Computing Optical Flow From
Two Frames of an Image Sequence

P. Anandan

COINS Technical Report 86-16**
April, 1986

Abstract

A framework is presented for the computation of optical flow. In this framework, a hierarchical, parallel
matching approach is employed to solve the correspondence problem between image pairs with large dis-
placements of points and independent object motion. The major elements of this framework are (i) the use of
spatial frequency channels, (ii) computation of a confidence measure for each displacement vector, and (iii)
the use of a smoothness constraint which propagates reliable displacement estimates to their neighboring

areas with less reliable estimates.

A clear motivation for this approach is derived by considering the following characteristics of the dis-
placement field computation process: the nature of the input, computational costs, and the requirements on
the output. Although some of the aspects of this framework have been incorporated in various techniques
described in the motion literature, there has been no unified treatment of all of these which provides a de-
tailed computational framework. This paper also describes an efficient computational algorithm consistent

with this framework and provides the results of its application to a set of real images.

** The report is sponsored by Allen R. Hanson and Edward M. Riseman. This research was supported by
DARPA under grant N00014-82-K-0464.



1 INTRODUCTION

The problem of obtaining 3-d structure and motion from a sequence of digital images is usually
divided into two parts, the computation of optical flow followed by its interpretation. Optical
flow is usually defined to be the velocsty field of image points in the case of a continuous stream
of images, and as an image displacement field in the case of a discrete image-sequence [40]. The
interpretation of optical flow [41,2] involves the determination of the camera motion relative to
the environment, the identification of any independently moving objects, and the determination of
the 3-d structure of the stationary environment and the independently moving objects. This paper
describes a framework for the computation of dense reliable displacement fields from a pair of images
containing camera motion a: well as independently moving objects. An algorithm consistent with

the framework and the results of its application to a pair of real images are also included.

1.1 Computing optical flow — approaches and difficulties

Since most practical situations involve a discrete image-sequence, the focus of this paper is the
computation of image displacement fields. Given a pair of image Mes, this involves determining
the correspondence of image events in the two frames; hence, it is usually called the correspondence
or the matching problem [4,40).

The most common approaches used to solve the correspondence problem are intensity-correlation
techniques and symbolic token matching techniques. Intensity correlation techniques use the in-
tensity values in an area around an image point as a template for finding a match for that point
[4,10,36]. These techniques involve simple computations and provide dense displacement felds.
They encounter three major difficulties - errors at areas with insufficient local intensity variations
for matching, problems due to large displacements, and errors at areas of the first frame that are
occluded in the second frame. The first two of these have been addressed by restricting the com-

putation to “interesting points” in the image (see [10]) and by using hierarchical approaches (see
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[14,20,46]) respectively. However, the detection of occlusion has so far proved to be more difficult
and remains largely unsolved.

Token matching techniques derive a symbolic description of the underlying intensity structure
at a point and search for matches on the basis of that description [32,33,41). If the tokens are rich
(i.e., contain a variety of information to make them uniquely identifiable) and are simple to extract
this can lead to robust matches and an efficient technique. However, extracting rich tokens is a
complex process, and the criteria for selecting useful features (for matching purposes) is currently
not well understood. Since these techniques usually constrain the matching problem by reducing
the density of tokens, they provide only a sparse displacement field.

There are also a class of techniques called gradient based techniques (16,19,23,24,25] which
attempt to determine velocity fields from a continuous stream of images. If the image displacements
are small - i.e., less than a pixel, these techniques can be used with discrete image-sequences.
However, in most practical situations the displacements are much larger than one pixel; hence,
these techniques are not applicable.

In summary, although some of the current techniques address specific difficulties in matching,
none seems to have combined all of the ideas to provide a class of robust algorithms. Thus far, a
coherent and complete computational framework for this process has not emerged. The approach
taken here is to examine the goals of the displacement field computation process and based on

these, develop a computational framework.

1.2 Goals of the displacement fleld computation process

The goals of the displacement field computation process are determined by three major factors: the
nature of its input, the requirements on its output, and computational efficiency considerations.
The input is a pair of images which contain displacements due to motion of the camera as well

as of independently moving objects. In typical video sequences, the image displacements of points



are usually larger than one pixel. Large displacements are also necessary in order to.obtain robust
results from the interpretation process [3,18].

