a capability for a
subdirectory containing the privileges that all processes instantiated from the manager
definition will initially possess.

One of the components of a manager definition node is a set of port descriptors. This
set corresponds to the set of operations defined within the manager. Each port description
contains a generic operation name (a name specified by the user at manager creation time),
and the type of port through which a user requests this operation. It should be noted that
manager definitions, unlike subdirectories, never define a part of the protection domain of
any process.

Capabilities in cd-nodes inherit all the properties of the capability directory in that
they are stable, sharable but not owned by processes. These capabilities are called stable
capabilities. Stable capabilities can only reside in the capability directory.

Capabilities in Gutenberg consist of three parts: a specific kernel primitive, a list of
parameters for the primitive, and a list of primitives that can be used to manipulate the
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Figure 2: Example of Capability Directory Segment
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Subdirectory cd-node Contains a set of capabilities, and has the following attributes:

subdirectory id system-wide unique identifier of the subdirectory. (Cannot be mod-
ified through the Modify primitive - it is generated by the kernel upon creation

of the cd-node.)

use count the number of stable and transient subdirectory capabilities (including those
in manager definition cd-nodes) pointing to this cd-node. (Cannot be modified
through the Modify primitive - it is maintained by the kernel.)

active directory count the number of processes having this cd-node as their active
subdirectory. (Cannot be modified through the Modify primitive - it is main-
tained by the kernel.)

Figure 3: Contents of Subdirectory cd-node

capability itself, which are called capcaps, for capabilities on a capability.

A capability permits a process which possesses it to invoke the specific kernel primitive
it contains. This primitive is also called primary kernel primitive in order to distinguish it
from the other kernel primitives that manipulate the capability itself.

The capcaps determine how the capability may be modified and used (figure 5). Cap-
caps include the privilege to transfer (to another process), copy, register (make stable),
hold (make transient), merge (with other mergeable capabilities), view, and modify the
capability. Each capcap may be active, in which case the corresponding kernel primitive
may be invoked for the capability, or inactive, in which case the corresponding kernel
primitive cannot be invoked on the capability. Not every capcap makes sense for each type
of capability. When we discuss the specific capabilities next we point out the capcaps that
are applicable.

The parameter list may include names of cd-nodes as well as other capabilities (most
notably, the cooperation class capability which is discussed later). A parameter may have
one of three different kinds of values: a value, a list of values which may not be added to,
or ANY. ANY indicates that the parameter is not specified and may be replaced by any
value or list of values. The parameter list associated with a capability depends on the type
of the capability. Hence, we now discuss the four different capability types.

3.3.2 Types of Capabilities

There are four different types of capabilities that may be stored in the capability directory:
operation, subdirectory, manager definition, and cooperation class capabilities.

An operation capability (figure 6) represents the privilege to create a port for use in
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Manager Definition Node Provides information necessary for instantiating a manager pro-

cess. The manager definition cd-node has eight attributes. Value describes legal value(s)
that the attribute may have; Default is the value the attribute is set to when the cd-node
is created. The attributes are:

manager id system-wide unique identifier of the manager cd-node. (Cannot be mod-
ified through the Modify primitive - it is generated by the kernel upon creation
of the cd-node.)

initial active directory a subdirectory capability pointing to the subdirectory cd-
node that will become the active directory of the manager process when it is
initiated.
Value: any subdirectory capability. (If no value is specified, at the time of in-
statiation of a process fromn this manager definition, the kernel creates an empty
subdirectory to serve as the active directory of this process.)

initial process image a file capability (represented as a cooperation class capability)
containing the object code to be executed when the process is initiated.
Value: any cooperation class.

manager dependency indicates whether the existence of the process is dependent on
the existence of ports connected to the manager process.
Values: independent (I) or dependent (D).

initiation protocol indicates when a new manager process is created or an existing
one is connected to, when a port to the manager is created.
Values: creative (CR), conservative (CO), or class conservative (CC).

port descriptors specifies the list of (port type, generic operation name) pairs for
operation capabilities that may be linked to this manager cd-node. The port type,
except for the link type, specifies the format of the arguments that may be passed
over the port as part of a message or request-details.
Port type values: send (S), receive (R), send-receive (SR). Argument format value:
privilege part of a message, privilege part of request-details, non-privilege part of
a message, non-privilege part of request-details, or ANY. Operation name values:
a name or ANY. Default: S:ANY:ANY, R:ANY:ANY, SR:ANY:ANY (for both
message and request-details).

manager use count the number of manager capabilities pointing to this cd-node.
(Cannot be modified through the Modify primitive - it is maintained by the
kernel.)

operation use count the number of operation capabilities linked to this cd-node.
(Cannot be modified through the Modify primitive - it is maintained by the
kernel.)

