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T T ABSTRACT

s

Most robotic manipulators are composed of rigid members in serial linkage. A
tendon-driven flexible-limb linkage is described, and its kinematics are developed.
The linkage is unusual because the variable-stiffness bending of the limbs is the
primary method of movement of the manipulator. This presents interesting problems
in kinematics, dynamics, and obstacle avoidance.

Additionally,; the kinematics appear not to have a closed-form inverse — which
is an unusual situation in conventional robot linkages. The inverse kinematics are
solved using a fast, simple iterativ haique, which appears capable of solving the
inverse position and velocity kinenia,tics at ‘typical servo sampling rates.

g e

R

This research has been sipported by the Natural Sciences and Engineering Research Council of ' §
Canada, and by the Office of Naval Research under Contract N00014-84-K-0564. Publication as a ;

COINS Technical Report was recommended by Prof. Allen R. Hanson. kY



1. Introduction

Most industrial manipulators are designed to be fast and have good repeatability.
As a result of these and other considerations, they are often composed of rigid mem-
bers in serial linkage. Such manipulator design can lead to well-specified kinematics

and reasonably well-behaved dynamics, if appropriate assumptions are made.

The manipulator examined here violates these design constraints. It is a tendon-
driven parallel linkage, in which the limb tip is moved by bending the limb (with
variable stiffness control available during the bend). It also appears that the inverse

kinematics are sufficiently complex to rule out a simple closed-form solution.

This paper describes an iterative approach to the inverse kinematic problem. The
convergence is such that, if there were separate processors for solving the kinematics
and for controlling the manipulator, then it would be possible to employ the results of
an early iteration as a first approximation to the final control variable values, and to

complete the solution while the manipulator is beginning to perform the movement.

1.1 Mechanical Considerations

The basic element of the manipulator is a flexible beam of circular cross section.
Because the movement of such an object is reminiscent of an elephant’s trunk, this
is referred to as a Trunk limb. Consider a pair of cables running longitudinally
through a homogeneous beam, the cables diametrically opposed and at the same
distance from the beam centre line. Let one of the cables be pulled shorter than the
other (both are anchored at one end, pulled from the other). Disregarding gravity,

the beam will be curved into the arc of a circle, the curvature of which depends only



upon the difference in length between the two cables. The sum of the tension in the
two cables will (in part) determine the total stiffness of the beam. The stiffness and

position are thus independently controllable.

Note, however, that this is an unusual manipulator limb. Unlike a rotary joint,
the distance from the base of the limb to the tip is not fixed; and unlike a prismatic
or sliding joint the orientation of the tip changes. What is constant is the arc length
of the beam, the centre arc that lies between the two tendons. Figure 1.1 gives
a simple schematic representation of a non-homogeneous (but kinematically very

similar) design for such a limb.

Suppose now that a second pair of tendons is added, orthogonal to the first set.
Once again, if the tendons are pulled differentially, then the beam will arc; but the
actions of the first and second set can no longer be separated. The beam must still arc
if both sets are pulled, and the direction and total arc depend upon the vector sum
of the tensions of the two pairs. The stiffnesses, being independently controllable,
produce a beam of anisotropic cross-sectional stiffness. (If the stiffnesses are equal,
the system is mechanically equivalent to a beam of circular cross section fixed at one

end, with a bending moment applied to the tip.)

Such a limb has two degrees of freedom. Suppose that another Trunk limb was
arranged serially with it; the base of one limb would be attached to the tip of the
other. The manipulator would thus have four degrees of freedom, and it is this
arrangement that will be considered and solved.! The positional problem is to find
the values of the control variables which move the manipulator tip to a desired point

(possibly with other constraints, e.g. orientation); the velocity problem is to find the

'In actual use, a standard three-degree-of-freedom wrist would likely be mounted on the manip-
ulator tip, for a total of seven degrees of freedom. A good wrist is, by and large, kinematically

independent of the arm on which it is mounted; the two problems are amenable to parallel computa-

tion. See [Hollerbach & Sahar, 1983| for a discussion of wrist-partitioned inverse kinematics.



rate of change of control variables which result in the desired tip velocity.

