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Abstract

Most testing strategies place strict limits on the data types that may appear in the software
being tested. With the evolution of mew design techniques and new languages that
cacourage the use of more abstract data types, such limits are increasingly unrealistic. The
EQUATE testing strategy offers strong support for data and functional abstracticn.
EQUATE selects a number of test locations throughout the program and chooses a set of
expressions derived from the abstract syntax tree of the module being tested. Test data is
required that distinguishes these expressions from one another at every test location. The
mmmdeouamhnmoa})mmmmmoaf)wmap
is the length of the program under test.



L Introduction

Muchofthepanmmbintowftwamm&nghasdependeduponmmicﬁm
to the types of data and operations occurring in the modules being tested [4,5,7,9,15,16,17).
Perhapcthemoueommonremieﬁonformdngmtegiahmbwntomthdr
opemﬁontonumericdammdtothemdardaﬁthmeticopaammhmcmm
dammauraubadcuamporveaonofnumbuthavebeenpmm’blted. Meanwhile,
memdhmhadeﬁmmMngm.bmmemme
mddamabﬁacﬁm.nmhhbewminginauﬁnglyimpmmntmwﬁngmm
begintodealwithawidervaﬁayofdautypa,wthatthepmmofﬁuﬁngmbe
bmughtuptodatewitbthekindsofwftwarethatwilllctuaﬂybewﬁum.

TteEQUAmtesﬁngmtegymdedgmdwithenctlythinginmhd.m
appmachtoiesﬁngwftwmthatuuum—deﬁnedmdloramadamtypaiswfmm
teningaiteﬁnbasedupmthevalnaoftheopuaﬁmdeﬁneduponthmtypa.m
parﬁaﬂarinstaneuofopemﬁm:mdpametmtothmmﬁmdmmmcdby
BQUAmmchmmmﬂeamnble'opmﬁmmrthemodMebdngw.
Bvidmceofmabiﬁtyhobminedbydaminaﬂmcfthewaysmwhidltheopemﬁm
andpammaeumusedthroughwtthemodule.mmdmﬁngmwgyhdmibedin
Section II.

Section Il is concerned with the computational complexity of EQUATE and with its
efficient implementation. Section IV provides an example of its use and an illustration of
some of the ideas advanced in the earfier Sections.

IL The EQUATE Testing Strategy

Agivenaetofteudammaydondmﬂ:gbbb‘ofcxem‘singmeponiomofa
module while leaving other portions almost completely untested. One possible response to
thho&avaﬁmkmmquire'téndauthaammdmtopasthmghaﬂ-porﬁmsof
the module, or through selected combinations of portions of the module [8,11,12,13]. One
sthgdmchpuhukaMaMah&ehddaﬂmMmthemddam
usedtoforceexet:utiohoft!ienlectedpaths.hkendxﬂypoaiblcforamtementtobe
executed repeatedly without our gaining any real confidence in that statement’s correctness.
Suehmhﬁden&"iemﬁedmmwouofwhaﬁa“me statemeat has been tested over
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a sufficient range of different program states, a question that is only partially related to
the test paths selected through that statement.

Of course, what constitutes a “sufficient range of program states” is far from obvious
and is probably not subject to any single answer. In this paper an approximation is
proposed: Each valued object (variables, constants, and expressions) in the module shou'd take
on values that, in at least one instance, can be distinguished from those of any other object
and from those of any constant. Whea this condition has been satisfied at module locations
immediately before and after a given statement, that statement is considered to have been
properly exercised by the test data. If this condition is not yet satisfied at some location,
then a wide variety of possible faults may be present at that location without their having
affected the test results. Examples include substitution of onme object for another, missing
assignment statements in which one object should be assigned the value of another, and a
potentially infinitt number of missing or oversimplified expressions that should have
involved the two objects. )

Giventhisgoalfortestdataselecﬁon,wemsﬁﬂleftwithakeyquesﬁon:whm
does it mean to “distinguish” two objects from each other? Clearly a necessary condition is
that the strings of bits representing the values of the two objects must differ. This is not,
however, by itself a sufficient condition. A principal tenet of data abstraction is that an
object’s value is revealed through the operations provided for use with that object. A
reasonable conclusion would seem to be that two objects can be distinguished only if the
values of the operations applied to those objects are different. Thus, for example, a portion
of a memory management system concerned with manipulating blocks of uninitialized
storagemightbeleuconcemedwitbwhethertheconwnu&twoblochdiffaadthnnwith
whether the sizes of those blocks differed. In testing a statement of that system it is
catirely reasonable to claim that THIS_BLOCK and THAT_BLOCK bhave not beea
distinguished from ecach other until SIZE(THIS_BLOCK) is distinguished from
SIZE(THAT_BLOCK). Note that “distinguish” begins to take on a recursive nature. Each
expression computed by a module, by virtue of its returning a value when evaluated,
represents a valued object in its own right, which should then be distinguished from the
other objects in the module.
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Now if X and Y are variables and f is onec of .the operators' on X, X is distinguished
from Y only if f(X) is distinguished from f(Y). If, for example, X is a floating point
number and a module makes use of ABS(X), it makes sense to say that X and Y bave
been distinguished only if they have taken on different absolute values. If g is an
operator on the type of data returned by f, then f(X) is distinguished from f(Y) only if
g(f(X)) is distinguished from g(f(Y)).

If this chain of reasoning were continued for all possible operations then it could
continueinthisfashionindeﬁnitely.Asapm‘ctimlmtta.wemunchomonlythm
opemtionsdmtmnotonlylegalbutalxoremonnbleforeachobi:ct.lf,formmple,)(is
a floating point number, the operation SIN(X) may be legal, but there is little point in
checking the value of S/N(X) if the module is not performing trigonometric calculations. On
the other hand, if the module already contains a reference to SIN(X), this constitutes prima
facic evidence that SIN is a reasonable operation on X. Thus EQUATE operates by the
rule that two objects X and Y are distinguished only if, for each operator f such that
eitherl(X)orI(Y)appeaninthemo‘dﬁle.l(X)isdi:tingtﬁdiedﬁom!(Y).!ftbmisno
such operator f, then X and Y are distinguished if X+Y.

