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Abstract

Programming for parallel architectures often includes the specification of a pro-
gram embedding in which logical processes and their interconnections are mapped onto
physical processor elements and their connecting links, respectively. Few parallel pro-
gramming environments provide assistance in performing this embedding. We are
investigating the use of shape grammar descriptions of embeddings. We report on
a specific grammar that we have developed for generating embeddings of arbitrarily
large, complete binary trees in square processor arrays. We also discuss generalizing
these techniques to produce efficient embeddings of other regular logical structures.
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1. Introduction

Within the next decade, parallel architectures composed of a thousand or more pro-
cessing elements will be commercially available. As the number of processors grows, how-
ever, programming them will become an increasingly cumbersome task. This is especially
apparent in the activity of program embedding in which logical processes and their inter-
connections are mapped onto physical processing arrays. Aspects of this mapping problem
have received significant amounts of attention, yet current parallel programming environ-
ments have been able to provide only limited support. We are investigating the use of
grammar-based graph descriptions in the development of a strategy for program embed-
ding. We report here on the characteristics of a specific embedding that we have found
for mapping arbitrarily deep, complete binary trees in square grid processor arrays and on
the potential for generalizing these techniques to other regular logical structures.

In the next section we describe the tree embedding in terms of specialized shape gram-
mars. Section 3 contains a proof-of-correctness for our shape grammar and identifies salient
points of similar proofs for grammars used in other embeddings. In the last section, we
draw some conclusions on the advantages of this program embedding strategy and its
extension to other regular structures.

2. A Shape Grammar for Embedding Trees

Previous embeddings of binary trees into rectangular arrays have been of two types:
hand embeddings and recursive embeddings. Hand embeddings|7] have optimal processor
utilization but they will not be feasible for the huge numbers of processing elements that
we anticipate in future machines. Recursive embeddings(3}-[4] can be automated but they
have so far failed to achieve the efficiency of hand embeddings. The Hyper-H embedding,
for example, is a useful method for laying out the tree for VLSI but its processor utilization
is not optimal. Our strategy, based on specialized shape grammars(5|, automatically gen-
erates optimal embeddings for arbitrarily large trees — even in the case where the number
of logical nodes exceeds the number of available processors.

In this section we describe a technique for performing tree embeddings for the CHiP
architecture[7]. A CHiP machine (Figure 1) consists of a 2" x 2" array of processors with
local memory. Corridors of switches are located horizontally and vertically between rows
of processor elements. We require that each switch have degree 8 and a crossover level of
3, allowing it to host three simultaneous communication paths.
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Figure 1: Tree embeddings in the CHiP processor array. Squares are processors and
lines are channels. Switches are not shown.

Our tree embedding technique uses a two-phase shape grammar! to determine the
node assignments and switch settings. In the first phase, processes are embedded into
the processor array. For this we use a type of parallel shape grammar, called a template
grammar, in which derivations are constrained to rewrite the entire sentential shape at
each step; that is, the left-hand sides of the set of productions applied must be a minimal
set covering the sentential form. In the second phase, communication channels are routed.
For this we use a type of sequential shape grammar, called a ruler grammar, in which
scaling transformations are not allowed.

The template grammar for the first phase of our tree embedding is shown in Figure 2.
The letters that appear on the shapes are not actually part of the shapes — they are
simply coordinate labels; nonterminal shapes contain an arrow, while terminal shapes
do not. A sample derivation is shown in Figure 3. Because the entire shape must be
rewritten in every step, all successful derivations in this grammar have the same form:
first odd numbered productions are applied for an arbitrary number of steps and then
even numbered productions are applied for a single step. The very first production divides

1A shape grammar operates on shapes in much the same way that a conventional grammar operates
on strings: the portion of a sentential form that matches the left-hand side of a production is replaced by
its right-hand side. Unlike string grammars, however, the productions of a shape grammar may undergo
arbitrary Euclidean transformations before matching {5].
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Figure 2: The process embedding grammar. Note that the start shape (left side of
production 1) may be scaled before the derivation begins.
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the processor array into quadrants. The root of the tree will be located in the quadrant
labeled P and its left and right children will be located in the quadrants labeled L and
R respectively. The single unassigned ‘orphan processor’ will be located in the upper
right quadrant, labeled O. To embed the remainder of the tree, the array is recursively
subdivided into quadrants which will host lower level subtrees. In the final step, processor
nodes and ‘buds’ of communication channels are laid down, all of the nonterminal shapes
are removed, and we are left with a start shape for the second phase of the grammar.
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Figure 3: Derivation of a terminal shape by the process embedding phase. The result
is a start shape for the channel embedding phase.

