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ABSTRACT

Expert system technology has been successfully applie_d to many practical problems,
but there has been little evidence of transfer to computer vision. In this paper we dis-
cuss some of the problems confronting computer vision, and present an approach to the
development of general knowledge-based vision systems. Our approach involves building
an intermediate symbolic representation of the image data using knowledge-free segmen-
tation processes. From the intermediate level data, a partial inter.prel.ation is constructed

by associating an object label with selected groups of the intermediate primitives.

The primary mechanism for generation of initial object hypotheses is a rule-based
approach applied to the attributes of the lines, regions, and surfaces in the intermediate

symbolic representation. Simgle rules are defined as ranges over a feature value which

" are converted to a vote for an cbject label; complex rules are constructed as a functional

combination of the output from the simple rules. The rules are constructed interactively

with visual feedback as part of the knowledge engineering process.

Object hypotheses are used to activate portions of the knowledge network which are

responsible for verifying or more completely extracting the hypothesized object. Once ac-



tivated, these procedural components direct additional more expensive extraction of object
features, as well as the application of further grouping, splitting and labelling processes
at the intermediate level. The goal is the construction of intermediate events which are
in closer agreement. with the stored symbolic object description. We conclude with some

principles which could be used to guide knowledge-based vision research.
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I. INTRODUCTION

Expert system technology, especially techniques for rule-based knowledge engineering,
has been successfully applied to many practical problems. Although there are inherent
limitations in the complexity and power that can be achieved with traditional expert sys-
tem approaches [1], particularly when the number of rules are not constrained, there has
been little evidence of its application to image interpretation. Typically, vision systems
[e-s. 1-3,5,7,11,15,18,21,23,35,28,30,36,37,42] are highly system or application dependent
and consequently it has been difficult to transfer them to different task domains. This pa-
per will discuss some of the problems that are specific to computer vision and describe one
general methodology for the development of knowledge-based vision systems. The focus
of the paper is on the initial iconic to symbolic mapping, which associates portions of the
image with hypothesized semantic labels. The proposed approach addresses the start-up
problem of interpretation by creating tentative ‘islands of relia.bi‘lity’ from which context-
directed processing can be initiated. Since the initial processes are somewhat independent
and are usually associated with separate parts of the images, they can be executed inde-
pendently and in parallel; multiple processes operating on the same portion of the image
can also compete in order to arrive at the best interpretation among a set of alternatives.
The relations and expected consistencies between local interpretations form the basis for
a cooperative/competitive style of processing among the possible interpretations as the

system attempts to extead the islands to urinterpreted parts of the image.

[.1. Complexity of Vision

The complexity of visual tasks can be made explicit by examining almost any com-

plex image. Although this initial discussion is qualitative, we belicve the conjectures are



(a) (b)

Figure 1. Original images. These images are representative samples from a larger
data base. All are digitized to 512 x 512 spatial resolution, with 8 bits in the red, green,

and blue components.
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intuitive and reasonable even though it is very difficult to be introspective of one’s own
visual processing. Humans are rarely aware of any significant degree of ambiguity in local
portions of the sensory data, nor are they aware of the degree to which they are employ-
ing more global context and stored expectations derived from experience. However, if
the visual field is restricted so that only local information is available about an object or
object-part, interpretation is often difficult or impossible. Increasing the contextual infor-
mation so that spatial relations to other objects and object-parts are present makes the
perceptual task seem natural and simple. Consider the scenes in Figure 1 and the closeup

images in Figure 2. In each case we have selected subimages of objects which show:

a) “primitive” visual elements — these are image events which convey limited infor-
mation about the decomposition of an object into its parts (which of course is
a function at least partly of resolution); note that this implies that the path to

recognition of the object via subparts is not available to our perceptual system;

b) absence of context — there is limited information about other objects which might
relate to the given object in expected ways; note that this implies that the path
to recognition of the object, via the scenes or objects of which it is a part, is not

available to our perceptual system.

In Figure 2 as some of the surrounding context of the shoes and the head are sup-
plied, the perceptual ambiguity disappears and the related set of visual elements is easily
recognized. In each of the above cases the purely local hypothesis is inherently unreliable
and uncertain and there may be little surface information to be derived in a bottom-up
manner. It appears that human vision is fundamentally organized to exploit the use of con-

textual knowledge and expectations in the organization of the visual primitives. However,



Figure 2. Closeups from original images. In many cases, the identity or function of
an object or object part cannot be determined from a small local view. Only when the
surrounding context becomes available can the objects be recognized.



it may be impossible to associate object labels with these ambiguous primitives until they
are grouped into larger entities and collectively interpreted as a related set of object or
scene parts. Thus, the inclusion of knowledge-driven processes at some level in the image
interpretation task, where there is still a great degree of ambiguity in the organization of

the visual primitives, appears inevitable.

