-

'This work was supported in part b

DCR-85000332.

Semantics-Based Concurrency Control:
Beyond Commutativity !

B. R. Badrinath
Krithi Ramamritham

COINS Technical Report 86-18
Revised: April 1987

Computer and Information Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

y the National Science Foundation under grants DCR-8403097 and

Abstract

The concurrency of transactions executing on atomic data types can be enhanced
through the use of semantic information about operations defined on these types. Hith-

with respect to an uncommitted operation, the invoked operation can be executed by
forcing a commit dependency between the invoked operation and the uncommitted
operation; the transaction invoking the operation will not bave to wait for the uncom-
mitted operation to abort or commit. Further, this commit dependency only affects
the order in which the operations should commit, if both commit; if either operation
aborts, the other can still commit thus avoiding cascading aborts. To ensure the serial-
izability of transactions, we force the recoverability relationship between transactions
to be acyclic. Simulation studjes indicate that using recoverability, response time of
transactions can indeed be reduced, especially at large transaction loads.

Contents

1

2

Introduction

Related Work

A Formal Definition of Recoverability

3.1 Operations and Recoverable Operations

3.2 Examples
.3.2.1 Stack . ..
322 Set.....
3.2.3 Table . ..

....................
................................
................................

................................

................................

A Concurrency Control and Commit Protocol

4.1 Correctness Requirements and Commit Dependency Graph
1.2 A Two Phase Algorithm for Pseudo-committing Transactions
4.2.1 Centralized Algorithm
4.2.2 Distributed Algorithm
4.3 Committing Pseudo-committed Transactions

ooooooooo

oooooooo

..........................

.................

Results of Simulation Studies

5.1 The Simulation Model

5.2 Simulation results

Conclusions

..............................

................................

10
11
13
13
17
20

21
22
24

26

1 Introduction

in object-oriented transaction environments it is desirable to attain as high a degree of
concurrency as possible. Object specifications contain semantic information that can be
exploited to increase concurrency. Several schemes based on the commutativity of opera-
tions have been proposed to provide more concurrency than obtained by the conventional
classification of operations as reads or writes [Garcia-Molina 83, Weihl 84]. For example,
two insert operations on a set object commute and hence, can be executed in parallel; fur-
ther, regardless of whether one operation commits, the other can still commit. Applying
the same rule, two push operations on a stack object do not commute and hence cannot
be executed concurrently. We have identified a property we term recoverability to decrease
the delay involved in processing non-commuting operations. It turns out that two push
operations are recoverable and hence can be executed in parallel.

In protocols in which conflict of operations is based on commutativity, an operation o;
which does not commute with other uncommitted operations will be made to wait until
these conflicting operations abort or commit. We would clearly prefer the operations to
execute and return the results as soon as possible without waiting for the the transactions
invoking the conflicting operations to commit. Such a feature will be especially useful when
long-lived transactions are in progress. In our scheme, non-commuting but recoverable
operations are allowed to execute in parallel; but the order in which the transactions
invoking the operations should commit is fixed to be the order in which they are invoked.
If o, is executed after o,, and o; is recoverable relative to o;, then, if transactions T; and T;
that invoked o, and o, respectively commit, T; should commit before T;. Thus, based on the
recoverability relationship of an operation with other operations, a transaction invoking
the operation sets up a dynamic commit dependency relation between itself and other
transactions. If an invoked operation is not recoverable with respect to an uncommitted
operation, then the invoking transaction is made to wait. For example, two pushes on a
stack do not commute, but if the push operations are forced to commit in the order they
were invoked, then the execution of the two push operations is serializable in commit order.
Further, if either of the transactions aborts the other can still commit.

Schemes for improving concurrency should be concerned with the problem of transac-
tion rollback, in particular, the possibility of cascading aborts. This phenomenon of cascad-
ing aborts occurs when abort of one transaction necessitates aborting other transactions
that could have read its results. Thus, obliterating the effects of the aborted transaction
involves not only undoing the effects of the aborted transactions but also causing abort of

other transactions. This may propagate even further, with aborting transactions causing

some more transactions to abort and so on. What makes recoverability an attractive con-

cept is that it permits more concurrency than commutativity while retaining the positive
teature of commutativity, namely, avoiding cascade aborts. Cascade aborts are avoided
hecause even if one of the transactions involved in a commit dependency aborts, the other

can still commit.

When recoverable operations execute, they may form cyclic commit dependency rela-
tionships. To force this relationship to be acyclic and thus preserve serializability, one of
the transactions involved in a cycle is aborted. We have developed a protocol to detect
cyclic dependencies in a dynamic manner and abort transactions to ensure serializability.
We have combined the process of checking for cyclic dependencies with the first phase of
the commit protocol. This greatly reduces the overheads involved in providing additional
concurrency through use of the notion of recoverability.

While Section 2 presents a brief survey of related work, Section 3 describes the model,
assumptions, and definitions. Section 4 describes a concurrency control and commit pro-
tocol designed to utilize recoverability semantics. Results of extensive simulation studies

are reported in Section 5. Section 6 concludes with a discussion.

2 Related Work

In optimistic concurrency schemes [Kung 81|, conflicts are allowed to occur, but at the
time of validation, transactions with conflicts are aborted. These algorithms can give rise
to cascading aborts, thus introducing serious overhead. Further, conflicts are determined
by a test of the intersection of read/write sets and is not efficient because semantics of the
operations are not taken into account.

In [Buckley 85|, locking protocols using structural information about the data items
are developed to permit only non-cascading rollback. Their model has only read and
write operations, and the database is structured as a directed hypergraph. In addition,
associated with each transaction is a static set of entities which it must access first.

Most locking protocols used in semantics-driven concurrency control base conflicts be-
tween operations on the notion of commutativity of operations |Beeri 83, Weihl 84]. It is
well known that if a protocol allows only commuting operations to execute concurrently
then it prevents cascading aborts. When a transaction invokes an operation, the opera-
tion is executed if it commutes with every other uncommitted operation. Otherwise the
transaction is made to wait. Some use operation return value commutativity [Weihl 85,
wherein information about the results of executing an operation is used in determining

commutativity, and some use the arguments of the operations in determining whether

or not two operations commute iBirman 85, Spector 84|. These protocols provide more
concurrency than protocols using general commutativity [Beeri 83].