1.2 Notation

The kinematics of a manipulator will be assumed throughout to be translations
and rotations from the origin of the base coordinate system to the manipulator tip.
All such transformations will be represented by homogeneous transforms, which are
4 x 4 matrices. The first three columns represent the orientation transformation, and
the last column — the P vector - represents the translation (or, alternatively, the
position with respect to the base coordinate frame). Homogeneous transforms and
their use in kinematics are described in [Paul, 1981]. The first three components of
the P vector are denoted as Py, Py, and Pz respectively; the fourth component is

always 1.

When only two axes are needed, the [X, Z] pair will be the default, rather than
the more conventional [X, Y] pair. This will be notationally convenient when extra

degrees of freedom are added to the elementary limb model.

- Table 1.1: Notation

P . Position vector in homogeneous coordinates
Px : X component of position

A% : Velocity vector in homogeneous coordinates
Vx : X component of velocity

AT : 4 x 4 homogeneous transform matrices

o, B,y,w : Control variables

& : Rate of change of

Se E sin(a)

C, : cos(a)

Va . versine(a) = 1 — cos(a)




il BN

Figure 1.1: A possible construction of the limb.
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2. Positional Kinematic Structure

The kinematic structure of a Trunk limb is not difficult to analyse if the limb is
stiff, but becomes very complicated if the limb is compliant. The problem of a stiff

limb is the one addressed here.

2.1 One-Degree-of-Freedom Case

Assume that the limb is sufficiently stiff so that gravity loading produces no
significant deflection of the tip (bending, compressive, and shear forces are negligible).
The stresses on each of the cables will be approximately equal at any two points;
assume that the mechanical structure allows the strains to also be equal at any two
points along a cable. Under such conditions, each cable (and thus the central axis of
symmetry of fhe limb) must describe an arc of a circle, the radius depending on the

relative lengths of the cable.

Suppose that, when straight, the limb is of length L, and that the cables are
separated by a distance d. Let the lengths of the two cables be L, and L,; without
loss of generality, let L, > L,. See Figure 2.1.

Observe that when L; > L,, both describe arcs of concentric circles; furthermore,
both arcs must subtend the same angle. Let this angle be a, and let the radius of
the inner, L, circle be r = d/2. Then we know that L, = a - (r — d/2), and also that
L, = a- (r + d/2); hence,

L,— L,
d

o=
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Figure 2.1: Geometry of a 1-DOF limb.

and the radius of the limb arc is
r=— (a=0=r=00)

From these, the position of the tip of the limb can be derived as
Px=r—r-cosa

Pz; =r-sina

Figure 2.2 gives a geometric representation of these relationships. Note that all of

these equations remain valid if L, < L, because of sign changes in r and sin a.

This describes the position of the limb tip. The tip’s orientation will be that
of the base coordinate ffame, rotated by a. To establish a base coordinate frame,

suppose that when o = 0 the limb bottom is at [X, Z] = [0, 0], with the limb tip at
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Figure 2.2: Coordinate system for a 1-DOF limb.

(0, L}; the limb is thus pointing along the Z axis. The total transformation from limb

base to tip is, in homogeneous coordinates,

. 1—cosa
cosa 0 sina L (T)
0 1 0 0
Al =
—sina 0 cosa L gg_a
0 0 0 1

where



Px=0ifa=0
and
P;,=Lifa=0

Figure 2.3 is a representation of the workspace line described by the limb tip as
it is arced through 0 < o < 7. Note that the orientation is not simply the normal to
the dashed line; it is a parametric function of a, as given in the above homogeneous

transform. (The orientation is the direction in which the tip is pointing.)