We conjecture that image interpretation initially proceeds by forming an abstract rep-
resentation of important visual events in the image without knowledge of its contents. The
primitive elements forming this representation are then collected, grouped, and refined to
bring their collective description into consistency with high-level semantic structures that

represent the observer’s knowledge about the world.



II. ISSUES FACING KNOWLEDGE-BASED VISION SYSTEMS

The development of knowledge-based vision systems has been hampered by several fac-
tors: lack of agreement on what constitutes an adequate representation of image events,
lack of low-level processes that can reliably extract relevant image features, lack of satis-
factory three-dimensional representations which can capture the inherent variability in the
structure of physical objects and scenes, lack of adequate mechanisms for utilizing knowl-
edge during the interpretation process, and finally by the enormous investment in software
development that is a necessary precursor to even very simple interpretation experiments.
Most of the systems in the current literature only address some of these issues and, perhaps
even more discouraging, there do not appear to be ways in which these systems can be

easily generalized.

.

This paper does not attempt to carefully survey the literature in knowledge-based
vision systems. However, we do note that most of these systems extract a sét of two di-
mensional image features in some form and then utilize a particular control structure for
mapping this information onto concepts in a knowledge base. Fcr example, there have been
several rule-based systems which map image features to object-identities have been devel-
oped [20,25,28], relaxation processes have been exployed for propagating hypotheses under
uncertainty |3,11], algebraic constraint manipulation has been used in model matching (7],
constraint satisfaction systems have been used to capture relational information [36], and
frame-based (or schema-based) approaches for more general (and sometimes more com-
plex) control strategies have been proposed [2,15,37]; see [5] for a survey of some of these
approaches. A partial review of image interpretation research can be found in [5,6,14] and
descriptions of several individual research efforts are found in {1-3,5,7,11,15,18,21,23,25,28,

30,36,37,42].



Early attempts to interface stored knowledge to image data at the pixel level met with
only limited success and little possibility of generalization [36]. For example, blue pixels
could immediately be hypothesized to have “sky” labels and appropriate constraints could
be propagated, but such an approach to interfacing visual knowledge seems rather futile
in the face of increasing numbers of objects and increasing complexity of the task domain.
In an image of reasonable resolution there are 512 x 512 = 1/4 million pixels; hence vision
systems must confront the problem of dynamically forming from the large number of
individual pixels more useful entities to which propositions will be attached. Transforming
the data into a much smaller set of image events is the goal of segmentation processes.
However, algorithms for extracting primitives such as 2D regions of homogeneous color
and texture, straight lines, simple geometric shapes, and/or local surface patches have
proven to be complex and quite unreliable, suggesting that substantial further processing
is required before one can expect this intermediate representation to support a globally

consistent interpretation.

For a variety of reasons one must expect the data at the level of representation of
this first stage of segmentation to be distorted, incomplete, and sometimes meaningless.
Segmentation of an image into regicns, each of which is composed of a spatially contiguous
set of pixels, is a very difficult and ill-formed problem [15]. The sensory data is inherently
noisy and ambiguous and this leads to segmentations that are unreliable and vary in un-
controllable ways; for example, regions and lines are often fragmented or merged. In the
case of the familiar problem of character recognition, this would be akin to being given
joined letters and split letters at a very high frequency. In fact this is one of the major
problems in automatic cursive script recognition that makes it a much harder problem

than recognition of printed or typed characters. Rather than being concerned only with



the classification of a highly variable set of objects (the cursive characters), the system
is also faced with the accompanying problem of organizing the input data into the ap-
propriate segments that form the entities to be classified. Of course general vision is far

more complicated than interpretation of handwriting, with a much larger number of more

complex objects.

It has been suggested that 2D regions and lines are not appropriate descriptions of the
initial image data and that they should be replaced with local estimates of surface orien-
tation, reflectance, depth, and velocity [6,24,36]. In this case the descriptive elements are
surface patches which directly capture aspects of the three-dimensional world from which
the image was obtained. The implication is that the interpretation task will be far simpler
when the surface description is used since it is a representation of the actual physical world
that is to be interpreted, and therefore a broader spectrum of domain constraints can be
brought to bear upon the information. Although the claim is undoubtedly correct to some
degree, reliable extraction of surface range, reflectance, and orientation information from
monocular image data has yet to be demonstrated except in highly constrained domains
or under very unrealistic constraints on the type of surfaces making up the objects in the

scene.