A ruler grammar for the channel embedding phase is given in Figure 4. In this case, the
letters are again used for labels but their positioning is significant. The grammar works by
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The channel embedding grammar. Any shape accepted by the first gram-

Figure 4:

mar is a valid start shape for this sequential shape grammar. Productions

a-d, for example, draw connections from the root to its left child.



The Use of Shape Grammars in Processor Embeddings 6

‘growing’ the channels from the buds left by first phase in such a way that no two channels
share a common wire. Figure 5 shows several steps in a sample derivation. Derivations
which erroneously create channels that are not part of our embedding will fail to rewrite
all nonterminal markers. Final embeddings produced by our grammar for a 63 node tree
in an 8 x 8 grid and a 255 node tree in a 16 X 16 grid are shown in Figure 1. It should be
noted that the quadrants of the 16 x 16 embedding are extensions of the 8 X 8 embedding:
the smaller 8 x 8 embedding is found in quadrant III of the large embedding, and can be
seen in the other three quadrants flipped horizontally (quadrant IT) or vertically (quadrant

IV) or both (quadrant I).
r
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Figure 5: Routing of channels from a left and right son to their parent. The start
shape is the final shape of Figure 3.
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In the next section we investigate the proof-of-correctness. This proof is interesting to
us, not only for the obvious result, but also because it suggests certain properties of shape
grammars that make proofs-of-correctness less difficult.
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3. The Proof of Correctness

In this section we present a proof demonstrating that the above grammar generates
exactly the language of tree embeddings. The proof is not unlike proofs-of-correctness
for string grammars: we first demonstrate the grammar generates exactly the embedding
shapes, and then concern ourselves with showing that no non-embedding shape is gener-
ated.

We begin with a number of definitions that are specific to the proof, aided by Figure 6.

Figure 6: Anatomy of an lhs-shape: (a) shows the canonically oriented start shape,
(b) shows its interior and (c) shows the exterior.

Definition 1 (initial definitions)

. A lhs-shape (left-hand side shape) is any shape forming the left side of a production
of the process embedding grammar. (The shape of Figure 6a is, in fact, the start
shape, and the lhs of production one.)

. The interior of a lhs-shape consists of the bent-arrow and letter. The exterior is the
ortented bor surrounding the interior.
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. The canonical orientation of a lhs-shape is the orientation that fizes the exterior’s

O

arrow pointing down and to the left. A production is in canonical orientation if it’s
left side is canonically oriented. A canonical derivation is a derivation that begins
with a canonically oriented start shape.

We now make some initial observations on the nature of the two-phase embedding
grammar - especially with respect to the sentential forms generated.

Observation 2 (initial observations)

1.

0

The only lhs-shape that can cover lhs-shape s is s itself. Furthermore, if S is a set
of lhs-shapes, S can only cover lhs-shapes that are members of S.

Each production set used in the derivation of a terminal shape is composed of either
terminal or nonterminal productions - not both. Should a production set involve both
a terminal and nonterminal production the result of its application ts a shape with
terminal and nonterminal components. The next derivation step, however, cannot be
made up of productions whose left sides cover the terminal portions of the shape since
terminal shapes of the process embedding phase cannot be composed from nonterminal
shapes.

Derivations of process embedding shapes are deterministic. Since lhs-shapes are men-
tioned by ezactly one terminal and one nonterminal production, production sets are
determined solely by the shape to be rewritten, and the choice to extend or terminate
a derivation. Thus, if nonterminal shapes s, and s; are derived from the same start
shape, the derivation of one is a prefiz for the derivation of the other.

. Given any particular subshape, each routing production can be applied in at most one

particular orientation; there ts no ambiguity in the application of routing productions.

The set of lhs-shapes is closed under horizontal and vertical flips of the interior and
rewriting of the marker from the set {O, P, L, R}.

The proof itself begins with a series of characterizations of the shapes produced at
various stages of a derivation, leading to Lemma 8 which states that all of the sentential
forms produced are ‘foldable’. This property is the key to the first half of the proof where
we demonstrate that the grammar generates the desired embeddings.

