Synchronizing Transactions on Objects !

B. R. Badrinath
Krithi Ramamritham

COINS Technical Report 86-08

Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

!This work was supported in part by the National Science Foundation under grants DCR-8403097 and
DCR-85000332.



Abstract- This paper discusses a method for synchronizing operations on objects where
the operations are invoked by transactions. The proposed technique, which is motivated
by a desire to exploit possible concurrency in accessing objects, takes into consideration
the granularity at which operations affect an object. We present a dynamic method for de-
termining the compatibility of an invoked operation with respect to operations in progress.
In making decisions, it utilizes the state of the object, the semantics of the uncommitted
operations, the actual parameters of the invoked operation, and the effect of the operations
on the objects. One of the attractive features of this technique is that a single framework
can be used to deal with the problem of synchronizing access to simple objects as well as

compound objects, i.e., objects in which some components are themselves objects.

<!



Contents
1 Introduction
2 Previous work

3 Our Approach

3.1 Definitions. . . . ...... ... ... . . o ., e e
3.2  Granularity Graph and Affected Sets . . . ... ...............
3.3 Operations and Commutativity. . ... ... ... ..............

4 Conclusions and Future work.



1 Introduction

The utility of transactions as a tool for structuring computations in distributed systems
is gaining wide acceptance. Work in this area includes the Argus project (15, 27|, the
Clouds project [1], the Archons project [22], the TABS prototype [25] and ISIS project
[6]. A transaction is a unit of computation with the property that either it sucessfully
completes execution or fails without having any effect; this property is called recoverability
or failure atomicity. Further, a transaction executes as if it is the only activity in the
system; this property is called indivisibility or concurrency transparency. These properties
of transactions make them good building blocks for reliable distributed systems (24].

Objects are instances of abstract data types which implies that they can be manipulated
only through well-defined procedures called operations. In this paper we focus on the
problem of synchronizing operations invoked by atomic actions. Serializability (11 has been
used as the main correctness criterion for synchronizing operations invoked by concurrent
transactions. When actions involve just reads and writes, serializability can be guaranteed
through the use of two phase locking [11], timestamping [4, 20}, or hybrid schemes |9,
10]. When the same schemes are used for transactions that invoke operations on arbitrary
objects, available concurrency is not exploited. For example, two operations that modify
two different components of an object cannot proceed in parallel since both operations
will be considered as writes on that object. However, concurrency can be enhanced if the
semantics of the operations on objects can be precisely specified and the synchronization
mechanism takes this semantics into account. For example, if the specifications for the
modify operations above indicates which components of the object are modified then the
operations modifying different parts of the object can be allowed to execute in parallel.

Use of complete semantic information might help us attain higher concurrency, but
will also increase the complexity of the concurrency control mechanism. The additional
complexity arises due to the complex domain of interpretation for various operations|19].
Hence, several researchers have included specific types of information such as transaction
classes(3, 12] and the structure of the data(16, 23|. The specific type of information taken
into consideration by our proposed synchronization technique is the granularity of the
data items accessed by operations. This allows us to tap sources of potential concurrency
without overly complicating the synchronization technique.

In our model each object is represented as a granularity graph. For each operation
request we construct an affected-set, a set of edges and vertices in the graph, affected by
the operation. Commutativity is used as the mechanism for determining compatibility of
an invoked operation with other uncommitted operations on the object. One advantage of

-t



our approach is that the compatibility of operations is determined dynamically, i.e.,when
the operation is requested to be executed on an object. Improved concurrency is obtained
as the compatibility is determined based on the current state of the object, uncommitted
operations on it, the actual parameters of the operation and the semantics of the operation.
There is no explicit request for a lock; instead, each operation request is granted if it can
be executed in parallel with uncommitted operations. Another advantage of our approach
is that we are able to handle synchronization of simple and compound objects within the
same framework.

