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1. Overview -

This paper describes a organization for knowledge engineering tools based on the knowledge sys-
tem architecture, a level of description between weak methods and domain-specific applications.
The architecture of a knowledge system is a partial design, in which some of the general design
parameters such as knowledge representation formalism and reasoning mechanism are chosen
in advance to support a particular class of problem solving tasks. An architecture supports
constructs at a higher level than implementation primitives such as frames and rules, yet is not
necessarily tied to a particular domain.

We present three ways of viewing an architecture: the functional view, the structural view,
and the virtual machine view. We apply that analysis to MU, an architecture for designing
knowledge systems that manage uncertainty by deciding how to act. We describe the role
of knowledge engineering tools at the architecture level that can improve the productivity of

system design and knowledge acquisition tasks. Distinctive features of architecture-level tools
include *

e They support an implementation of architecture-specific constructs, yet they make an
explicit separation between implementation primitives and task-level terms, so that the
tool user manipulates a language at the appropriate level for the task.

“This research is funded by National Science Foundation grant IST 8409623 and DARPA/RADC Contract
F30602-85-C-0014.



e They declaratively represent meta-knowledge about the evolving system, so that the de-
sign decisions are made explicit and can be used by other tools.

We show a hierarchy of knowledge engineering tools for supporting an architecture. For MU,
the basic implementation level is supported by a commercially available Al programming envi-
ronment. The architecture-level constructs defined by MU are provided by a runtime support
shell, which operationalizes the architectural primitives while hiding the implementation. A
knowledge acquisition interface presents the user with an environment for encoding knowledge
in the terms of the architecture. Meta-knowledge about the terms is provided by the knowledge
engineer while configuring the shell and is used by the knowledge acquisition interface to help
the user build a syntactically valid and semantically consistent knowledge base.

2. The Architecture Level

A knowledge system architecture is a level of description of knowledge-based systems. It is a
partial design of a knowledge system that applies a set of general Al techniques to solve a partic-
ular kind of problem. It explicitly supports a set of task-level constructs with which to model
task-specific expertise. The architecture level terms used to represent task-level constructs
provide a language for the knowledge engineer and expert independent of the implementation.

Postulating an architecture level is by no means novel, but it can stand some clarification.
We will examine the notion of the knowledge system architecture from three views: as a task-
oriented problem solving technique, as a partial design of a program, and as a virtual machine
for representing problem solving knowledge.

1. The functional view.

The architecture ts a combination of Al techniques oriented toward a particular style of
problem solving.

There are architectures for simple classification ( e.g., decision trees), heuristic classifi-
cation (e.g., HERACLES, 1986), interpretation of noisy data (the blackboard model, Nii,
1986), and constructing a configuration (e.g., SALT, Marcus, McDermott, and Wang,
1985). An architecture may be more or less task-specific. The EMYCIN could be consid-
ered an architecture, or more accurately a pre-architecture, since although it was gener-
alized from a medical diagnosis system it is fairly low-level (close to the implementation
level of rules and certainty factors).! SALT is much more specialized, and can be more
specific about the “roles of knowledge” it supports; it uses a task-specific algorithm that
operates on knowledge of three well-defined types.

!Clancey claims that it is too low level - NEOMYCIN is closer to an architecture for medical diagnosis since
it explicitly models the diagnosis process.



2. The structural view.

The architecture is a partial design of a knowledge system.

The architecture is designed to perform a particular task by choosing the appropriate
combination of design parameters. Usually these include the knowledge representation
formalisms (e.g., predicate calculus, production rules, semantic networks, frames in an
inheritance hierarchy, measures of uncertainty); reasoning mechanisms (e.g., resolution
theorem prover, forward and backward chaining rule interpreters, spreading activation,
hierarchical matching, Bayes’ rule); and control strategies (e.g., exhaustive search, chrono-
logical backtracking, agenda scheduling). A successful architecture is not an arbitrary col-
lection of techniques, but rather a “good” combination, designed to do a particular task.
A focus of current knowledge system research is to match tasks to existing architectures
and to design new architectures when there is no good match to the tasks.

3. The virtual machine view.

The architecture provides a language of task-level terms for representing knowledge.
These terms describe the function of the system’s design at a different level of abstraction,
more natural for the knowledge engineer and expert, than the implementation level. While
the architecture level may be implemented in computational primitives, in the sense of
abstract data types, the constructs at the architecture level may be fruitfully distinguished
from their implementation. This is the distinction that Allen Newell made more generally
in his analysis of the knowledge level (Newell, 1982). He makes a clear distinction between
the knowledge of an intelligent agent, which can be used to model its behavior, and the
representation, which is how the knowledge is encoded in a symbol system.