Figure 4: Contents of Manager Definition cd-node

13




COPY the capability may be copied (applicable only to nonezclusive capabilities);

TRANSFER the capability may be transferred; (if the capability is nonexclusive then a
copy of the capability is transferred, otherwise the capability itself is transferred);

MERGE the capability may be associated with another compatible capability in order to
augment its capcaps and/or rights.

REGISTER the transient capability may be registered in the capability directory;
REMOVE the stable capability may be removed from the capability directory;

HOLD the stable capability may be made transient;

VIEW-NODE the contents of a cd-node pointed to by the capability may be examined,;
MODIFY-NODE the contents of the cd-node pointed to by the capability may be modified.
DESTROY-NODE the cd-node pointed to by the capability may be destroyed;
VIEW-CAP the contents of the capability may be examined;

MODIFY-CAP contents of the capability (excluding the capcaps) may be modified;
MODIFY-CAPCAP the capability’s capcaps may be modified;

Figure 5: List of capcaps and their meaning in the case they are active
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Operation Capability Provides the privilege to create ports. Thus, the primitive associated

with this capability is Create-port. Operation capabilities have six attributes:

operation name user-specified name of the operation. This name becomes the object
operation of created ports. This name also serves to identify the operation capa-
bility.
Value: a name; it must be specified upon creation of the capability.

generic operation name name of the corresponding operation defined in the manager
definition cd-node. This name can be the same as or different from the operation
name. (Cannot be modified through the Modify primitive - it is generated by the
kernel upon creation of the capability.)

port type specifies the port type for this operation that may be linked to the cor-
responding manager definition cd-node. The port type can either be Send (S),
Receive (R), or Send-receive (SR). (Cannot be modified through the Modify prim-
itive - it is generated by the kernel upon creation of the capability.)

message format specifies the arguments that may be passed over the port as part of
the message, and the request-details in case of send-receive port type. (Cannot
be modified through the Modify primitive - it is generated by the kernel upon
creation of the capability.)

cooperation class(es) restrict how the port will be connected to a manager process.
Value: cooperation class capability or ANY. Default: ANY; in this case, accord-
ing to the initiation protocol, cooperation class is required to be specified upon
invocation of the create-port primitive.

manager id a pointer, global name, to the manager to which this operation capability
is linked. (cannot be modified through the Modify primitive - it is set by the
kernel upon creation of the capability.)

The capcaps of the operation capability are: COPY, TRANSFER, REGISTER,

REMOVE, HOLD, MERGE, MODIFY-CAP, MODIFY-CAPCAP, and VIEW-CAP.

Value: each is active or inactive. Default: all active.

Figure 6: Contents of an Operation Capability
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Manager Definition Capability Provides the privilege to create operation capabilities.
Thus, the primitive associated with this capability type is Create-operation. The
manager definition capability has the following attributes:

manager definition name user-specified name used to identify the manager defini-
tion cd-node to which the created operation capabilities are linked to. This name
also serves to identify the manager definition capability.
Value: a name; it must be specified upon creation of the manager definition.

cooperation class(es) restrict who may create operation capabilities linked to the
definition manager. When exercising the create-operation privilege, a process must
possess one of the specified cooperation class capabilities or else the primitive is
illegal.
Values: cooperation class identifier(s) or ANY. Default: ANY.

manager id a pointer, global name, to the manager definition cd-node corresponding
to this capability. (cannot be modified through the Modify primitive - it is set
by the kernel upon creation of the capability.)

The capcaps of the manager definition capability are: COPY, TRANSFER, HOLD,
REGISTER, REMOVE, DESTROY-NODE, MERGE, MODIFY-CAP,
MODIFY-NODE, MODIFY-CAPCAP, VIEW-CAP, and VIEW-NODE.

Value: each is active or inactive. Default: they are all active.

Figure 7: Contents of a Manager Definition Capability

requesting a particular operation on a given user-defined object type. Thus, the primary
kernel primitive of the operation capability is Create-port. One parameter of the oper-
ation capability is the operation name, which becomes the operation requested via ports
created from this capability. This name also serves to identify the operation capability
in the subdirectory in which the capability is contained. Another parameter of the ca-
pability is the name of a manager definition cd-node in the capability directory that the
operation capability is /inked to in the capability directory. This manager definition is
used by the kernel to determine whether a newly created port is to be connected to a new
server process instantiated from the manager definition or to an already existing one. It
is also used by the kernel in conjunction with a third parameter, the generic operation
name, to determine whether the requested operation is supported by the manager; this is
checked by examining whether the operation generic name is part of the port descriptors
in the manager definition. If the requested operation is no longer defined in the manager
definition, the invocation of the create-port primitive is not performed and the status is
returned.