Serializability [11] has been used as the correctness criterion for the execution of con-
current transactions. Consider, for example a mailboz (two of the operations on it are
send and receive) [14]. Mail can be sent by a user by presenting the mail system with
the receiver’s user-id; the message will be deposited in the receiver’s mailbox. Mail can
be received by a user by presenting the mail system with his user-id; the contents of one
of the messages in the user’s mailbox are returned to the caller. Suppose the required
semantics of send and receive are such that every message sent will eventually be in the
mailbox and that every message in the mailbox will be received (provided a user performs
sufficient number of receives after the mail is deposited). If sending and receiving mail(s)
is considered as write and read respectively on the mailbox object, then serializability [11]
will cause all sends to be serialized. This is because write operations lock the whole object.
However, if a send(receive) operation locks only the mail being sent(received) then con-
currency is enhanced. The resulting changes are not serializable at the granularity of the
mailbox; they are serializable with respect to the mail messages. Another way of stating
this that changes made by concurrent actions may not be serializable if physical states
form the basis for state equivalence; they will be if we use logical state equivalence as the
basis. In the case of the mailbox, two mailboxes are logically equivalent if they contain the ‘
same messages.

Our approach to determining compatibility of two given operation types involves two
steps. In the first step the semantics of the operations are analyzed to see if the opera-
tions of the two types are 1) always compatible, 2) always incompatible, or 3) compatible
under certain conditions. (These conditions are typically dependent on parameters of the
operations and the current state of the object).

The second step which is performed dynamically (i.e., at execution time), is performed
only for those operations which are compatible under certain conditions (case 3). Com-
patibility of such an invoked operation with the operations in progress, (i.e., operations
vet to be committed) is determined by the object’s manager in an efficient manner. This

process is efficient as it involves a check of the corresponding entry in the compatibility



matrix and if the entry indicates that the operation is compatible under certain condid-
tions then it is just a matter of determining intersection of affected-sets. It is this aspect
that differentiates our technique from other schemes which use statically-specified locks [1]
which are inherently pessimistic. It is the use of automated analysis in combination with
dynamic checking that makes our approach attractive.

The rest of the paper is organized as follows. Section 2 briefly describes previous work in
this area while section 3 provides details of our approach. Section 4 presents an example to
illustrate our approach. Section 5 concerns the design of object managers given our scheme
for synchronizing concurrent access. This design also deals with synchronizing access to
compound objects, i.e., objects that are themselves made up of objects. In section 6 we
make some concluding remarks and discuss future work.

2 Previous work

Various concurrency protocols based on locking and timestamping for databases are de-
scribed in [5]. In Argus [15], synchronization is achieved using locking. For built-in atomic
data types the operations are still considered in terms of reads and writes. Argus also
provides user-defined atomic types which allow more concurrency by using the semantics
of the operations but requires complex implementations [28].

In (1] different levels of locking using progressively more semantics is provided to the
user. The choice of the level of locking is left to the programmer. Further, the specifications
concerning the compatibility of the operations have to be given by the user. We feel
that the designer of an object type need only specify the semantics of operations; their
compatibilities ought to be determined from these specifications.

In [21], synchronization of shared abstract data types is done by type-specific locking.
The compatibility of operations is determined by considering all the type-specific depen-
dencies. In [18], there is a manager for each object and the compatibility of operations is
directly specified. In (18] and [21] compatibility is determined statically and issues con-
cerning the synchronization of compound objects are not dealt with. By contrast, the
method proposed here permits handling of compound objects.

3 Owur Approach

We begin by giving a brief overview of our approach and describe the model we use.
In section 3.1 we give some definitions. In section 3.2, we introduce the concept of a
granularity graph and the construction of affected-sets. Section 3.3 relates affected-sets to



commutativity of operations.

In our model, we assume that there is a manager for each object that handles requests
from transactions, on that object. The manager of an object synchronizes operations on
that object by concurrent actions, based on the compatibility of these operations.

We have adopted commutativity as the basis for determining whether a particular
operation can be allowed to execute concurrently with those in progress. (Two operations
commute if the order in which they execute does not affect the results of the operations
Le., results returned by the operation as well as the resulting state of the objects accessed).
Because of this, the results of executing an operation hold independently of whether other
operations commit or abort. In other words commutativity of operations will not only
ensure serializability but also avoid cascading aborts.