On the other hand, even if a very reliable description of this type could be obtained,
the complexity of the natural world will leave us facing many of the same representation,
grouping, and interpretation issues. Let us assume for the momentl that, in addition to
the original spectral information at each pixel, the distance to the corresponding visible
surface element at each pixel is also available. Consider the problem of interpreting a
complex environment such as a typical crowded city street scene, even if one had such
a perfect depth map. How should one partition the information into meaningful entities

9



such as surfaces, parts of objects, and objects? And then how could this be interfaced to
the knowledge base so that control of the interpretation process is feasible? Given that
many initial local hypotheses are inherently uncertain and unreliable, how do we achieve
globally consistent and reliable integration of the information? This, in fact, is exactly the
set of problems that we face the 2D region and line data. We believe that the principles
and approaches presented here will be applicable not only to the 2D events extracted from
the static monocular color images presented in this paper, but also to the interpretation

of 3D depth data recovered from stereo and laser ranging devices, and 2D and 3D motion

data derived from a sequence of images.

The problem of forming object hypotheses, or of matching relational models to ex-
tracted tokens, is made very difficult by the limitations of low and intermediate level
processing. The effect of occlusion leads to the difficult problem of partial pattern match-
ing, where a strong match with part of the pattern is the desired result, as opposed to a
weak match of the whole pattern. One must also expect that many i'egion and line samples
will not belong to any of the classes because they may be part of shadow regions, portions
of occlnded objects which cannot be identified, objects that have not been included in the
set of object classes in the knowledge base, or object parts which are only identifiable in
the context of the object hypothesis. While there has been some success [42] in apply-
ing a Bayesian classification viewpoint to these problems, there are many difficulties and
we helieve standard statistical approaches generally lead to insoluble problems. Classical
pattern recognition techniques are not powerful enough by themselves to produce effective

classifications in the domains we wish to consider.

Scene interpretation requires processes that construct complex descriptions, where

many hypotheses are put forth and a subset that can be verified and which satisfies a

10



consistent set of relational constraints is accepted. Al systems are often faced with fitting
a set of very weak but consistent hypotheses into a more reliable whole. This usually is a
complex process that requires great reliance on stored knowledge of the object classes. In
such systems, knowledge generally takes the form of object attributes and relations between
objects; the relations between parts of objects generally leads to a part-of hierarchical

decomposition of the knowledge base.

A related problem involves representing the complexity of the 3D physical world in
a form which is useful to the interpretation process (7). The 3D shape, color, texture,
and size of an object class, as well as spatial and functional relations to other objects,
often have a great deal of natural variation from object to object and scene to scene.
This problem is compounded by the fact that the 2D appearance of these objects in the
image are affected by variations in lighting, perspective distortion, point of view, occlusion,
highlights, and shadows. These difficulties ensure that the transformation processes for
grouping intermediate symbols and matching them to knowledge structures will produce
highly unreliable results. The interpretation processes will require general mechanisms for

dealing with this uncertainty, detecting errors, and verifying hypotheses.

In summary, there are a variety of issues which must be-addressed and resolved before

substantial progress in computer vision can be achieved:

a) An effective intermediate symbolic representation must be obtained to serve as the

interface between the sensory data and the knowledge base.

b) Knowledge representations must be defined which are capable of capturing the
tremendous variability and complexity in the appearance of natural objects and

scenes, particularly 3D shape representations.

11



¢) Techniques must be developed for flexibly organizing the intermediate symbols un-

der the guidance of the knowledge base.

d) Mechanisms must be developed for integrating information and data from multiple

sources.

e) Inference mechanisms must be available for assessing the indirect implications of

the direct evidence.

f) Mechanisms must be developed for coping with the great degree of uncertainty

which exists in every stage of data transformation that is part of the interpretation

)

process.



III. OVERVIEW OF THE VISIONS SYSTEM’S

APPROACH TO THESE ISSUES

Over the past ten ycars, the VISIONS group at the University of Massachusetts has
been evolving a general system for knowledge-based interpretation of natural scenes, such
as house, road, and urban scenes [13,15,16,29,33,34]. The goal of this effort is the con-
struction of a system capable of interpreting natural images of significant complexity by
exploiting the redundancies and general constraints expected between and within scene

elements.