The EQUATE strategy provides a local measure of the effectiveness of a set of test
data.ameasmewhid:isappliedatnvaﬂetyofualocmimthmghoutthemodnlein
ordertogaugetheoveraueffec&veuesofamofteudam.mismeamcomimofam
ofdeﬁgnatedexpmsimsmdconmu.mfenedtoasmm,achofwhichmuabe
distinguished from the others during testing.

Thetestlocaﬁonsocunatthebeginningofeachbaﬁcblockandimmediately
following each statement in the block except when that statement is a coanditional or
unconditional branch. As each test location is reached during the execution of a test, the
termsmcvaluatedmdthemﬂﬁngvﬂwméuminedforequivalencu. For any terms
that have so far always been equivalent at that locatioh, subsequent test data should be
chosen to give them non-equal values.

‘Wewinmfcrtothefnmtionfasmoperaror,tcgnrdleadwhethuitiswﬁnenhinﬁxformor
as a'mnctifm spplied to pdrenthesized operands. For the sake of simplicity, the cxamples of

7/
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The key to EQUATE's power lies in the selection of the set of terms to be

distinguished from one another. There are three major componeats to EQUATE's sct of
terms:

1. The first component is the set of all expressions and subexpressions from the
abstract syntax tree of the module being tested. This set is called the expressicn
set of the module. The procedure in figure 1, for example, has the expression
set shown in figure 2. Testing is required to continue until, at each test
location, every pair of expression sct members have takea on distinct values at
least once. '

package Varieble_Length_Strings Is
type VString Is private;
function Len (S: VString) return Naturel;
function Left (S: VString; Width: integer) return VString;
function Right (S: VString; Width: Integer) return VString;
function Mid (S: VString; Start, Width: Integer) return VString;
function ‘& (S, T: VString) return VString; .
function ISEmpty (S: VString) return Boolean;

private

end Variable_Length_Strings;

with Variable_Length_Strings; use Variable_Length_Strings;
prcoedure Substitute (Target: In out VString;
Search, Replacement: in VString) Is

I, N: integer;

begin
=1

N := Len(Target) — Len(Search) + 1;
exit when | > N loop
if Mid(Target)lLen(Search)) = Search then
Target := Left(Target)—1) & Replacemont
& Right(Target N—I);
else
1:=1+1
end if;
end loop;
end Substitute;
Figure 1: String Manipulation modaule.



Integer: | 1 Len(Target) Len{Search)
Lon(Terget)—Len(Search) Len(Target)—Lon{Search)+1
I-1 N N-1 141

VString: Target Search Replacement
Mid(Target) Len{Search)) Left(Teargeti—1)
Right(Target,N-I) Left(Target)—1)&Replacement
Loft(Target,/-1)&Replacement&Right(Target.N—I)
Boolean: I>N Mid(TergetLen{Search))=Search

Figure 2: Expression Set for String Manipolation module.

2. The second component of EQUATE's set of terms is the
onbytbeapredonmtetmsduﬁngtadng.l\
takenonbyeachexpreaﬁonsettermismﬂyofinm.mthepointof
this component is to force each expression set term to take
different values. Testing must therefore continue
takenonavaluedistinctfmmthatofﬂxeapluimtet

3. 'meﬁnaleomponentisthewtofexpmdomthu
substituting any mmberofthecxpndonmforanymbapresionofmodm
apwedmmmmber.smmwﬂlbemuedwwmbnﬁwimwa
thepmcedminﬁgunl,meofthcmtamswonﬂdbeﬂbﬁl,l—bﬂ,
Mid(Target,Len{Search)Len{Search)), and
MId(Le!t(TUaet.l-ﬂ&Rodw.l.Lal(Swdt)J-Swdn. Testing is required to
eonﬁnueunﬁleachoftheuetermshastakenonavaluedisﬁnet&omthatof
theexprem’on:ettermthatgenmtedit.(ﬂotethattwombsﬁmﬁonm
deﬁvedﬁomditfmtupren‘onmtamsneednotbedistingui:hedﬁomach
other.)

g 8
g £
E

Atmypointintheteuﬁngpxm,thewmthathavenotyetbeendis&nguidxed
fromoneanothercanbepomayedbypmﬂnsthemﬁtbataofequivalewe
dasafmeachmlomﬁm.ﬂachequivalmdasmmimamofmthathavehad
idenﬁmlvduaeachﬁmethmparﬁaﬂuteuloeaﬁmhnbemmcbeddmingmﬁomm
mmaasumminhgomyaﬁnglemmwnmhingnoapredmtammbe
eﬁminatedﬁomanyfmtheromﬁdemﬁm,wthem'sgodbewmuthechoiceofm
datathatwillreduccboththesizeandthenumbetofthedmmnainingatthevaﬂms
test [ocations.

For modules where the data and opcrations are user-defined, EQUATE can be
shown (18,19] more effective than weak mutation testing (2,3,10], perturbation testing [16,17],
simpler expression coverage [7), and the DAISTS testing criterion [6]. Such results would,
however, be of little practical interest if EQUATE were so computationally expensive as to
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prevent its use. The mext scction therefore cxamines the computational complexity of
EQUATE.

IIL. The Complexity of EQUATE

EQUATBmayappeat,onﬁminspecﬁon,tobelnmdinatdyapenﬁvedmmip
rather heavy computational requirements. This appcarance may, however, be deceptive for a

number of reasons:

1. Tesﬁngappeanmbemmvoidablyapenaivepmifwemmkhshigh
levels of confidence in the tested code. Estimates of the high percentage of
pmjactmmdevotedtowuingmweuknm[ll.mnbemom.themal
appmachutotesﬁngmhighlylabor-inmﬁvewhﬂemteﬁaﬁhBQUATB
would shift much of the emphasis into machine effort.

