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ABSTRACT

Using Object Descriptions in a Schema Network
for Machine Vision
May 1986

Terry Edward Weymouth
B. S., M. S., University of Nebraska
Ph. D., University of Massachusetts
Directed by: Professor Edward Riseman

Computer interpretation of a single static ima;ge of a typical natural scene re-
quires the application of a large amount of detailed knowledge. This dissertation
explores the information and control structures needed for knowledge-directed in-
terpretation of natural outdoor scenes. A schema network represents object descrip-
tions, relations among objects, and control knowledge. Each node of the netwdrk, a
schema, contains both a declarative structure and references to one or more interpre-
tation strategies. The declarative portion of the schema describes the composition
of an object including the spatial relations of its parts and their possible appear-
ances in an image. The interpretation strategies are object-spéciﬁc procedures for
creating hypotheses of the existence of the object; this procedural representation of
control information provides a natural form for expressing the dynamic nature of

the image interpretation process.
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A schema snstance is created when a schema is activated either by a top-down

request for a goal or by bottom-up detection of key events in the image. Schema

instances continually interact with one another, either through a channel set up -

when a goal is requested or through hypotheses created in a blackboard data struc-
ture. Several schema instances can work simultaneously on relatively independent
portions of the interpretation, thus exploiting the potential for parallelism. By se-
lectively grouping line and region primitives into descriptions of parts of a scene,
the cooperative activities of the schema instances construct the final interpretation
network.

The system was tested on six images from four scenes. The parallel execution
of the interpretation stfategies is simulated and experimental traces are included to
illustrate their overlapping activity. The resulting interpretations contain both the
association between object structures and image events, as well as three-dimensional

descriptions of some of the objects in the scenes.
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CHAPTERI

INTRODUCTION

Figure 1. Photograph of Outdoor Scene
This is a typical scene chosen from those used in this dissertation.

In this dissertation we describe a system which interprets photographs of subur-
ban outdoor scenes (such as the one shown in Figure 1). Its development grew out
of an investigation into the types of knowledge and control information necessary for
effectively interpreting complex images of house scenes. Through the description of

this system, we examine two major elements in computer vision: the use of object
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models that combine descriptions of geometric structure with procedures for object

recognition and the means for coordinating multiple sources of knowledge.

Figure 2. Digitised Outdoor Scene Image

In order to construct an interpretation, a computer vision system must associate
image features with objects and scenes. One approach to this problem is to extract
from the image as much information about the structure of the scene as possible.
This can be done to the extent that such structure is truly independent of subsequent
interpretation. For example, consider the roof in Figure 2. It is plausible that
the system might be able to recognize its surface as a rectangle before it needed

to interpret it as a roof. Further, it might be able to determine the edges of the
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rectangle before interpreting that collection of lines as a rectangle. In this approach,
a system relies primarily on data from the image and groupings that arise naturally
from relations among that data. Such an approach is characterized as data-driven

or bottom-up interpretation.

Figure 3. Closeup of Roof from Digitisation
Context is used to interpret detail. (a) The boundary on the right side
of the roof, though visible in the whole photograph, is not supported by
clear evidence from the image; (b) a closeup of the digitized data within the
marked square.

The study of data-driven interpretation is advocated by a number of researchers
(see [BRA82] for a summary) and has led to an absorbing and intensive investigation
of which features can be extracted from the image. For example, several algorithms
for the extraction of shape from inténsity information, from range data, or from
stereo image pairs have been developed. This general approach has encouraged
research into models of the imaging process leading to increasingly sophisticated

methods of machine vision interpretation.
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However, the task of interpreting photographs such as the one digitized in Fig-

ure 2 can not rely on data-driven interpretation alone. The primary problem with
this approach to image interpretation is that, frequently, the features correspond-
ing to parts of objects (surface edges, in this case) are either not extractable or not
even present in the image. Consider the area highlighted in Figure 3a and shown
enlarged in Figure 3b. The edges of the roof are clearly perceived as straight lines;
yet, as can be seen from the enlarged area of the right side of the roof (Figure 3b),
this interpretation of the data is only tentatively supported.' Other sources of in-
formation must contribute to the perception of that edge as a straight line. We are
interestéd in the case in which those sources are supplied from a model of the roof
stored in a knowledge base about the general world and the scene domain under

consideration.