The general strategy by which the VISIONS system opcrates is to build an intermedi-
ate symbolic representation of the image data using segmentation processes which initially
do not make use of any knowledge of specific objects in the domain. From the intermediate
level data, a partial interpretation is constructed by associating an object label with se-
lected groups of the intermediate primitives. The object labels are used to acti\.ra.te portions
of the knowledge network related to the hypothesized object. Once activated, the procedu-
ral components of the knowledge network direct further grouping, splitting and labelling
processes at the intermediate level to construct aggregated and refined intermediate events
which are in closer agreement with the stored symboiic object description. Figure 3 is an
abstraction of the multiple levels of representation and processing in the VISIONS system
[15). Communication between these levels is by no means unidirectional; in most cases,
recognition of an object or part of a scene at the high level establishes a strategy for further
ma.n,ipulatif\g the intermediate level primitives within the context provided by the partial
interpretation, and for feedback for goal-directed resegmentation. Although the following
discussion is based primarily on 2D abstractions of the image data (such as regions and

lines), it should be clear that the general ideas extend naturally to 3D abstractions such
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Image Interpretation

Communications and Control Across Multiple Levels of Representation

High Level - Symbolic Descriptions of Objects - Schema - Control Strategies
Rule-Based Object Matching and Inference:
Object Hypothesis “ “» Grouping, Splitting and Adding

Regions, Lines and Surfaces

Intermediate Level - Symbolic Description of Regions. Lines, Surfaces

Segmentation Goal-Oriented Resegmentation:

Feature Extraction Additional Features. Finer Resolution

Low-Level - Pixels - Arrays of Intensity, RGB, Depth

(Static monocular, stereo, motion)

Figure 3. Multiple levels of representation and processing in VISIONS.



as surfaces as well as to attributes such as motion and depth.

Let us consider some of the stages of processing in a bit more detail.

1)

2)

3)

Segmentation processes (8,19,26| are applied to the sensory data to form a symbolic
representation of regions and lines and their attributes such as color, texture, lo-
cation, ;ize, shape, orientation, length, etc. Figures 4 and 5 show sample results
from two segmentation processes applied to the images in Figure 1. The region and
line representations are integrated so that spatially related entities in either can be
easily accessed [31]. Two—diﬁensional motion attributes can also be associated with

these entities.

Perceptual grouping operations are applied to the low level representations in or-
der to form larger intermediate events, such as straight and curved lines, corners,
vertices and T-junctions, parallel lines, various repetitive structures, larger region
and surface elements with common properties, and collections of regions, lines,
and surfaces satisfying a set of constraints, etc. These operations may be per-
formed bottom-up (data-directed) using general organizational criteria or top-down
(knowledge-directed) in a specific context determined by a partially constructed in-
terpretation. Figure 6 shows an example of a bottom-up line grouping process
whose goal is to generate long straight lines [38]. An example of top-down grouping

is discussed under Item 4 below.

Object hypothesis rules are applied to the region and line representation to rank-
order candidate object hypotheses |41}; this initial iconic to symbolic mapping pro-
vides an effective focus-of-attention mechanism to initiate semantic processing and

is described in more detail in Section IV. A simple rule is defined as a range over any

14
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Figure 4. Region segmentations. Regions partition the image into areas which are
relatively uniform in some feature (in this case intensity). Mapped into a symbolic structure
with a rich set of descriptors, they provide one form of link between the image data and
the interpretation system.



y
Vo' Ll

,_
A,
53
VIV s

D

1}

2 };

1
b l..'K'

S
A _4“

3
Y. &,
3

N b e

) V.: \.l 1

(b)

T —

0 \ ___
i

T i

|

\
\

IR

(¢) (@)
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of gradient orientation to group pixels into regions. A straight line and an associated set
of features is extracted from each region. The resulting line image (which contains many
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a second filtering on the basis of length. The short, high contrast lines in the images in
the left images are used as the basis of a texture measure.



Figure 6. Geometric Line Grouping. The grouping algorithm uses the zero-crossing of
the Laplacian to position a straight line of unit length with its center at a zero crossing
and with an orientation perpendicular to the gradient measured at the center of the line.
An interactive linking and merging processes is then performed to find lines in the next
higher level of a hierarchical representation. Almost collinear lines with a similar gradient
magnitude that are spatially close are linked and subsequently merged if the straight line
approximation to the link candidates is good enough. The resulting representation may
be filtered in various ways to retain only those lines satisfying the filtering constraints.
(a) zero crossing of the Laplacian (b) unfiltered output of the grouping process (c,d) lines
remaining after filtering on length.