The term recoverability also appears in |Hadzilacos 84|. There the recoverability cri-
terion defines a class of schedules in which no transaction commits before any transaction
on which it depends. However, the definitions are based on a free interpretation of the
operations invoked by the transactions [Papadimitriou 79]. That is, each value written by
a transaction is some arbitrary function of the previous values read. Hence, their theory
does not take into account semantics of the individual operations. For example, in their
model. a transaction writing the sum of two values and another writing the mazimum of
two values are indistinguishable.

In our work we have used the notion of recoverability to define conflicts between oper-
ations. We use the semantic information that is available from the specifications of data
types to determine recoverability of two operations. Use of the recoverability criterion
provides more concurrency than commutativity while avoiding cascading aborts. To en-
sure serializability. we have developed an algorithm for detecting cycles in the transaction
commit dependency relation. The algorithm is based on maintaining dependency graphs
(Casanova 81|. However, we check for acyclicity only when transactions commit by using
a new protocol. A node corresponding to a transaction remains in the graph only until
the transactions on which it depends commit or abort. We have combined the process of
checking for acyclicity of the dependency graph with the first phase of the commit protocol.

3 A Formal Definition of Recoverability

3.1 Operations and Recoverable Operations

Transactions in our system perform operations on instances of atomic data types. A
transaction T is modeled by a tuple (OPr, <7) where OPr is a set of abstract operations
and <t is a partial order on them.

Concurrent execution of a set of transactions Ty,T3,...,T, gives rise to a log E =
(OPg,<g). OPg is (U,0Pr,) and (U, <1,) C <g. <g is a partial order on the operations
in OPg and the log represents the order in which they are executed by the system. If
0, ~g 0, we say that o, executed after o,. The execution log is serializable if there exists
a total order <, called a serialization order on the set {T),T:,...,T,} such that if an
operation o, in transaction T, conflicts with an operation o, in T}, and if T; <, T;, then
o, - ¢ o, [Eswaran 78]. Two operations conflict if they both operate on the same data
iem and one of them is a write. In this paper we will generalize the notion of conflict by

considering the semantics of the operations. Fxecution of operations on different objects

can be thought of as generating logs F, for each object), such that log E is the union of
all these logs.

Fach object has a tyvpe, which detines a possibie set of states of the object, and a set
of primitive operations that provide the only means to create and manipulate objects of
that type. The specification of an operation indicates the set of possible states and the
responses that will be produced by that operation when the operation is begun in a certain
state. Formally, the specification is a total function: S +— § x V where S = {s;,s2,...}
is a set of states and V' = {v;,vs,...} is a set of return values. For a given state s € S
we define two components for the specification of an operation: return(o,s) which is the

return value ? produced by operation o, and state(o,s) which is the state produced after
the execution of o.

Definition 1: For a given state s € S consider operations 0, and 0, such that o,’s

execution is immediately followed by the execution of 0;. Let state(o,,s) = s', and

state(o;,s') = s". We say that operation o; is recoverable relative to operation o, in

state s denoted by (02 RR; oy,s) iff
return(oz, s') = return(o, s)

Henceforth we say that o, is recoverable relative to o,, denoted by (o RR; 0,), if for
all states s € S, 07 is recoverable relative to o;.

Intuitively, the above definition states that if 0, executes immediately following o,, the
value returned by o0z, and hence the observable semantics of 03, is independent of whether
0, executed immediately before o,.

Operations do not conflict if they commute. Operations commute if their effect on an
object is independent of the order in which they are executed. This can be formally stated

as follows.

Definition 2: Two operations o; and o; commute in state s if the final state of the
object and the return values of the operations when begun in state s are independent
of whether 0, <g 0; and 0, <g 0, .

Lemma 1: If o, and 0; commute in state s then (0 RR; 01,s) and (o; RRy 03,5).0

Since commuting operations are recoverable we restrict the term recoverability to those
coerations which are recoverable but do not commute. In the remaining sections, if we

imply recoverability from commutativity, we will explicitly state so.

It 1= assumed that every operation returns a value, at least a status or condition code.

[n addition to the operations defined on objects, two special termination operations are
abort and commit of a transaction, Commit (Abort) indicates the successful (unsuccessful)

completion of a transaction. These will appear in the execution log with commit (abort)
of a transaction T, denoted by C(A,).

Terminology: An operation is erecutable if it can be scheduled for execution; it has
completed once its results are available. When a transaction aborts, the effects (on the
objects) of the operations executed by the transaction will be undone. If a transaction
commits, all the effects will be made permanent and the changes will become visible to
other transactions. A transaction terminates when it executes either a commit or an

abort operation. A transaction wvisits an object if it executes at least one operation on
the object.

We consider conflicts at the abstract level and it is assumed that the operations are
executed indivisibly on the underlying implementation of the object. The conflicts are
specified via an operation compatibility table. The table can be derived from the semantics

of the operations on an object. Using the table, conflicts can be detected at run time by
the manager of the object.

3.2 Examples

In this section we examine some objects. By use of a compatibility table we will elu-
cidate the type of dependencies that exist between various operations. These examples
focus on the type of conflicts that are permissible under commutativity and recoverabil-

ity. Our derivation of the dependencies is based on the definitions of commutativity and
recoverabhility.

3.2.1 Stack

The stack object provides three operations: Push, pop, and top. Push adds a specified
clement to the top of the stack. Pop removes and returns the top element if the stack is
not empty, otherwise it returns null. Top returns the value of the top element if the stack
is not empty, otherwise it returns null. Two push operations do not commute but are
recoverable relative to each other. Similarly, though a push operation does not commute
with a top operation, it is recoverable relative to top. These differences are indicated in
the compatibility tables shown in Figures 1a and 1b.

Operation Operation Executed

|
)
Requested | Push Pop Top
]
'

Push Yes-SP i No No
Pop : No i No No
T N 1o [¥e -
Figure la: Commutativity.
Operation Operation Executed
Requested Push Pop Top
Push Yes Yes Yes
Pop No No Yes
Top No No Yes

Figure 1b: Recoverability.

In the commutativity table, if an entry is Yes, it indicates that the operations associated
with that entry are commutative; if the entry is No, it indicates that they are not. In the
recoverability table, if an entry is Yes, then the requested operation associated with the
entry is recoverable relative to the executed operation associated with the entry. A No
entry indicates that the requested operation is not recoverable relative to the executed
operation. A qualified Yes, in particular, a Yes-SP (Yes-DP), indicates that the operations
‘nvolved are commutative or recoverable depending on whether the two operations have
the Same input Parameter (Different input Parameter).