In our method, each object is logically represented in terms of a granularity graph. The
vertices are the elements at a certain granularity and the edges represent the composed-of
relation. Each operation affects the vertices or edges or both. The manager of each object
determines the affected vertices and edges. The set of vertices and edges affected by each
operation is known as its affected-set. It is shown later that two operations from different
transactions commute if the affected-sets of the respective operations are non-intersecting.
The specification of an operation will identify its affected-set. Based on the semantic
specification of an operation the object manager constructs its affected-set and determines
whether this operation is compatible with (i.e., commutes with) uncommitted operations.

3.1 Definitions

We have extended here some of the definitions given in [13] to include transactions on
objects.

Definition 1: A transaction ¢ is a linearly ordered sequence of steps (zy,...,2,)
where each 2; is of the form Y,,, indicating that it is an operation p on object g. If O =
{01,02,...,0m} is a set of objects, each in a consistent state, then ¢(0) = z,(za-1(,- .-,
2(0), ...)) is also in a consistent state. Here each z; corresponds to a defined operation
on a particular object which belongs to O.

Definition 2: Let T = {t,,...,t,} be a set of transactions. The steps of each ¢; in
T are denoted by triples {¢,7,Ymn}, read as step j of transaction 7 is operation m on
object n.

Definition 3: A schedule S for T is a linear ordering of all steps of all members of T

such that the linear ordering of steps within each member is preserved.



(&)
&)

Figure 1: A Granularity Graph

Definition 4: A schedule S for T = {ty,t3,...,%,} is said to interleave the steps of
distinct transactions ¢; and t; on object m if for some steps (,a, Yypm), (1,6, Yym), and
(7¢,Yrm), step (7,a,Y,n) precedes (j,¢, Y;n) in S and step (4, ¢,Yrm) precedes (,5,Y )
in S. A schedule with no interleaving steps is a serial schedule.

Note: The operations p,q,r on object m can be the same.

Definition 5: A schedule S for T= {t),t3,...,t,} is consistent if it is logically equiv-
alent to a serial schedule S’ for T. We call such a schedule serializable. That is, a
schedule S for T is compatible if there is some total ordering of the members of T such
that S(O) = ta(ts(... (t:(O)...))) for the set of objects O.

3.2 Granularity Graph and Affected Sets

Definition 8: A granularity graph is a directed acyclic graph whose vertices are
interpreted as elements of certain granularity and whose edges typically represent the
composed-of relation. A vertez at any level can also be an object if operations on
objects at that granularity level are specified. (This leads to compound objects.) If
there is an edge from a; to a;, then we say a; is composed-of a;.

In figure 1, object A is composed-of elements B and C and C is composed-of D and E.
If, for example, C itself is an object, then A is a compound object. AC is the parent-edge
of C and CE is a child-edge of C. E is the child-vertez of CE and C is the parent-vertez of
edge CE. Also, as in standard terminology, C is the chsld of A, A is the parent of C, A is
the ancestor of E and E is the descendant of A.

Each operation changes the state of the object by modifying the components of the
object. These modifications manifest themselves as modifications to edges and vertices.



Specifically, an operation on an object can manifest itself as one or more of the following
operations on the granularity graph representing the object.

1. Deletion of vertices and their parent edges.
2. Insertion of vertices and their parent edges.
3. Modifications to the values of vertices.

4. Examination of the values of vertices.

5. Examination of edges.

Based on the effect of an operation on the state of the object, an affected-set is con-
structed as explained below.

Definition 7: The edge-set is the set of pairs (e, a) where e is an edge affected by the

operation and a indicates the affect on the edge and hence is one of insert, delete, or
examine.

Definition 8: The vertez-set is the set of pairs (v,a) where v is a vertex and a
indicates the affect on the vertex and hence is one of insert, delete, examine, or modify.
An operation may also return a result that depends on the state of the object. The
set of vertices examined by such an operation is also included in the vertez-set of the
operation.