4)

scalar feature of the lines or regions. If the attribute of the line/region has a value
in the range it will be considered as a “vote” for a particular object label. More
complex rules are formed via a logical or arithmetic combining function over several
simple rules. The rules can also be viewed as sets of partially redundant features,
each of which defines an area of feature space which represents a vote for an object.
The region features could include color, texture, size, location in image, simple
shape, and motion; line features could include location, length, width, contrast and
motion. To the degree that surface patches have been formed, rules can be applied
to surface features such as depth, size, location, orientation, reflectance, curvature,
and motion. Rules may also be applied to combinations of elements from multiple
representations, such as regions and lines, providing a convenient mechanism for

fusing multiple representation in a consistent way [4].

More complex object-dependent interpretation ;trategies are represented in a pro-
cedural form in knowledge structures called schemas [15,29,4.0]; these strategies rep-
resent control local to a schema node and top-down control over the interpretation
process. One interpretation strategy that utilizes the output of the rule set involves -
the selection of reliable hypotheses as image-specific object exemplars. They are
extended to other regions and lines through an object-dependent similarity match-
ing strategy [41]. Thus, as in the HEARSAY paradigm, partial interpretations
begin to extend from “islands of reliability” [20]. At this point in the development
of the VISIONS system, we are concentrating on the identification and implemen-
tation of intermediate grouping strategies for merging and modifying region and
line elements to match expected object structures [40]. For this purpose, general

knowledge of objects and scenes is organized around the relationships that would be



6)

found in standard 2D views of 3D objects. Verification strategies exploit particular
spatial relationships between the hypothesized object and other specific expected
object labels or image features. In cases of simple 3D shapes, such as the planar
surfaces forming a “house” volume, 3D models and associated processing strategies
are employed, and we hope to evolve similar intermediate grouping strategies for

complex 3D shape representations in the future.

Feedback to the lower-level processes for more detailed segmentation can be re-
quested in cases when interi)retation of an area fails, when an expected image
feature is not found, or when conflicting interpretations occur. Both the region
and line algorithms have parameters for varying the sensitivity and amount of de-
tail in their segmentation output. However, the control of such strategies and the

integration of their results is an open problem that is under examination.

Due to the inherent ambiguities in both the raw image data and the extracted in-
termediate representations, a method for handling uncertainty is required if there
is to be any possibility of combining this information into a coherent view of the
world [14]. Some of the limitations of inferencing using Bayesian probability models
maybe overcome using the Dempster-Shafer formalism for evidential reasoning, in
which an explicit representation of partial ignorance is provided [35]; we have an
ongoing investigation into these issues [22,39] and their potential use. The infer-
encing model allows “belief® or “confidence” in a proposition to be represented as
a range within the [0,1] interval. The lower and upper bounds represent support
and plausibility, respectively, of a proposition, while the width of the interval can

be interpreted as ignorance.
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IV. RULE-BASED OBJECT HYPOTHESIS

STRATEGIES

The interpretation task of concern in this paper is that of labelling an initial region
segmentation of an image with object (and object part) labels when the image is known
to be a member of a restricted class of scenes (e.g., outdoor scenes). An important aspect
of this task is the mechanisms for focussing attention on selected areas of the image for
which plausible hypotheses of object identities can be generated aﬁd for merging regions
with a common semantic label. This latter task can occur simultaneously with the labeling

process or delayed until a later phase of the interpretation process.

We propose a simple approach to object hypothesis formation, relying on convergent
evidence from a variety of measurements and expectations. In. the early interpretation
phase, when little is known about the scene or its contents, the approach is primarily
bottom-up and involves the generation of a few reliable hypotheses about proxﬁinent image
events. The object hypothesis system thus provides a link between the image data and the
knowledge ‘structures. Control can then shift to a more top-down orientation as context
and expectations allow the use of further knowledge-dependent processing to validate and

extend the initial hypotheses.

