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ABSTRACT

In this paper we describe the mathematical foundations of a knowledge
representation and evidence combination framework and relate it to the theory of
evidential reasoning as developed by Dempster and Shafer. Although our discussion
takes place in the context of computer vision, the results are applicable to problems
in knowledge representation and data interpretation. Our representation, called
plfunctions, and a simple multiplicative combination rule is shown to be equivalent
to a subclass of the family of mass-functions as described by  Shafer with
Dempster’s rule as the combination function. However the simpler combination rule
has a complexity which is linear with respect to the number of elements in the
frame of discernment. This is a tremendous computational advantage over the
general theory which provides a combination rule exponential with respect to the
number of objects over which we are reasoning. We also discuss a method which
allows our representation to be automatically generated from statistical data.

Topics: Perception and Signal Understanding, Theory of Evidence, Dempster’s Rule,
Possibilistic Reasoning, Belief Functions.



1. Introduction

Many problems in Al have associated with them the problems of how to build a struc-
tural hierarchy of complex objects and how to combine information from multiple
knowledge sources. Specifically, in computer vision these problems take the form of
how to combine information derivable from various features of primitive image events
or tokens (lines, curves, regions and surfaces) in order to make inferences about more
complex image events (objects in the domain). Much recent work has addressed the
problems of how to convert information about these primitives into ®*evidence® for
higher-level events and to invoke some more abstract ®*evidence combination® rule in
order to fuse the data provided by various knowledge sources. These include Shafer’s
[1976b)] theory of evidence (see also Lowrance and Garvey [1983]), voting schemes
(Hanson et.al. [1984]), Bayesian methods (Duda and Hart [1973]), constraint pro-
pogation techniques (Kitchen and Rosenfeld [1984]), maximum entropy techniques
(Geman and Geman [1984), Shastri and Feldman [1984]), fussy sets (Zadeh [1978]),
and various ad hoc heuristic methods (Shortliffe [1976]).

In this paper we will examine a method for representing and combining evidence
and relate it to the theory of evidence as proposed by Shafer. Before motivating the
mathematical formalism we will discuss the kind of evidence combination process to
which we see our formalism being applied.

The kind of reasoning that an image understanding system is asked to perform
is often not unlike that of a detective given the task explaining the circumstances
surrounding a crime. The detective is presented with some raw data and asked to
make inferences about who committed the crime. If the crime was a murder, the
detective could invoke three different kinds of reasoning methodologies.

First, some observations would allow significant reductions of the search space
(all people who might have committed the murder), or at least suggest parts of the
search space which are more likely, without yielding any specific information about
individuals within that subset actually did it. A neighbor says that she has heard



members of the family in heated arguments in the last few weeks suggesting that
gome member of the family actually committed murder. Or a woman’s glove is
found on the stairs leading away form the site of the crime suggesting that a woman
committed the crime. However there is no information in this kind of evidence as
to which woman in the family did it nor a likelihood associated with any particular
suspect. ‘

Second, after aquiring some initial evidence the detective may make a hypothesis
that Sue committed the crime and spend some time looking for confirming or dis-
confirming evidence for this hypothesis. The detective may try to obtain evidence
that Sue has or was seen wearing gloves matching those found at the location of the
murder.

Finally the detective will be required to perform some reasoning at a level above
the previous two kinds and look for groupings of evidence each of which is consistent
with every other element of the group. For example the detective may discover that
there is evidence that every woman in the family was out of town on the day of the
crime, suggesting that either this evidence or the glove evidence, but not both, are
parts of a consistent group of evidence which points to the culprit.

A computer vision system often needs to performs analogous kinds of reasoning.
Bottom up processes generate tokens whose features are consistent with many pos-
sible object hypotheses. Whatever the evidence, the system needs to make specific
hypotheses, explore their consequences, check for consistency and explain any incon-
gistencies. Many objects will share features and relations within their descriptions
in the knowledge base, and the unique identification of an object will arise only by
combining the %evidence® from many feature spaces that these tokens provide for
these descriptions and relations.