Since the reason to compute the displacement field is to obtain the 3-d structure and motion, a
natural place to look for output-requirements is the interpretation process. This process is usually
based on an analysis of the geometric properties of displacement fields [2,5,18,35,39,42]. These
analyses indicate that it is useful to obtain a dense displacement field with an indication of the
reliability of the displacements.

The need for a dense displacement field is noted in [18,35,39] for scenes with arbitrary camera
rotation and translation. Adiv [3] derives the same requirement for scenes containing independently
moving objects. Other techniques which depend on the differential properties of the displacement
field [26,34,42] also need a dense field.

An indication of the reliability of the displacements seems necessary because the interpretation
process is highly sensitive to errors in the displacement field (see [3,6]); therefore, eliminating
incorrect matches from consideration will make this process robust. In addition, points that are
occluded in the second frame should be indicated as such, rather than given false displacement
estimates.

Finally, in order to efficiently compute a dense displacement field, the technique should be
suitable for an image-pixel parallel implementation. The computation in each parallel unit should be
simple and use local image information, so that a simple parallel architecture with local connectivity

can be used.

1.3 An overview of the framework

In the approach described here, the input images are decomposed into their spatial frequency com-
ponents by using a set of spatial frequency channels. The images in the low-frequency channels

provide rough displacement estimates over a large range, whereas the images in the high-frequency



channels provide more accurate estimates. A confidence measure is determined for each displace-
ment vector simultaneously with the displacement computation. A smoothness constraint is then
employed to propagate the displacement estimates at high confidence areas and modify those at low
confidence areas. Thus, the major elements of the framework are, (i) spatial frequency channels, (ii)
the confidence measure and (iii) the smoothness constraint. All computations within each channel

are image pixel parallel and based on local information.

In the remainder of this paper, this framework is described in detail and the outline of an
algorithm consistent with it is provided. Results of applying this algorithm to a pair of real images
is also included. Finally, the limitations of this framework are discussed and directions for future

research are outlined.

2 THE COMPUTATIONAL FRAMEWORK

This section contains a description of a framework for the computation of dense displacement fields.
The framework is general in the sense that there are a variety of ways of implementing its various
components. What is attempted here is to identify those components that must be contained in
any algorithm intended to solve the correspondence problem. As noted before, all computations
within the framework are suitable for parallel implementation.

The framework is explained by providing a detailed description of its three major elements

that were identified in section 1. This is followed by a discussion of its relationship to some other

approaches described in the literature.

2.1 Spatial frequency channels

Perhaps the most fundamental idea in the framework is processing based on the spatial frequency
decomposition of the image. Such a decomposition can be achieved by using a set of spatial

frequency channels. Each channel uses information in a specific range of spatial frequencies of the



input images.

The motivation for this decomposition arises from the need to obtain dense and accurate dis-
placement estimates over a large range. Although small local image structures can accurately
determine the displacements over a short range, they cannot be used for matching over large range
because these structures may repeat. This leads to ambiguities in matching. Therefore, it is clear
that in order to process large displacements, large image structures must be used to avoid duplicate
matches. However, when matching is based on large spatial structures, there will be a significant
overlap of the image areas that determine these structures for neighboring pixels. Therefore, a dense
displacement field computed on this basis will vary slowly over the images - i.e., the accuracy of
the displacements will be low.

These observations suggest that the structures at different scales should be separated and each
used to measure displacements to suitable accuracy over a suitable range. The spatial frequency
channels provide a convenient way of achieving such a separation and displacement computation.
Similar considerations lead Marr and Poggio [27,29] to suggest a spatial frequency decomposition
of the image for stereopsis. There also appears to be psychophysical evidence {1,17,45] to support
the existence of spatial frequency channels in the human visual system.

Given that the images are decomposed using the spatial frequency channels, there are three
stages to the computation of a displacement field: the spatial frequency decomposition, the match-
ing process within each channel, and a control strategy for combining displacement information

from the different channels. The general criteria for designing these stages are discussed below.

Spatial frequency decomposition — The spatial frequency decomposition involves the design
of a set of filters an,d a scheme for representing the output of these filters. The primary requirements
of this process are, (i) the filters should be suitable for parallel implementation with computations
based on local spatial image information, and (ii) the support regions of the filters in the frequency

domain should be narrow and together they should cover the range of image frequencies. The



family of V2@ filters meet both these criteria and have been studied extensively in computer vision
(28,29]. The related family of difference-of-Gaussians (DOG) filters also meet these requirements
and can be implemented more efficiently [28]. Psychophysical studies [45] indicate that the spatial

frequency channels in the human visual system are similar to the DOG filters.