Our goal, therefore, is to develop methods for selecting specific image events that are
likely candidates for particular object labels, rather than the selection of the best object
label for each region and line. For example, given a set of regions in an outdoor scene (and
assuming a standard camera position), we might choose to select a few bright blue areas
with low texture located near the top of the image as likely “sky” regions. Similarly, in an

outdoor scene one could select grass regions by using the expectation that they would be



of medium brightness, have a significant green component, be located somewhere in the
lower portion of the image, etc.' For each object, these expectations can be translated
into a “rule” which combines the results of many measurements into a confidence level

that a region (or small group of regions) represent that object.

IV.1. Knowledge as Rules

Simple rules are defined as the ranges over a scalar-valued feature which will map into
a vote for an object label. Typically a feature will be the mean or variance of a property
of the pixels or edges composing the regions or lines, respectively. Complex rules involve a
combination of simple rules, and they allow fusion of information from a variety of different

types of measurements.

We will now develop a simple rule which captures the expectation that grass is green
using a feature which is a coarse approximation to a green-magenta opponent color feature
by computing the mean of 2G-R-B for all pixels in this region (whére R,G.,B refers to the
red, green, and blue components of the color image, respectively). In order to demonstrate
the actual basis and form of knowledge embodied in the rule, in Figure 7 we compare the
green-magenta feature distribution of grass pixels to the distribution of the same feature

for all pixels. This data was obtained by hand-labelling segmentations from 8 sample

images of outdoor house scenes.

The basic idea is to construct a mapping from a measured value of the feature obtained

from an image region, say fr, into a vote for the object. One approach is to define this

* Note that a camera model and access to a 3D representation of the environment could dynamically
modify the value of these location limits in the image; thus, the use of rules on relative or absolute
environmental location in a fully general system would involve modification of expectations about
image location as the system orients the camera up or down relative to the ground plane.

18



Figure 7. Image histogram of a “green-magenta” feature (2G-R-B). The unshaded his-
togram represents the global distribution of the feature across all pixels in eight hand-
labelled images. The intermediate diagonal shading represents the feature distribution of

all grass regions in the eight images. The darkest cross hatched histogram is the feature
distribution of grass regions in a single image.



tapping as a function of distance in feature space between the measured value and a
stored prototype lcature vector which captures the feature properties of the object. Let
d = d(fp,f) = [ — [p be the distance between the measured feature value f and the

prototype feature point fp and let 8; < 83 < ... < 65 be thresholds on d (see Figure 8).

The response R of the rule is then:

1 if —03<d<04

d+0,

f - d< —
9, — 0 if —0; <d< —0;
R(f)=4 4=6 if 0y < d <05

04 — 05

0 if (=0; < d < —6s) or (5 < d < 65)
\ —00 otherwise

The thresholds 6;,7 = 1,...,6 represent a coarse interpretation of distance measure-
ments in feature space. When the measured and expected values are sufficiently similar,
the object label associated with the rule receives a maximum vote of 1. Since small changes
in a feature measurement should not dramatically alter the system response, the voting

function is linearly ramped to O as the distance in feature space increases.

8, and 8 allow a “veto” vote if the measured feature value indicates that the object
label associated with the prototype point cannot be correct. For example, a certain range
of the green-magenta opponent color feature implies a magenta, red, or blue color which
should veto the grass label. Thus, certain measurements can exclude object labels; this
proves to be a very effective mechanism for filtering the summation of several spurious
weak responses. Of course there is the danger of excluding the proper label due to a

single feature value, even in the face of strong support from many other features. A
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All Objects
and Regions

Rule Response R

Frequency

Target Objects
and Regions

Figure 8. Structure of a simple rule for mapping an image feature measurement f into
support for a label hypothesis on the basis of a prototype feature value obtained from the
combined histograms of labeled regions across image samples. The object specific mapping
is parameterized by seven values, fp,0y,...,05 and stored in the knowledge network.



natural extension to the mechanisms presented here would generalize the rule form to be
parameterically varied from the fixed form that we have defined. Thus, the ranges could
be dynamically varied so that fewer or larger numbers of regions are in the positive voting
range of a particular rule. Il there are multiple peaks in the histogram, then a simple rule
can be defined for each peak independently. Their results can be combined using a simple

function, such as the maximum of the responses.

A simple rule is a specification of a constraint on the value of a feature which should
be satisfied if the object is present. A complex rule is defined as a (partially redundant)
set of simple features that is assembled into a composite rule via a combining function
which can take any logical or arithmetic form; this is an extension of the functional form
of hypothesis rules in Nagao et al {25|. The premise is that by combining many partially

redundant rules, the effect of any single unreliable rule is reduced.