In this paper we will develop a representation which supports all three types
of inference described above. Our discussion has three components. The first part
is a method for representing evidence using what will be called pl-functions (“pl®
for plausibility). These functions associate measurable properties (e.g. features)
of the image events, via knowledge sources, to labels which are to be assigned to
abstractions of these image events. pl-functions capture the extent to which a label



is plausible given some feature measurement. We will also briefly discuss a proposal
for automatically generating this representation when certain types of statistics are
available.

In the second part of the discussion we will define a function

M A: pl-functions(©) — mass-functions(©)

where © is a frame of discernment (see section 2 for all the relevant definitions),
pl-functions(®) is all pl-functions on © and mass-functions(®) is all mass functions
on ©. We will show that this function has the property that the combination of pl-
functions by multiplication is equivalent to combination of mass functions by Demp-
ster’s rule. Observe that the simple multiplicative combination process is linear with
respect to the number of objects about which we are reasoning. This is a tremendous
computational advantage over the general theory which provides a combination rule
whose complexity is exponential with respect to the number of elements in the frame
of discernment.

Our construction is related to a method of evidential inference termed *condi-
tional embedding® by Shafer [1982]. For cases where the pl-function is derived from
likelihoods formed from independent frequency distributions this function can be
shown to be equivalent to the specific case of conditional embedding developed by
Smets [1978].

Thus we will be describing a way of associating a feature measurements with
a mass function. Methods for making such an association have been made before
(Lowrance [1982], Wesley and Hanson [1085]). However these methods require that
the range of values over which the mass functions are defined be either explicitly
or implicitly discretised into “feature propositions® or subintervals of the feature
variable such as *low®, “medium”® and *high® feature values. In our approach no
such artifical discretisation is required. The mapping from feature value to mass
function is defined in terms of feature values of arbitrarily fine quantisation and can
readily be extended to the continuous case.

In the last part of our discussion we will examine the relationship between the
mappings
M A: pl-functions(®) — mass-functions(©)



given by the construction given in section 3, and
P L: mass-functions(©) — pl-fnnct‘ions(e)

which assigns to any mass function the pl-function given by the plausibilities on
singletons. Our question is: to what extent do the plausibilities of a mass function
on the singleton sets capture all the relevant information about the mass function?
We will show that for any consistent mass function, (the plausibility of some singleton
is 1) then the rank order given by the plausibilities is identical with the rank order
given by a more complex measure defined in terms of support and plausibility.



2. Basic Definitions from the Theory of Evidence

In this section we will briefly review some of the basic definitions from the theory of
evidence (Shafer [1976]). Suppose we are presented with a question and a finite set,
©, consisting of possible answers to the question, only one of which is the correct
one. Then for each o € © the proposition of interest is precisely of the form *The
correct answer 15 0®. A set will be called a frame of discernment when its elements
are interpreted as possible answers to a particular question, and we know that exactly
one of the answers is correct. Each subset P C © can be interpreted as a proposition
which states : “The correct answer is in the set P*. Thus the set of all propositions
relevant to finding the correct answer is in a one to one correspondence with the set
of subsets of ©, i.e. 2°, |

Definition: A mass function is a function
m: 2° — [0, 1)

so that
m(¢) #0

and Y m(A)=1
ACe

Given set P C ©, m (P) should be interpreted as the amount of belief or evidence
M has that P is the set every element of which the evidence supports as being the the
correct answer. Below we will see that each measurement we make on an environment
will generate a mass function which is the evidence that that measurement provides
as to which sets contain the correct answer. Thus measurements of two different
features will provide two different mass functions each of which is the distribution of
3 unit of belief over sets which contain the correct answer. Dempster’s rule is a way
of combining mass functions, the result being another mass function which focuses



the mass on the set which both measurements support as the set containing the
possibly correct answers.

Dempster’s Rule: If m; and m, are mass functions then

2 my (4) - m; (B)

=a
1-k

m @my(C) =

where
k= Y, m(A)-my(B).
ANB=¢

m; ®m, is called the combination of m, and m;, k is called the conflict value,
and the combination is defined if and only if k£ # 1. If we interpret the two mass
functions as each distributing a unit of belief for the sets which a knowledge source
believes contain the correct answer, then k = 1 if and only if the evidence provided
by m, flatly contradicts the evidence provided by m,. In general the conflict value is
a measure of the extent to which two bodies of evidence contradict each other with
k = 0 precisely when they are consistent.