The architecture level can make a similar distinction. For example, most medical diag-
nosis systems provide some kind of support for triggering — making particular hypotheses
“active” when certain events (typically input data) occur. To the expert, triggering might
correspond to “bringing a diagnosis to mind”; for instance, a report of chest pain follow-
ing exercise triggers the hypothesis of angina. Although the programmer may be able
to produce the effect of triggering using implementation-level primitives (such as giving
triggered diseases high certainty factors), the engineering detracts from the clarity of
the term.? If an architecture provides task-level constructs as primitives, they become
explicit terms for representing knowledge, which promotes explanation (Swartout, 1983)
and knowledge acquisition (Gruber and Cohen, 1986). Knowledge engineers, experts, and
users can all understand triggering without thinking about how it is implemented.® A
virtual machine that executes “triggering” is easier to program.

2 Also, this effectively bars the (non-programmer) expert from working with the knowledge base.

3SMOLE (Eschelman and McDermott, 1986) has a ‘domain model’ of terms like “hypothesis® and “symptom”
and weighted “paths”, which it inherited from MORE (Kahn, Nowlan, and McDermott, 1984). One of the
advances of of MOLE over MORE is to lessen the need for experts to manually set and adjust the numeric
weights - clearly a implementation- rather than task-level representation.



3. The MU Architecture

MU is a knowledge system architecture that is being designed to support the use of domain
knowledge to manage uncertainty. It grew out of experience with MUM (Managing Uncertainty
in Medicine), a system for planning a series of diagnostic questions, tests, and treatments
for diseases manifesting chest and abdominal pain (Cohen, Day, Delisio, Greenberg, Kjeldsen,
Suthers, and Berman, 1986). Diagnosis, or determining the causes for symptoms, is not the
primary aim of MUM.* Instead, the system decides how to act when the data are insufficient to
determine a disease. Like a physician, MUM must reason about the costs of gathering evidence
(some tests for heart disease are dangerous and expensive), the marginal utility of the potential
data given what is already known, the effect of treatments which may also provide evidence,
and similar tradeoffs between the potential harm of being wrong about a dangerous disease and
the effect of unnecessary treatment on the patient. Figure 1 shows a snapshot of MUM.

MU is a generalization of the techniques used in MUM.5 It is a test bed for experimentation in
managing uncertainty by reasoning about responses to uncertainty. As an architecture, MU can
be examined from the three views of the architecture presented in the previous section.

3.1 MU’s problem solving task

MU’s task is managing uncertainty by taking appropriate action. Managing uncertainty in-
cludes heuristic classification (Clancey, 1985) as a subtask. The problem solver must assess
the evidential support for possible hypotheses based on incomplete knowledge and insufficient
data. MU’s task is to decide what actions to take to respond to uncertain situations. Actions
include gathering more evidence to reduce uncertainty about current hypotheses (e.g., by ask-
ing questions or running tests), prescribing treatment to reduce the effects of uncertainty (e.g.,
by treating for several possible diseases), or both (e.g., prescribing treatments which provide
evidence for diagnosis). To decide among actions, the problem solver must reason about the
marginal utility of possible actions. Actions must be proposed and the best actions selected.

The MU architecture is designed to perform this style of problem solving. It provides mechanisms
to reason about partial evidential support for hypotheses, the effects of actions (especially on
belief), and the marginal utility of actions. It is being explored as the architecture for knowledge
systems in medicine, agriculture, and vehicle monitoring.

40f course, given sufficient evidence, MUM can produce a diagnosis.

much as EMYCIN generalizes MYCIN (van Melle, 1979). The difference is that EMYCIN is an implemen-
tation level tool (with primitive terms like rules, contexts, and certainty factors), whereas MU is an architecture
(with terms like triggering, test, etc.).



3.2 MU as a partial design

The design of MU includes engineering decisions about knowledge representation formalisms,
reasoning mechanisms, and control strategies.

Representation formalisms: MUM supports a symbolic inference net of frames connected by
relations. Associated with inferential relations are levels of belief, represented symboli-
cally, that are combined at nodes by local functions. Combining functions compute the
level of belief of a node given the values of nodes on incoming inferential relation links.
Combining functions are symbolic and are represented as sets of rules or as lookup tables.
Knowledge about proposing actions is represented as frames containing predicates which
match against states of the network and links to possible actions. Knowledge about se-
lecting actions is represented as frames which associate actions with their effects (some
of which are computed dynamically and describe their characteristics, such as cost.