The primary kernel primitive in the manager definition capability (figure 7) is Create-
operation, which is used to create operation capabilities, linked to the manager definition
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Subdirectory Capability Provides the privilege to change the process’ active directory.
Thus, the primitive associated with this capability is change-directory. The attributes
are:

subdirectory name user-specified name of the subdirectory cd-node which becomes
process’ active directory when the change-directory privilege is exercised. This
name also serves to identify the subdirectory capability.
Value: a name. Default: none; must be specified upon creation of the subdirectory.

cooperation class(es) used to restrict who may make the subdirectory active. When
exercising the Change-directory privilege, a process must possess one of specified
cooperation class capabilities or else the primitive is illegal.
Values: cooperation class identifier(s) or ANY. Default: ANY.

subdirectory right restricts how cd-nodes and capabilities contained in the sub-
directory may be usec; each right may be ON (active) or OFF (inactive);
the rights are: TRANSFER, COPY, REGISTER, REMOVE, HOLD, MERGE,
VIEW-CAP, VIEW-NODE, MODIFY, DESTROY-MANAGER-NODE,
DESTROY-DIR-NODE, CHANGE-DIRECTORY, CREATE-PORT,
and CREATE-TYPE.

Value: each is active or inactive. Default: all are active.

subdirectory id a pointer, global name, to the subdirectory cd-node corresponding to
this capability.(Cannot be modified through the Modify primitive - it is generated
by the kernel upon creation of the capability.)

The capcaps of the subdirectory capability are: COPY, TRANSFER, REGISTER,
REMOVE, HOLD, DESTROY-NODE, MERGE MODIFY-CAP, MODIFY-C/APCAP,
VIEW-NODE and VIEW-CAP.

Value: each is active or inactive. Default: all active.

Figure 8: Contents of a Subdirectory Capability

named in the capability. Since an operation capability can be used to create a port to
access a protected object, a manager definition capability signifies the privilege to provide
other processes with specific types of access to their objects. This effectively is the privilege
to control access to the object’s type.

The primary kernel primitive associated with the subdirectory capability (figure 8) is
Change-directory. The Change-directory primitive is used by a process to change its
active directory to the subdirectory named in the subdirectory capability.

The subdirectory capability also contains a set of subdirectory rights (figure 9). When
a subdirectory capability is exercised to make a subdirectory active, the subdirectory
rights override the capcaps of each individual capability, and further restrict the use of
the capabilities registered in the subdirectory. This restriction during the changing of
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COPY a capability residing in the subdirectory cannot be copied;
TRANSFER a capability residing in the subdirectory cannot be transferred;

MERGE a capability residing in the subdirectory cannot be associated with any other com-
patible capability in order to augment its capcaps and/or rights.

REGISTER no capabilities may be registered in the subdirectory;
REMOYVE no capability residing in the subdirectory may be removed from the directory;
HOLD no capability in the subdirectory may be made transient;

DESTROY-MGR-NODE no manager definition cd-node residing in the subdirectory may
be destroyed;

DESTROY-DIR-NODE no subdirectory cd-node residing in the subdirectory may be de-
stroyed;

VIEW-NODE the contents of none of the cd-nodes residing in the subdirectory can be
examined;

VIEW-CAP no capability in the subdirectory can be examined;
MODIFY no capability or cd-node in the subdirectory may be modified;

CHANGE-DIR no process may exercise a subdirectory capability residing in the subdirec-
tory to change to a new active subdirectory.

CREATE-PORT no process may exercise an operation capability residing in the subdirec-
tory to create a port to request a service.

CREATE-TYPE no process may exercise a manager definition capability residing in the
subdirectory to create new operation capabilities.

Figure 9: List of rights associated to a subdirectory and their meaning in the case they
are inactive
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the active directory is referred to as privilege filtering. Privilege filtering allows a fine
granularity of control over the use of capabilities within an active directory. This is vital
for supporting an effective mechanism that allows processes to switch from one protection
domain to another dynamically. In this situation, when a process wants to switch to
a new protection domain, it has to traverse the capability directory and change to a
new active directory. While traversing the capability directory, a process may have to
visit intermediate subdirectories which contain capabilities that the process need not be
authorized to exercise or even view. By deactivating all rights except the CHANGE-DIR
along the path between the initial and goal subdirectory, the mechanism for switching to
a new domain becomes simple, and the security of the system is not compromised.

From the above, it is evident that a path in the graph structured capability directory,
along which a process switches from one protection domain to another, corresponds to a set
of subdirectory capabilities. Thus, a stable subdirectory capability links one subdirectory
cd-node and another. Although a stable manager definition capability (as well as a stable
operational capability) connects a subdirectory cd-node and a manager definition cd-node,
they cannot be traversed. These connections are used to ‘point to’ the manager definition
of interest.

It should be noted that rights associated with an active directory do not affect the
rights defined in the subdirectory capabilities contained in the active directory. In this
sense, rights are not propagated along the path reaching an active directory and that their
scope is that subdirectory pointed to by the subdirectory capability in which they are
defined.
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