The conflict value k may be non-sero for one of two reasons. On the one hand
the evidence represented by the mass function may be in error, or on the other,
one of the assumptions implied by the representation of knowledge within the frame
of discernment has been violated. In the latter case it may be that the frame of
discernment and the process of generating the mass functions needs to be modified
to correctly reflect the assumptions of the domain, or that an event has occurred
which was not included in the frame and © needs to be enlarged.

If a set A C © is assigned mass ¢, then any set B with 4 C B C © should
believe to an amount at least ¢ that it too contains the right answer. In addition
any set C C © with CN A = ¢ should have the extent to which the evidence refutes

C as containing the right answer reduced by at least &. This leads to the following
definition:

Definition: Given a mass function m:22 — [0, 1], the support and plausibility of



each Ae2® are defined respectively as follows:

opt(4) = 3 m(X)

XCA

pla(d)=1- ¥ m(X).
XNA=¢
In summary, the spt(A) is the total positive impact of the evidence on A, and the
pls(A) is the extent to which the evidence fails to refute A. It is always the case that
0 < spt(A) < pls(4) < 1.

Definition: Given a mass function m:2° — [0, 1], the decisiveness of each A2° is
defined as
dec(A) = spt(A) — (1 — pls(A)).

See Wesley and Hanson [1985] for a more complete description of these and related
measures. Note that dec(A) is a number between —1 and 1 and it has the following
interpretation. If the spt(A) is close to 1 then dec(A) is close to 1 and of the pls(A)
is close to O then dec(A) is close to -1. Thus if dec(A4) is close to 1 then the evidence
supports A; if dec(A) is close to -1, the evidence tends to refute A, and if dec(A) is
close to 0 then the evidence is indecisive.

One simple decision criterion is to compute the decisiveness for each singleton of
© and take th/e element which has the maximum value. That is select a € © where

dec({a}) = maz{dec({z}) | z € ©}.

See Wesley and Hanson [1085] for a more complete description of these and related
measures.



8. Converting Measurements into Mass
Functions

In many image understanding problems we are often faced with the problem of label-
ing some segmentation of an image given some statistical information from various
feature spaces FS, and their relationship to the labels ©. In particular we may have
information about the relative frequencies of various features with respect to various
labels, ie. we have some information about the distribution p(a | f) where f € F'S
and a € ©. Even if the statistics obtained are inaccurate, there is still a significant
amount of knowledge contained in these distributions. If the frequency is high, for
some value f, then at least we don’t want to rule out the possibility that the correct
label to be assigned is a. In addition the feature value f may occur frequently for
many objects and so the knowledge we have is of the form: Given an observation !,
then we don’t want to rule out the possibility that the correct label i3 in the set A of la-
bels for which that feature occurs frequently. Combining the information from many
such knowledge sources then can significantly reduce the search space of plausible
labels. ‘

What is needed for each a € © is a function FS — [0,1] which defines how
plausible the label a is given some feature f € F'S. In this section we will show how
such a function, which we call a pl-function, yields a mass function on © and in the
next section we will show how pl-functions can be derived from statistical data.

Definition: Given a frame of discernment © and a feature space F'S, a pl-function
pi(a| f): F§ — [0,1]

is a function defined on a feature space F'S for each a € © which has the interpre-
tation: pi(a | f) is the extent to which we don’t want to rule out a if we make the
observation f € F'S.



Definition: A knowledge source is a function
ks : FS — M(2°)
where M(2°) is the set of all mass functions on ©.

Definition: A context is a specification of a set © and a collection of knowledge

sources
ksy: FS; — M(2°),...,ksn: FS, — M(2°).

A frame of discernment is designed to capture the relationships between the ob-
jects in some context and the features in that context which pertain to reasoning
about those objects. As the context changes, the objects, the features and the rela-
tionships between the features and the objects can be expected to change.

Each feature space can be thought of as containing quantities that are associated
with some observable and quantifiable aspect of the knowledge we are bringing to
bear on the problem of answering the question which the context is designed to
answer. The set of all feature spaces of potential interest and their knowledge sources
forms a context. In general this includes any aspect of a domain or world about
which information may be obtained in order to help decide which answer is correct.
In our approach to reasoning about one’s environment, various types of knowledge
sources provide the partially processed information, based on their environmental
observations, about the ®evidence for® or *belief in” the propositions represented by
the subsets of ©.