Reasoning mechanisms: Values in the symbolic inference net are automatically propagated
across inferential relations. For example, the value of the evidential-support slot in
one node is propagated up the potential-evidence relation to another node. In that
node, a combination function determines the effect of the incoming support, along with
support from other potential evidence, and computes a support for the receiving node.
This is the typical behavior of an inference net, except that in MU the values are symbolic,
propagated by several types of relations, and each node has a local combining function.
MU supports reasoning about actions with mechanisme fo- ~--=--"  sctions given the
current state of the netw actions), and a
decision-making componer
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specializations of clusters, which are objects of belief supported by evidence. Clusters typically
combine evidential support from several sources, including other clusters. In MUM, clusters
are a natural representation for clinically significant groupings of evidence; they correspond
to features of clinical situations to which the expert physician attends. Data-descriptions
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Figure 2: The structure of a MU knowledge base.

Objects in the symbolic inference net are connected by inferential relations that propagate values such as ev-
idential support. The control knowledge is used to evaluate which actions to propose and which to choose,
given the state of the net and characteristics of actions (tests and treatments are executed by actions).




represent knowledge about possible input: how to elicit it from the user, what answers are
acceptable, etc. Data-interpretations are like clusters for input data; they are a means for
expressing a categorical or definitional interpretation of one or more input data. The results
of data-interpretations serve as evidence for clusters. For example, angina-risk-factors is
a categorical assessment of the patient’s age, gender, and family history. The specific values
for the data (e.g., age) are summarized in a characterization of risk factors at a grain size
appropriate to use as evidence for clusters (e.g., classic-angina). Actions are events that
the system can prescribe. Tests are a kind of action. So are therapies. Actions have effects, such
as causing new data to come in, which potentially change the state of the system. Primitives for
reasoning about actions are called control parameters (Wesley, 1983). Those used to propose
actions are tests on the state of the inference net, such as the current support for clusters, and
the characteristics of those clusters, such as criticality. Control parameters for choosing from
proposed actions are characteristics of actions, like cost and reliability, and the effect of actions

on goals, like the efficacy of treating a disease or the diagnosticity of the data returned by a
test.

Objects in MU are associated by relations that represent automatic inferences. The potential
evidence relation associates clusters with the nodes that might contribute to their evidential
support. When the belief in an inferior cluster or data-interpretation node changes, the value
is propagated up the potential-evidence links to the clusters they support (or detract). The
triggering relation also relates data-interpretations and clusters to other clusters, but instead
of inferring evidential support, they simply cause the clusters to be “triggered”, which is a
control parameter for proposing actions. The coverage relation relates treatment actions to
the clusters that they “cover”. Potential-data relations associate data-descriptions with their
data-interpretations. Relations can be composed from these primitives, such as the potential
evidence produced by the data that could result from performing an action.

4. An organization of architecture support tools

The MU architecture has led naturally to a hierarchy of software support, starting with the
familiar implementation-level tools®, upon which is built a architectural-level virtual machine
(“shell”), and finally a knowledge acquisition interface for building systems using the archi-
tectural constructs. Figure 3 shows the relationship among the knowledge engineering tools
supporting MU.

Implications of architecture level analysis for the design of high level knowledge
engineering tools. '

Tools should support the connection between the implementation level and the architecture level.
This is the role of the so-called “shell” - to implement a virtual machine that executes the task-
level primitives using the partial design to achieve high performance on the problem solving

%currently we use KEE, a product and trademark of IntelliCorp



A Hierarchy of Architecture Support Tools
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Figure 3: A hierarchy of knowledge engineering tools to support the MU architecture.

task. Each task-level construct defined for the architecture should have an implementation
in the shell. For example, an inferential relation in MU is an architectural primitive, yet to
implement it requires defining the relationship between four slots in two class frames, a syntax
and matcher for the combining functions (in Lisp), and demons (data-directed Lisp functions)
for propagating values over the relation. The engineering decisions that go into implementing
architecture primitives are done once, and the knowledge engineer is then free to concentrate
on more knowledge-level tasks.

Tools should should support a knowledge acquisition interface that makes a clear distinction be-
tween the implementation and architecture levels. The interface should present a “user illusion”
(Kay, 1984) that the machine is operating at the architecture level, hiding the implementation.
This is an application of the principles of “design for acquisition” (Gruber and Cohen, 1986) -
knowledge acquisition is better understood if the architecture provides representational terms
that are natural for the expert. For example, in EMYCIN, control knowledge is typically imple-
mented by ordering the production rules. If the expert wanted to convey that some questions
should be asked together, or that some should only be asked if others return a particular answer,
then the programmer would have to find some ordering if the rules (possibly in conjunction
with using markers and adjusting certainty factors) that produce the desired behavior. In MU,
control knowledge can be expressed explicitly with control parameters and rules for proposing



and choosing actions.