Match criterion — The need to maintain a simple and uniform processing scheme suggests that
the computations within the different channels should be similar to each other. Therefore, it is
sufficient to describe the matching process within a single channel. The match criterion within a
channel involves choosing either a type of correlation or a type of symbolic token matching scheme
- this framework allows both. The primary considerations are efficient computation and generation

of a dense displacement field.

Control strategy ~ The control strategy determines the way in which the displacement infor-
mation from the different spatial-frequency channels is recombined. For this, a spectral continusty
constraint (similar to the one suggested for stereopsis in [21,30,43]) should be used. This constraint
is described below.

Usually, it can be assumed that the projections of points on different environmental surfaces
do not overlap in the image. Hence, the displacement estimates at corresponding image locations
in the different channels are due to relative motion between the camera and the same surface;
therefore, they must be similar. This means that at any image location, among the duplicate
displacement estimates computed in the high frequency channels, the correct one is that which is
consistent with the estimates from the low-frequency channel at the corresponding image location.
The assumption of no overlap is violated in the case of transparent and fence-like surfaces. At

present, this framework does not address such situations.



2.2 Confidence measures

It was noted in section 2.2 that there are usually areas in images with insufficient local information
for determining displacements. This is also true in matching by spatial frequency channels. In order
to identify such areas, a confidence measure for the displacement estimate should be computed for

each pixel. This section describes the properties required of such a measure.

1. The confidence measure should be direction sensitive to indicate the reliability of the different
directional components of a displacement vector. The motivation for this stems from the fact
that the local structure of an image can be broadly classified into 3 types: homogeneous
areas, points along straight edges or lines, and points of high curvature along contours. The

matching process will show a different type of performance in each of these situations.

In a homogeneous area of the image, the displacement estimate will be unreliable in all direc-
tions. At a point along an edge the displacement component perpendicular the orientation of
edge will be reliable, whereas the component parallel to the edge will not be reliable. Finally,
at a point of high curvature, the displacement estimate will be reliable in all directions. In

order to discriminate between these situations, a direction sensitive vector measure is needed.

2. The confidence measure should be low at areas of the first image that occluded in the second
image. This places a constraint on when the confidence measure can be computed. Since the
information from both images is needed recognize occlusion, it cannot be computed before
the matching process. However, a tentative measure can be computed before matching and

completed during the matching process.

The algorithm described in section 3 provides a vector valued confidence measure that meets the
above requirements. These confidence measures are not only useful for the interpretation process,

but are also important for using the smoothness constraint described in the next section. In



addition, when the spectral continuity constraint is applied, these ‘measures can be used to select

the most reliable estimates from different channels.

2.3 Smoothness constraint

When an area of the image lacks sufficient local structure for the unique determination of its dis-
placement, the correspondence problem can be regarded as being ill-posed. A traditional approach
to solve such problems is to introduce a regularization principle which makes the problem well-
posed [31]. The regularization constraint usually concerns some global property of the quantities
being computed. In this framework, such a constraint can be used separately within each channel
to enhance the displacement field computation in that channel.

In the case of the correspondence problem, the reg‘ularizaﬁon principle that has been tradition-
ally used [23,24] is based on the assumption that the environmental surfaces can be regarded to be
smooth almost everywhere. This leads to a smoothness constraint on the displacement field [24].
Similar smoothness assumptions can also be found in [10,32].

In its most rigorous form, the smoothness assumption leads to a variational problem [24,38].
This can be solved using a local relaxation algorithm, which can be implemented in parallel. How-
ever, the smoothness assumption is violated at flow discontinuity boundaries; hence, the constraint
should not be applied across such boundaries. Possible aﬁproaches to detecting discontinu.ifies dur-
ing the smoothing process have been discussed by Terzopoulos [37]. However, it is often necessary
to have some a priors indication of their location.