In any embedding of a (4" —1)-node binary tree in a 2" X 2" square grid, some processor
must be left unassigned. This processor is termed the orphan processor, and its position
is marked by the {0 in sentential forms of the first phase. Formally, we have
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Definition 3 (orphan definition) The orphan position in a nonterminal process em-
bedding shape is the position assigned the {O marker; the orphan processor of a terminal
process embedding shape is the processor generated in the final step of the derivation at the
orphan position.O

While the grammar is formally defined to have the start shape depicted in Figure 6,
very similar shapes can be generated from other lhs-shapes. Consider, for example, the
derivation shown in Figure 7a; it is the same as the canonical derivation shown in Figure 7b,
except in its orientation and the labeling of the position corresponding to the orphan. For
any derivation, there is a similar canonical derivation. If we define a shape-rewriting
function ¢ that maps shapes in the canonical derivation to their similar counterparts, we
can express their relation formally with the aid of Figure 8.
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Figure 7: Similar canonical derivations. The similar canonical derivation for the
derivation shown in (a) is depicted in (b). Quadrant I of the right side of
(a) is the distinguished position since it corresponds to the orphan position
of the right side of derivation (b). .

Lemma 4 (similar derivation lemma) Given nonterminal shape D, (s') generated by
an n-step dertvation D) from lhs-shape s', there exists a similar canonical derivation D,
from the start shape s, which can be transformed into D!, using a function ¢,y which
rewrites the O marker to the interior of s'.

Proof: For derivations involving a single production, the lemma is true by examination.
Suppose the induction hypothesis holds true for n — 1 step derivations. Let D, and D},
be the n step derivations from s and s'. Observation 2, part 3, indicates that these are
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D,
s =~ Dy (s')
¢a.a' ¢s,a'
s — Dy (s)
D,

Figure 8: Some canonical derivation D, can be made equivalent to D!, by the use
of a simple shape rewriting function @, .

extensions of D, and D!,_,, respectively. Since the induction hypothesis states that @, .
rewrites Dn_; to D' _,, we need only show the final production set of D, can be rewritten
to the final production set D, using ¢, s

Since ¢, o rewrites the interior of s to the interior of §', the only differences between
canonically oriented shapes Dn_1(s) and D;,_,(s') are in the orphan position. Since the
final production set’s left sides must cover the shape Dr-1(8), the interior of s must be
mentioned by the left side of a production. Likewise, the final step of D/, must also cover
the shape D',_,(s'). Here, a production whose left side consists of the Ihs-shape s' is used.
The two nonterminal productions whose left sides are s and §' are themselves made similar
by ¢.y. Since Dn-i(s) and Dj_,(s') are the same elsewhere, it is clear to see the final
production set is rewritten as stated, the induction hypothesis is proved and the lemma
stands. O

Lemma 4 is important because it provides us with a basic tool for understanding the
structure of sentential forms that are generated by differing lhs-shapes.

The treatment of the orphan position in derivations is important. Many statements
about the orphan position, in fact, are independent of the initial shape of the derivation.
The ¢-image of this position is important enough to warrant the following definition.

Definition 5 (distinguished position definition) The distinguished position is that po-
sition in a sentential form which, the similar canonical derivation from the start shape,
corresponds to the orphan position. The distinguished processor is the processor generated
by the final step of the process embedding phase from the distinguished position.O

We now see that these images can be generated independently in each of the four
quadrants.
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Figure 9: The derivation in (a), beginning with production p, can be seen to be the
union of four shorter derivations from the various lhs-shapes mentioned in
the right side of p as shown in (b).

Lemma 6 (derivation decomposition lemma) Any derivation of a process embedding
shape starting with nonterminal production p may be considered the union of four deriva-
tions from the four lhs-shapes found in the quadrants of the right side of p (see Figure 9).

Proof: From Observation 2, part 1, no Ihs-shape can be made up of portions of two or
more lhs-shapes, so in order to cover the right side of production p four productions must
be applied, each having a left side matching a quadrant. These productions are applied
independently and in parallel. This independence is carried through the derivation, induc-
tively. Now, for each derivation step after the first, we construct four new production sets
consisting of elements of the derivation’s production set that are applicable to respective
quadrants. Since each quadrant of the right side of p is a lhs-shape, these production sets
describe four independent, valid derivations of the quadrants final embedding shape. O

This brings us to the important property of foldability. An embedding is foldable if all
four of its quadrants can be identified with the ‘napkin-folding’ shown in Figure 10. We
give a precise definition, below.
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Figure 10: A foldable shape. Each quadrant can be made equivalent to any of the
others by combinations of vertical and horizontal flips.
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Definition 7 (folding equivalence definition) The quadrants of a shape are folding-
equivalent if quadrant [ is related to the other three under the following transformations:

. quadrant II is a vertical flip of quadrant I,
. quadrant III is a vertical and horizontal flip (half rotation) of quadrant [ and
. quadrant IV is a horizontal flip of quadrant L

A sentential form in the embedding grammar is foldable if the quadrants, less the embed-
dings in their distinguished processors (or positions), are folding-equivalent.O

Since derivations from lhs-shapes are related by the transitivity of similar derivations
(Lemma 4) an important statement can be made about the regularity of the sentential
forms. Namely, we may think of derivations of sentential forms as being a single deriva-
tion generating foldable shapes, or we may decompose a portion of the derivation into
four folding-equivalent derivations — each from a quadrant of the right side of the first
production.