Top-down or model-guided interpretation relies on object models and propaga-
tion of goals to discover missing features. A primary problem with this method is
deciding which models are appropria.te. We can not afford to test for the presence
of every object unless there are only a few objects in the domain, and then only if
testing for each of them is not a very expensive operation; neither is true in the

case of outdoor scenes.

What is called for is a mixture of data-directed and model-guided interpreta-
tion. There are some features that can be more easily extracted from the image by
an initial application of data-driven (bottom-up) processing; then knowledge-driven
(top-down) processing can be invoked on the basis of this extracted information.
The most reliable of these features, those which are strongly supported by the data,
can anchor tentative object hypotheses and allow appropriate object models to be
selected. Guided by this model, knowledge-driven processing can control the fur-
ther extraction and grouping of features from the image. Additional features from
the data may reinforce the hypothesis; hence, the strengthened hypotheses can

3
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guide the search for even weakér evidence. Thus even initially missed parts can be
recogniged because of supporting data. Further knowledge-guided processing, in-
cluding the application of data-directed processes, can be based on previous partial
interpretations. Combining model-guided and data-directed processing permits the

construction of a descﬁptfon of a scene from the evidence of a single photograph.

The development of the system presented in this dissertation is part of the
ongoing research connected with the VISIONS project at the University of Mas-
sachusetts [PAR80]. Since its inception this group has emphasized, among other
issues, research in the integration of model-guided and data-directed processing
[HAN78,HANS83]. Much of the work in this dissertation has been influenced by the
conceptual developments of other researchers associated with that project. It is
also the case that the programming depends on a software development framework
established in the associated laboratory.

This dissertation consists of three major parts. The first, in the remainder of

* Chapter 1, is a review of related research. The second, in Chapters 2 and 3, de-

scribes the details of our system: Chapter 2 concentrates on the system development
environment and the role of our system within the VISIONS image understanding
framework, and Chapter 3 provides details of the object recognition procedures
used. The final part, in Chapters 4 and 5, describes the results of running the in-
terpretation system on a set of suburban outdoor scene images. Chapter 4 exhibits

specific results, while Chapter 5 presents a more general analysis.

To begin this study, Chapter 1 concentrates on related research. Section 1 re-
views methods for representing information about objects; Section 2 reviews com-
puter vision systems that use object models for interpretation; and Section 3 con-

trasts several methods of combining information to be used for control. Finally,
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Section 4 describes the background of the particular method that we chose for rep-
resenting information and control, which is the schema, a frame-like structure with

attached processes.

1. Object Representation: A Review of Possible Descriptions

There are many types of information that can be used for object recognition.
These include the physical attributes of the object, such as shape, size, color, and
the relative orientation and placement of the parts of an object. Other useful types
of information include specialized knowledge about how the projection of an object
will appear in a digitized image, and how objects are related to other objects within
a setting or scene. In this section, as we review related research, we will discuss
what these various types of information are and how they are represented in object

descriptions.

We begin our discussion by presenting a categorization of the types of knowl-
edge used to describe an object. The framework, presented in Figure 4, divides the
information into five related networks: an “is-a” hierarchy, a “part-of” hierarchy, a
network of three-dimensional geometry, a resolution hierarchy, and (for each class
of viewpoints) a network of image-based, two-dimensional spatial relations. Each
nétwork is simply a data structure in which entities are represented as labels or
nodes and relations are represented as links between those nodes. Embedded in
these structures are these additional relations: constraints on color and texture, in-
dications of surface markings, constraints on relative position, and symbolic spatial

relations.