Figure 2.3: Workspace of a 1-DOF limb.



2.2 Two-Degree-of-Freedom Case

Consider now an augmentation to the 1-DOF limb. Assume that a second pair
of cables is run parallel to the first pair, such that pulling on the second pair results
in arcing orthogonal to that of the first pair (holding the first pair at a = 0). Denote
the control angle of this second pair by 8. As in the 1-DOF case, § is simply
related to the cable separation and the differences in lengths of the pair. Letting the
cable separation be the same d as for the a pair, and denoting the respective cable

differences by D, and Dy, then the relations are a = D,/d and § = Dg/d.

When both cable sets are actuated, the assumption of uniform force distribution
ensures that the limb will still describe an arc (or a line, in the limiting case of
D, = Dg = 0). This arc will be in a plane 2 that is orthogonal to the X-Y plane;
denote the angle between these two planes by w. The arc in the 2 plane may be
described by a virtual control variable v, which is exactly analogous to « in the 1-
DOF, X-Z plane case. We can continue this analogy by postulating a pair of virtual
control cables for v, which will have a difference in length of D.,. As with the other
control variables, this virtual one obeys the relationship v = D,/d (same d as for o

and ). Figure 2.4 shows the coordinate system for a 2-DOF limb, and the angle w.

The relationships between {D,, Dg} and {D,,w} are not complex. First, suppose
that  is held constant at some non-zero value k, i.e. the limb height is constant
and the limb is arced. Then as D, and Djy are varied such that v = k, the limb tip
will describe a circle. Second, if w is held constant, the magnitude of D, will be the

distance from the point [0,0] to [D4,Dg| in the control space.
These relations are shown geometrically in Figure 2.5. Algebraically, they are
just

D} = D% + Dj
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Figure 2.4: Coordinate system for a 2-DOF limb.

and

Ds
D,

w = tan~!

Because of the common divisor d, these can be expressed in terms of the control

angles a and §, and the virtual control angle v, as

72 = a? + g?

and
w = tan™! é
a

10
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Figure 2.5: Control space for a 2-DOF limb.

From these, the translation and rotation components of the transformation are
readily determined. The original coordinate frame is rotated by the angle « in the
{1 plane, in a manner analogous to the 1-DOF case (in which the rotation was about
the Y-axis). The axis of rotation is about the vector [—sinw, cosw,0]. Calculating

each, and composing first the translation, then the rotation, yields the two-degree-

of-freedom transform matrix

11



SuSuVy + C,, —S.C.V, CuS, CuL

—S.C.V, CoCVy+Cy  SuS,  SuL

Tz =
S
-C,S, -5.,8, C. LY
0 0 0 1

The workspace of this 2-DOF limb is the surface that results from the revolution
of the curve of Figure 2.3 about the Z axis. Once again, note that the orientation of

the limb tip is not the normal to the surface.

The above kinematics assume that a Trunk limb may be modelled as a continuous
beam, but the physical structure that is easiest to build consists of a series of discs
stacked and hinged in various manners. As a confirmatory test, the limb was modelled
in a simple wé,y, using various numbers of discs, and the finite model compared to the
continuous model (limb lengths were identical in the continuous and discrete models).
For a series of 50 discs, the error between the position vectors for the continuous and
finite models was about one part in a thousand; for 100 discs, the error dropped to
about three parts in ten thousand. The latter involved successive multiplication of
100 4 x 4 homogeneous matrices, requiring significant computation; slightly smaller
error achieved by using continuous model is probably not worth the computational
effort. This small difference in models is thus taken to be sufficient justification for

continuing to model a Trunk limb as a continuous beam.

12



3. Inverse Positional Kinematics

The inverse kinematic problem is, given some parameters specifying the position
and orientation of the manipulator, to find values of the control variables which will
result in the manipulator tip satisfying the given parameters. If there are fewer
parameters than control variables, the problem is under-constrained; if more, the .
problem is over-constrained. Even if the number of parameters equals the number of
control variables, there may be more than one set of control variables which satisfy
the parameters; in such a case, the parameters are said to represent a kinematic

degeneracy.