By examining the two tables, we can make the following observations: Commutativity is
a symmetric property whereas recoverability is not. Yes entries in the commutativity table
remain Yes in the recoverability table since commutativity implies recoverability. Because
recoverability allows more concurrency, the recoverability table has more Yes entries than
the commutativity table. The entry associated with two pushes in the commutativity table
i« Yes-SP because, two pushes having the same parameter, i.e., attempting to push the
same element, are commutative.

A closer look at the tables will reveal that the entries in the above tables do not reflect
state dependent commutativity and recoverability properties. Clearly, state dependent
commutativity or recoverability can be used to extract further concurrency. However, as
the following example shows, it will typically result in complex implementations: Two pop
operations commute if the top two elements of the stack they are operating on are the same.
Suppose the top two elements of a stack are the same and hence two pop operations are

allowed to execute concurrently; before the two operations terminate, another pop request

6

arrives. In this case, it is not difficult to see that even though the pop request commutes
with each of the pop operations in execution, it cannot be allowed to execute concurrently
with them unless the top three elements of the stack are the same. Clearly, not only the
specification. but also the implementation of such state-dependent notions of commutativ-
ity can become quite complex. However, use of commutativity and recoverability based
on operation parameters does not result in appreciable increase in complexity. Hence in

the remainder of this paper, we restrict ourselves to state-independent, but parameter-
dependent notions of commutativity and recoverability.

3.2.2 Set

A set object provides three operations: insert, delete, and member. Insert adds a specified
item to the set object. The parameter to Delete specifies the item to be deleted from the
object. If the item is present in the set, it returns Success, otherwise, it returns Faslure.
Member determines whether a specified item is an element of the set object. Inserting two
elements is commutative; so is deleting different elements. Similarly, insert and member
involving different elements commute but do not commute when the specified elements are

the same. However, insert is recoverable relative to member, as indicated by the Yes entry.

Operation Operation Executed
Requested | Insert Delete Member
Insert Yes ‘ Yes-DP | Yes-DP

Delete Yes-DP Yes-DP | Yes-DP
Member Yes-DP Yes-DP | Yes

Figure 2a: Commutativity.

Operation Operation Executed
Requested | Insert Delete =~ Member
Insert Yes Yes Yes

Delete Yes-DP | Yes-DP | Yes
Member Yes-DP | Yes-DP | Yes

Figure 2b: Recoverability.

3.2.3 Table

The Table type stores pairs of (key, item) values, where the keys are unique. The operation
insert inserts a new (key, item) pair in the table. If the key is already present in the table,
it returns a Failure, otherwise it returns Success. The operation delete deletes the pair
with the given key from the table. If the key is not present in the table, it returns a

Fatlure, otherwise it returns Sueccess. The stze operation returns the number of entries in

-3

the table. Lookup returns the value of the item associated with a given key if it exists in
the table. If no such item exists, the result returned is not found. Modify modifies the
value of the item associated with the given key. If the key ts not present in the table, it
returns a Farlure, otherwise it returns Suecess. A size operation does not commute with
insert and delete operations. However, both insert and delete are recoverable relative to
s1ze: but the converse is not true: Because size returns the number of entries in the table,
the value returned depends on prior insert and delete requests, whereas snsert and delete

are not affected by prior invocations of the size operation.

Operation Operation Executed
Requested | Insert Delete Lookup Size Modify
insert Yes-DP | Yes-DP Yes-DP | No | Yes-DP
Delete Yes-DP | Yes-DP Yes-DP | No | Yes-DP
Lookup "Yes-DP | Yes-DP Yes | Yes | Yes-DP
Size No No Yes Yes | Yes
Modify Yes-DP | Yes-DP Yes-DP | Yes Y_eg-DP

Figure 3a: Commutativity.

Operation Operation Executed
Requested Insert Delete Lookup Size Modify
Insert Yes-DP | Yes-DP | Yes “Yes | Yes |
Delete Yes-DP | Yes-DP | Yes "Yes | Yes -
Lookup Yes-DP | Yes-DP | Yes . Yes | Yes-DP °
Size No No |Yes Yes|Yes
Modify Yes-DP | Yes-DP Yes " Yes | Yes

Figure 3b: Recoverability.

We find the notation used in |Weihl 84| convenient to describe a sequence of operations
invoked on an object. We will consider operations to be events, where an event is a
paired operation invocation and response. As an example, consider an object of type set.
Invoking insert(i) inserts the element ¢ into the set and returns “ok” when the operation
is completed. Thus, if the integer set object primeset X is invoked to perform snsert(3),
3 will be added to X and the result would be “ok™. If this is followed by an invocation
of the member(3) operation on primeset X to check for membership of 3 in primeset X,
the result would be “yes”. We will identify the object and the transaction invoking the
operation when we describe a sequence of operations.

The following is a interleaved operation sequence invoked by transactions T; and T, on
the set object primeset X.

X : tinsert(3),0k,T})

x

N : member(3),yes. Ts
N :ansert(7).0k. T),.
X :«delete(3).0k. T, : (1)
The abort of a transaction may cause other transactions to abort. This phenomenon
i« known as cascading aborts. In sequence (1), should T, abort for any reason, T; cannot
commit (because it has seen effects of 7). and hence has to abort. However, the following

sequence of operations on two instances X and Y of a set object is free from cascading
aborts:

X : :member(3),no, Ts)

X : ‘tnsert(3),0k, Ty)

Y :itnsert(4), 0k, Ty)

Y :(delete(5), 0k, T),)

ccommat, Ty)

-abort, Ty) (2)

Here, even though T; has aborted, the semantics of the operations invoked by T, is still
the same.

Consider the sequence of operations invoked by transactions Ty and T; on instances S
of type stack and X of type set:
S : (push, T,.ok)
X : {member(3),T,,no)
S : {push, T, ok)
X : linsert(3), Ty, 0k)
tcommat, T))

‘fcommit, Ty) (3)

In concurrency protocols which consider operations to conflict if they are not commu-
tative. the operations invoked by T, will have to wait until T, commits. However, in our
scheme, since the relevant operations invoked by T, are recoverable they can be executed
without waiting for T\ to commit, while avoiding cascading aborts should T, abort for any
reason. But the commit order is fixed: T; can commit only after T, terminates. In the
next section, we now discuss a concurrency control and commit protocol where a transac-
tion can complete execution even theugh the transactions on which it depends have not
terminated.

So far, (0, RR; 0,) was used to denote the fact that o; was recoverable relative to o,
when o; was executed immediately after o,. Before we conclude this section, we extend
the concept to include the case where o0, is recoverable relative to o, in spite of intervening

operations that have executed but have not yvet committed.