Definition 9: The edge-set together with the vertez-set of a particular operation is

known as the affected-set of that operation.

An operation may affect a set of edges as well as vertices satisfying a certain condition
(predicate). For example, a delete operation on elements which satisfy a certain condition
can be represented by a set with a characteristic function instead of including all the edges
and vertices explicitly. However, membership in a set with an arbitrary characteristic
function is undecidable; hence, we will have to construct simple predicates as in [11].

Definition 10: The intersection of the affected-sets of any two operations OP, and
OP,, denoted by ¢, contains:

1.Edges e where (e,a,) € the edge-set of OP; and (e,a;) € the edge-set of OP, and

both a; and a; are not ezamine.

2.Vertices v where (v,a;) € the vertez-set of OP; and (v,a;) € the vertez-set of OP,

and both a, and a; are not examine.



3.3 Operations and Commutativity.

Each operation request by a transaction is allowed to be executed only if it is compatible
with the uncommitted operations already performed; i.e., its execution will not affect and
will not be affected by other uncommitted operations. The compatibility of the requested
operation with ongoing operations on the object is determined by the object manager. Our
formalism uses commutativity of operations to determine their compatibility.

Definition 11: Let Y; and Y; be two operations on object K in its current state.
We say that these operations commute if the effect (which includes both the results
returned and any modification to the state) is the same whether Y; is performed first
and then Y; or vice versa [13]. Thus, a pair of operations Y; and Y; defined on an
object K is said to commute if the final state of object K and the results returned by
the individual operations are invariant (denoted by =) to the order in which the two
operations are executed.

Theorem 1: Two operations Y; and Y; commute if affected-set(Y;) Ngaffected-
set(Y;) = 0.

Proof: Consider the effect of operation Y; executing after Y;, that is the sequence
Y;oY;. Since the affected-sets are non intersecting, the set of edges and vertices affected
by Y; is different from ¥;. The sub graph of the granularity graph modified or selected
by Y; is different from Y;. Hence the state of the components of the object as seen
by Y; or the values returned by Y; is the same as if it had operated on the original
object K. The same holds for the subgraph of the granularity graph modified by Y;
after the execution of Y; on K. Hence the overall modification to the state and the
values returned is the same irrespective of the order. Hence Y; o Y;(K) = Y; o Y;(K),

thus Y; and Y; are commutative.

Note that, it is possible for two operations to commute even when the affected-sets
are intersecting. For example, two increments commute as executing them in either order
yields the same result and the operations involve modification of the same vertex. We
are being pessimistic here for reasons of efficiency in determining commuting operations.
A less pessimistic conflict predicate would where applicable, involve the semantics of the
changes done to each vertex in the vertex set.

Corollary: Two operations commute if they are on different objects.



Theorem 2, discussed next, states that if two operations commute then they can be
executed concurrently and yet preserve serializability. In other words, an operation can be
executed if it is commutative with other uncommitted operations.

Typically, two phase locking [11] has been used to guarantee serializability. However,
if the locks are released early, then there is the problem of cascading aborts [29]. To
preclude the possibility of cascading aborts, operations on shared objects must not be able
to see the information that might change if an uncommitted transaction were to abort.
However, Theorem 2 states that if operations are allowed only if they are commutative
then serializability is ensured and cascading aborts are prevented.

Definition 12: In any arbitrary schedule S, consider a step (i, a, Ypx) of a transaction
t;, where Ypx is an operation on an object K. (i, a, Y,k) is said to immediately precede
a step (j, ¢, Yyx) of transaction ¢;, where Y,k is an operation on the same object K, if
there is no other interleaved step (k, b, Y;x) between (i, a, Y,x) and (j, c, Y;x), and
Y.k is an operation on the same object K for any transaction.

Theorem 2: Let O be the set of objects on which operations are defined. Let T be
a set of transactions which operate on the objects. Suppose every operation is allowed
to be executed only if it commutes with other uncommitted operations is serializable.
Then the resulting schedule S for T is free of cascading aborts.