The inverse positional kinematics of the Trunk manipulator will be dealt with in
three successive passes: first, a single 1-DOF limb; second, a single 2-DOF limb; and
lastly, a pair of 2-DOF limbs in serial linkage (a total of four degrees of freedom). The
first two passes will be over-constrained, and the third will be exactly constrained.
The over-constrained cases are interesting both because with the constraints given
the control variable can be found with very little calculation, and because the exactly-

constrained case readily reduces to the algebraically simpler over-constrained cases.

3.1 1-DOF Inverse Kinematics

If the parameter given is the Z coordinate of the limb tip, then we could solve for

a by noting that

13



This, however, entails finding the inverse function of

_ sin(x)

fo) ==

for which there is no known closed form inverse. The inverse could be numerically
approximated in many ways, e.g., series expansion and reversion, root-finding, spline
approximation, or interpolation. The problem is similar if the solution parameter is
Py.

If, however, both Px and Pz are given, then a may be found by employing trigono-

metric or inverse trigonometric functions. Observe that

(&)2 + (_12)2 _ sinfa+1+cos’a—2cosa _ 2V,

L L o? T«

which implies that

2LPx

“T P+ P}

(3.1)

Formula 3.1 requires only one addition, three multiplications (assuming that 2-L is

stored as a constant), and one division.

3.2 2-DOF Inverse Kinematics

The 2-DOF case is not very different from the 1-DOF case. The control variables
to be solved for are v and w. If the three Cartesian coordinates of the limb tip are
chosen as solution parameters — Px, Py, and Pz — then solution is possible in a

manner similar to the 1-DOF case.
Observe that w = tan™!(Py/Px). The distance from the origin to the ortho-

graphic projection of the tip on the X-Y planeis 1/ P + P%; using this in Formula 3.1,

14



which gives « in terms of Px and Pz, and given the relations between a, 3, v, and

w from the kinematics of the 2-DOF limb, we have

2L/ P% + P} (3:2)

"= P+ Pi+ P}
a’ = 7’
1+ w?
and
ﬁZ — ,72 _ aZ

The solution is completed by setting the sign of a to be that of v.cosw, and the sign
of B to that of v4-sinw. Should Px = Py =0, it is clear that a = § = 0.

15



4. 4-DOF Serial Linkage Inverse Positional
Kinematics

The next linkage to consider is one in which a 2-DOF Trunk limb has attached to
its tip the base of another 2-DOF Trunk limb. Let the control cables for the upper
limb be colinear and parallel with those of the lower limb, for simplicity. Assume for
now that both limbs are of identical length and construction. The base of the lower
limb is located at [0,0,0], and it is the position of the upper limb tip which is of

kinematic interest.

The control variables for the upper limb will be simple correlates of those for the

lower limb:
Lower Limb Upper Limb
o — ¢
B — (
g — n
w — 0

Thus, if both limbs started straight, the arcing of the lower limb due to « would be in
the same plane as that of the upper limb due to ¢. Note that # and 8 are measured
and controlled with respect to coordinate frame at the tip of the lower limb, which

in general is both translated and rotated from the base coordinate frame.

The parameters that constrain the inverse kinematic solution may now be selected.
Three natural choices are the Cartesian coordinates of the tip; these will be Py, Py,
and Pz of the final transform matrix. After much consideration, the fourth parameter
selected was the direction of tilt of the lower limb. Such a parameter is useful in
obstacle avoidance, and s.simpliﬁes some kinematic equations. This fourth parameter

is the control variable w of the lower limb.

16



The initial approach taken involved setting up the transform matrix from the base
to the tip in terms of homogeneous transforms, and inspecting the resulting position
column. This is a rather imposing set of equations, and does not seem to admit of

closed-form solution. Hence, a numerical approximation method is employed.