Definition 3: Consider a set of operations S {01,...,0n} such that Vic,cn 0i <E
0,01 (0, RR 0y) if the return value of 0, is independent of whether o, executed hefore

o | 1.e., not necessarily immediately hefore). Hence o, RR 0y -3 0n RR; 0.

Lemma 2: Given the set of operations S defined above, if VI, 1 <! < n, (on RR,
o) then (0, RR 0,).

Proof: Let F denote the operations that execute between between o, and 0,. The
proof is by induction on k where k = |F|.

Induction base (k = 1 i.e., F contains only one operation): Let S = {0n,02,01}. Given
that (o, RR;0;) and since o is executed immediately before on, the results returned by
0, are independent of o,. If o, aborts, 0, will be the operation executed immediately
before o,; Since (0, RR; 0,) again results of o, are independent of 0, and hence (o0,
RR o).

Induction hypothesis (F contains k - 1 operations): if VI, 1 <1< k, (o. RR; o),
then (0, RR 0,).

Induction Step: Let |F| = k and S = {0n,0k41,--- ,02,01}. Now (0n RRy 0x+1) and (0n
RR; o) = (0n RR o) by using a reasoning similar to the base case. From definition
3 we have o, RR o => o, RR; o, and by induction hypothesis vii<l<k
o, RR; oy = 0, RR 0.

Corollary : V1,1 <l<n o,RRjop = Vl1<I<n o.RRo;.

4 A Concurrency Control and Commit Protocol

In this section we discuss the practical issues related to achieving enhanced concurrency
using recoverability semantics.

We assume the existence of an object manager for each object. This manager schedules
the executions of the operations invoked by transactions on that object. We also assume
the existence of a transaction manager for each transaction, which is the system interface
to the user transaction. The transaction manager forwards the user requests to the object
managers. The manager of an object maintains an execution log of uncommitted operations
on that object. Once an operation is requested on an object, the object manager determines
the conflict between that operation and the operations in the. log. Conflicts between
operations are determined with recoverability in mind.

Since recoverable operations force commit dependencies, a transaction may commit
only after other transactions on which it depends commit. However, the semantics of the

execution of the transaction are not affected by the commit/abort of other transactions

10

with which it has a commit dependency. Hence a transaction can complete execution; with
the exception that the operations and the transaction continue to remain in the execution
log and commit dependency graph respectively. We call this sort of commit a pseudo-
commut. Note that this is different from the conditional commit of nested transactions
Moss 81i, wherein a transaction that has conditionally committed may be forced to abort
by its parent. A transaction which has pseudo-committed will definitely commit, but
only after all transactions on which it depends terminate, thus respecting the commit
dependency relationship.

Transactions invoke operations on several objects. This leads to a problem: We must
ensure that the executions on different objects agree on at least one serialization order for
the committed transactions. To determine whether the execution is serializable we have
to determine whether the commit dependency relationship is acyclic. This phase is similar
to the validation phase in optimistic protocols [Kung 81]. We have combined the process
of checking the dependency-graph for acyclicity with the first phase of the standard two
phase commit protocol.

In section 4.1 we formally define the correctness requirements of the concurrency control
and commit protocols and introduce the commit dependency graph. In section 4.2 we
develop the two-pliase protocol for pseudo-committing transactions. An Algorithm for
committing pseudo-committed transactions is given in section 4.3.

4.1 Correctness Requirements and Commit Dependency Graph

Definition 4: An operation o, invoked by transaction T, is sound in a log E if for
any extenston E' = E || A, for any j # i (|| indicates that the operation is appended
to the log, A, is abort of transaction T,), return(o;, s) =return(o;,s') where s and o'

are the states in which o, is executed in E and E' respectively.

To ensure that the intended semantics of the operations are guaranteed in spite of
transaction aborts, we shall require that all operations in a log be sound. As it turns out,
this property can be achieved by allowing only operations that are either commutative or
recoverable to execute.

Theorem 1: Let o,,...,0, be operations in the log E such that for any o; <g oy, if
o, is uncommitted then either o; and o, commute or (o, RR o,) . Then all operations

are sound in F.

Proof: By induction on the number of operations in the log L. From lemma 1 if o;

and o, commute then {0, RR o,).

Induction Base. Consider a log E with two operations 0, and o0, such that 0y <g 03.
oy is sound. If oy is committed, then og is trivially sound. If o; is not committed then
since (02 RR 0y), 02 is sound from definition of the relationship RR.

Induction Hypothesis, For a log I with operations oy, ...,0n 1 satisfying the conditions
mentioned in the statement of the theorem, all operations in the log E are sound.
Induction Step. By the induction hypothesis, operations o,,...,0,_; are sound in E.
Since A"} o, <g on, and the relation (0. RR 0,) holds for any uncommitted o;, again
by the definition of recoverability, o, is sound in E.

Lemma 3: A log E is free from cascading aborts if it has only sound operations.
The proof follows from the definition of soundness and recoverability.

The object manager uses compatibility tables for the objects to determine whether
an operation is sound with respect to other uncommitted operations in the log. Once
an operation is requested the object manager determines the type of conflict with other
uncommitted operations. If the operation is neither recoverable nor commutative with
other uncommitted operations, the transaction is made to wait. Deadlocks due to cyclic
waits of non-recoverable operations can be handled using known techniques of deadlock
avoidance, or deadlock detection and resolution [Bracha 84, Sinha 85].

The object manager for object Oy maintains a commit dependency graph G, for object
O.. In the Gi, nodes indicate transactions ind edges indicate the commit order which
arises from conflicts between operations invoked by different transactions on object O,.
Thus absence of an edge between any two transactions implies that operations invoked by
the two transactions on this object commute.

Definition 5: A commit dependency graph G, = (N,M), where N is the set of nodes
corresponding to transactions that have executed some operation on object kand M is
the set of edges e, where e is a directed edge from T; to T; if T; has executed o; and T;
has executed o, such that 1) o; <g, o;, and 2) o; and o; are not commutative but (o;
RR o,).

Lemma 4: An execution log E is serializable if the commit dependency graph
G = UGy is acyclic. O

The proof follows from the definition of serializability.

Definition 6: An execution log E is correct if it is serializable and is free from

cascading aborts.

12

Using Lemma 4, we will ensure serializability by forcing the commit dependency rela-
tionship resnlting from the recoverability of operations in the log E to be acyclic. From
Lemma 3. cascading aborts can be avoided by ensuring that all operations in the log are
sound.