Lemma 8 (equivalent derivation lemma) The folding property is characteristic of two
specific types of sentential forms of the two-phase grammar:

1. Disregarding distinguished processors (or positions) and their channels, process em-
bedding shapes are foldable.
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2. Suppose S is a sentential form derived from a process embedding shape p by produc-
tions that preserved the folding symmetry. Then any production applicable to one
quadrant of S (less its distinguished processor and channels) is equally applicable in
the other three quadrants. Together, these productions serve to rewrite S in a manner
that preserves its foldability.

Proof: We prove these independently, noting that if a nonterminal embedding shape is
rewritten using terminal productions, they preserve the foldability of the shape.

1. Suppose the process embedding shape, s, is 2 X 2. Each node is a distinguished
processor of its respective quadrant and s is trivially foldable.

For larger shapes, realize that the right side of any production is foldable. If, using
Lemma 6, we think of the derivation as the tiling of four derivations from the quad-
rants of the right side of the first production, Lemma 4 can be used to show the four
shapes resulting from these four parallel derivations differ only in orientation and as-
signment of the distinguished processor. Since the transformations that canonically
orient the quadrants of the right side of production p are equivalent ‘modulo’ the
flips of folding-equivalence, the composite shape is foldable.

2. Suppose a sentential form in the channel embedding phase is folding equivalent. Any
production avoiding the distinguished processor in one quadrant is equally applicable
in similar contexts found in other quadrants. Since the orientation of the application
of each routing production is unambiguous (by Observation 2, part 4), the application
of a production in one quadrant, is folding-equivalent to its application in the other
three other quadrants. Thus, if all four productions are immediately applied, the
resulting shape is foldable.

3]

The last section of the lemma underscores the importance of similarly embedded chan-
nels: as long as the channels of each quadrant are routed in the same fashion, the shape will
maintain is foldability. As we will see shortly, our embedding process will take advantage
of this fact when we consider the recursive embedding of a binary tree.

We concentrate first, however, on the actions of the channel embedding productions -
productions that are applied during the second phase of the grammar. If we can guarantee
that the method of routing channels always connects source processors to destination
processors on one side, these channels cannot ‘bend backwards’ and run amok. This
desirable characteristic of channel embedding production sets is described immediately.
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Definition 9 (unidirectional definition) The reachability set of a set of channel em-
bedding productions R from processor P, is the set of processors that are potentially con-
nected to P by channels embedded by R. A set of channel embedding productions, R, is
unidirectional with respect to a set of processor shapes if and only if for each processor P
the reachability set of R is collinear with, and bounded by P on one side.O

Each production of the channel embedding grammar is responsible for routing some
portion of one of four logical wire types, shown in Figure 11. We may group most of
the routing productions that embed a common wire into sets labeled wireset;, wireset,,
wireset,, wireset, , and wireset,,. These production sets, we suggest, will route the wires
as indicated. We turn our attention to identifying the characteristics of these sets.

Lemma 10 (channel properties lemma) The productions, potential derivations and
reachability sets for each wire embedding set are as follows:

wire set || rules | derivations | Arows | Acols
wireset; || a-d a, be*d n 0
wireset, || e-g ef*g n n
wireset, || h-k h, 7% 0 n
— [ l 0 0
— m m -1 -1
— n -n -3 -1
wireset,, | o-p op* 0 -n
wireset,, | ¢-s gris -n 0

Furthermore, the production sets wireset;, wireset,, wireset:, wireset,, eand wireset,, are
unidirectional with respect to processor shapes in sentential forms generated by the gram-
mar.

Proof: We first demonstrate that wireset; is composed of exactly the productions {a — d}.
Productions a and b are the only productions that mention marker . Since production b
generates [ the closure of this set must include productions ¢ and d. Since no production
outside the set {a — d} mentions the markers {, [ or I, the closure is complete.