The first hierarchy is a natural consequence of object classification. Every object
belongs to several classes of objects, which can usually be arranged in a hierarchy
of inclusion (called a subclass, “is-a,” or specialization hierarchy). For example, a
Volkswagen is a type of car, which is a type of vehicle, which is a type of mechanical

]
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Figure 4. Types of Information Used to Describe an Object

A network of objects, object features and image features is used to represent
information for image interpretation. Conceptually, the network can be di-
vided into five overlapping sub-networks: the relational hierarchies (is-a and
part-of), the network of three-dimensional spatial relations, and geometric
information represent view independent information; the viewpoint depen-
dent knowledge is represented in a resolution hierarchy and a network of sets
of two-dimensional (image-based) relations. In the depiction of the geomet-
ric information (2D and 3D), the small drawings stand for a sub-network
containing shape descriptions and relative positional information; geomet-
ric information can also include precise sub-part placement and indication of
common sub-parts. Additional relations and descriptions include constra.mts
on surface color and texture.
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object. By building a network of these relations, we form a specialization hierarchy.
The specialization hierarchy is useful in object recognition when it can be augmented
with those features that distinguish one object class from another. Thus, in addition
to representing the object class as a label, the node in a network is often augmented
with a set of parameters and values which describe the object. Such augmented

nodes are called frames or schemas.

A schema (or frame) is a data structure for the network node consisting of an
object label plus a set of name-value pairs that describes the object. The name-value
pairs are called slots. The names are the labels of attributes of objects in general
(or at least of a general class of objects) and the values are the expected or default
values associated with that particular attribute of the particular object class. For
example, a car has four wheels, a bicycle has two, and they are both vehicles. In
a specialization hierarchy vehicles would be represented by a frame with two slots
(among others): one for number-of-wheels, and one for pointers in the specialization
hierarchy. For an undifferentiated vehicle the number-of-wheels slot would have an
undefined valué; but that slot would also occur in the bicycle and car frames and
the values would be set appropriately. In addition to static values, frame slots are
often filled with parameterized references to functions. In such a case, the frame
is said to have procedural attachment. Frames (schemas) can be used in all of the
networks described.

The second type of relation is the “part-of® relation, also referred to as the
decomposition or composition relation. These relations also form a hierarchy. For
example, car is composed of a body, shell, and wheels; the shell consists of wind-
shield, doors, fenders, hood, etc. Recognition of any part indicates the likely pres-
ence of the whole, interpretation of the whole implies searching for the parts, and
the relations among the parts can be used to confirm the recognition and constrain

the search.

3 3 3 __3
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It is not enough to see the parts of an object. Recognition consists of discovering

image features in their correct spatial relations; thus, describing object geometry

" is also useful. Objects occupy volume and they present visible surfaces. They

articulate in specific ways. Their surfaces curve and fold to present edges and
vertices. These geometric features and their spatial relations can also be used to
describe an object. For some types of objects there is a direct correlation between
the geometric features of the object and tixe features that would be expected in an

image of that object.

If an object is being viewed from a particular point of view, there will be char-
acteristics of its image that are typical of that view and others like it. Parts of the
object may not be distinctly visible because they are too small or occluded. When
a vision system is likely to encounter an object in one of a few known positions,
then the process for recognising that object can take advantage of this knowledge
and use viewpoint-specific image features. Thus, it has a computational advantage
over processes that must derive the expected image features from the general three-
dimensional description of the object in space. When viewed from a known range of
viewpoints, the object description can include the image characteristics as features
in a projection, with relations among them forming a network. Since this network
describes the object from a particular class of viewpoints, it separates the relations
into subnetworks, each of which we will call a view. |

Each view represents a class of viewpoints having the distinction that a small
change in position causes no significant change in the perceived relations. For
example, if you know that you are looking at the side of a toy car and are a moderate
distance from it, you will expect to see in the image the wheels as distinct circular
or approximately circular objects and the car body in clear profile. Changing your
vantage point slightly does not affect what is visible or the perceived shapes to any

great extent. However, a large change in viewpoint will cause a significant change
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in perceived shape. Thus, wher; you shift to look at the front of the car the features
of expected image size, shape, and distinctness of surface markings clearly vary. On
the other hand, the features of color and sige relative to nearby objects, for example,
remain unchanged and can be represented by relations not included in the grouping

for a particular view.