Figure 4 is an example of a dependency graph for an object. Here the operation invoked
by T, is recoverable relative to operations invoked by T, and T3, and operation invoked
by T is recoverable relative to operation invoked by T;. The operation invoked by T,

commutes with the rest of the operations. The dependency graph is constructed using the
algorithm given in figure 5.

T;
.
P
//‘ -
TI 0(\/\ ° T4
\ .
[]
Ty

Figure 4: A dependency graph

Let G, be the commit dependency graph and E, the execution log at object k.
Let o, be an operation invoked by transaction T..

For each operation o; € E identify conflicting operations and update the commit
dependency graph as follows:

1. If there is at least one ongoing operation with which o; is not recoverable
then T; is made to wait.

2. If for all operations o,, o, and o, are commutative or o; is recoverable relative
to o, then

- Insert a node corresponding to the transaction 7;. Insert directed edges
from node T; to other transactions which have invoked operations with
which o; is recoverable.

Figure 5: Algorithm to insert commit dependency edges.

S P P pu—

4.2 A Two Phase Algorithm for Pseudo-committing Transac-
tions

4.2.1 Centralized Algorithm
In this case, the transaction manager, in order to determine whether a transaction can

pseudo-commit, via a two phase commit protocol interacts with the managers of the objects

13

visited by the transaction. As transactions attempt Lo pseudo-commit, as discussed below,
care is taken to ensure that there does not exist a set of pseudo-committed transactions
- a commit dependency cvele. Further, if there is a cycle of commit dependencies, it is
suflicient for one of the transactions forming the cycle to abort. In our protocol the last
transaction to pseudo-commit will be aborted.

Each transaction is initially assigned a unique timestamp, which serves as the
transaction-id. We will maintain two sets PRE Do,(T;) and SUCC,;(T;) for each trans-
action T; (i.e., with each node in the commit dependency graph) at each object obj. Below
we discuss how these sets are constructed. Roughly speaking, for a transaction 7; that has
pseudo-committed, PRE Dy, (T,) (SUCC,(T;)) contains ids of pseudo-committed trans-
actions that are predecessors(successors) in the commit dependency graph along paths
consisting of only pseudo-committed nodes. Note that we are using the term predeces-
sor(successor) to denote any ancestor(descendant), not necessarily immediate ones.

When a transaction T, wants to pseudo-commit, as the reply to “prepare to pseudo-
commit” message from the T,’s coordinator, the manager of each object obj visited by T;
, sends PRED,,;,(T,) and SUCC,,(T;). Since, in this section, we are considering a cen-
tralized system, we will assume that the process of pseudo-commit is done in an atomic
manner i.e., only one transaction attempts to pseudo-commit at a time. The two sets of
timestamps sent by the object managers are:

1) PREDy,(T)) = | J(PREDo;(T;) | {T;})
T,

where T, is an immediate pseudo-committed predecessor transaction of T;; if no such T,
exists, PRED,,(T;) = 0.

i) SUCCyu,(T.) = | J(SUCCui(T,) U{T.})
T.

where T, is an immediate pseudo-committed successor transaction of Ti; if no such T;
exists, SUCCn;(T,) = 0.
Having collected these sets the transaction manager then determines whether a trans-

action can pseudo-commit. The pseudo code for the entire algorithm is as shown below.
Begin

Transaction 7, intends to Pseudo-commit;
For each Obj visited by T; do

{

Send "prepare to pseudo-commit" message to the manager

14

of Obj

Collect PKED.\(T) and SU'C'(", (T,)
}

PRED(T.) - Uw, PRED.&,(T,):
SUCC(T)) = U, SUCC,(T,):

If PRED(T\)) N SUCC(T,) # 0 then
Send "Abort T," message to all object managers
visited by T,

else
Send "pseudo-commit T," message along with

PRED(T,) and SUCC(T)) to all object managers
vigited by T;;

End

The object managers on receipt of a “pseudo-commit T;” message
update the PRE D,,(T;) and SUCCu,(T.) sets as follows:

PRED,(T,) = PRED(T,)
SUCCuw(T,) = SUCC(T)).

Also, the PRED and SUCC sets, for all pseudo-committed successors T, aﬂd
pseudo-committed predecessors T, of T, reachable via paths consisting of only
pseudo-committed nodes are modified as follows:

SUCCy,(T,) = SUCCa,(T,)USUCC(T))
PRED,(T,) = PRED,,(T,)U PRED(T,).

On the other hand, when the object managers receive an “abort T;" message,
they

remove the node corresponding to T; from the commit dependency graph.

Step T.

['SUCC(T,) PRED(T,) SUCC(T.) PRED(T.) [Result
o At the end of first phase At the end of second phase
T, attempts T, 0 o 0 @ |[p-C
pseudo- (pseudo-
commit commit)
T, attempts T,) Y] 0 0 P-C
; pseudo-
" commit
1‘2 at._tempt.s Tz { Tl } {T(} {T|) {T4 } P-C
pseudo-
commit
T, {T,,T\} 0 -
. Tl 0 {T4s Tﬂ} -
T5 attempts Ts 0 {T], Tz, T4} 0 {Tl,Tz,T4} P-C
| pseudo-
commit _
Ty attempts Ts | {Ty,T2,Th} {T\} - - Aborts
pseudo-
commit
Table 1: Stepwise execution of pseudo-commit algorithm
Ts Ts
T, < T <
Ts T,
Obj 1 obj3
T, T, T,
Obj 2
Figure 6: Dependency graphs at three objects
Example

Using figure 6, which shows dependency graphs at three objects, we illustrate, in table
1, the execution of the pseudo-commit algorithm in steps. At the beginning none of the
transactions have pseudo-committed.
Correctness arguments for the pseudo-commit algorithm:
Fach pseudo-committed transaction T; at each object has a pair of sets: SUCC;(T;)

16

{ T.. 1. - T,. T, is pseudo-committed and every T,, along the path from T, to T,
is also pseudo-committed }. PREDw,(T) ~ { T,/ T, = T, T, is pseudo-committed
and every T, along the path from T, to T, is also pseudo-committed }. To determine
whether T, can pseudo-commit or not, the transaction manager collects these sets from
tmmediate successors and immediate predecessors from each object that T; has visited to
obtain PRED(T,) and SUCC(T,). The proof that a transaction is actually in a commit

dependency cycle when the intersection of PRED(T;) and SUCC(T;) is non empty follows
from the theorem.