Suppose we are given a set © and for each a € © a pl-function. We will now give
a construction which generates a knowledge source from this pl-function. For each
A C O define

mo(A|f)=TIplal ) II (1-pia|f)).
sEA

6€0-A

Now the function mg(A | f) is not a mass function since

mo(¢ | f)=T1(1-pi(a] 1))
€O



is not necessarily equal to sero. However the function does have the other two
properties of a mass function:

1. 0<my(A| f) <1,

2. Tacemo(4 | f) =1.
The first statement is obvious and the following lemma directly implies the second.

Lemma 8.1 If (2,...,Zn) 8 a sequence of numbers and N = {1,...,n} then

Yz II 1-2)=1

ACNiEA JEN-A
where we define
s/ H = 1
¢

Proof: The proof is by induction. Observe that if N = {1} then

Z: Hz.- H (1-z))=z+1-2z,=1.

ACNiEA jeN-A
The nature of the induction is clarified by considering N = {1,2}. In this case

Y Iz II (1-2)=(01-z)(1 - 23) + z:(1 — 23) + 22(1 — 2,) + 512,
AGNi€A jeN-A

=(l-z1+5)1-2)+(1-z1+2z1)22= 1.
In general

> M= I (-z)

AC(N+1)éEA  jE(N+1)-A

Sl [0 (-2 S M= 11 u-z,-))z..ﬁ.

ACNiEA JEN+1-A n+1EACN+1{EA  JEN+1-A

From the induction hypothesis this expression equals

1- Zn41 + Zn4r = 1.

10



This completes the proof.

Consider what it means for the empty set to receive a non-sero value in terms
of the pl-functions generating m,. It means simply that the consensus of opinion of
the pl-functions is that to some degree the feature value in question rules out every
element of © with respect to the current state of the khowledge base (as represented
by the pl-functions). This could be either because the knowledge source is in error or
the knowledge base is incomplete. The decision as to which of these conditions holds
is external to the processes of the inference network. All that should be required of
it is that it return (partially) the answer unknown.

Therefore we add to © a new element unk and define
m(A U {unk} | f) = mo(4 ]| f).

This then, is a mass function on © U {unk}

We could have recast our definition by defining a new object (a pre-mass func-
tion?) which is allowed to assign non-sero mass to the empty set (see Hummel [1985)).
Dempster’s rule can be defined for these objects (just take out the re-normalization)
and there is a simple mapping between these objects and mass functions. However,
this approach requires doubling the notation. The addition of {unk} requires no
change in notation or conceptualisation, eliminates the need to re-normalige until it
is appropriate and the *conflict® value generated by Dempster’s rule is simply the
mass assigned to {unk}.

The following theorem summariges some of the relationships between the pl-
functions and the generated mass function.

Theorem 3.1 Suppose we are given a set O©U{unk} and for each a € © a pl-function
 pl(a] £): FS = [0,1],

from some feature space F'S to [0,1]. Then defining the mass fuuctton m(AU {unk} |
f) as above,

1. spt(A) =0 sf unk ¢ A,

11



2. pls({a}) = pl(a | f) for any a € O,
3. spt({a, ;ﬂ"} = Leo(1—pi(z | 1))+ 2l | /) Nlza(1 —pl(2 | f)) for anya €,
4. pls(AU {unk}) =1 for any A C ©.

Proof: 1 is clear since if unk & A then A is assigned sero mass by definition.

Forany a € ©

pls({a}) = L m(4| )= [ ps(£18) II (1—ps(£]0))
_ e€AbeA tco-A

e€EA
=ps(fla) X IIee(£18) TI (1-ps(£10)
BCO-{s} B be(0~(a))-B

and according to the Lemma this is equal to ps(f | ¢). This completes the proof of
2.

For the proof of 3, observe that
spt({a, unk} = m({unk}) + m({a, unk})
which by definition is the expression given.

Finally for 4, note that unk € A for every set receiving non-gero mass. Thus
pls(AU {unk}) = 1. This completes the proof.