These same productions must be responsible for the embedding of root-to-left-child
wires: Clearly one means of erasing an ! and [ is to use the a, if applicable. Otherwise,
one must first erase the ! mark - changing it to the [ mark - with production b, apply
any number of ¢ productions (which preserve { marks) and erase both of the [ and | marks
with a final d production.
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Figure 11: The layout for the six wires (thick, labeled) in a 16 x 16 processor grid.
Thin lines show the six embedding wires of the previous level. Note that
the zig-zag lines in the 8 x 8 embedding are special case embeddings using
production n.
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We need only show that the reachability set of wireset; consists of those processors
found below the processor mentioned in the initial shape, in the same column. Observe
the a production connects with the processor immediately below it. For bc * d derivations,
note that ¢ preserves the current column, and that b and d are column-wise inverses of each
other. Since each of the productions performs one switch hop in the south direction, these
productions will only embed wires to southerly processors. The fact that this production
set is unidirectional falls out immediately from the collinearity of the reachability set, and
the fact that the reachability set of the processors consists of only southerly processors. -

Proofs for sets wireset,, wireset;, wiresets, and wireset,, are similar. O

At this point, we are ready to use the folding properties to complete the first half of our
proof with Lemmas 11-14. A ‘six-wire embedding’ embedding routes six logical channels
at each level of the embedding in the following way (see Figure 11). If the embedding
is larger than 4 x 4 each quadrant is completely wired independently using a six-wire
subembedding. The root is then embedded at the distinguished processor of quadrant II
while its two children are embedded in the distinguished processors of quadrants IIT and
IV. Channels are routed downward and to the lower right from the root to form links
to the children. These children are connected to the grandchildren of the root, located
in each of the four quadrants the following fashion: if the grandchild is located on the
same row as its parent, a horizontal wire is used as the connecting channel, otherwise an
‘L’ shaped wire extends first horizontally, then vertically to the upper quadrant. Short
distance cases are embedded more directly with special case routing productions, as seen
in the subembeddings of Figure 11.

Ignoring, for the moment, the constraints on the channels of the CHiP machine, the
next lemma shows our grammar potentially generates the six-wire embedding with the
connectivity of a complete binary tree.

Lemma 11 (potential connectedness lemma) The two-phase grammar potentially gen-
erates the siz-wire embedding which assigns processes to all but the orphan processor with
the connectedness of a complete binary tree. Furthermore, the root is embedded horizontally
opposite the orphan processor.

Proof: If this shape is 2 x 2 the resulting shape is immediately a complete binary tree of
depth one. Its root processor is.located directly across from the orphan.

If the embedding shape is larger, we may assume (by Lemma 8, part 1) that each quad-
rant is equivalent — up to its distinguished processor. The inductive hypothesis suggests
that six-wire embeddings of smaller arrays have the connectedness of a complete binary
tree. In particular, each of the four quadrants may be wired individually, or as a whole
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(using Lemma 8, part 2) as part of this embedding. Thus each quadrant has a similar
complete binary tree, rooted across from its distinguished processor.

Observe Figure 11. Since the process embedding shape is foldable, and the six-wire
subembeddings of each quadrant preserve this, the root and distinguished processors in
quadrants I and II share columns with the root and distinguished processors in quadrants
IV and III respectively. In addition, the distinguished processors in quadrants I and IV
share rows with the distinguished processors in quadrants II and III respectively, and the
distinguished processor of quadrant II is diagonally opposite the distinguished processor
in quadrant IV. If the root is embedded in quadrant II, the left and right children located
in quadrants III and IV can be connected with wire embedding production sets wireset;
and wireset, respectively. Furthermore, since each root processor is in the same row as
its distinguished processor, wireset; can be used to embed the wire connecting children
and grandchildren found in the lower quadrants. For embeddings of size 4 x 4 production
m can be applied to the left and right sides (flipped appropriately) to connect the upper
grandchildren. Production n connects children and upper grandchildren of 8 x 8 processor
embeddings. For larger embeddings, we connect children with upper grandchildren by first
using wire embedding set wireset,, to route the wire toward the lower grandchild and then
using wireset,, to route the wire upward along the column to the upper grandchild. Our
statement that a channel embedding production set ‘can be used’ makes the assumption
that the channel buds of the respective processors are oriented correctly with respect to
each other. This may be easily verified - remembering that buds are also effected by the
vertical and horizontal flips of the folding relation.

Important to note is the fact that no wire embedded uses the context of the orphan
processor — thus similar derivations from embedding shapes starting with different lhs-
shapes are equivalent up to the distinguished processor. In particular this embedding of a
2" % 2" array may be used as an embedding of a quadrant of a 2"*! x 2"*! embedding.

Since the root is connected to four grandchildren, each of which is a complete binary
tree, the entire embedding must be a complete binary tree. A final production, /, serves to
erase the markers left on the root of the processor embedding — the only two remaining.
O

While it seems logical that the wires can be routed, we have no guarantee that there
are no wire embedding conflicts in switch corridors. To show these free of multiplexing, we
identify specific corridors as ‘reserved corridors’. If these corridors are not used, we can
be assured that each subembedding’s reserved corridors leave room to embed the six wires
of larger embeddings. Figure 12, and the following definition more formally delineate the
reserved corridors.
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root processor distinguished processor

Figure 12: The reserved corridors of an 8 x 8 embedding.