Theorem 2: LetTi,...,T, be n nodes (transactions) in the CD (commit dependency)
graph. Let T, be the last transaction attempting to pseudo-commit. Then T, isin a
cycle of the CD graph iff PRED(T,)NSUCC(T:) # 0.

Proof: If: If T, attempts to pseudo-commit and it is in a CD cycle then Ti == T,
and T; == T} for all T, # Tk in the cycle. Let T, and T, be the immediate predecessor
and immediate successor of T, respectively. Since every transaction T; # T, in the
cycle has pseudo-committed, SUCC(T}) and PRED(T,) will contain T;, and hence
the intersection of SUCC(Ty) and PRE D(T,) will be non empty.

Only if: Assume PRED(T,)NSUCC(T:) # 0. Let T; belong to
PRED(T,)NSUCC(T:). Then T, == T, and T; =%> T, which implies T} is in a

cycle.

4.2.2 Distributed Algorithm

Since in a distributed system the commit process can be started by more than one trans-
action, we must provide for potential race conditions. We will present an algorithm to
determine, in a distributed manner, whether a transaction can pseudo-commit.

In the distributed case, the local managers of the sites that contain objects visited by
a transaction T; intending to pseudo-commit are the cohorts of the manager of T;. Each
site has a local manager. Each transaction is assigned a unique timestamp using a system
of Lamport clocks {Lamport 78]. The local managers maintain two sets known as PC and
AC. The set AC contains transactions that have started the pseudo-commit process at
this site and the set PC contains transactions that have pseudo-committed. The commit
dependency graph, and hence the PRED and SUCC sets are still maintained by the object
managers. When a cohort receives a pseudo-commit request, the local manager determines
whether there is a cycle locally as in the centralized algorithm. If there is a cycle an abort
message is sent to the transaction manager. On the other hand, if there exists no cycle
at a site, then the cohort will send AC and PC along with PRED and SUCC sets to the

17

transaction inanager. The set AC is then updated to include the transaction initiating the

piendo-commit. Note that the process of checking for a local cycle, sending the sets, and
updating AC is assumed to be done in an atomic manner.

The sets AC and PC are used to determine a total order among transactions attempting

to pseudo-comimnit at the same time, based on the order of starting the pseudo-commit
process. Before we look at the pseudo code for the commit protocol we define some terms

that will make it easier to reason about the correctness of the distributed commit algorithm.

Definition 7: T, started the commit process before T,, denoted by Ty, BEFORE T,
it T2 ¢ (AC or PC) collected by Ty, or T € every AC or to some PC collected by T;.

Definition 8: T, and T; have overlapping commit phases, denoted by T} OVERLAPS
T,, iff T} belongs to some AC collected by T; and vice versa.

Definition 9: Let us define T\, <. T; iff T, BEFORE T; or T, OVERLAPS T; and
timestamp(T;) < timestamp(T;). Note that given two transactions T, and T; either

T <. T or T; <. Ty, i.e., <. defines a total order on transactions that have started
the pseudo-commit process.

By using the sets PC and AC, as explained in the commit protocol below, transactions
are allowed to pseudo-commit in the order defined by <.. Thus potential race conditions in
pseudo-committing are avoided, thereby reducing the distributed version of the algorithm

essentially to the centralized algorithm whose correctness has been proved earlier.

e Phase I

o During the first phase of the commit protocol for transaction T, the transaction man-

ager initiates the pseudo-commit process sending prepare to pseudo-commit messages
to its cohorts.

> The cohorts then check for a local commit dependency cycle; if there is a local commit
dependency cycle then an abort message is sent. However, if there is no cycle locally
then the sets PRED(T;) and SUCC(T;) are sent along with the sets AC and PC.
The set AC is then updated to AC UT;. Note that the action of determining PRED
and SUCC sets, and inserting T; into AC is assumed to be in an atomic manner at
each site. ‘

o If there was no abort message from any of the cohorts then the transaction manager
determines whether there exists a T; <. T; and T; has not completed the pseudo-

commit process. If such a T, exists then the transaction manager will send a request

18

to cohorts for obtaining the sets PRED and SUCC again. However, this time the
cohorts will wait for all T, such that T, <. T, to complete the pseudo commit process

(as we shall see, this happens when T, is removed from AC) and then send the sets
PRED and SUCC.

Phase 11

= If the transaction manager has received an abort message at the end of phase I, or if

1)

2)

the intersection of the two sets Uoporte PRE Deonorts 80d U.onores SUC Crohorts i8 NON

empty (i.e., there is a global commit dependency cycle) then
- Transaction manager sends abort T; message.
If 3 no cycle involving T; in the commit dependency graph then

Begin
If Ucohorts SUCCcohovu(Ti) = 0 then

e Transaction manager sends Commit T; message.
Else

¢ Transaction manager sends Pseudo Commit T; message.

End
A cohort does the following:

If it receives a commit or abort message: the node corresponding to T; is removed
from AC as well as from the commit dependency graph.

If it receives a Pseudo commit message: The node corresponding to T; is removed
from the set AC and inserted in the set PC.

When T; completes the first phase of the commit protocol, using AC and PC, the

transaction manager determines the set of transactions By = {T;/T; <. T;}. If this set is

non empty, the transaction manager, in order to check for a global cycle, has to wait until
all such T, complete, at which point the cohorts send PRED and SUCC sets. While T; is

waiting, since T; is in AC at each site visited by it, any other T} which starts the pseudo-

commit process will find T, <. T; and hence cannot belong to the set By, i.e., cannot

pseudo-commit before T;. Thus <. imposes an ordering on transactions attempting tp

pseudo-commit thus avoiding race conditions.

Before we conclude this section we look at the problem of effecting aborts. When a

transaction aborts, it is necessary to undo (backout) a transaction. Undo of a transaction

19

imvolves undo of all operations executed by a transaction. We will assume that each
operation has an inverse (i.e., that it can he undone). To achieve transaction abort we
need to maintain a log of events, which is a sequence of entries containing the operation,
the object. and the transaction-id. One approach to undo an operation is to first undo all
operations that come “after” it, and then apply the operation’s inverse. Hence, we can roll
back by applying inverses in reverse order. The current state can then be determined by
redoing of all operations except the one being aborted. Nevertheless, to avoid digression,

we do not investigate these strategies in this paper; details can be found in [Oki 85, Moss
RG!1.