Proof: Let t;,t; be any two transactions. Let Yix,Y.x be 2 commutative oper-
ations on an object K. Let the sequence of steps in ¢; be (¢,1,Ysx), (4,2,Y5), ...,
(1,m,Y.n) and the sequence of steps in ¢; be (7,1, Yapm), (7,2, Yep)s . o (4,7, Yyq). For
any arbitrary interleaved schedule S resulting from the use of commutativity as the
compatibility criterion, let Yix of t; immediately precede Vi of t; . That is, (j,e, Yik)
immediately precedes (7,9, Ymi) for some e and g. If Vi and Y,,x commute, it is equiv-
alent to (¢,g,Y,x) followed by (7,e,Yix). If Yok is the only operation performed by
t; and Yk the only operation by ¢; then since Y,k and Y;x commute, they can be
executed in any order producing results equivalent to both t;0¢; and ¢t;0¢;. If t; and ¢;
invoke multiple operations including Y,,x and Y;x then if all operations in ¢; commute
with all operations in ¢; then the results will be equivalent to both ¢; o t; and ¢; o ¢t;.
On the other hand if operation (7,9, Ynkx) immediately precedes (j,e,Yix) and does not
commute then (7,e,Yx) can be executed only after action #; commits in which case
t; will appear before ¢; in the serialization order. Thus, in all cases, the interleaved
schedule is serializable.

Recall that according to our model, since Yix and Y,,x commute, the affected-

set(l) Ngaffected-set(m) = 0. The components of the granularity graph as observed by



€ €2 (3
Figure 2: Granularity Graph for a Semi-Queue

any operation of ¢; are not dependent on whether ¢; runs to completion or not. Hence
operation Y,k by ¢; can commit independently of ¢;. Hence there can be no cascade
aborts.

4. An Example
As mentioned earlier, the manager of an object determines conflicting requests using com-
mutativity as the compatibility criterion and synchronizes concurrent requests for opera-
tions.

To illustrate the construction of the affected-set and show how the granularity infor-
mation enhances concurrency, we shall examine a specific data type and determine the

compatibility of the operations defined on objects of that type.

Consider the Semi-Queue data type whose granularity graph is as shown in figure 2.
Semi-Queues are similiar to queues except that elements are not required to be removed in
strict FIFO order. Two operations on Semi-Queues are: enq, which adds an element to a
Semi-Queue, and deq, which removes and returns an element nondeterministically. This
nondeterminism offers potential concurrency. Two enq operations can run concurrently
as can an enq and deq operation or two deq operations as long as operations involve
different elements. This is the required condition attached to the CYES (Conditional YES)
in the compatibility matrix given at the end of this section. Whether or not the condition
holds for a pair of operations can be dynamically determined by finding the intersection
of the respective affected-sets.

The specifications for the operations in terms of the granularity graph are as follows.

1. Create(Q):{ insert a vertex v, = Q (corresponds to the semi-queue Q) }



CREATE | ENQ < DEQ | DISPLAY
CREATE | NO NO :NO NO
ENQ NO YES ~CYES | NO
DEQ NO CYES  CYES | NO
DISPLAY | NO NO . NO YES

Table 1: Compatibilty Table for Semi-Queue

2. Enq(a,Q): { examine vertex v, =Q; insert a child-edge e, (k is unique) and a vertex

vr = a such that e, is the parent-edge of vi(indicates that a is a component of the
Semi-Queue Q)}

3. Deq(Q): { examine vertex vy = @; choose any child-vertex v;; delete the child-edge
e; connecting v, and v;; delete the vertex v;. }

4. Display(Q): { examine all the children of vertex v, = Q }.

Note: The subscripts 7, k, g for edges and vertices are used to identify edges and vertices. If
an operation is executable, we assume that a manager executes the specified modifications
in an atomic fashion.

