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Abstract

In this paper, we report the performance analysis for a probability model for schedul-
ing hard real-time tasks. In the model, tasks arrive in system as a Poisson process with
constant computation time and one of n alternative laxities which are less than the com-

putation time. Based on this model, we derive the formulas of the guarantee ratio and
CPU utilization.
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1. Introduction

In this paper, we study the performance of a probability model for scheduling hard
real-time tasks. In the model, tasks arrive in system as a Poisson process with constant
computation time and one of n alternative laxities which are less than the computation
time. The performance metrics we concern in this model are guarantee ratio and CPU
utilization. The former is defined as the f-raction of tasks which finish before their deadlines.

In this model, we derive the explicit formulas of the guarantee ratio and CPU utilization.

In the remiander of this section, we define the probability model of hard real-time com-
putation system for this study. Then we outline the analytic results of performance metrics
such as CPU utilization and task guarantee ratio from the model. Section 2 proves the

results formally, and Section 3 discusses the observations from the results and proposes the

further work.

We propose that the hard real-time computation system is carried on a CPU and there is

no other resource competition. There are ¢ classes of tasks. Tasks in class k have laxity = L



and arrive at system as a Poission process with arrival rate = Ag. Tasks are independent.
Each task uses CPU C time units if it can be guaranteed. The scheduling time is not taken

" into account.

For the conveinece of discussion, we define
A=A1+/\2+"'+/\n, (1)
and
LA: LIA] +L2A2+ R L"An. (2)

Note that we take L) as one notation, not L times A.

With this model, we are interested in two performance metrics: First, the CPU utiliza-
tion, U, is given by

U= lim CPU time being used by t;

t—o00 t

(3)
Secondly, the ratio of tasks being guaranteed, G, is

G =i Number of Tasks being Guaranteed by ¢
Tl Number of Tasks Arrived by ¢

We can prove then

AC
- 7 5
u AC + e 12 (5)
and
1
C=3Ccren (6)



In the next section, we will formally prove (5) and (6).

2. The Proofs

2.1 Background

Here, we introduce background information from renewal theory. This information is

necessary for the proofs in the latter subsections.

A system may have two states on and off. For example, in our system, we may define
that in STATE on, the CPU is being used, and in state off, the CPU is idle. The system
transfers from one state to another cyclically. That is, the system states are ..., on, off, on,
.... Suppose that in a cycle i.e. two consequent on and off states, the duration in which the
system is on (off) is a random variable On (Off) with identical independent distribution.
Let Pon (P,g) be the proportion of time that the system is on (off), and let CL be the

random variable for the whole length of a cycle, that is,
CL = On + Off, (7)
then, from the renewal theory, we know

E|[On]

Fon E[On + Off]

E|On]
E[CL]



and

p. . _Elom _
off = E[on + off]
_ Elo/]
~ ElcL)’ ©)

2.2 CPU Utilization, U

In this subsection, we derive Formula (5) for the CPU utilization, U.

We observe that in our hard real-time computation system, the usage of CPU has the
cyclic behavior, and has two states, being used and being idle. Let Used (Idle) be the random
variable for the time of CPU being used (idle) in a cycle. When the tasks arrive as a Poission
process, it is reasonable to assume that Used (Idle) has identical independent distribution.

Then from (3) and (8), we obtain

E|Used]
= 10
E|Used + Idle} (10)
Because tasks arrive as Poission process,
E(ldle] = E[The time length in which there is no task arrivall
= 1/A (11)

Let N be the random variable such that there are N tasks being executed in a cycle,



then

Used = NC (12)

where C is the computation time of tasks. Therefore,

E[Used] = E|NC|
- CE|N). (13)
To compute E|[N], we need derive
P(N = n) = P{there are n tasks being executed in a cycle}. (14)

Supoose that in a cycle totally n tasks run. Let ¢y be the time the first task begins run; ¢;
be the time the i-th task finishes and the ¢ + 1-th task starts run,7 =1,...,n —1; and ¢,
be the time the n-th task finishes. The n tasks consequently. That is, as soon as one task
finishes, another task starts run until the last (guaranteed) task finishes. Due to condition
L. < C,k=1,...,c, this implies that at least one task from any class must arrive between
the time at which the ¢-th task finishes, ¢;, and the time at which the new task will not lose
its deadline. The latter depends on which class this new task come from: If the new task
is from class k, then the time the new task will not lose its deadline is t; — Ly. From the

characteristic of Possion process, we know

P{ at least one task from any class arrives between the time
at which the i-th task finishes, ¢;,and the time at which

it will not lose its deadline}



= 1 - P{No such a task arives}

= 1 - ] P{No such a class k task arrives}
k=1

>4
= 1- H e Lrdk
k=1
= 1-e (15)
There must be no such a task during the time when the last task is running so that when
the last task finishes, the system state changes from on to off. Simplly

P{ no task arrives during the time when the last task
is running so that the new task will not lose its deadline}

— e—Lz\. (16)

Now, we have

P(n) = P(N =n)

= (1-et)nle i, (17)

Then,

E[N]

énp(n)

o0
= Yon(1- ¢~LA)n-1g-LA

n=1



= Y n(l - ek
n=1

s (18)
n=1 d‘q

where ¢ = (1 — e%*). Because 0 < ¢ < 1, the series is converged. Hence,

d & d 1
EIN] = e—l,,\m_ n_ e-—LA et
[ ] dq n=1 1 dq 1- 9
1 1
_ =L+ =LA_ T
= € (1= q)? € (e-LX)2
= LA (19)

Then, from (13), (11) and (10), we have

E|Used] CE|N]

= Cce (20)
and

E|[Used + Idle] = E([Used| + E[Idle]

= Cel*+1/A. (21)
Finally, by substituting (20) and (21) into (10), we obtain (5)

AC

U=sCreDd

(22)



2.3 Task Guarantee Rate, G

In this subsection, we derive formula (6) for the task guarantee rate, G.

By the conservation law of queueing theory, we should have

U = \GC (23)
Solve G, we obtain
U
¢ =13
1
= —. 24
AC + e L2 (24)

This is exactly (6).

We can directly obtain (6) from renew theory. Recall that in the last subsection, we
define that the system has two states: on (used) and off (idle). We now still keep this state
definition, but change the unit of measurements for the random variables Used and Idle.
In deriving the formula for the CPU utilization, On is measured by the time CPU being
used and Off by the time CPU not being used. And CL is the time length of whole cycle.
To derive the formula for guarantee ratio, we let On be measured by the number of tasks
which are guaranteed in the cycle, that is, N; and Off be the number of tasks which are not
guaranteed, and Cl be the total number of tasks which are generated in cycle, and we call

it Total. That is, Total is a random variable for the total number of tasks generated in a



cycle. By (9), we have

E|N]

¢ = EfTotal] (25)

Let T = Used + Idle be random variable for the time length of a cycle. We calculate

E[Total] by conditioning on T*:
E|Total] = E|E|[Total|T = t||
= E]T)
= AE|[T]
= AE|Used + Idle|

= ACe +1. (26)

Substitute (19) and (26) into (25), we prove (6) again:

1
¢ = rem 27)
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