2. ltisfarfromobvimnhuwhateomdmtumappropﬁatelevelof\complexity
fotataﬁnsmategy.inceitisnotdwhowthew-pmenal”ofa
moduleisrdntedtomchfactonasmoduleﬁuthntmmduthebaﬁsfo:
assessments of testing strategy complexity. Should the number of tests generated
byatesﬁngmtegyinauwﬂneaﬂywithmodulcin,withmepolymhl.
otwithanexponenﬁnlfuncﬁon?ltilpmbablyanfebetthatalimrm
meamthatlargetmodulawomdbeinmfﬁciendywueddnoemym
influencing the complexity of a module (eg. the number of paths, the number
of possible definition-reference interactions) increase at polynomial or exponeatial
mta.Anaponenﬁalinminthenumbuofmwidlinuuinsm
size would certainly prove discouraging, but we cannot rule out the possibility
thatthlslsnnnppmpﬁatcandunnvoldablepemltyforthewﬂtingofununnﬂy
large modules.

3. There is no doubt that EQUATE places a heavy demand on the supporting
wftwaredevdopmentenvimnmentlnwhlchthemﬁngheonduaed.nmquhu
aweuwpamdapledommdmtotypeinformaﬁonfotvaﬁablamd
operators. It requires the ability to frequently interrupt execution, to examine
the values of the variables and to cvaluate expressions including calls to
user-defined functions during such interruptions. For best effect, it should be
ablewdmwuponuaﬁcdamﬂowonnlyﬂsandatmaﬁmitedformof
automatic theorem proving to identify inherently equivalent terms. The cost of
providinsmchamppoﬂenvironmcntshouldnot,howcver,beconfusedwith
the cost of EQUATE itsclf. There is growing recognition that eavircuments
moNdprwidemcheapabinﬁeoinordettompponawidavaﬁetyofmeﬁd
tools including debuggers, design and analysis tools, etc. [14].

4. Finally, it should be noted that the description of EQUATE in the previous
section was presented in a manner intended to convey the clearest possible
conceptual picture of EQUATE. The implementation may differ considerably
from that picture without changing the set of test data that would be required



by the strategy.

With these cautions in mind, this section examines the complexity of EQUATE. The
mmhaﬁonmkuphwinfmrueps.Fun,boundsm(henumbetofmimmbﬁshed.
Second, the cost of evaluating the terms and of tracking the term equivalences is discussed.
Third, the savings offered by various algorithmic shortcuts are examined. Finally, the cost
of detecting inherently equivalent terms is discussed.

The Term Set Size
mmmmﬁmdmemm,themofmudmodngmmw
taken on by the expression set members, and the operand substitution terms.

By definition, the expression set contains every expression and referenced variable
nameinthepmgmm.Itfoﬂmthath.thenumberofmmsintheapreaionm,cannot
exceed the number of operator occurrences plus the number of referenced variable names in
themoduleundertest.N,wiﬂthemfomgmwnofaﬂerthmﬁmﬂy\withhaeaﬁng
progmmﬁu,dneewewouldnmcxpeawbeablewaddnewvaﬁablaandmaﬂs
mmmmﬁmwtammmmhm.hﬁa.wmm
repeated references to the same variable, declarations, or structural information added to
d:ecodewmﬂdinmthemogmmhngd:withwthaeaﬁngﬂ,.ﬁthepmgmmhngm
(mmmdnmekngthofthechammmnkhgupthémeode)hdenotedby
Lp, we conclude that N, = O(Lp) '

Ihenumberofwnmmmmhmmuﬂlydﬂamined.&macommwiﬂbe
equivalentwanapmmimcetmmmlylfhdenotatheﬁmmdtheonlyvﬂuetaken
mwmatapredmmm.mmbummmmmdmgmm
iniﬁalvalueofeachapredmtett«m.forawofﬂemmm

Ihenumbetofopenndmbstituﬁonterms,ﬂ,,canbeboundedbynodngm
substitutions always involve relacing some expression set term, a subexpression of a second
expreuimtetterm,byuthirdupnﬁmtum.netembdngnplmedmmmu
a'mbaprewionofoneoftheremainlnglvc-lothen,butmayoemrlnmoremanone
mbaprudonofthatterm(e.g.XocmmtwicelnXﬂY‘X)).Bvenifa!imitisplacedon
themaximumnumbetofparametentakenbyanyoperator,thcpoaibilityofagiven
operator call having the same subexpression for every operand means that N could grow
exponentially with N,. :



This assessment is, however, unnecessarily harsh. One reason is that in practical
programs we would expect the incidence of repeated subexpressions to fall off rapidly with
the size of the expressions, because of the natural tendency to replace bulky repetitions by
references to “temporary™ variables or by isolating the expression within a separate module.
An even stronger reason is that the effect of repeated expressions on the program !eagth
bas not been considered. Since each occurrence of an expression must entail the addition
of at least a single operator call or variable name reference to the program, a high
incidence of such repetitions would mean that N, would increase much slower than linearly
withinmsingpmgram:izc.lnfact.dncethenumberofopemndlnvocaﬁomandvaﬁablc
references cannot grow faster than linearly with increasing program size, then the number
of places at which operand substitution could take place can grow no faster than lineasty
with increasing program size. Since the number of substitutions at each such location is
N_,-2, and N, natwomahnearﬁmcuonoftheptogmmm.wecancondudcthat
N~0(L2) Thetotalnumberoftemsamatedmthaprommmthazfomgwenby
2°N, N, = 0(1.,,2).