Observe that because w is one of the parameters, the original 4-DOF problem
is now a 3-DOF problem: if «, and either ¢ and ¥ or n and 4, can be found then
the problem is solved. The first step is thus to rotate the base coordinate system
about the Z axis by w, and to modify Px and Py accordingly. This results in a
1-DOF Trunk limb surmounted by a 2-DOF limb. The position of the tip in this

new coordinate frame, given by composing the 1-DOF and 2-DOF limb transforms,

is

v S, V.
Px = L(C,,Co—"-i—s,,—"——}——")
N n )

V,
Py - LSg—n
n

Sy, S
P; = L (—S.,Ogg’l +Cy,=1 + -—1)
: 1 noA

Note, however, that if v (the control variable for the lower limb in this new
system) is specified, the problem is simple; for, having 4, we can transform the base
coordinate system to the tip of the lower limb, and solve for the upper limb control
variables as a 2-DOF limb in which the three Cartesian coordinates of its tip are

given.

The approach, then, is to iteratively find 4. From any initial value of 4 that is
sufficiently close to the final value, it is possible to approximate a correct value of v
if an error term can be found, and if this error term can be used to produce a new

value of 7 such that the limb tip can be moved closer to the desired point.

17



4.1 Iterative Solution of the 4-DOF Positional Problem

A numerical approach to the problem is an attempt to find the control variables so
that the manipulator tip comes within some specified € of the desired point. Several

things are needed if an iterative numerical approach to this problem is to succeed:

e Given the desired point, a function must be developed which will give reasonable
values for the control variables. Such a function must actually yield correct
values if the point is within the limb workspace, and must also get the tip
reasonably close (according to some measure) to the desired point if that point

is not within the workspace.

e An error function must be found which will indicate the distance (by some

metric) between the actual tip location and the desired location.

e A method must be developed which will use the error function to change the
current value of the iteration variable (in this case, 4) to one which allows the

manipulator tip to move closer to the desired location.

o The value(s) of the iteration variable must be within the convergence interval
of the procedure, i.e. the starting point must be sufficiently close to the end

point that the method works.

The approximation function used is the one which solves for 4 given Py and Py
(Formula 3.2). It returns the correct result if the point is reachable, and simulation
tests showed that it was not unreasonable when the desired point was near (but not
on) the workspace line of the 1-DOF manipulator.

Several error functions were examined, and the choice of error function crucially
affected the choice of iteration method. The one chosen was a signed form of the
simple absolute-value metric D(z,y) = |z; — y1| + |22 — ¥2|. This is easily calculated,

and produces rapid convergence. Setting the sign of the error function according to

18



whether the X coordinate of the tip is less or greater in absolute value than the X
coordinate of the desired point converts the problem to one of finding a simple real

root, which is numerically more stable than optimisation.

4.2 Algorithm for Solving the 4-DOF Problem

The given parameters of the inverse kinematic problem are the desired tip position
P = [Px, Py, Pz], and the direction of tilt w of the lower Trunk limb. First, the base
coordinate system is rotated by w about the Z axis, to convert the original 4-DOF
problem into a 3-DOF problem. The rotation changes the original desired point P
to the new desired point, denoted P':

Px cos(—w) — Py sin(—w)
Py sin(—w) + Py cos(—w)
Py

1

In order to ensure convergence, the manipulator workspace is broken into a num-
ber of voxels, or volume elements. Each voxel is seeded with a good value of the
iteration variable v; the seed values were found by extensive offline simulation, which
involved changing the control variables in very small increments and calculating the
position of the tip. Once it is determined in which the voxel the goal point of the
tip lies, the seed and a value very close to the seed can be used as the initial values
in the Secant method. The Secant method used is the one described in [Forsythe et
al., 1977], which attempts to find a root of the error function. (The error function is
a function of the iteration variable +.)