The previous discussion suggests the utility of two networks: a resolution hier-
archy and a network of image-based, two-dimensional, viewpoint-specific relations.
The resolution hierarchy encompasses those relations and desériptions that are af-
fected by the distance from the viewer to the object. When an object is to be
viewed from widely differing distances, the information appropriate to the approx-
imate viewing distance can be more readily accessed by separating descriptions of
overall shape from descriptions of detail and relating them in a resolution hierar-
chy. From a sufficiently great distance the parts of any object will appear indistinct,
perhaps having one or two clear features. As the viewing distance to the object is
reduced, the details of the major parts of the object become clear (the wheels and
windows on the car, for example). Finally, at a close viewing distance very fine

detail is visible (door handle, chrome trim, etc.).

Each of the networks described so far represents some aspect of the object in
space. Even the resolution hierarchy, which relates spatial detail to visibility, can
be based on a three-dimensional description of the object and its parts. In contrast
to dealing with the three-dimensional form of an object, it is also useful for a
vision system to have available a two-dimensional image-based model of the object.
Because it is frequently possible to describe objects solely in terms of their images,
interpretation processes can be developed while avoiding the complex issues which

arise when attempting to use general descriptions of three-dimensional shape.

3
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The network of ima.ge—bas;d features and relations in each view facilitates in-
terpretation based on image information. When a class of possible viewpoints for
an object can be determined, then the image features can be used to recognize the
object. Observe that for some image features (e.g., color and texture) the range of

possible viewpoints may be very large. However, even when dealing with geometric

.information, viewpoint-specific information can be helpful. For example, see the

discussion of the house strategy in Chapter 3 and the last experiment described in
Chapter 4.

Since all of the networks described above share nodes and relations, they are
really aspects of a larger network. The various hierarchies and other networks
intertwine to form a description of a set of objects. Thus, for example, a recognition
process that starts using viewpoint-specific information can eventually use the three-
dimensional geometric description or the compositional hierarchy to further the
interpretation. The relations among aspects of an object are as important as the

relations among objects.

As a foundation for the review of related research, we make a distinction between
information in an object representation that pertains to the object as it appears in
the physical world, and information that pertains to features of two-dimensional
projections or images of the object. In what follows, we will first discuss the types
of three-dimensional representations that are commonly used; then we will review
types of two-dimensional, image-based representations; and ﬁn;lly, we describe the
relations between these two classes of information and how those relations can be

exploited for image understanding.

Objects are three-dimensional. Thus, describing the three-dimensional struc-

ture of an object is one of the more obvious ways of representing it. Ballard and
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Brown [BAL82, Chapter 9] su’mma.rize methods for representing the three-dimen-
sional geometry of objects. One way to represent an object is to describe the volume
or the “space” occupied by the object. Usually, this is done with a set of primitive
solids and groupings on those primitives. The simplest type of volumetric object
description is based on a gingle primitive form. Cubes or other simple volumes
are combined so as to describe the space filled by the object. For example, Badler
[BAD79] used spheres as a space-filling primitive, with an object being described as
a set of spheres (possibly of different sizes). This representation has the advantage
of being very simple. For a sphere of arbitrary size and position only four numbers
are needed: one for the radius and three for the position of the center in space.
Additional numbers may be needed if ranges of values are desired; to represent
volumes at higher resolution, smaller spheres are used. An economy in the number
of primitives required can be achieved through mixing spheres of different siges.
However, a disadvantage of this type of representation is that for objects of com-
plex shape a large number of primitives may be needed. For example, describing a
telephone with a reasonable amount of detail would require a large number of small
spheres. To get around this problem, we can either increase the number of types of

primitives or allow primitives of greater complexity.

One method of representing volume which uses a greater number of primitives is
constructive solid geometry (for example, see [VOET78] on the PADL system). Prim-
itives in this type of representation are simple convex solids, which are combined by
set operations such as %oin”, “intersect®, and “subtract® (for union, intersection,
and difference). This style of representation has been used in design and display and
has also been used in image understanding for recognition of simple combinations
of primitive solid shapes (|ROB64]).

A commonly accepted primitive of greater complexity is the generalized cylin-

der. It consists of a curve in space called an axis and a function that describes the

kﬁ_—j
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cross section of the volume as it varies with position along the axis, in the plane
perpendicular to the axis. In the next section, where we discuss machine vision sys-
tems, we will examine the work of Brooks [BRO81), in which generalized cylinders

describe objects for image interpretation.