Given 2 mass function as defined above, we can define a function on 2° by the
formula

m(A U {unk} | f)
1 - m({unk} | f)

for any non-empty set A and m-norm(¢ | f) =0.

m-norm(A | f) =

Theorem 3.2 m-norm s @ mass function on 2°.

12



Proof: Simply observe that

¥ m(AU {unk}) 1
Ao 1-m({unk}) — 1—m({unk})’
Thus
_ 1 m({unk})
,?;,""“"'"'(‘ 1) = T Ganky) ~ T=m{{unkp) = "
Thus we have defined a function

M A: pl-functions(6©) — mass-functions(©)

which assigns to every pl-function pl the mass-function m-norm. In the section 5 we
will discuss some of the properties of this function and its relationship to Dempster’s
rule.

Below we present an example of the process of converting pl-values into a mass
function. In this example ® = {a,b,c}. We have displayed the mass function, the
renormalized mass function, together with the support, plausibility and decisiveness
for that mass function.

pl-values

((a . 0.9 (b.0.6) (c.0.1)

Nass function

0.4060
(unk a) 0.4060
(unk b) 0.0460
(unk) 0.0450
(unk a c) 0.04560
(unk a b ¢) 0.0450
(unk c) 0.00560
(unk b c) 0.0060

13



Renormalized mass function

unknown value = 0.046

(a b)
(a)

(b)

(a ¢)
(a bc)
(c)

(b ¢)

Spt, Pls and Dec for remormalized mass functions

subset
(abc)
(b c)
(a c)
(a b)
(c)

(b)

(a)

0.4241
0.4241
0.0471
0.0471
0.0471
0.0062
0.0062

spt pls

[1.000, 1.000]
[0.058, 0.676]
[0.476, 0.953]
[0.895, 0.996]
[0.005, 0.106]
[0.047, 0.524]
[0.424, 0.942]

dec
1.000
-0.366
0.429
0.890
-0.890
-0.429
0.366

14



4. Generating Pl-functions from Statistical Data

In this section we describe a way of generating pl-functions from statistical data.
Our goal is to describe the areas in feature space where the feature values for a
given object tend to cluster. In those areas we want the pl-values to be close to 1.
Moreover we want this function to be insensitive to the sample siges used to construct
the feature distributions.

Consider the ratio of the number of instances of object a with feature value
f (denoted A(f A a)) to the number of instances of any object with feature value
f (denoted A(f)). This is by definition an estimate of the conditional probability
p(a | f),
_h(fra)
where we use p since we are dealing only with estimates of the true probabilities.

Similarly defined is the relative frequency of seeing a (the “percentage® of a occuring
in the sample),

_ IS Aa)
Pe)= =5 D
and the relative frequency of seeing the feature value f
h(f M) _

As mentioned earlier, one desirable characteristic of a pl-function is that it be
relatively invariant with respect to the sige of the sample set used to model the feature
distribution. That is, two distributions differing only in the size of the sample set
over which they are defined, should have the same pl-function. One way of obtaining
this behavior is to use f(a) as a decision threshold. If the value of §(a | f) is at least
as large as the estimate of seeing a, fi(a), we want the pl-value to be 1. Intuitively, if

15



we have more reason to believe in the occurence of a after the observation f than we
did before the observation f, then we do not want to rule out a as being the reason
f was observed. (In fact there may be factors other than $(a) which might be used
in order to make the pl-function more or less conservative.)

This suggests the following definition of a pl-function,

- mi p(a | f)
pl(a | f) = min(1.0, W).

Now consider the behavior of
#(a ] f)
$(a)

with respect to two objects with the same distribution but with different sample sizes.
Let $(f A az) = af(f A ay) and $(a;) = af(a,) where o is some constant. Then

§(f Aaa) _ af(f Aa) _ B Aar)
5(NPas) ~ Bap(a)  B)F(@:)

which implies that the function pl(a | f) is independent of the sample size. See the
top two distributions in Figure 4.1.

Suppose now that h(fAa;), § = 1,...,n are Gaussian’s with means p; and variances
0:. The next theorem states that if we are ®close enough® to the mean p; and “far
enough® away from the other means 4; then the plausibility of a; is equal to 1.