Definition 12 (reserved corridors definition) Reserved corridors consist of the fol-
lowing switch connection corridors:

. horizontal corridors immediately above and below the distinguished processor,

. vertical corridors immediately to the left and right of the distinguished processor,

. major diagonal corridors immediately above and below the distinguished processor,
. minimal diagonals that clip each corner of the array and

. the vertical corridors to the left and right of and above the root processor.

Each six-wire embedding, can now be shown to avoid the reserved corridors.

Lemma 13 (reserved corridor lemma) Each siz-wire embedding has the property that
no reserved corridor ts used.
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Proof: We use a proof by induction on the size of the embedding. For a 2 x2 embedding
the lemma is true by observation.

Suppose the hypothesis is true for 2"~! x 2"! embeddings. As in the previous lemma,
we consider an embedding of a 2" x 2" array based on the embeddings of four on-1l x 2n-t
quadrant embeddings, oriented as described in Lemma 8 part 1. We now consider the
2" x 2" shape prior to the embedding of the six wires. This partially embedded shape
is folding equivalent by Lemma 8, part 2 - if each subquadrant’s wiring is identical and
interleaved. Since the reserved columns of quadrants I and IV align (see Figure 13), they
are available in the partially embedded shape. Similarly, the rows of quadrants I and II,
the maximal diagonals of quadrants I and III and the corner-clipping diagonals can be seen
to be reserved corridors and the reserved verticals above the root are simply portions of
the reserved corridors about the distinguished processor in quadrant II. We need only show
that the addition of the six wires that complete the embedding fails to use these corridors.

The connection between root and left child is located on the left half, and is vertical,
below the root. It must, therefore, miss each of the reserved corridors of the 2™ x 2"
shape. Since the diagonal from the root to right child extends northwest to southeast, it
cannot impinge on the reserved corridors. The horizontal wires embedded by the wireset,
productions are located on the lower half of the array, avoiding the horizontal reserved
corridors which are above, and thus avoids using the reserved corridors. A similar argument
can be made for the two wires embedded by the wireset,, which parallel the wireset; wires
in the lower half. The production set wireset,, also is applied to both sides of the 2" x 2"
embedding when n > 3. The left wire certainly is independent of the reserved corridors,
while the right wire runs along the inner vertical corridor between the right grandchildren.
For n > 3 this corridor does not abut the orphan processor of the 2" x 2" embedding
(which is the distinguished processor of quadrant I) — the wire, therefore, fails to use the
reserved corridors. Production m embeds child-to-upper-grandchild wires on both sides of
a 4 x 4 array, while n embeds similar wires for 8 x 8 embeddings. It is easily observed that
these wires fail to route channels over reserved corridors of their respective shapes.

Since none of the six wires embedded impinges on the reserved corridors, the induction
hypothesis holds, and the lemma is true. O

We now demonstrate that the six-wire embeddings are generated by the grammar.

Theorem 14 (existence theorem) The siz-wire embedding shapes are generated by the
grammar.

Proof: Lemma 11 indicates that the six-wire embedding, if valid, will have the connect-
edness of a complete binary tree. Lemma 13 shows this embedding has the property that
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A\

Figure 13: The alignment of the four quadrants’ reserved corridors. The thick lines
indicate the reserved corridors of the 16 x 16 embedding, which were
portions of reserved corridors in smaller embeddings. Comparison with
Figure 11 shows how the embedded wires are routed along reserved cor-
ridors.
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it reserves corridors in final embedding shapes. Once again, an inductive proof demon-
strates that the six wires added to the 2" x 2" embedding use the reserved corridors of the
27~1 x 2"-1 embedding found in each quadrant, thus avoiding interference from previously
embedded wires. This suggests each stage of the six-wire embedding is valid, leading to a
final tree embedding. O

We have thus complete the first half of our proof. We now consider the task of showing
that the grammar does not generate any other embeddings. First, we describe a property
of collinear processors, connected by a common channel embedding production set.

Definition 15 (nice-property definition) Let P be a set of processors and R be a chan-
nel embedding production set that partitions P into two sets, source(P) and destination(P)
and induces a bijection, f:source(P) — destination(P) such that f identifies the two pro-
cessors that support a channel routed by R. Then P is said to have the nice-property with
respect to R if each of the following conditions hold:

1. R s unidirectional with respect to P, and

2. The channels routed by R fail to overlap each other.
O

If we number the collinear processors, P, in the natural way, it becomes clear that condition
two is equivalent to saying that for each pair s, ' in source(P) with s < &', the inequality
s < §' < f(s) never holds.