The specifications of the operations is specified in terms of the edges and vertices
affected in the granularity graph. These specifications are analyzed statically to determine
the compatibility of operations and thereby to construct a compatibility matrix as follows:
If the intersection of the sets is empty under all conditions the operations are always
compatible, if it is not empty under all conditions then the operations are not compatible.
However, when the intersection of the two affected-sets depends upon some input parameter
of the operations or on the state of the object, then the operations are said to be compatible
under certain conditions.

When two operations are always compatible, the corresponding entry in the compati-
bility matrix will be YES. An entry YES indicates that the intersection of the affected-sets
need not be determined as the operations are always compatible. Similarly, when two op-
erations can never be compatible, the entry will be NO. However, when two operations are
compatible under certain conditions, the entry in the compatibility matrix will be CYES,
which indicates that the object manager must determine whether the two affected-sets
intersect.

The compatibility matrix for operations defined on a Semi-Queue data type is as shown
in table 1.

10



Recall that, in our model, for each object, there is a manger which is responsible for
controlling the operations. This manager uses information in the compatibility matrix at
execution time. The affected-sets of operations on an object are constructed and main-
tained by the object’s manager. As commutativity is the basis for determining compati-
bility the object manager can take decisions locally without interacting with the managers
of other independent objects.

The effects of a transaction must be committed or aborted only when the transaction
completes or fails. It is the task of managers to ensure this. An object could be a simple
object i.e., none of the components of the object are themselves instances of shared abstract
data types, or it is a compound object, i.e., one or more components of the objects are
themselves objects.

If an object is a simple object then the manager of the simple object maintains the
granularity graph of the object as well as the affected-sets for uncommitted operations.
On the other hand, if the object is compound then the managers of the components which
are themselves objects cooperate in the maintenance of the affected set of the compound
object.

To illustrate the process of synchronization we will consider the example of an airline
reservation system, shown in figure 3. Each day, the airline operates a number of flights.
Each flight has an arrival/departure record and a record for each class such as business

economy and first class. Information on each class consists of the number of reservations

b

made, maximum number of seats in that class as well as information on each reservation
made. In figure 3, components of the compound object which are themselves objects are
marked by concentric circles. Operations such as reserve-seat, cancel-seat, cancel-flight,
add-flight, etc. are defined on the compound object.

Consider a request to reserve a seat on flight TWA 16 on a certain date in economy
class. Assume that the operation request is of the form reserve (airline = TWA, date =
26, fitno = TWAL16, class = economy, seats = 1, ... ). With reference to figure 3, reserving
a seat means examining the vertices T (airline), v, (date), v, (flight number), vs (class)
and an insert operation on the object (vs) corresponding to seat to be reserved in economy
class. The affected-sets constructed by various object managers will be as follows.

* The affected-set at T : (T,e), (v, €) (examine airline and date)

The affected-set at vy : (v2,€)  (examine flight number)

The affected-set at vy : (vs,e)  (examine economy class)

The affected-set at v3 : (vs, 1), (es,¢) (insert seat)

11



@ () (flight)
(arr/dep) ‘ @ (class)

(reser 6 5 (Max Seats )

Figure 3: Airline Reservation System

12



If another request by the airline company to cancel the flight TWA 16 on the same date
comes then executing the operation will involve examining the vertex T and deleting the
vertex v; and the ones below it. If the operation request comes before the transaction that
reserved a seat commits, the operation will be found incompatible by the object manager
at T because the vertez-sets of the two transactions intersect.

Since a compound object has components which are objects, a number of managers
are involved in the synchronization of access to a compound object. We now discuss the
interactions between these managers. In general, let an operation on a particular object
involve vertices along the path v, v;, and v, in the object’s granularity graph. Assume v,,
vy and v,, are objects. The affected-set involving edges and vertices from v, to v, will be
maintained by the manager of the object corresponding to v,, and similarly the affected-set
involving vertices and edges from v, to v,, will be maintained by the manager of the object
corresponding to v.

The compatibility of an operation involving the vertices and edges along the path v,
to v, will be first determined by the manager corresponding to the object v,. If it is
found compatible then the manager will invoke the manager of object v,, which will check
compatibility of vertices and edges along the path vs,...,v, and so on. Otherwise, the
requested operation will be deemed to be incompatible. This distributed maintenance of
the granularity graph of a compound object makes it possible to implement our scheme
even when the components of the compound object are themselves in different nodes of a
distributed system.