" Theorem 4.1 Suppose h(f Aa;), s =1,...,n are Gaussians with means p; and stan-
dard deviations o;. Then if

If - il < VZ0; and |f — il = V205, § # 4y
pl(ailf) = 1.

In other words, if the feature value f is within v/20; of p; and farther than V20;
from all other p;, then the pl-value of a; (its “plausibility”) is equal to 1, and this is

16



sndependent of the sample sizes of the distributions. Of course the choice of f(a) is still
somewhat arbitrary and other choices for this value can make the pl-function more
or less conservative. See figure 4.1 where the behavior of the function is illustrated
by the dotted lines if f(a)? is chosen.

Proof: We are given that
h(zAa;) =kieG-#)2? §=1 . .n

and
h(z) = E h(z A a;).

Note that
/ h(z A a;)dz = V2xkio;,
[~ -}
80 it suffices to show that

e ("‘"l )I 2’? > 0'-
T, ke~ (s-#)1s) = L; kjo;”

Using our assumptions, this boils down to showing that

< = 1 > % = 1
Likiot/o] ~ T,é=oMe] = Ljko; Lk

The inequality is equivalenet to showing that for each j
=1 < o, /0u,
and this follows from the inequality
o}/o} — 1> In(0:/0;).

17
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Pigure 4.1: On the left of this figure are displayed a distribution A(f)
which is sum of four Gaussian distributions representing
h(f A a) shown separately from top to bottom. On the
right, the four pl-functions pl(a|f) are displayed. Note
that the top two distributions have the same mean and
variance, and their pl-functions are identical. The dot-
ted horigontal lines pass through f(a) and the area below
them describes how the pl-functions would appear if §(a)?

was used in the definjpn of pl instead of f(a).




6. Pl-functions and Dempster’s Rule

In this section we make the connection between pl-functions and Dempster’s rule.
In particular we will show that combining pl-functions by term-wise product and
generating a mass function yields the same result as individually generating mass
functions and combining using Dempster’s rule.

It is useful to consider this result in a very simple case. Consider a mass function
M: 28 — [0, 1] for which there exists some A C © with m(A) = 1. For this paragraph
call such mass functions “absolute®. Let x4:© — [0, 1] be the characteristic function
of A C ©. If we view the characteristic function as a pl-function on © and generate
the mass function x4-norm, then this mass functions is absolute and its only non-zero
value is on A. It is now easy to see that when AN B # ¢

XA-ROTM - Xp-NOTM = XAnp-NOTM,

in other words, multiplication of characteriatic functions and generating a mass func-
tion yields the same result as first generating the mass function and applying Demp-
ster’s rule. Our result is that this is true for arbitrary pl-functions.

The first two results of this section are useful for deriving computationally efficient
ways of computing Dempster’s rule, supports and plausibilities. The first observation
is that if we are presented with a set of mass functions on © U {unk} to combine,
and they only assign non-sero mass to subsets of © U {unk} which contain unk, then
the amount of mass which accumulates on {unk} is exactly the conflict value of the
n-wise combination as defined by Shafer (see also Hummel [1985]). Next we observe
that normaligation and combination commute with each other.

Theorem 6.1 Suppose m, and m, are mass funcisons derived from the pl-functions
pli(a | f) and pla(a | f). Then

(m, ® mz)-norm = m,-norm ® my-norm

19



Proof: Let me be the mass function on © U {unk} be defined by me(6) = 1 and
0 otherwise. then m-norm = m @ me, in other words, m-norm is obtained by

conditioning on ©. Thus
my-norm @ my-norm = m; ® me © M2 ® me.
Using the associativity and commutativity of Dempster’s rule we obtain
my-norm © my-norm = m; ® m; ® me = (M, ® my)-norm.

This completes the proof.

The next theorem shows that with respect to the elements of © the supports
and plausibilities on the singletons can be computed directly from the pl-functions
without the need of the power set. Thus any decision rule based on the support
and plausibility has a complexity proportional to the number of elements of © (see
Wesley and Hanson. [1985}).

Theorem 5.2 Suppose m(AU{unk}) is a mass functions derived from the pl-function
pl. Then with respect to the mass function m-norm,

_ __pl(a | )
plele) = Tl a < s 1 7))’
€0

pial ) JT (-pib]f)

_ ie(e=(e)
spt({a}) = 1- [[(1-pl(a] £))
pr

Proof: Both equations follow directly from 2. and 3. of theorem 3.1 and the
definition of m-norm.