Complexity of the Basic EQUATE Algorithm

Eachofthecxpressionscttzrmsandtheopemndwbsﬁtuﬁontermsmustbe
evaluated and then examined for equivalences when a test location is reached. Since any
mbcxpreuionofoneofthucterm.islllointhetemwt,exacdyoneopemtotinmﬁon
pettetmisrequimdinordettoevaluatctheentiretermwt.'l‘hetimeeomplexityofdle
evaluation of terms at each test location is therefore O(L,%), measured in number of
operator invocations. Of course, since the operators may include user-defined functions, we
cannot,apriori,aasignaﬁxedoonperopantorinvomﬁon.Anamdt,themalcostof
evaluation at cach test location is subject to considerable variation. As will be scea later,
however, there are shortcuts that can substantially reduce the number of operator
invocations required at each test location.

Once the terms have been evaluated, the classes representing the history of term
equivalences at the current test location must be examined. There are two cases to consider
in representing the term equivalences.

The first case is that of the expression set terms. Each of these terms must be
distinguishedfromeachoftheothm.Comidetautofmchtemsthathavenotyetbeen
disﬁnguishedﬁon;oneanothcr.lntheworstcase,whercallthetetmswereofthetame
type and no tests had yet reached this test location, there would be N, terms in this set.
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Assume that we can perform an ordering operation on the underlying representation of the
valuaoftheaetemsmchthatwemwnthembyvalueuﬂngthhordeﬂng
operation and such that equivalent values would be adjacent in the resulting sorted list.
(Such an ordering operation should usually be possible at the word/bit level even if no such
owaﬁmisaﬂuaﬂydeﬁnedontheexpmﬁontype.)ﬁenthhnﬁofupmﬁmmm
caddbewpamtedinwequivdenoedamhowebgﬂe)compaﬁnmlfnonwhmdaing
operation were available, the separation could still be achicved in O(N,2) comparisons.

The second case concerns the constant and substitution terms. These terms need not
beeompmedmeachother,butonlymtheexpmdonmmﬁomwhlchtheywm
deﬁved.ThusweneedamaximumofN comparisomofconstanttermandlv
comparisons of substitution terms. The total number of comparisons is therefore O(Lpz)‘ The
ovcmllnmecomplmtyofEQUATEutbcmfonnoworsethanO(Lz)operatorinvocanons
andO(Lz)eompansomeachumethatatestloeationlsencountered.lnpmdce the
number of terms and heace the number of operator invocations and comparisons tends to
lhnnkquitempldlymthmpeawdaewm&themewuhadm,beammbdmdm
texmmaybeignondoneetheyhavebeendiﬁnguhhedﬁomtherdatedapresﬁmna
terms.

nespaceeomplexityofBQUAmcanbedetuminedunedmply.Byrepxuenﬁng
eachtermusingmlythennmeofiumopaatotmdamofpointcntothem
wmpﬁﬁngiuopemnds.themﬁmtemmeanbeuomdinmﬁnaﬂypmpmﬁmalto
thenumberoftetmsandtothenumberofopcnndsofeachopaatot.nmthe(ermaet
requires O(L,%) space.

Thetemequivalencaueachteltlocadoncanberepxuenteduumof
equivalence classes. BQUATEeanignonmydmdmdomtmmuleauone
expression set term, lothemnximumnumberofdnaaatatatlocauonuﬂ In fact,
memonmvmtepmmﬂmmyweﬂbewamdmonedmwnhemyap:mm
set term, wthatthemagoﬂbewmeudlsﬂnguiahlngeachmhthatdasﬁomthe
expression set term it is associated with. Since constant and substitution terms are associated
witbaparﬁwhrapreudmmterm,thcyneedappearoﬂyhthatapxuﬁmaﬂtum’t
dnss.Heneeeacheonstantandmbstitudontcmneedappearonlyonee. If, however, X
andetwoaptwsionwtterms,ananndYh‘avelofaralwayshadequalvalm
then X would be in Y's class and Y would be in X’s. ('I‘hetwodassesmnotnecemnly
identical, nneeeachdaumayconmnconnantmmbmmnontermsthatmuube



10

distinguished from X or Y but not both.) The redundancy of having the X/Y relationship
represeated in two different classes opens up the possibility of an expression set term
appearing in up to N, classes. If this information were truly redundant, we could, of
course, simply choose to represent it only once, selecting only a single class to hold a given
equivaleace.

The single situation in which an expression set term may really need to appear in
more than one equivalence class is when that term is undefined. EQUATE distinguishes
between terms that are undefined and terms that are illegal. A term is illegal if its
evaluation or reference would cause an immediate error. Division by zero, on most
machines, would be illegal. A term is undefined if its value is unknown but may be legal.
For example, the value of a variable prior to its first definition is undefined, unless the
execution environment tests for such not-yet-defined variables and raises an error whea they
are accessed, in which case that variable would be illegal. An illegal object is considered to
be distinguished from all other objects (since it is presumed that the error action serves to
identify the term). An undefined object, however, cannot be guaranteed to have been
distinguished from any legal terms. Consider then the situation where an equivalence class
{A B, C} is examined with A and B legal but unequal and C undefined. EQUATE would
maintain that A and B8 should be separated, since they have just now been distinguished,
but C has not yet been distinguished from either A or B. Consequently we are left with
equivalence classes {A, C} and {B, C}, with C appearing in both classes.

In the worst case then, the term equivalences may require 0(N¢2)+0(N,) storage,
making the total storage requirements for EQUATE O(L,2) per test location, or O(L,%) for
the entire program.

Algorithmic Shortcuts

There are two refinements to a straightforward implementation of EQUATE that can
offer substantial computational savings. The first of these is delayed substitution. The key
idea behind delayed substitution is that the operand substitution term f(X,Z) need not be
evaluatedoreomparedtotheexpredonwtterml(_X.Y)undlthetermsYanthave
beea distinguished from one another. Similarly, the substitution term g(W/f(X,Z)) need not
be evaluated or compared to the expression set term g(WJ(X,Y)) until £(X.Z) bas been
distinguished fml; f(X,Y), and so on for more complicated terms. Although delayed
substitution does not alter the worst case performance of EQUATE, preliminary experience
with a prototype implementation indicates that it offers substantial time and space savings
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in normal use.