It is useful to impose a hierarchical structure on the set of simple rules. I.n this paper
the rule for each object is organized into a composite rule of 5 components which provide
a match of color, texture, location, shape, and size of the object. This allows some
flexibility in combining several highly redundant features (e.g., several color features) into
a composite rule which is somewhat more independent of the other composite rules (e.g.,
color vs. location). [t should be recognized, however, that this is only one alternative
for imposing a hierarchical structure on the set of simple rules; many other combination
functions are possible and the choice of the function determines how the features ‘cooperate’

to provide an initial hypothesis.

Each of the five composite rules is in turn joined into a composite rule. Any rule

might have a weight of 0, which means that the rule will have no effect on the weighted
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response of the composite rule except that the veto range of the rule can reject a region
as a candidate for the object in question. The structure of the composite rule for grass

is shown in Figure 9; it consists of a normalized weighted average of the five components

C;:

5
1
grass score = - Z W,C,
i=1

5
where the W; are the weights and N = }_ W;. Each of the components is in turn a
=1

weighted sum of a set of individual rules:

Cj = ﬁ ) ViR(fx)
k

where R(fi) is the response from an individual feature rule based on feature f; and the

Vi are the weights (M = }_ V). Similar rules were developed for sky and foliage.
k

The weights shown in Figure 9 capture the heuristic importance of each of the contri-
butions to the rule.-The weights are integers from 0 to 5, and reflect a belief that only a
few levels of relative importance are needed ( “weak” = 1, “medium” = 3, “sirong” =5 in
importance). The intention is to avoid twiddling of numbers, but to allow obvious relative
weightings to be expressed. Since the composite rule response is used only to order the
regions on the basis of their similarity to the stored feature Lemplates, rather than classi-
fying them as an instance of a specific class, the expectation is that the rule response is
relatively insensitive to small changes in the weights. The rules extend easily and naturally

to include other features and attributes, such as depth and motion.
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Figure 9. Structure of the grass rule. The rule response is the normalized weighted sum
of the resonses of five component rules, each of which is in turn a normalized weighted sum
of the responses from simple rules associated with a single feature. Note that a weight
could be 0, thereby allowing only the veto range for that feature to be propagated.



IV.2 Relationship to Bayesian Pattern Classification Theory

It is instructive to briefly consider the relationship of the rules to the Bayesian tech-
niques commonly used in pattern recognition, since the goals of both techniques appear

to be similar. In the classical character recognition problem the jth character R; is to be

classified as one of a fixed set of classes C;, i = 1,...,N on the basis of a feature vector )_(j
extracted via measurements on character R;. One can view the region labelling problem
to be equivalent, in that a set of feature measurements can be extracted from all regions,

and then each can be classified according to a maximum likelihood decision process.

A training set of characters is usually provided a priori, from which statistical estimates
of feature distributions can be extracted; it is necessary that the training set be large
enough to capture the expected variations in the domain. The optimal decision process
for a given character R; involves the computation of the a posteriori Bayesian probability
for each class given the feature vector- X;, followed by the selection of the maximum
likelihood class as the output decision. Thus, using Bayes rule character R; is classified
as C;, where

P(X;|Ci) P(CY)
P(X;)

MAX P(Ci| Xj) = MAX
1 ]

Since P(X;) is constant across the N classes, it cannot affect the decision and may be

ignored. Thus, the decision rule is now simplified to

MAX P(X;|Cy) P(Cy)
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with P(X; | C,) estimated from the training set and P(C;) obtained via statistical

analysis of the task domain."'

In the pattern recognition/classification case, the set of classes is known, fixed, and
usually is not large. Also note that P(Xj) could be factored out of the computation of
the posterior class likelihoods because the set of feature measurements was the same for
each class; i.e., one set of measurements was performed and these results were used to
determine all of the P(X; | C;). However, the a priori class probability P(C;) does vary
in the computation of each class likelihood. Finally, the intent of this classification process

is the classification of every character sample.

Let us briefly make several points about why the pattern recognition (PR) paradigm
of classification is not effective. It assumes a fixed set of known classes that ususally is
not large. The samples to be classified are assumed to be directly presented, or to be
extractable in a relatively straightforward fashion; in particular there is little difficulty in
figure-ground separation of the sample. Finally, the samples are usually assumed to be
complete (i.e. no occlusion or missing portions) so that one can avoid the difficult problem

of partial matching of portions of the object.