The next two theorems show that term-wise product of pl-functions is equiva-
lent to combining using Dempster’s rule. We first observe that every mass function
generated by a pl-function is a separable mass function.

20



Theorem 5.3 Suppose we are given a set © and for each a € © a pl-function
pi(a| f) : FS — [0,1],

from some feature space F'S to [0,1]. Then the mass function m-norm generated by
thss pl-function is a separable mass function.

The proof of this result is contained in the proof of the following Lemma.

Lemma 6.1 Suppose (z,,...,2,) s a sequence of numbers with 0 < z; < 1 and
N ={1,...,n}. For each s, let

=i = { v ift;;:runj'u. (5-1)
Define
mo(4) =1z II (1-3)
fEA SEN-A
and
mi(A)=[I= II a1-=).
k€A leN-A
Then

mo(A) = 3 JImi(4).

A= A;

A few words are in order concerning this lemma. First note that my is the function
we defined above to generate mass functions from possibility functions. Second,
observe that any simple mass function can be generated from a sequence of numbers
(215 .-y Zn) Where at most one of the numbers is not equal to 1, by the formula defining
my. Indeed suppose (z;, ..., Z,) is a sequence of numbers with z; # 1 and z; =1 for
all other j. Then defining m by the formula

mA)=]= [I 1-2))

fEA jJEN-A

21



then it follows that

Z $ f A=N
m(A)={ 1-z; if A=N-—{s} (5.2)
0 otherwise.

Now for the proof of Lemma 5.1. First note that in the expression
mo(4) = 3 [Imi(4)

A=n A;
the only expressions mj(A;) which are non-gero arise from sets A; where A; = N or
A; = N — {5} (see the preceding paragraph). Indeed if we form the sets A; = N-{s}
then
A= ] A,
iEN-A

and moreover mi(N — {5}) # 0 only when ¢ = j. Thus mo(A) involves only one
summand which reduces to

IT mi(W) I mi(N - {5})
e ieA

which equals
Mzl1-12)
€A jgA

as desired. This completes the proof.

Finally the main result of this section. Its proof briefly rests on theorem 5.3, in
particular that a mass function generated using our rule can be derived by combin-
ing mass functions whose only focal element other than © is the complement of a
singleton.

Theorem 6.4 Suppose we are given a set © and for each a € © pl-functions

7/

ph(a| f): FS —[0,1],

and
pla(a| f): FS — [0,1],
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Jrom some feature space FS to [0,1]. Let
pls(a| f) =phi(a| f) - pla(a | £)

Then defining the mass functions m,,m; and ms sn terms of these pl-functions as

above,
ms = m; @ ms.

Proof: First consider the mass functions m;, m; and m; generated by the possibility
functions where every element is 1, except the i-th element, which is ps,(f | a),
p82(f | ) and ps,(f | a) - psa(f | a) respectively. Let’s abbreviate these values a,,a;

and as. Then
m,(8) = a;, m,(8 - {a}) =1-a,

my(©) = az, my(@ - {a}) =1-0,
my(©) = a,a2, my(6 — {a}) =1 — a,0,.
On the other hand
m, ® m,y(© — {a}) = (1 — a,)(1 — a3) + as(1 — a3) + a5(1 - ay),

and a simple calculation shows that this is equal to 1 — a,a;. The proof is now
completed by expanding m, and m, into their simple components (using Lemx:pa 2)
and using the associativity and commutativity of Dempster’s rule.

s/
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6. Consistent Mass Functions and the
Completness of Pl-functions