The second refinemeat is symbolic back-substitution. Consider two test locations
separated by an assignment statement X := f(Y). Any pair of terms that do not involve X
will be distinguished from one another at the later test location if and only if they are
disﬁnguisbedﬁommem«h«attheaﬂbtm.Armg(X)wmbedimmbedﬁom
another term at the later location if and only if the term g(f(Y)) would have been
distinguished from the other term at the earlier test location.

By back-substitution of f(Y) for X we can geaerate new terms that, if added to the
term set of the earlier test location, completely eliminate the need to monitor the
equivalences at the later test location. In most cases, we should be able to collapse all of
the test locations in a basic block into a single location at the beginning of that block via
back-substitution. The penalty for doing this is, of course, the need to process a larger
numberoftermsatthatoneteuloution.lntddiﬁon.meadditionalbookkeepingmay
be required to be sure that we do mot require terms to be distinguished from one another
that would never otherwise have occurred at the same test location.

The computational savings offered by back-substitution may be coatingeat on the
property that most statemeats affect only a small portion of the term set. Suppose that a
given statement changes the value of g(N, + N,) terms, where O=g=<l. Back-substitution
mmkmwmmtwmddmm¢+ﬂ,)mmutheadiumbaﬁon.m
means a net savings of (1.—g)}(N,+N,) operator invocations during the evaluation of terms,
and of (1.—q)V, comparisons of coastant terms and of (1.—q)N, comparisons of operand
mbsﬁmﬁmmmeodypndthoEQUAthhumightbonmﬁvdy
nﬁeaedwmﬂdbethempthondthom-um(mwlum
dmdbybackﬂbs&mﬁmﬂubemuamapdmam).ﬂmwm
faced with (1.+g)V log((1.4+q)N,) comparisons at the earlier location after back-substitution as
owosedtoN,log(Ne)oompnﬁmsuchuthcwﬁunndthelambaﬁonif
back-substitution were not employed. Evea this reprosents a net savings for back-substitution
for reasonably small values of g. Fotnmyunnllmoduhwithlvflo,formmple',
back-substitution results in fewer comparisons between expression set terms if ¢<063. If
N.=100, back-substitution is cheaper if as much as 77% of the terms are redefined in the
intervening statement, and the threshold continues to sise ‘with increasing N,. When the
diﬂemneuintheotherevaluaﬁommdmpninmmtddedin,hmmﬁkdythat
back-substitution would ever fail to provide savings in a practical program.
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Detecting Inherent Equivalences

A major concern in a practical implementation of EQUATE is to avoid swamping
the person using it with massive, unintelligible lists of expressions. While EQUATE has the
advantage that the expressions it deals with are closely related to ones appearing in the
code and so should be individually easy to understand the sheer number of expressions
may be overwhelming, especially since many of them are likely to be inherently equivaleat
and heace of negligible value in guiding the selection of new test data.

For this reason, some means of weeding out inhereatly equivalent terms is highly
recommended. A relatively simple automatic theorem prover should be capable of capturing
most of these terms. The author’s prototype system has beea quite successful by using a
symbolic expression simplifier to reduce each term to its ‘simplest™ form and then
compaﬁngpainofﬁmpliﬁedtermsforidentity.Whentwotermsmthowntobe
inherently equivalent, the more “complex” term can be discarded t\ince it will be
distinguished from other terms if and only if its simpler, equivalent version is distinguished
from those terms.

Since EQUATE is inteaded for use with programs employing a variety of data types,
many of them user-defined, someone must supply axioms to the prover describing those
types. This can occur during the specification, the design, the coding, or evea during the
actual testing process itself. Obviously if an axiomatic specification of the data types
employed is available, it can serve as input to the prover. On the other hand, the person
conducting th= testing may, while examining the sets of terms listed by EQUATE, notice
that a pair of terms that have not been distinguished are in fact inhereatly equivalent and
maydeddetoaddnnewaxiomthatwouldpermittheequivnlenoetobepickedupbythe
prover during subsequeant test runs.

The number of proofs of equivalence attempted by EQUATE depends upon the
number of terms per class and the amount of effort we are willing to expend to reduce
those classes. If, for example, we simply attempt to prove each term in a class equivalent
to the expression sct term that class is associated with, then the aumber of proofs
attempted is one, less than the number of terms in the class. If, on the other hand, we

2 To preserve this property, it scems eadvisable to keep any beck-substitution invisible, since the
back-substitution expressions may be much more complex and the reasons for their appearance at a
particular test location may be hard to fathom. Hence, such expressions should be displayed in
their original form, associated with their original test locations, even if they are not manipulated
that way internally.
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wish to eliminate all redundant information from the class, then attempting to prove the
equivalence of each term to each other term in the class would lead to a quadratic rise in
the number of proofs. The approach actually taken in the EQUATE prototype is an
intermediate one: Each term in the class is simplified, and any two terms are considered
inherently equivalent if and only if their simplified forms are identical. This reduces the
problem of detecting inhereatly equivalent terms to a single simplification per term. The
prototype simplifier is capable of accepting rewriting rules for user-defined types, including
conditional rules (e.g8. A"B<A°C can be simplified to B<C if it can be proven that A>0)

IV. An Example of EQUATE Testing

To illustrate the ideas preseated in the previous sections, we will step through the
testing of the module in figure 1 as guided by EQUATE. Figure 3 shows the body of the

oooooooooooooooooooooooooooooooooooo

begin
-,
12—
loop;
e
N := Lon(Target) — Len{Search) + 1;
22- exit when | > N;
31- it Mid(Target)Len(Search)) = Search then
P ERRETRRERPR TR S
1 Terget := Loft(Targeti—1) & Replacement
42— & Right(TargetN-I);
FELETEREPTRTREPRPRP P
51- Liml 4y
52—
RS TSP T PP PR PR PR RES
6.1- end loop;
1= ong Substitute;
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procedure from figure 1 with labels indicating the test locations and dotted lines separating
the basic blocks. The first digit in each label denotes the block number, and the second
indicates the position within the block.