Let us consider another example. The airline wants to insert a new class on the flight
TWA 16 on a certain date from New York to Boston. This will involve examining the
vertex corresponding to the requested date, examining the vertex corresponding to the
flight TWA 16 and inserting the vertex corresponding to the new class. Since reservation
type is itself an object, it means creation of a new instance of the object. Hence this will
result in the creation of the following vertez-sets (ve is the vertex being inserted).

* The vertez-set at T :{(T,e), (v1,€)} (examine airline and date)
* The vertez-set at v, :{(v2,€)} (examine flight number)
* The vertez-set at v, :{(ve, 1), (e5,7)} (insert a new class)

Whereas the above operation will be involved at the top level, in general, a user process
can invoke the manager at any level in the object hierarchy. In such a case each object
manager maintains the affected-set for operations executed on the corresponding object

and checks for compatibility using the same procedure as used in the case of a request

13



coming to a top-level manager. However, the results are returned to the manager to which
the initial request was sent.

4 Conclusions and Future work.

We have provided a method for synchronizing generalized transactions. The model was
based on representing each object as a granularity graph. The affected-set of each operation
was constructed from its semantic specification. Compatibility of operations was based on
their commutativity, which in turn was determined from their affected-sets.

As mentioned earlier, the more semantics we use in synchronization to improve con-
currency, the more complex the synchronization mechanism becomes. Here we utilized
the structure of the objects, represented by an abstract granularity graph and expressed
the semantics of operations in terms of operations on the granularity graph. Our method
achieves higher concurrency than other schemes which set read or write lock on the entire
object.

The synchronization scheme we have adopted is similar to locking. Hence, as in any
locking scheme, can result in deadlock. Deadlock can be handled using any of the known
deadlock detection algorithms (7, 17]. We could also use avoidance schemes by imposing a
structure on the objects and adapting techniques similar to those developed for structured
databases [8, 26].

In (2], we have proposed a new semantics-based conflict predicate which allows even
non-commutative operations to be executed while still avoiding cascading aborts. Another
extension we are currently working on involves the development of schemes for object
recovery from action aborts. Hereagain, use of operation semantics specified through
the granularity graph scheme of object representation will greatly reduce the overheads

inherent in the maintenance of information needed to perform recovery.

References

[1] Allchin, J. E., and McKendry, M. S., “Synchronization and recovery of actions,” Pro-
ceedings of the Second Annual ACM Symposium on Principles of Distributed Com-
puting, (August 1983), pp. 31-44.

[2] Badrinath, B. R., and Ramamritham, K., “Semantics-based concurrency control: Be-

yond commutativity,” Submitted to ACM Transactions on Database Systems.

[3] Bernstein, P. A., Shipman, D. W., and Rothnie, J. B., “Concurrency control in a

14



4]

(8]

6]

7]

(8]

(9]

[10]

[11]

[12]

[13]

[14)

system for distributed databases(SDD-1),” ACM Transactions on Database Systems,
Vol. 8, No. 2 (June 1983), pp. 186-213.

Bernstein, P. A., and Goodman, N., “Concurrency control in distributed database
systems,” Computing Surveys, Vol. 13, No.2 (June 1981), pp. 185-221.

Bernstein, P. A., Goodman, N., and Hadzilacos, V., “Concurrency control and recov-
ery in database systems,” Addison Wesley, 1987.

Birman, K. P, et al., “Implementing fault-tolerant distributed objects,” IEEE Trans-
actions on Software Engineering, Vol. 11, Vol.6 (June 1985), pp. 520-530.

Bracha, G., and Toueg, S., “ Distributed algorithm for generalized deadlock detec-
tion,” Third ACM Symposium on Principles of Distributed Computing, (August 1984).

Buckley, G. N., and Silberschatz, A., “Beyond two phase locking”, Journal of the
ACM, Vol. 31, No. 2 (April 1985), pp. 314-326.