While volumetric representations such as generaliged cylinders and constructive
solid geometry describe the volume of the object, the generality they afford is not
always necessary. A problem common to these representations is that they do
not correspond to image features in a way that leads easily to matching. It is
necessary to derive “features® of the representation that can then be matched with
the features in the image. For example, characteristics of the object surface are
not directly represented and must be derived when needed. As an alternative, the
geometry of an object can be represented as a composition of joined surfaces, called
patches. Such patches can be complex, like the parametric patches, or simple, like
the polygon patches. Patch representations, though perhaps not appropriate when
a description of volume is necessary, suffice when only a description of the surface
of the object is needed.

The simplest type of patch is a polygon in an oriented plane, represented as
lists of pbints in space. This type of representation is frequently displayed as the
lines between the points, called a “wire frame” display. A more general patch
representation uses a parametric function of the surface. The Begier and B-spline
surfaces are two such parametric patch representations. See [FAU79] or [ROG76]
for a discussion of parametric patches and [YOR80] and [YORS8I] for a discussion

of how surface patch representations might be used in computer vision.

For some problems in machine vision, a representation need not always describe
the details of the three-dimensional geometry of the object. Ikeuchi (IKE80| sug-
gested using a Gaussian sphere, in which the object is described by the distribution
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of surface orientations per unit surface area (a histogram of the surface normal on
the unit sphere), without regard to surface position. This forms a “signature” for
the object which can be related to extracted surfgce'orienta'tion (see, for example,

Horn [HORT77)).

Some systems use an explicit representation of spatial relations to augment
geometric descriptions. These relations can be expressed as precise spatial relations
(e.g., the angle between two surfaces) in the form of constraints on spatial variables
(e.g., bounds on the range that a particular value may take), or symbolic relations
(such as “next to® or “above”). Symbolic spatial relations have their own problems,
such as the difficulty of constructing reasonable computational models for relations

such as “above;” however, they can be useful.

Other characteristics of the object can be used in the case where a complete
geometric description is not always feasible. To illustrate this, consider a description
of a tree. For some purposes, a description of approximate geometry would be
sufficient; that is, a tree might be modeled as a cylinder (the trunk) joined to a
sphere (the crown). If very rough approximations of shape and location were all
that were needed, this style of description would suffice. However, there is no easy
way to model the geometry of a given tree with enough detail so that the texture

and color of the precise patterns of leaves could be derived from the representation.

It is clear that the parts of a tree have a characteristic color and texture, but how
are these to be represented? One approach is to represent the color and texture
as characteristics of a surface. This is a standard computer graphics approach
[FOL82]. For example, detail can be represented by describing the surface color or
texture as a repeated pattern using a function or a lookup table with interpolation
[BLI77], an approach which is sufficient for many objects. As an illustration that

is easily visualized, an orange could be represented as a sphere (three-dimensional

—3 3
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geometric shape) with the surface color variation and surface texture represented

as values in a lookup table indexed by the spherical coordinates of the surface.

A more intriguing approach to the problem posed by the tree example is to
adapt methods of representation being developed for computer graphics. In their
attempts to generate increasingly more realistic images, researchers like Smith
[SMI84], Kawaguchi [KAW82], and Reeves [REV83] are developing representations
of objects capable of generating images that are fractal in nature or have other ran-
dom but constrained characteristics. Whether such representations would be useful
in recogniging objects remains an open question. The success that these researchers
have had in succinctly expressing the characteristics of very complex object forms
(such as trees) leads to speculation that the description of natural objects, for the
task of recognition — if there is ever to be a general description of such objects —
will have information of a similar nature. (See [PEN83] for an example of using

fractal information in the analysis of restricted types of images.)

In general, the problems of representing objects that do not have a clearly
defined shape (clouds) or those that have distinct shape requiring far too much detail
to model completely (trees) have resisted any elegant solution. The most common
approach, in both computer graphics and computer vision, has been either to model
these objects in two dimensions (see second part of this section) or to provide
hooks in the general three-dimensional representation for routines to <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>