The author has implemented a prototype EQUATE system, which was used to
generate the equivalence classes that will be discussed in this example. It had been the
author’s intention to seed this module with an error (by moving the assignment to N to a
position just before the loop), but such seeding turned out to be unnecessary because, quite
uninteationally, the module already contains a pair of errors.

Suppose now that the module in figure 3 is tested via the «call
Substitute{‘abede’,’ed’,’e°). At location 1.1, the only expression set terms that can possibly
be defined are the parameters Target, Search, and Replacement, their lengths, and the
constant 1. The equivalence classes at location 1.1 are therefore:

{ Terget; “abcde” } .
{ Search; ‘ed” }

{ Replacament; ‘e’ }

{ Len(Terge); 5}

{ Len{Search); % Len{Replacement) }

This set of classes tells us that we should try test data that gives some other value to each
parameter, that uses strings of different lengths for each parameter, and that gives Search
and Replacement different lengths from each other. On the basis of these requirements we
might add a second test, Substitute(’xyz’,’abc’,’s’). This eliminates all equivaleaces at
location 1.1, s0o we move on to the mext location. Location 12 has the following
equivalence classes:

{ Len(Search); Len(Mid(Target,! Len(Search))) }

{ Left(Target)—1); Left(Target)—Len(Search));
Left(Target)—(Len(Targel)—-Len(Search)+1)) }

{ Mid(Target)Len(Search))=Search; false;

Mid(Terget.Len(Terget)Len(Search))=Seerch;  Mid(TargetLen(Search)Len(Search))=Search;
Mid(Target)J)=Search;

Mid(Terget.Len(Target)-Len(Search)+1Len(Search))=Search;
Mid(Terget)—1,Len(Search))=Search; Mid(Target +1Len(Search))=Search;
Mid(Terget),1),=Search; Mid(Replacement,/,Len{Search))=Search;
Terget=Search; Mid(Terget, Len(Search))=Replacement;

d



Mid(Target/Len{Search))=Left(Target)—1); Replacement =Search;
Mid(Target/ Len(Target)—Len{Search))=Search;

Mid(Target, Len(Targel)—Len(Search)+1)=Search;
Left(Target)—1)=Search; Mid(Target)}+1)=Search;
Mid(Target, Len( Replacement))=Search }

In the first of these classes, Lon{Search) can be made different from
Len(Mid(Target,/Len(Search)) only by a test where Lan{Searchj<Len(Target).

Inthenconddm,theapredonwttamldt{fcgd}—f)atthhbaﬁondmpﬁﬁa
toLefl(Tagat.O)andwmummptymh;.maanoﬁmagoodmmphdm
pmuofdimmaﬁmofhhemdyquwmmmwmuthmghm
simplifier/theorem prover the second class had been:

{ Left(Targets—1); %
Left(Target)—Len(Target)); Left(Target/—Lon(Search));
Left(Target/—(Len(Target)—Lon{Search)+1)); Left(Target)—(I+1));
Left(Target,/—Len{Repiacement)); Left(Target)—(I+Lon({Rapiacement)));
Left(Search)-1); Left(Raplacement |- 1)
Left(Mid(Target ) Len{Search)))-1); Loft(Loft(Targot /- 1)&Repiacement—1) }

Mouoftheaetemmthmwbeinhmﬂyequinhmtodnﬁmmebymofthe
mlethatLelt(S.N)cnnbedmpﬂﬁedtotheemptyluinglfltmbepmventhatNﬂ.
Sincetheﬁmtemﬁahtheapredmmundtheothmdonot,theﬁmmmm
Wmdmeﬁmmw.mmmmmmmbem
eqtﬂvalentwtheﬁmmmleﬁfammdonbythem. |
mmmmmammmquwm1mw
term in this class, Loft(Target)—Lon{Search)), can be non-empty only if Lon{Search)=0 and
Lon{Target)>0. The term Ldt(TUM—(MTUad)—LM{SdeH)) simplifies ¢o
Lett(Target,Lon(Search)-Lon(Terget)), which is noa-emply ooly if Len(Target)<Lon(Search)
and Len(Target)>0. Combining these requirements suggests test cases Substitute{ xyz",”,’s’)
and Substitute(xy’,’abc’,’s’). The first of theso tests should also help to reduce the final
dm.whichowaiulargedzeinpantothe&athattheapmﬁmuttem
Mid(Terget,Len(Search))=Search has only taken on a single value, faiso.
Execuﬁngtheﬁmaftheaenavtesumhoneofthemninthismodule,the
failure to halt when Search is empty. We might, upon reflection, decide that substitutions
fortheemptystrlngd:ou!dnotbeaﬂowedandthaefo:emodifymemutineasthownln
figure 4. This modification adds two new test locations, 0.1 and 8.1, and two pew
expression set terms, /sEmpty(Search) and not IsEmpty(Search). Repeating the previous tests

V4
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oooooooooooooooooooooooooooooooooooo

begin
01= 4 not IsEmpty(Search) then
-,
122 o
21- N := Len(Target) — Len(Search) + 1;
22= it when I > N;
31- it Mid(Target)Len(Search)) = Search then
4.1~ Target := Loft(Target,)-1) & Replacemont
- & Right(TargotN-1f
......... FELRE R TP RERPREERE RS
S.1- P:= 1+
52—
T TP TRLLERERLLERRELEERRRLERS
6.1- end loop;
1= ad it
81=  ond Substitute;
Figure 4: Modifled Substitute Routine.
leaves the following class at location 1.1:
{ fsEmpty(Search); {sEmpty(Replacement); isEmpty(Target) }