A related assumption is that the environmental surfaces are continuous almost everywhere.
This leads to a constraint (called the flow-analyticity constraint) that the displacement field is
an analytic function of image coordhata almost everywhere. Although this constraint has been
used in [42] for grouping and segmenting optical flow, it has not been used for obtaining a dense

displacement field. A similar approach, called the figural continusty constraint is often used in



stereopsis ([21,30]).

The variational formulation of the smoothness constraint has been chosen for this framework.
The use of this constraint requires four things: a determination of where the local computation
is not reliable (this can be provided by the confidence measures), a precise formulation of the
constraint, a method for detecting discontinuities, and an algorithm that uses all of these to obtain

a dense and more reliable displacement field.

2.4 Discussion

The foregoing sections described each of the major elements of the framework and how they fit
together. This section discusses related approaches to stereopsis and motion analysis, and addresses
some possible criticisms of this framework.

A number of similarities between this framework and the computational model for stereopsis
that has evolved starting from Marr and Poggio’s original theory [21,27,30,43] were noted above.
In fact, the stereopsis modei has been a source of inspiration for the development of this frame-
work. However, besides the difference between the problems of interest (stereo-correspondence can
be viewed as a restricted case of motion-correspondence), there are also other major distinctions
between the two models. The Marr and Poggio stereopsis model uses the zero crossing contours of
the band-pass filtered images as the basis for matching; hence the spectral continuity and the figural
continuity constraints are specific to contour-based approaches. The framework presented here is
more general and is therefore applicable to both correlation and token based matching approaches.
This increased gen/erality also means that the specific form of the smoothness constraint and the
spectral continuity constraint will vary depending on the type of matching chosen.

The approaches described in [14,20,46] for displacement field computation use spatial frequency
channels and include parallel computation based on local information and hence bear some simi-

larity to the framework described above. The major differences are the following: Wong and Hall
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[46] perform correlation-matching based on low-pass filters whereas this framework uses band-pass
filters. Low-pass filtered correlation is usually less reliable as a match measure (see [13] for a discus-
sion). Burt, Yen, and Xu [14] use band-pass filters, but do not incorporate the spectral continuity
constraint. Glazer, Reynolds, and Anandan (20] use the same framework, however they as well as
the others do not include a smoothness constraint or provide any confidence measures.

A major concern is whether spatial frequency decomposition is the appropriate way of separating
large and small scale spatial structures. The distortion caused by the filtering process (e.g., rounded
corners, merged contours), in the low frequency channels does not create a serious problem for
motion analysis for the following reason. In order to correctly match image events, what is necessary
is that these events remain similar between the frames that are matched. This will be the case
(barring effects of noise), except near flow discontinuity boundaries. At these boundaries, problems
arise because of smoothing across the boundaries. However, these can be significantly reduced by
a careful formulation of the strategy used to implement the spectral continuity constraint. An

example of such a formulation is given in the algorithm described in the next section.

8 HIERARCHICAL CORRELATION ALGORITHM

An important way of determining the utility of any computational framework is by using an algo-
rithm that is consistent with the framework and by analyzing the performance of that algorithm on
real images. One such algorithm is sketched in this section. The algorithm described here utilizes
a pyramid represefxtation of the information [47) and uses a hierarchical coarse-to-fine matching
strategy. It is ideally suited for a processing cone type architecture [22]. A related algorithm suited
for a mesh-connected computer is described in [44].

Since the focus of this paper is on the computational framework, the algorithm is only briefly
described. It is convenient to divide the algorithm into five components, each of which is derived

from one or more of the aspects described above. A detailed description of these components can
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be found in {7,8,12,20] and a complete description of the algorithm can be found in [9].

The description of the algorithm is #ugmented by a demonstration of its application to the
pair of real images shown in figures 1 and 2. These images are two frames from the road scene
image sequence available at the University of Massachusetts Vision laboratory. The images are
at 128 x 128 pixel resolution and the movement between them is a pure camera translation. The

image displacements range from 0 to 8 pixels.