If a set of collinear processors is connected with a routing production set, we can
demonstrate there is no way to re-wire these processors with that channel embedding
production set.

Lemma 16 (unique connectedness lemma) A set of processors P, with the nice-prop-
erty with respect to routing production set R, is uniquely connectable by productions in R.

Proof: Suppose that P is a set of processors with the nice-property. We can partition
P into source(P) and destination(P) such that source(P) contains processors that ini-
tiate channels and destination(P) contains those that accept channels. As a result of
the nice-property source(P) and destination(P) are disjoint and there exists a bijection
f:source(P) — destination(P) which identifies the two processors that support a channel.

An immutable characteristic of the processor orientation determined by the grammar
is the direction of each processor’s channel partner. We identify this with the two char-
acteristic functions ezit : source(P) — {+,—} and enter: destination(P) — {+,-}. If a
source processor’s index is less than its partner, ezit takes on the value +; elsewhere it
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is —. Similarly, enter has the value + for every destination processor whose source has a
greater index, and — for all others. Note that any valid routing bijection (in particular,
f) must respect the characteristic functions ezit and enter.

Suppose there is another bijective function with the nice-property, f' : source(P) —
destination(P). Let S* = {s|f(s) # f'(s)} and D" = {d|f~*(d) # f"~'(d)}, the sets
composed of preimages and images of mappings f and f' where they differ. Since f and
f' are bijections, when restricted to S* they are also bijections onto D”.

The set S* has either a maximal member with ezit = + or a minimal member with
ezit = —. Without loss of generality, identify the maximal spr € S* such that exit(sm) =
+. The channels routed by R fail to overlap, since P has the nice-property with respect
to R, thus dp = f(sp) is precisely the maximal member of D* with enter = —. Note
that d = f'(sp) is not das, and yet enter(d) = —. This suggests that either sy < d < dpy,
which violates the hypothesis on overlapping, or d < sy which indicates that ezzt (sm) = =,
which is, of course, impossible. The theorem is true as stated. O

Since each production set is responsible for eventually erasing marks on source and
destination processors that cannot be erased by other production sets, the channel must be
routed if the embedding is to be accepted by the embedding grammar. If we can show each
row, column and diagonal has the nice-property with respect to each routing production
set that is unidirectional along that row, column or diagonal, then any embedding shape
accepted has a unique wiring.

Lemma 17 (nice-property existence lemma) Any wire set that is unidirectional along
a row, column or diagonal of an embedding shape, also has the nice-property with respect
to that row, column or diagonal.

Proof: We know, by Lemma 10 that each of the sets wireset,, wireset,, wireset;, wireset,,,
and wireset,, are unidirectional with respect to their start shapes. To show that a given
row, column or diagonal has the nice property, we must show that, given a process set
the set may be broken into two sets with the property that they may be connected by a
bijective function. The bijection we will actually depend on will be induced by the six-wire
embedding. We prove the lemma for columns used by wireset; — proofs of other cases are
similar in nature.

We examine the columns of the process embedding with respect to P and L labeled
processors and note that the six-wire embedding induces the appropriate bijection. Once
again, it is an inductive proof. In a 2 x 2 embedding column one has one P and one L
process, which are connected. Here, source = {(1,1)} and destination = {(2,1)}. Column
two has neither of the processor types and vacuously supports the lemma.
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Now suppose the lemma holds for a 2"~! x 2"~! embedding. Then we may consider
a 2" x 2" embedding as the tiling of four 2"~! x 2"~! embeddings, whose distinguished
processors are labeled with O, P, L and R. Now, for columns not containing a distinguished
processor, no P-L wire spans the two quadrants, and the source and destination sets of
the 2" x 2" embedding simply consist of the union of the source and destination sets
of the component quadrants. Two columns contain distinguished processors. The right
column, like the previously mentioned columns, does not have a wireset; wire spanning
quadrants I and IV, thus source and destination sets are similarly defined. The remaining
distinguished processor column has a single wireset; wire spanning quadrants. This wire
fails to overlap others embedded by wireset,; since this wire is laid along reserved corridors.
If source is defined to be the source processors of the appropriate columns of the two
2n=1 x 271 embeddings, augmented with the distinguished processor of quadrant II, and
destination is defined as the destination sets of the same quadrants augmented with the
distinguished processor of quadrant III, the bijection is formed. This was all that was
necessary to guarantee the nice-property.