SincelsEnpty{Seudr)muﬂbefalseatthhbcaﬁm,thhdasmbemducedmlyby
making the other terms true, suggesting the test Substitute{*’,’x",”).
The tests done so far reduce the classes at location 12 to:

{ Mid(Target)Len(Search))=Search; false;
Mid(TargetLen({Target)Len(Search))=Search;  Mid(Target,Len(Search)Len(Search))=Search;
Mid(Target}J)=Search;

Mid(Target.Len(Target)—Len(Search)+1Len(Search))=Search;
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Mid(Target)—1Len{Search))=Search; Mid(Terget/+1Len{Search))=Search;

Mid(Target),1),=Search; Mid(Replacement,] Len{ Search))=Search;
Target=Search; | Mid(Target)Len(Search))=Replacement;
Mid(TargetLen(Search))=Left(Target)—1); Replacement=Search;
Mid(Target)Lon(Target)—Lon(Search))=Search;

Mid(Target/ Len(Target)—Len(Search)+1)=Search;

Left(Target)—1)=Ssarch; Mid(Terget)j+1)=Search;

Mid(Target, Len(Repiacement))=Search }

Thisdanhasbeenunchangedbmunnmofthemdonenfarhavendsﬁedthe
condition Mid(Target/Lon{Search))=Search at this test location. The only test for which
thiseondiﬁonmmwlthl-lmthcmwlthdxeemptySearchming,awuwhkh
nowdoanmmcbthkbaﬁon.nmwemmfomdtomaminwmmc
Surﬁuﬁmmunﬁemdmcrmm,wmmem
Substitite( ‘xyx",’x",’s’). This reduces the class at location 12 to:

{ Mid(Target)Len(Search))=Search; Mid(Target),1)=Search; .

Ineuenoe,thhdasarguathatthchcmwutoomud:ofalpedalm.ltmmthat
the target string began with the search string (Mid(Target/Lon(Search))=Search) exactly
whentheﬁmdlmoftheurgetnﬁngmthewholemmhnﬁng
(Mid(Target,1)=Search and MId(Tuget,Lm(SeUdW.m(Swdn))-Sauds) and when the
target string also ended in the search string (Mid(Target.Lan{ Target).Len{Search))=Search
and Mld(TagetMTcget)—lm{SeudﬂﬂMSudw-Swdo) and when the lengths of
the search and replacement strings were equal (Mld(Tcw.Lm{Raplmt))-Swdl). We
can eliminate all of these terms by testing with Substitute(‘abode’,’ab’,’s’). After these
tests there are no remaining equivalences at location 12.

Thedasaatloeuﬂmz.lminvdwmymmmthmthedmatthe
eaﬂialocntiombecausez.lhtheﬁmbaﬁonwhmﬂmbcdeﬁnedandwhmlean
take on values other than 7. Beeauw.however,locaﬁonz.loownwidﬂntheloop,itis
mchedfa:momoftenlhanmtheeaﬂiabadom.hamm,rdaﬁvdyfcw
equivalences remain at 2.1. The equivalence classes are:

{ lsEmpty(Search); IsEmpty(Loft(Target)—1)&Repiacomont2Right(Target N—i)) }

{ >N I>Len(Target)—Lan(Search)+1 }
In the first class, IsEmpty(Search) must always be false at this location, so the second term
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must be made true. The second term represents a test to see if the eatire Target could be
mplaeedbythcemptyltring.'l'omakethhtermtme,weneedatenwhemﬂadm
is empty and where Target and Search have the same length. The second class states that
the loop exit condition from the previous iteration, />N, has always been equivaleat to the
new exit condition, />Len(Target)—Len{Search)+1, for the curreat iteration. In order to
distinguishthecetwoterms,wcneedawnwhereambﬁmﬁonmdmdxelmgthof
TuaetbyenoughtoimmediatelyforeealoopexitiflisamtlylmthanorequaltoN
or where a substitution increases the length of Target eaough to force additional iterations
iflisamentlygmawthanN.Bothofthmdmmthmfombeeﬁminatedbythe
test Substitute{'xyz’,’xyz",”).

Themmnoremainlngequivalenoesatloeaﬁonsz.zandSJ.'Ihishnotpuﬂmhﬂy
mrpﬁﬁngdncethewlomﬂmmmchedalmostasoﬁenulsZdewhhmydmﬂar
states. More surprisingly, there are no remaining equivalences at location 4.1 even though
this location has not been reached very often. Location 42, however, has two equivalence
classes remaining:

{ PN ' Lon(Target)—Len{Search)+1>N;
Len(Target)—Len{Searchi>N) }

{ Mid(Target)Len(Search))=Search; faiss;
Mid(Target Len{Search)Len{Search))=Search; Mid(Target)J)=Search;
Mid(Target—1.Len{Search))=Search; Mid(Target N—1iLen(Search))=Search;
Mid(Target+1.Len({Search))=Search; Mid(Terget),1)=Search;
Mid(Target) N)=Search; Mid(Target]Lan(Target))=Search;
Mid(ReplacemontjLen{ Search))=Sesrch; Target=Search;

Mid(Right(Target.N—I)JLen{ Search))=Search;
Mid(Target/ Len{Lelt(Target]—~1)4Replacement))=Soarch;
Mid(Target/Lon(Left(Target.]—1)8Replacement&Right(Target N—1)))=Search;

Mid(Target) Len(T arget))=Soarch; Mid(Target/Lon(Targel)—Lan(Search))=Search;
Mid(Target)Len(Targe!)—-Len{Search)+1)=Soarch;

Mid(Target)N~-|)=Search; Mid(Target)J+1)=Search;
Left(Target)—1)=Search; Right(TargetN—/)=Search;

Left(TargetJ—1)&Replacement=Search;

Left(Target/—1)&Replacement&Right(Target N—I)=Search;
Mid(TergetLen(Target)—Len(Search)Len(Search))=Search;