Observe that the desired point, if reachable, is the position column of the trans-

form matrix A;-T;, where A, is the transform matrix of a 1-DOF limb, and T is the

19



transform matrix of a 2-DOF limb. Denoting the inverse transform matrix of A, as
A~T, then the position vector A~T.P' should be very close to the position vector of
the transform T3. Let this position vector be denoted as P~ (it will be equal to the

position vector of T; only in the iterative limit, when the error is vanishingly small).

Then, given ~, we can find the appropriate A~T, find P~, and form guesses for

the upper limb tilt direction

~

Eid

6 = tan~
an Py

and for the upper limb arcing parameter

2L\/ P + Py?

- PP+ Pyt Py?

n

The error function returns the value D(P*, P~), where P* is the position vector of
the T, matrix, formed from 6 and 5. Let the error be positive if Py < Py, and
negative otherwise. This error is the function for which the Secant method attempts
to find a zero. A solution has been found when the absolute value of this error is less

than the specified e.

To complete the solution, it is necessary to find the control variables from the

intermediate variables v, w, 1, and 6.

4.2.1 Convergence Results

The iterative method is seeded with good values of 4. This is done by modelling a
large number of 3-DOF manipulator moves beforehand; for each set of control variable
values, the voxel in which the tip is positioned receives the « control variable value
for the lower limb. Once calculated, this need not be changed; it can be read in from

external memory prior to solving the inverse kinematics.

20



For a series of simulations, some 500,000 manipulator moves were modelled, and
a table of 30,000 voxel seeds was created. The pre-calculation routine used about 22
CPU minutes on a VAX 11/750. In a test of 100,000 randomly-chosen points known
to be in the workspace, over half were found within 3 iterations. For this entire set,
with € chosen to be L/10000, the mean convergence time was slightly less than 19

milliseconds, and 99% were complete within 50 milliseconds.

With such convergence rates, it would be possible to use a simple control scheme
and sample positions at rates typically used in current robots. A more advanced
scheme using a pair of processors is also possible, by using early iteration results

(which are close, but not yet within ¢) and updating the desired position on-line.
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5. Kinematic Velocities

Control of a manipulator often entails controlling not only position, but also
velocity. The velocity problem to be solved is, given a position and desired tip
velocity, to find the values and rates of change of the control variables which achieve
these constraints. This approach presupposes a solution to the positional kinematic

problem, which for this manipulator has been solved above.

The kinematic velocities may be solved by finding the rate of change of the limb
tip, i.e., differentiating the position vector. This is not difficult conceptually, but
requires some lengthy algebra and liberal application of L'Hépital’s Rule. The gen-
eral method is to proceed from the 1-DOF to the 4-DOF limbs, using in each case
the rates of change of the constraint parameters employed in the corresponding posi-
tional problem. For the 4-DOF problem, the constraints are thus the three Cartesian

velocities and the desired rate of change of the lower limb angle w.

When some of the control variables are zero, kinematic degeneracies arise; these
can be dealt with by taking the limit of the rates of change. In all cases, these limits
are well-behaved, indicating that combined positional and velocity control of such a

manipulator is feasible.

5.1 1-DOF Limb

The 1-DOF kinematic velocities are relatively easy to state and solve. Differen-
tiating the position vector P with respect to time, the rate of change of the tip is a

function of the present position, and of the rate of change & of the control varialbe

22



V.
Sa— 52

0

d
V=2(P)=L>=

dt (44 S
Ca_'aa

1

If o =0, it can be shown that V degenerates to
aL
2
0

0

0

The inverse functions, where we seek &, are simple. Assume that we know the current

value of a, and we wish to control one of the spatial velocities Vx or V3. If a # 0,

then

5.2 2-DOF Limb

The variables we seek to control are , 3, é&, and 8. It will be convenient here, as
it was with the positiona:l kinematics, to first derive the relationship between w and

4, and the variables thatwe seek to control.