Similar arguments show rows, columns and diagonals have the nice-property with re-
spect to wireset,, wireset,, wireset, and wireset,, routing production sets. O

We have, now, the tools for demonstrating the correctness of the tree embedding gram-
mar.

Theorem 18 (correctness theorem) The grammar generates ezactly the language of
siz-wire embeddings.

Proof: The six-wire embedding has the nice-property with respect to rows, columns and
diagonals, and thus each row, column and diagonal must therefore be uniquely connectable.
If some other embedding existed, the connectivity of some row, column or diagonal would
have different connectivity than that imposed by the six-wire embedding - which was
discounted by Lemmas 16 and 17. The only shapes generable from the grammar are the
six-wire embedding shapes. O

4. Conclusions

We have shown, in the previous sections, that shape grammars are capable of generating
embeddings of binary trees in square grids. The motivation for this work has been to find
more efficient embeddings of binary trees in CHiP-like processors. The grammar, in fact,
is an improvement on previous embeddings, as we shall see in the next subsection. In
addition, we shall discuss the possibility of generalizing this technique for other regular
structures.
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Processor Utilization in the Tree Embedding

When the number of logical processes exceeds the number of physical processors, it
is necessary to contract the logical structure to fit the array. The contraction must map
sets of processes to processors while preserving their connectivity. Fishburn and Finkel(2]
have suggested using quotient maps to generate equivalence classes of processes which may
be multitasked on a processor. If the cardinality of each equivalence set is the same, the
contraction is said to be computationally uniform. A quotient map also induces a set of
equivalence classes on the logical communication channels and, if every physical channel
emulates the same number of logical channels, it is said to be ezchange uniform. If a
contraction is exchange and computationally uniform, it is said to be totally uniform.

Berman and Snyder(1] have suggested the quotient map shown in Figure 14 in which
the depth of the tree has been reduced by one, the left and right subtrees of the root have
been identified, and the root has been grouped with its two children. Further contractions
would be accomplished by iterating this procedure. Repeated coallessing of the root,
however, makes this contraction unattractive: it is not computationally uniform because
the equivalence class of the root must always contain nearly twice the number of processes
found in any other class.

Quotient maps for grids, however, contract more uniformly. Figure 15 details such a
contraction. If the grid is folded like a napkin - horizontally and vertically — groups of
four nodes are identified to form a smaller grid of equivalence classes. This contraction
is totally uniform. It might be expected, therefore, that embeddings of trees that take
advantage of grid contractions may yield more uniform distribution of computation and
communication. We have found this to be true.

Any embedding of a contracted binary tree in a square grid can off-load extra processes
from the root to the unused processor, provided it is possible to route a channel between
them. Our embedding assures that the orphan processor is always located horizontally
opposite the root, easily accessible to such a channel. We call a complete binary tree in
which an extra process has been attached to the root in this way an augmented tree.

Extending our grammar to augmented trees in the obvious way produces an embedding
with quadrants that are identical under vertical and horizontal flips and can thus be folded
into a contraction. This contraction identifies nodes and channels in much same way as
Berman’s quotient map except in its use of the extra processor. It off-loads nearly half
the processes that would otherwise be located at the root, making it exchange uniform
and as computationally uniform as possible. Our strategy of first mapping the tree onto
a large logical processor grid, and then contracting it to an augmented tree embedding of
the correct size is conceptually distinct from the contract-then-map paradigm and yields
a more uniform distribution of the computation and communication.
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Figure 14: A tree contraction. The left and right subtrees are folded together to
form a shorter tree.
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Figure 15: Quotient map for square grids. The array is folded like a napkin; all
corners are mapped to the same node.
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The Potential for Generalization

Because shape-related information is often important to the embedding process, we
are investigating the use of shape grammars for describing layouts of other regular process
structures. We expect that the strategy used in producing the tree embeddings - first
recursively assign processes to localities and then route their interconnections — will work in
creating layouts for other regular structures. We are now concentrating on the development
of tools to automate some aspects of these grammatical descriptions in the hopes of making
them more practical.

Proofs-of-correctness for shape grammars are more difficult than those for string gram-
mars. We have, however, identified two useful concepts that may be used in generating
shape grammars for other embeddings: reserved corridors and foldability. Reserved corri-
dors assure that embeddings of arbitrary size are possible; while they are not necessary,
they are sufficient. Foldability identifies the role of recursion in the shape grammar. In ad-
dition, it permits contractions induced by quotient maps of square grids, resulting in a uni-
form distribution of tasks and communication. We expect that this embed-then-contract
approach will also be useful in producing uniform maps of other recursively described
structures and we are investigating the extent to which it too can be automated.
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