3.1 Spatial-frequency channels

A suitable method for the spatial frequency decomposition is provided by the Laplacian-pyramsd
transform proposed by Burt [12]. Briefly, the input to this process is a single digitized image at some
resolution (usually a power of two, so 2! x 2). The output is a set of images at resolutions 2 x 2*,§ =
0,...,1, represented in a pyramid data structure. There are two stages to this computation: the
creation of the Gausssan pyramsd and the creation of the Laplacian pyramid. The Gaussian pyramid
is computed by successive 5 x § convolutions of image at one level combined with a reduction in the
resolution to obtain the image at the adjacent coarser level. This is equivalent to a set of Gaussian
convolutions whose standard deviations are successively doubled, while the corresponding image-
resolutions are halved (according to the Nyquist criterion). The Laplacian pyramid is computed as
the difference of the images from the adjacent levels of the Gaussian pyramid. Each output image
can be regarded as the result of a difference-of-Gaussian (DOG) filter applied to the input image.
In the matching algorithm described here, one pyramid is created corresponding to each of the two
frames being matc!xed. Figures 3 and 4 show the images from four successive levels of the Gaussian

and Laplacian pyramids computed from the image in figure 1.
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8.2 Match primitive

The matching within each channel is based on a type of intensity correlation. A 5 x 5 sample
window is chosen around a pixel in the first image, and the intensities in it are compared with the
corresponding intensities in same size windows around every possible match candidate in the second
frame. These candidates are determined according to the control strategy described in the next
section. The sum of the squared differences (SSD) of the corresponding pixels is chosen as a measure
of the match between the two pixels. This was chosen primarily because it is easy to compute and
is never negative - a fact that is used in normalizing the confidence measures described in section
3.4. The details of the rationale are discussed in detail in [7). Among the various candidates in the

second image, the one that minimizes this measure is chosen as the match (within a pixel accuracy).

3.3 Control strategy

A sequential coarse-to-fine strategy is employed; this is explained in greater detail in [20] and [7).
The processing begins at a sufficiently coarse resolution where the displacements are within one
pixel at that resolution. At this level, the candidate matches are restricted to pixels in a 3 x 3 area
centered around the corresponding pixel location in the second image.

The process proceeds sequentially from coarse to fine levels. At all levels except the coarsest
level, an initial set of displacements for a pixel are obtained by projecting the displacements from
the adjacent coars/er level. The overlapped pyramid projection scheme described by Burt in (11].
was used in order reduce errors due to smoothing across flow discontinuity boundaries (see [7]). In
this scheme, each pixel at a finer level image has four potential parent pixels at the coarse level.
All the estimates from the four parents are potentially correct initial match estimates. The union
of the pixels in the four 3 x 3 areas centered around each of the potential initial estimates are
considered the candidate matches.

Figure 5 shows the displacement fields computed at different levels of the pyramid for the road
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scene images. The processing began at the 16 x 16 resolution. Figure 6 shows in greater detail
the final results computed at the resolution of the input images. In all cases, only a subset of the

displacements have been shown in order to enhance visibility.

3.4 Confidence measures

The confidence measure chosen here is based on the shape of the SSD surface around the best
match location. For each pixel in the first image, this surface is defined as follows: its height
corresponding to any displacement is the SSD value corresponding to that displacement. Obviously,
such a discrete set of values do not define a unique surface. A local quadratic fit is made to the
SSD values corresponding to the nine pixels in the 3 x 3 area around the best match location .

An empirical study of the SSD surfaces [8] suggests that this surface reflects the local inten-
sity structure of the underlying image. The principal curvatures [15] of this surface are used to
determine the confidence measures. The components of the confidence measures (called ¢mas and
¢min) along the two principal axes are normalized values of the corresponding principal curvatures.
A detailed description of the vector measure and different types of normalization can be found in
[8]. A qualitative consideration of these measures indicates that they satisfy the directional sensi-
tivity properties described in section 3.2. The sensitivity to occlusion is achieved as a part of the
normalization process.

Figure 7 displays cmas and cmin at the two finest levels of the pyramid. The unit vectors
superimposed oD ¢mqn indicate the direction of the maximum principal axes. Note that usually at

points along straight edges in the image, these vectors are perpendicular to the edge.

3.6 Smoothness constraint

The smoothness assumption used in this algorithm is similar that employed by Horn and Schunck

[24). The problem of finding a smooth displacement field which approximates the estimated dis-
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placements on a discrete subset is formulated as a variational problem. That is, the goal is
to find a vector field U = (u,v) which minimizes a quadratic functional E(U) where E(U) =
Eymooth + Egppros. The functional E,meon measures the spatial variation of U. The functional
Eqppros measures how well U approximates the initial displacement estimates D given at a set of
grid points (z,y). The formulation of E,ppros uses the confidence measures described above.