23



Recall that 4 is given by the relation v = /aZ + fB%; elementary calculus and
algebra show that

_d_( )= 4 = adé+ BB
Similarly, from w = tan™!(8/a), we have

d . af+ Pa

) =a = SLLLE

Thus, it is possible to transform from the basic control variables to a set which

expresses the kinematics in simpler terms, and vie versa.

The tip velocity V is, as in the 1-DOF case, just the derivative of the position

vector with respect to time:

If v = 0, this degenerates to

24



The inverse velocity kinematics can now be derived. Suppose that we are given

the desired velocity component Vz, and that 4 # 0. Then

4= Vz-v

- S
L (c1 - 771)
We can derive w in a similar manner, either directly by specifying the desired rota-
tional speed, or by giving the Vx or Vy component and solving from the definition
of the velocity vector and the value of 4 just found. If v = 0, i.e. if the limb is
vertical, we may arbitrarily declare its tilt direction and rotational velocity to be

zero; in this degenerate case, w = & =0, and v = (2Vx/L).

Finally, from the velocities of the virtual control variables and the relations be-

tween them and the basic control variables, we have
a .
a=2_ Buw

and
s _ Y1 —ad
P="3

which are the velocities we seek to control.

5.3 3-DOF Limb

As with the positional kinematics, the control variable of the lower limb will be
< and those of the upper limb will be ¢ and 1. As was shown in § 5.2, there will be
no difficulties raised by manipulating the virtual control variables # and 5 in place

of the basic control variables.

25



Once again, we differentiate the position of the tip with respect to time. The

position vector of the serially composed 1-DOF and 2-DOF transforms is

qm%+&%+§
V.
-1

So4

S S S
—S.-,Cg-n—,l + Cﬁ,# + ";%

1

The vector V, which is the rate of change of P, is linear in terms of the velocities 4,

8, and 1. When we let the coefficients be

v, S, 1 V.
a::&@l+ql+(&—i)
n n o~ v
v,
b = —-C,S—2
n
|4 S,
oo GG (S-R) 5 (Gh-3)
n n
v,
d = Cg—n
n
e = Ss (S"_ nrl)
n
S.
S S y— 2
= —-C,Co—=2 -85, + 1
f Ty v
S
g = S.,Sg—n
v, S,
p oo 5C(Sh-7) GG %)
n n



the tip velocity can be expressed as

a"y-l-b0'+cﬁ
fy+ g0+ hy
0

This can be considered to be a linear system from the desired control variables to
the known velocity values. Applying Gaussian elimination, and back-substituting,

we can express the desired control variables as

d(a\—'Lz —fXE‘) - (ay—bf)YfL

m= adh — cdf — aeg + bef
V: .
= e
d
V. : .
. b0 —ch
’7 - a

In calculating the coefficients, it is necessary to ensure that the degeneracy conditions
(variables equalling zero) are properly handled. Fortunately, all of the functions
necessary have well-behaved limits about zero:

lim vers(z ' =0

z—0 T -

lim sinxga:! = 1

z—0

lim
z—0

DI

ii_r‘% %(cos(m) - illx(ﬂ) =0
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The solution is completed by tranforming from the virtual control variables to the

basic control variables.

5.4 4-DOF Limb

The solution of the 4-DOF kinematic velocity problem is analogous to the solution
of the 4-DOF kinematic position problem. In the latter, we rotated the frame of
reference to remove the non-zero w tilt direction, and reducing it to a 3-DOF problem.

Here, we must not only remove the rotation, but also the rate of rotation.