Chan, A, et al., “The implementation of an integrated concurrency control and re-

covery scheme,” In SIGMOD Conference on Management of Data , (June 1982) pp.
184-191.

DuBourdieu, D. J., “Implementation of distributed transactions,” In Proceedings of
the Sizth Berkely Workshop on Distributed Database Management and Computer Net-
works, 1982, pp. 81-94.

Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L., “The notion of consistency
and predicate locks in a database system,” Communications of the ACM, Vol. 19, No.
11 (November 1976), pp. 624-633.

Garcia-Molina, H., “Using semantic knowledge for transaction processing in a dis-
tributed database,” ACM Transactions on Database Systems, Vol. 8, No. 2 (June
1983) pp. 186-213.

Korth, H. F., “Locking primitives in database systems,” Journal of the ACM, Vol. 30,
No. 1 (January 1983), pp. 55-79.

Liskov, B., and Scheifler, R., “Guardians and actions : Linguistic support for robust

distributed programs,” ACM Transactions on Programming Language and Systems,
Vol. 5, No.3 (July 1983), pp. 381-404.

15



[15)

[16]

[17]

28]

[19]

[20]

[21]

[22]

(23]

[24]

(28]

[26]

Liskov, B., “Overview of the ARGUS language and system,” Programming Method-
ology Group Memo 40, M.L.T, Lahoratory for Computer Science, Cambridge, MA
(February 1984).

Mohan, C., Donald Fussell, et al., “Lock conversion in non two phase locking proto-

cols,” IEEE Transactions on Software Engineeing, Vol. 11, No.1 (January 1985), pp.
15-22.

Mukul, S., and Natarajan, N., “ A priority based distributed deadlock detection algo-
rithm,” IEEE Transactions on Software Engineering , Vol. 11, No.1 (January 1985),
pp. 67-80.

Natarajan N., “Communication and synchronization primitives for distributed sys-
tems,” IEEE Transations on Software Engineering, Vol. 11, No. 4 (April 1985) pp.
396-416.

Papadmitriou, C. H., “The serializability of concurrent database updates,” Journal
of the ACM, Vol. 26, No. 4 (October 1979), pp. 631-653.

Reed, D., P., “Naming and synchronizing in a decentralized computer system,” PhD
Thesis, Massachusetts Institute of Technology, Cambridge, MA (1978).

Schwarz, M. P., and Spector, A. Z., “Synchronizing shared abstract data types,” ACM
Transactions on Computer systems, Vol. 2, No. 3 (August 1984), pp. 223-250.

Sha I;iu, E., Jensen, E. D., Rashid, R., and Northcutt, J.D., “ Distributed co-operating
processes and transactions,” Proceedings of SIGCOMM Symposium , (August 1983),
Pp. 188-196.

Silberschatz, A. and Kedem, Z., “Consistency in hierarchical database systems,” Jour-
nal of the ACM, Vol. 27, No. 1 (January 1980), pp. 72-80.

Spector, A. Z., and Schwarz, M. P., “Transactions: A construct for reliable distributed
computing,” CMU Technical Report (April 1983).

Spector, A. Z., “Support for distributed transactions in TABS prototype,” IEEFE
Transactions on Software Engineering, Vol. 11, No. 6 (June 85), pp. 520-530.

Wei, Z., and Ramamritham, K., “Use of transaction structure for improving concur-
rency”, Technical Report, University of Massachusetts, Amherst (April 1985).

16



[27] Weihl, W., “Specification and implementation of atomic data types,” PhD Thesis,
Massachusetts Institute of Technology, Cambridge, MA. (March 1984).

(28] Weihl, W., and Liskov, B., “Implementation of resilient, atomic data types,” ACM

Transactions Programming Languages and Systems, Vol. 7, No. 1 (April 1985), pp.
244-269.

[29] Wood, W. G., “Recovery control of communicating processes in a distributed system,”
Technical Report 158, University of Newcastle upon Tyne (1980).

17