4.3 Committing Pseudo-committed Transactions

After a transaction pseudo-commits, the operations and the transaction continue to remain
in the log and the commit dependency graph respectively. Because of this, operations ex-
ecuted by the pseudo-committed transactions will be used to determine conflicts with op-
erations invoked by other transactions. The operations of pseudo-committed transactions
can be removed from the log only when other transactions on which it depends terminate.
If a transaction pséudo-commits, the object managers have to decide when actually to
commit the transaction. To make this decision, the following information is required by
cach object manager.

o The set of object managers from which messages have to be received for an object
manager to commit a transaction. This set is denoted by CD-SET. Basically CD-
SET contains those objects at which a transaction has commit dependencies (the
out-degree of the node corresponding to the transaction in the commit dependency
graph at that object is non-zero).

e The set of object managers to which a message has to be sent when a transaction has
no commit dependencies (the out-degree of the node corresponding to the transaction
in the commit dependency graph becomes zero). This set is denoted by VISIT-SET.
VISIT-SET contains those objects which a transaction has visited.

20

0bj Q ~T:

Obj R Obj S
Tlc ’ | e B ——— &
T, T . T, T,
R
[] [
T, T,
Obj P

Figure 7: Dependency graphs at objects P, Q, R, and S

The members of CD-SET and VISIT-SET for each transaction can easily be determined
by the transaction manager when it collects the dependency graph at each object as part
of the commit protocol. Hence the transaction manager sends these sets to the object
managers involved during the second phase of the commit protocol. Consider the scenario
shown in Figure 7. At object P, CD-SET(T:) = {Q, R} and VISIT-SET(Th) = {Q, R, S}.
At object S, the sets CD-SET(T\) = {P,Q, R} and VISIT-SET(T) = 0.

Each object manager uses information contained in CD-SET and VISIT-SET of trans-
actions to commit a pseudo-committed transaction in a decentralized manner as follows.
When the out-degree of the node corresponding to a particular transaction becomes zero
(there exist no commit dependencies) the object manager sends commit messages to the
object managers in VISIT-SET. If a transaction has no commit dependencies, and com-
mit messages from all object managers in CD-SET have arrived, then the transaction is
committed. The node and the incoming edges in the commit dependency graph, and the
operations corresponding to the transaction in the execution log, are removed.

5 Results of Simulation Studies

We now report on simulation studies designed to evaluate the increased concurrency re-
sulting from the use of recoverability. The purpose of this simulation study is to compare
the amount of concurrency offered when both commutativity and recoverability are used to
determine conflicts as opposed to using just commutativity. Hence, we are only interested
in the effect of data contention rather than resource (for example, 1/0) contention. Thus

we are not modeling resource contention.

=

| Simulation parameters

Parameter ' V;Iu.énw}
Database size i 400 objects
' Transaction length 5 - 9 steps
Interrequest time 0.1 secs
... Arrivalrate) 1- 20 txns/sec
Time out (deadlock) 3 secs
Communication delay 0.6 secs
Time to retry 0.3 secs

Table 2: Parameters and their nominal values
5.1 The Simulation Model

To simplify the simulations, we focus on the effect of parameter-independent semantic
properties. Thus an entry (1, j) in the recoverability (commutativity) table for an object
will be yes only if operation 1 is recoverable relative to (commutative with) operation ;
independent of the input parameters to the two operations. In this case, we can merge
the two tables into a single compatibility table; each entry in this table will be one of
commutative, recoverable, or null.

To model different degrees of commutativity and recoverability, the pfoperties of opera-
tions on an object are specified by two integers: P. determines the number of commutative
entries in an object’s compatibility table; P, determines the number of recoverable entries
in this table. Thus, (N 2 _ P, - P,) is the number of null entries where N is the number
of operations defined on the object. We experimented with even values of P. and P,. (In
the graphs depicted in figures 8 through 13, each graph is for a fixed value of P, and
transaction length. The horizontal axis depicts different values of F,.) At the beginning
of a simulation run, given the values of P. and P, for an object, P. /2 non-diagonal entries
in its compatibility table are randomly chosen and set be commutative; their symmetric
entries are then made commutative. P, of the remaining entries are then randomly chosen
using a uniform distribution and set to be recoverable. The rest of the entries are set to
null. Some of the other parameters besides P, and P, and their nominal values are listed
in Table 2. The values of the model parameters have been chosen similar to those in pre-
vious performance studies of locking protocols [Tay 85, Tay 85a] and commutativity-based
protocols [Cordon 85).

To simplify the study, we assume a system consisting 400 objects. Each object has four

operations defined on it. Each transaction makes a sequence of k requests where k is the

o
[S¥]

iransaction length, and the time between the ** and the (1 4 1)** operation request is a
random variable uniformly distributed on (0,2T) so that the average interrequest time is
T.

The transaction interrequest time, the arrival rate, and the transaction length deter-
mine the overall transaction load. Since transactions compete for the shared objects, for a
given transaction length, as transaction load increases, i.e., as either interrequest time or
arrival rate increases, contentions will increase and hence transaction response time will
increase. The transaction load is adjusted by changing the transaction arrival rate while
keeping the interrequest time for operations at 0.1 secs for different transaction lengths.
In essence we are simulating an open queuing model with a poisson transaction arrival
process; a similar model has been used in [Yu 85|.

We have conducted extensive simulation studies for various transaction lengths k = 5,
7, and 9. All of the defined operations can be invoked with equal probability. Further we
assume, as in |Tay 85|, there is uniform access, that is the probability that a transaction
requests an operation on a particular object it has not accessed before is the same as that
for any other object.

Arrival rate was determined in the following way: Under P, = 0, i.e., maximum conflict,
we determined maximum arrival rate before which the throughput begins to fall due to
excessive aborts. For k = 5, this rate was found to be 20 transactions/sec and the response
time for this arrival rate was = 2.4 secs. For other transactions lengths k= 7, 9, we adjusted
the arrival rates so as to obtain the same response time under maximum conflict. These
were found to be 8 and 4 transactions/second respectively. We also experiment with arrival
rates that are smaller than this maximum value.

Recall that an operation that is neither commutative with nor recoverable relative to
all ongoing. operations is made to wait. Such waits may lead to deadlocks. We have made
use of time-outs to tackle this problem. If an operation request .is not satisfied within 3
seconds, the invoking transaction is aborted. We term such aborts t-aborts.

Recall that one of the transactions in a commit dependency cycle is aborted. We call
such aborts as r-aborts. An r-aborted transaction is resubmitted 0.3 secs after its abort.
The response times of such transactions is computed with respect to their original arrival
times.