The mathematical form of the minimization problem, its relationship to other techniques, and
the necessary and sufficient conditions for the existence of a solution are discussed in [8]. In
particular, it is shown that this formulation is a generalization of the Horn and Schunck formulation
and takes into account more local information wherever available. The solution to the functional
minimization problem can be achieved by using the finite-element approach (again, see [8] for
details). This approach is based on the one used by Terzopoulos [37] for stereopsis.

The embedding of the smoothness constraint in the hierarchical framework implies that it is
not necessary to achieve perfect smoothing (or convergence of the relaxation process) at each level.
As long as the coarse level estimates are modified to have approximately the correct magnitude
and orientation, the refinement at the finer levels can make the necessary adjustments. This means
that at each level, a small number of iterations (usually less than 10) of the rclaxation process are
sufficient. /

The results of applying this smoothness constraint to the road scene images can be seen in
figures 8 and 9. In particular, note the improvement of the displacement estimates along the white

line on the road and in the homogeneous areas of the sky and the road.

4 SUMMARY AND FUTURE RESEARCH

A computational framework for the determination of dense displacement fields and an algorithm
consistent with that framework have becn described. There are three major issucs that have not

been fully addressed within this framework: detection of discontinuitics, effects of spatial smoothing
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of the image across discontinuities, and processing multiple (i.e., more than two) frames. These
form the basis for future research directions.

Although the finite element method provides natural ways of incorporating known flow dis-
continuities (see [37]), the current algorithm does not include any ;xlethod for identifying them.
Possible ways of doing this are described in [7,23,37]. An additional constraint that can be used is
the “continuity of discontinuities® assumption suggested by Marr [29)].

As noted in section 2, the spatial frequency filtering process can lead to smoothing across
flow discontinuity boundaries. Although the overlapped projection strategy reduces the matching
errors due to this smoothing, there may still be difficulties when the relative movement between
a small object and the surrounding background area is large. A patch of low confidence measures
at the location of the small object will usually indicate such an occurrence. However, the current
framework does not include explicit means fOl: addressing such situations.

The importance of extending the two-frame matching process to a sequence of frames need not
be stressed. Possible approaches for this can be based on a constraint of temporal coherence of
motion. These include tracking points and refinement of displacements, using temporal displace-
ment continuity constraint (or a minimum acceleration constraint), and using temporally consistent

behavior of areas of low-contidence for the detection and tracking of small objects.
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Figure 1: The first image of the road-scene image
pair.

Figure 2: The second image of the road-scene
image pair.
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Figure 3: The images in four levels of the Gaus-
gian pyramid.
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Figure 5: The displacement field at four succes-
gsive levels. The background images are those
from the corresponding levels of the Gaussian
pyramid of the first image. The top-left cor-
responds to level 4 (i.e., 16 x 16) and the bot-
tom-right image is at level 7 (i.e., 128 x 128). At
all levels, only a subset of 16 x 16 vectors have
been shown in order to enhance visibility.
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Figure 4: The images in four levels of the Lapla-
cian pyramid.
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Figure 6: The dxsplacement field computed at
the resolution of the input images. Again, only
a 32 x 32 sample of vectors have been shown in
order to enhance visibility.
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Figure 7: The confidence measures at the two finest levels of processing. The upper two images
show the ¢mas (on the left) and cmin (on the right) at level 6 (i.e., 64 x 64) as intensity images.
The unit vectors superimposed on ¢m,s indicates the direction of emas. The vector emin will always
be perpendicular to ¢mqs and hence is not shown. Only a 16 x 16 subset of the unit vectors have
been ;gown in order to enhance visibility. The bottom two images are similar measures computed
at the resoution of the input image.
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- Figure 8: The smoothed displacement field at Figure 9: The smoothed displacement field com-
four successive levels. A subset of 16 x 16 vec- puted at the resolution of the input images.
tors have been shown in qrder to eiﬂ.hapce visi- Again, only a 32 x 32 sample of vectors have
bimy. Comparing tﬁls wnﬁx the results 1n figure been shown in order to enhance visibility. Com-
5 indicates that the improvements begin at the aring this with the results of the displacement
coarsest level. geld m fi 6 indicates major improvements

along straight lines and homogeneous areas.
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