There are four virtual control variables to be found, and thus four constraints to
be supplied. Let us choose as the four constraints the desired Cartesian velocity of
the tip, and the rotational speed of the lower limb. The velocity induced by the lower
limb rotation, em at the manipulator tip, is directed along the rotated Y axis; its
magnitude is the X coordinate of the tip in the rotated frame, times the rotational
speed w. Hence, the constraining tip velocity for solution of the 3-DOF inverse
kinematic velocity problem is the desired Cartesian tip velocity, plus a correction for
the magnitude of the rotation of the rotated frame, plus a correction for the rate at

which this frame is rotating: ‘

Vx cos(—w) — Vy sin{—w) — Pyw

Vx cos(—w) — Vy sin(—w) — Pxw
Vz

0

This new constraining tip velocity may then be used in the 3-DOF solution, as de-
scribed above. Note, however, that in transforming from the virtual control variables

to the basic control variables it is necessary to remove the effect of both the rotated
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frame of reference and its rate of rotation. Once these effects have been removed, the

transformation is straightforward.
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6. Extensions to the Simple Model

One of the simplifications made in the above kinematics was the assumption that
the base of one limb attached directly to another, and that the limb tip was of
kinematic importance. In constructing such a manipulator, however, there would
almost certainly have to be a physical extension on the end of the limbs, for the

purpose of attaching end effectors, drive units, cabling, etc.

This is no great problem, if it is assumed that there is a fixed translatory segment
on the end of the limb, one which is parallel and colinear with the central arc line.
(Only the changes in the 1-DOF kinematics are presented; 2-DOF changes are sim-
ilar.) The homogeneous transform for the 1-DOF limb, with an extension of length

A on its tip, is

cos & 0 sin o L—‘(;“ + AS,

0 1 0 0

—sina 0 cos & L%" + AC,

0 0 0 1

Sparing the reader the details, it can be shown that for such a linkage

2L Px

=PI Pl N

provided that PZ + P2 # A%, If ) is relatively small, e.g., less than L/5, there is no

significant change in either the convergence rate or the success rate of the iterative

solution.
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This extension to the model has no great effect on the inverse velocity problem.
A few more terms are added, and the algebra is slightly more complicated, but there

is no significant change required in the problem-solving approach.

Another problem - which is far more difficult - is that of compliant limbs. The
complexity of the kinematics (all dynamics aside) increases dramatically if the limbs
deflect noticeably under gravity. This is a great difficulty because the deflection of
the lower limb depends not merely upon the mass of the upper limb, but also upon
the orientation — the upper limb generates not merely a downward force, but also a
torque that is a function of its orientation as well as its own configuration. Worse
still, the exact configuration of the upper limb depends upon the orientation due to
the lower limb; so there is a dual feedback in the beam deflections of the two limbs.
The slightly simpler case of a stiff lower limb and a compliant upper limb is currently

under investigation.

In any case, it is probably wise to make the cross-sectional stiffness of a Trunk
limb as uniform as possible. Since there are independent, orthogonal stiffness con-
trols, a limb can mimic the stiffness of a wide variety of uniform rectangular beams,
from ones with square cross-sections to ones which are much wider than they are
thick. The problems of a varying-stifiness beam whipping through space are expected
to be of sufficient computational complexity that on-line calculation and control em-

ploying conventional hardware will require some ingenuity.
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7. Conclusions

It is possible to solve iteratively a small but interesting kinematic problem for
which no closed-form solution seems to exist. The iterative approach is accurate (one
part in 20000, which is considerably more accurate than the mechanical system would
likely be), reliable, and sufficiently fast to be a real-time algorithm. Being an iterative
approximation employing a stable numerical method, it is reasonably insensitive to
kinematic degeneracies, which show up as multiple roots in the error function — a

situation readily handled by a good implementation of the Secant method.

More important, though, is the fact that that the method worked at all. There
are a large number of possible manipulator designs with kinematics not solvable by
ordinary means; it is possible that many of them are amenable to such an iterative
approach. Some alternative designs are now being considered, and it is hoped that
this simple numerical method is as successful in subsequent applications as it was in

its first.
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