In this section we will briefly consider the relationship between the mapping
M A: pl-functions(©) — mass-functions(©)

and the reverse mapping
P L: mass-functions(©) — pl-functions(©)

where PL is defined by assigning to a mass function the function which assigns the
plausibility on each singleton. First observe that if ps: © — [0, 1] has at least one value
equal to 1, thep PLoM A(pl) = pl. This follows directly from Theorem 5.2. Clearly in
applying PL we lose information since mass functions have 2" — 1 degrees of freedom
and pl-functions have only n. Our question is: to what extent do the plausibilities
of a mass function on the singleton sets capture all the relevant information about
the mass function? This is related to the question of how to define a decision rule
for mass functions. One proposal is to use decisiveness (defined above, section 2.)
to rank order the elements of a frame of discernment, the element with the largest
decisiveness being the “correct” answer. We will show first that given a pl-function
pl, the ordering given by pl and the ordering given by decisiveness of M A(pl) are
identical. Moreover, for any mass function, if it is consistent (the plausibility of some
gingleton is 1) then the rank order given by the plausibilities is identical with the
rank order given by decisiveness.

Inherent to any pl-function is an ordering of ® with respect to the values of the
pl-function. Now observe that the mapping

M A: pl-functions(©) — mass-functions(©)

yields an ordering of © given by decisiveness (see section 2.)
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Theorem 6.1 If pl: © — [0,1] is a pl-function and dec:® — [—1,1] is the decisive-
ness function of the mass-function MA(pl) then the ordering of © given by pl and
the ordering given by dec are identical.

Proof: Assume pl(a) > pi(b). Now from theorem 5.2,

dec(a) = pl(a) (H(l - pl(c))) -1+ pi(a)
c#e

and similarly for b. Rearranging terms then it follows that
dec(a) > dec(d)

if and only if

IT (1 = pl(e))(1 - pi(8)) > TI (1 - pU())(1 - pi(a))
/ ctob o)

and this latter inequality is clear from the assumption.

Now consider the mapping in the reverse direction
P L: mass-functions(©) — pl-functions(®).

In gener;xl the ordering given by decisiveness and the ordering given plausibility are
not equal. However in one important case they are equal. Define a mass function to
be consistent if for some singleton the plausibility is equal to 1.

Theorem 6.2 Suppose m:2° — [0,1] is a consistent mass function. Then the or-
dering given by plausibility and the ordering given by decisiveness are sdentical.

Proof: First observe that if pls(a) = 1 for some a then spt(b) = 0 for every b except
possibily a. Thus it suffices to show that

dec(a) > dec(b)

for all b # a. But
dec(a) > dec(b)
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if and only if
spt(a) + pls(a) > spt(b) + pla(b)
and the latter inequality is clear since pl(a) = 1.
Thus, with respect to consistent mass functions, and decisiveness as a decision
rule, inference can be performed equally well with the computationally simpler mea-
sure given by plausibility.
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7. Com/:lusions

In this paper we have considered mass functions generated from pl-functions defined
from the statistics of features and objects. It is obvious that the mass assignments
generated from pl-functions bear a great resemblance to probabilities on sets of inde-
pendent events. For the examples given, this form is intuitively appealing as wéll as
compact and easily analysed. However, not all relationships between image features
and their interpretations can be captured by the use of pl-functions in the way that
we have defined the relationship between pl-functions and mass functions. We will
conclude by considering two situations where this occurs.

First, a coarsening or refinement of the frame of discernment may be required. In
this case the mass function on the refinement can not necessarily be generated by a
pl-function over the refinement. For example, in the context of aerial photographs,
a measure of rectangularity may discern between rectangular and non-rectangular
objects but it is not appropriate to use this measure to distinguish between potentially
rectangular objects (such as buildings or parking-lots). Therefore a single frame of
discernment and related knowledge sources can not be used throughout the reasoning
process and the system must be able manage mass functions of broader types than
mentioned here.

Shafer [1982] suggests that in situations where the combination of mass functions
produces a great deal of conflict the individual mass functions can be discounted then
recombined. An example of this is uniform discounting which reduces the mass given
to each proper subset and increases the mass given to ©. If the discounting factor and
conflict is large enough then the combined mass to each proper subset tends toward
an “average® of individual mass functions. The given discounted mass function is
not necessarily separable into the simple mass functions of the form described above,
and thus the analysis using plausiblity functions does not apply.

Thus mass functions generated by pl-functions form only a proper subset of the
mass functions which are appliciable in a general image understanding system. How-
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ever they have much of the representational powér normally associated with mass-
functions and their simplicity and computational advantages make them very at-
tactive in comtexts where evidential reasoning and management of uncertainty is
required. '
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