We do not model the details of the communication between a transaction manager and
the object managers; the communication delay involved in the commit protocol is fixed at
0.6 secs. This is the delay between when a transaction completes all its operations and when
the managers of objects visited by the transaction are informed by the transaction manager

about the commitment or abortion of the transaction. Thus the minimum communication

delay experienced by a transaction is 0.6 seconds. A transaction that is r-aborted once
and succeeds in its second attempt experiences a total communication delay of 1.2 seconds.
The only detail we do not model is the additional delay transactions experience when their
pseudo-commit phases overlap.

Even though it might appear that the effect of modeling communication delays by a
constant amount will be to increase the response times of all transactions by 0.6 seconds,
there is an important secondary effect. This arises due to the fact that transactions
cxecuting nonrecoverable operations are now made to wait longer and hence our model for

communication delays does model the impact on response times for conflicting transactions.

5.2 Simulation results

Typically, transaction response time is defined to be the length of the interval between
transaction arrival time and the time the results of the transaction are available. In our
case, the latter time is the same as the time when a transaction pseudo-commits.

The average transaction response time induced by a concurrency control algorithm
will normally reflect the degree of concurrency allowed by that algorithm: The better the
concurrency properties of the algorithm, the smaller the average transaction response time.
Hence in this study, we use average transaction response time as the metric to evaluate the
concurrency of operations having different commutativity and recoverability properties.

Given that recoverability is a weaker conflict predicate than commutativity, we expect
significant reductions in response time for transactions. If recoverability properties are
not considered, there will be an increase in the waiting time of transactions which invoke
operations that do not commute with uncommitted operations. As recoverability increases
we expect a decrease in average response time for transactions.

In this study each simulation is run till 400 transactions are generated. We measured
various factors, including transaction response time, the average delay between the instant
a transaction pseudo-commits and the instant it commits, and the number of transactions
that t-abort. The graphs in figure 8 through 13 show the average results of 50 runs.
These depict the increased concurrency, i.e., reduced average response time, the pseudo-
commit time (mean time for a pseudo-committed transaction to commit) and the number
of t-aborts. At large P, values, a transaction experiences the minimum response time
possible. This is equal to the total execution time of all operations plus the communication
delay involved in commitment. In our case, this minimum transaction response time is
(k #0.1) + 0.6 which varies from 1.1, 1.3 and 1.5 secs for k=5, 7, and 9 steps respectively.
Since transactions are resubmitted when they are r-aborted, the minimum transaction

response time is slightly higher than the minimum possible, as calculated above, for various

24

'f:aAraArﬁé{‘ér'r k-5 k-7 | k=9

4, | 30.96% 22.627% | 18.08%

il
oLl

CPo= 2.1 955% 9.199% | 6.97%
P2 i

po- 2,{20.4% 18.19% | 13.3%
jP,;4 |

P = 2,1 305% 25.74% | 19.91%
P. =6

P. = 4,|11.62% 6.807% | 6.92%
P.=2

P. = 4,| 221% 14.699% | 12.8%
P, -4

P.

P,

Table 3: Drop in response times under maximum arrival rate

transaction lengths.

Based on these graphs we can make the following observations which have been sum-
marized in table 3 :

¢ The use of recoverability does result in smaller transaction response times; the larger
the value of P,, the smaller the response time. This decrease occurs in spite of trans-
action aborts due to cyclic commit dependencies. The percentage drop in response

time for different values of P, and P. are shown in table 3.

o As the transaction length is increased, the response time decreases as recoverability
increases; however, the percentage drop in response time for a given value of P,

reduces slightly as the length of the transaction increases.

¢ The notion of recoverability is especially useful for large loads. In this case, there is

a almost linear drop in the response times with increased recoverability.

Our simulation experiments also show that the interval between when a transaction
pseudo-commits and when it commits decreases as P, increases. We can explain this
behavior as follows: Transactions are made to wait by other transactions with which they
have commit dependencies. At low values of P,, there is a large probability of a transaction
performing a non-recoverable operation and hence these waits are long. At higher P,
values, even though transactions form more commit dependencies, transactions experience

less wait times for performing operations due to the increased concurrency made possible

bn recoverability, This produces the fall in the aforementioned interval almost lineérly with
I’ value. The number of aborts caused by cyclic commit dependencies has been found to
be very low. Fven at maximmum P, value less than 5 % of the total transactions generated
were aborted due to cyclic dependencies.

The average number of aborts due to timeout begins to decrease as P, increases, but
begins to rise after a certain value of P,; it begins to decrease again for still larger P,
values. This is because transactions that execute recoverable operations increase as P,
increases, hence the level of multiprogramming also increases, thereby increasing the con-
flict among transactions executing nonrecoverable operations. In our simulation model, a
transaction executing a nonrecoverable operation is made to wait, while a subsequently
arriving transaction that invokes a recoverable operation will be allowed to execute. Wait-
ing transactions are not given priority over transactions executing recoverable operations.
As a result. when the number of transactions executing recoverable operations increases,
the probability of a waiting transaction executing decreases. Hence the number of t-aborts
increases as P, increases beyond a certain value.

Even though the number of aborts increases after a certain value of P,, it is still less
than the number of aborts when P, = 0 for k= 5. However, for k=7 and 9 the number
of aborts is higher than the corresponding value at P, = 0. As P, increases further, the
number of operations that are non commutative, i.e., the number of conflicts, is further
reduced thereby reducing the number of aborts.

In summary, for objects whose compatibility tables have a reasonable number of recov-
erable operations, as in examples of Section 3.2, the drop in response time is significant.
Further, the number of t-aborts in such cases will be lower than the number of t-aborts
when recoverability is not considered. Thus, we get a two-fold advantage by exploiting
recoverability semantics.

6 Conclusions

We have described a concurrency control protocol which avoids cascading aborts by ex-
ploiting type-specific properties of objects. The protocol uses a conflict predicate known
as recoverability in addition to commutativity. It is simple and effective because the al-
gorithm is based on checking pre-defined conflicts between pairs of operations. Conflicts
among operations executed by different transactions can be checked by using a compati-
bility table, and the table can be derived directly from the data type specification. The
use of recoverability not only reduces the latency involved in processing non-commuting

operations but also avoids cascading aborts. As we saw in the examples of Section 3.1,

26

hon-commuting but recoverable operations are not uncommon and hence we expect to
Increase concurrency considerably.

Since the dynamic commit dependency relationship between transactions may be cyclic,
serializability may be violated as transactions execute: during the commit phase transac-
tions are aborted to maintain serializability. We have seen a scheme, to achieve this. Using
recoverability as a co<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>