The architecture level constructs should be represented as declarative objects. The primitive
objects and operations that an architecture defines can be implemented using opaque Lisp
code. Indeed, from the expert’s view it makes no difference how they are implemented. From an
knowledge engineering standpoint, however, giving task-level terms a declarative representation
allows the knowledge engineer to attach meta-knowledge to them. That meta-knowledge can
be used to produce explanations of the runtime performance of the application (Swartout,
1983), but also to make the design of the architecture itself explicit and explainable (Neches,
Swartout, and Moore 1984; Mostow and Swartout, 1986). A common kind of meta-knowledge is
information about the type and value restrictions of terms that the expert will instantiate when
building a knowledge base. In MU, the knowledge engineer defines methods for data acquisition
(simple prompted type-in, various flavors of menus, plotting points on a graph, filling a form)
and the methods for presenting help information for each term.” This “extra” description is
more than commenting the code; it can be used to enforce consistency at the implementation
level.

Meta-knowledge about architectural terms - those primitives of the virtual machine - can be
used by the knowledge acquisition interface to constrain the user’s input and ezplain to the
user the purpose and use of the primitives. Randy Davis’ thesis (Davis, 1976) made this point
using MYCIN’s rules as the primitives supported by TEIRESIAS. Sandra Marcus’ work on SALT
(Marcus, McDermott, and Wang, 1985; Marcus, Caplain, McDermott, and Stout, 1986) has
demonstrated the principle at a different point in the power/generality tradeoff. By supporting
less general but more task-specific primitives such as “propose a constraint”, the knowledge
acquisition tool is able to assist the user with the content, not just the form, of entries in the
knowledge base. For MU, providing strong typing and other meta-knowledge about architectural
terms has made it possible to use standard data entry technology — essentially form-filling -
to acquire knowledge from experts.® Figure 4 shows an invocation of a form-like rule editor
on a combining function for computing evidential support. It can insure that every operation
used to build a combining function is valid and consistent. For example, the editor restricts
the values of terms in the left hand side of a combining function to those defined by meta-
knowledge description of the evidential relation. If the user wants to create a new term, the
editor can then invoke the proper “form” for instantiating the appropriate node - in this case
it is a cluster. This technique works the same way as the NLMenus (Tenant, 1987) approach
to natural language interface. The problem of too much expressive power in the language® is
engineered away by restricting the user to a valid choices. The constraints are one application
of meta-knowledge about task-level terms.

7Some task-level terms are implemented as a slot in a class of frames, and others require several data atructures
and procedures, such as the inferential relations described above.

80f course this is the “easy” kind of knowledge acquisition. The more difficult tasks of designing the archi-
tecture and defining the appropriate task-level primitives is resisting automation.

9Users of natural language systems often overestimate the grammatical coverage of the system.
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5. Discussion

The idea of an architecture, while not new, has implications for the design and organization of
knowledge acquisition tools, and thus for knowledge engineering practice. Once an architecture
is in place, knowledge acquisition will be facilitated, for all the reasons discussed above. Two
issues must be addressed, however, before the architecture level supports a knowledge engi-
neering methodplogy. The first is design and it has two aspects. First, the architecture level
can be viewed, as we noted in Section 2, as a partial design at the implementation level for
a knowledge-based system. But clearly, knowledge engineers should not be required to map
architecture level constructs (such as trigger) to their implementation before deciding on an
architecture for an application. Instead they should select a partial design for an application
based on an architecture-level description of the representations and inference methods required.
The architecture-level constrains the knowledge engineer more than the implementation level,
so the criteria for a “good fit” between an application and a shell are more stringent than,
say, between an application and a production system. Thus, one aspect of design is that the
knowledge engineer is more constrained in selecting a shell, and this is positive, except in those
cases that destgners fail to give the most general description of their architectures. This is the
second aspect of design. For example, if we say the MU shell supports triggers but fail to say
that triggers are an instance of a class of evidential relationship supported by MU, then the
prospective knowledge engineer will be misled. What we require is a kind of axiom of coopera-
tiveness where tool designers fulfill the expectation to describe their tools at the most general
level they support.

The second issue for architecture-level tools is maintenance by iterative debugging and knowl-
edge acquisition. We believe that the architecture level implies better explanations of system
performance, and so a better debugging environment. TEIRESIAS both explained and debugged
MYCIN by unwinding a goal stack, which unavoidably involved the expert at the implementa-
tion level. Our long-term goal is to explain and debug entirely at the architecture level. For
example, if a conclusion is accepted when it should not be, we want the expert to be able to
say that evidence should have “ruled out” the conclusion without worrying about how “ruling
out” is implemented.

12
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