Mid(Target)J—1)=Search; Mid(Target)Lon{Left(Target]—1)))=Search;
Replacement=Search; Mid(TargetJ.Lon{Replacement))=Search;
Mid(Left(Target/—1)&Replacement ] Len(Search))=Search) }

In the first class, />N must always be false at this location, so we must attempt to make
the other terms true. The second term can be true only when a substitution increases the
lengthofTuge!.andthethirdtermcanon!ybeuueiftheinaeaseisbymorethanone
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character. The second class appears to be discouragingly large until we note that the first
term bas always been false at this location and so has taken on only a single value. If
we can make the first term true, most of the others should disappear. This first term is
simply the test to see if Search appears at the /th position in Target. For this condition to
be true at this location, we must make two successive substitutions without incrementing /.
This in turn requires that Replacement begin with Search, suggesting the test
Substitute(“abcde’,’be’,’bedef”). Executing this test, however, reveals a second error in the
module, a failure to terminate whenever Search occurs in Roplacoment. The correction
involves adding the assignment / := | + Len({Replacement) just after location 4.2.

Although this assignment adds two new terms, Len{Replacemont) and
I+Len(Replacement), to the expression set and alters the number of times that some of the
locations are reached, no new equivalences are introduced at locations 01, 11, 12, 21, 22,
3., or 4.1. At location 42 a single class remains:

{ Mid(Target)Len(Search))=Search;

Mid(TargetLen(Search) Len{Search))=Search; Mid(Target)J)=Search;
Mid(Target N—I,Lon{ Search))=Search; Mid(Target/N—I)=Search) }
This class illustrates that the only circumstances under which a match occurred immediately
after a substitution has been when two of /, Lon(Search), and N-/ have been equal. This
can be relieved by the use of the test case Substitute(‘xyyxyyx’,’y’,’yx’). This eliminates the
equivalence class at 42. There are no classes left at 43, so we move on to the locations in

block 5.

'I'heten!ocatiominblockSaremchedonlywhenthereisnomatchatthelm

position of Target. There are two classes remaining at location S.1. The first of these is:

{ IisEmpty(Search); IsEmpty(Replacement);
IsEmpty(Left(Target]—1)&Replacement) }

We can only reach this location if IsEmpfy(Search) is false, but the other terms in this
class can be made true by a test such as Substitute(’xx",’y",”). The other class remaining at
location 5.1 is:

{ Mid(Terget}Len(Search))=Search; Replacement=Search;
Mid(Target]—1Len(Search))=Search; Mid(Target ] Len{ Search))=Replacement;
Left(Target,]—1)=Search; Left(Target,]—1)&Replacement =Search;

Left(Target,|—1)&Replacement&Right(T arget N—I)=Search;
Mid(Terget,1,Len(Search))=Search) }

The expression set term Mid(Target)Len(Search))=Search must always be false when we
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reach this location, s0o we must attempt to make the other terms become true. The second
term can obviously be made true by the test Substitute(“y’,’x’,’x”). The third term can be
made true by Substitute{ xy’,’x’,’x’) (the term becomes true when /=2). The fourth term is
made true by Substitute(’x’,’y’,’x’). As it happens, these tests also eliminate the remaining
terms of this class. Furthermore, there are no remaining classes at locations 52 or 6.1.

Location 7.1 has two remaining classcs. The first is

{ Right(TargetN—I); Right(Target,Len(Replacement)—I) }

Since this location is reached only whea />N, the first term must always evaluate to the
emptyming.mcleomdtemcanbenoncmptybytuﬁngwhhatqﬂawinentming
longer than the final value of /. This suggests the test Substitute{'x",y’,’xyz’).

The second class at location 7.1 is '

{ Mid(Target/Len(Search))=Search; Target=Search;
Mid(Replacement JLen(Search))=Search; Mid(Target)—1Len(Search))=Search;
Left(Target)—1)=Search; Left(Target]—1)8Replacement=Search;

Mid(TargetLen(Target)Len(Search))=Search) }

The second term can be distinguished from the first by the test Substitute{ x’,’x",’x’), and
the third term can be distinguished from the first by the test Substitute{”’,’x’,’x°). These
tests also serve to climinate the other terms in this class.

There are no remaining equivalence classes at location 8.1, so the test set is now
finished. The complete test set is summarized in figure 5. It is worth noting that the two
errors uncovered by these tests were not found by serendipity, but that the conditions for
forcing their discovery were logically implied by EQUATE’s rules for distinguishing terms.

V. Conclusions

In view of the importance of data and functional abstraction to modern methods of
software design and implementation, testing strategies supporting and taking advantage of
user-defined types and operations are badly needed. The EQUATE testing strategy
represents a means of determining when a statement has been exercised through a sufficient
range of program states, where these states are revealed through the values of the data and
operations on data employed throughout the module under test.
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Figure §: Complete Test Set for Substitute Routine.

EQUATE selects a set of terms to be distinguithed at cach test location. This set
consists of all expressions and subexpressions appeasring in the module under test (the
expression set), the constants denoting values taken on by the expression set terms during
aemdon,md&cwmaanbctmbymlmbapmdmdmy
expression set term by a second expression set term (the operand substitution terms). The
expression set terms must each be distinguished from one another. The constants and
substitution terms must be distinguished from the related expression set term.

The time complexity of EQUATE, measured in terms of the number of function
wmﬁmonmmmymm,uumaLpz)wthphm
length of the program. The space complexity of EQUATE is at worst O(L,%). Significant
speedupmdmnvhpmbeobuimdvladdnyedwblﬁmﬁmmdqmbdic
back-substitution, although the worst case order of complexity is not affected.

CunmtmkmEQUAmkmmﬂngonapamde
implementaﬁmmdmtheevaluaﬁmofiueffecﬁmmonavuietyofpmmm,u
compared to a number of other testing strategies.
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