In Section 1I we discussed the difficulty of image interpretation, and how it relates to
these assumptions. Classical pattern recognition techniques are not powerful enough by

themselves to produce effective classifications in the domains we wish to consider. The

There are a number of variations to the basic paradigm which we note here, but do not wish to explore
in this treatment. Some samples could be rejected if the maximum likelihood is sufficiently low; by
avoiding classification of a difficult subset of characters the error rate might be reduced, but more
importantly there is the possibility of focussing attention on samples where additional information
would be valuable. Another extension involves the dependencies between characters that are a
function of the characteristics of the language; contextual analysis via conditional probabilities of
letter sequences could be used to improve the estimates of the likelihoods [12,17,32].
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general problem of image interpretation involves a possibly large number of classes. The
unreliability of low level processes such as line extraction, region segmentation and surface
fitting imply that one cannot be sure that any extracted intermediate entity is relevant to

any of the classes.

In contrast, we have modified the classification strategy to become an Al “focus-of-
attention” process since it is not feasible to initially classify all image events for the reasons
discussed in the previous sectior;s. The organization of the input data is not sufficiently
well-defined to pose the classical pattern recognition goals in our domain. Thus, rather
than the selection of the best object label for each region and line, we are looking for good

region and line candidates for a particular object label.

From a Bayesian view, instead of the measurement vector P(X;) being held constant
across samples, the a priori class probability P(C;) is constant across regions to be classi-
fied. While there is a common set of features measured on each rggion, the rhea.surement
vector X; may be different for each (i.e. a different set of feature values). This changes
the optimal decision rule via a Bayes formulation to

P(X; | C:)

MAX =
i P(X;)

which will decompose into the product of individual feature terms under an assumption of

independence.

It should now be clear that the simple piccewise-linear rule form is more than just an
approximation to P(X; | Ci),j = 1,..., K. What it also must balance is the relation to
P(X;), which appears in the denominator of the Bayesian ratio. This term is important

because it brings in the degree of discrimination of each feature measurement X; for

24



class C;. For example, there would be little value in a feature which exhibited a very
tight range (i.e., very low variance) for some object class, if in fact it also exhibited the
same distribution for all classes. In actual practice, the vision system designer /knowledge
engineer is responsible for the selection of the features used in the object rules. To the
degree that a rule developed by this expert covered P(X; | C;) and excluded P(X; |
Ci), for all k # ¢, that rule would be an optimal discriminator. Of course there is still
the problem of the usually invalid assumption of feature independence, and therefore our
heuristic hierarchical combination of features may be just as reasonable. In fact the use of
the veto range for individual features has the same effect as a ratio of zero in the product

of probabilities under the assumption of independence.

In summary the PR issues are dealt with in the Al focus-of-attention paradigm by
selecting only hypotheses which are more reliable and not a.t.tempti'ng to classify all entities.
These hypotheses can then be verified via additional processes which make use of contextual

knowledge.

IV.3. Results of Rule Application

Figure 10 shows the results of applying selected simple rules for grass to the region
segmentation from Figure 4c. For each rule there are two images. The left image of each
pair is a composite feature histogram showing the feature distribution across all pixels (the
unshaded curve) in a set of images, and the distribution for grass pixels (the cross hatched
curve) across the same set of images. The histograms were computed from a set of eight
hand-labelled images and smoothed. The right image of each pair shows the strength of
the rule response for each region coded as a brightness level: bright regions correspond to

high rule output.
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Figure 10. Results from the simple grass rules. In each image pair, the left image is a
composite feature histogram showing the feature distribution across all pixels in a set of
images, the distribution of grass pixels in the same set, and the rule. The right image
shows the brightness encoded strength of the rule response when aplied to all regions in
the segmentation of Figure 4c; bright regions correspond to a high rule response. See text
for a discussion of the four numbers in the upper left corner of the histograms.
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The rule that was developed interactively by the user is superimposed on the histograms
in piecewise linear form. In the upper left “Target” refers to the object associated with
the rule, in this case grass, while “Other” refers to all objects other than the target object.
The first row of numbers shows the weighted average response of grass regions and other
regions to the rule function (100 is maximum), while the lower numbers tabulate the
percentage of target regions and other regions vetoed. Thus, the ideal rule is one which
responds maximally with a value of 100 to the target regions, while vetoing 100% of all
other regions. In practice, there is almost always a tradeoff and optimal settings are
not at all obvious. In some cases rules for the target object were set to exclude regions
associated with other objects, while in other cases the goal was to maximize the response
for the target object regions. There is no intent here to put forth these specific rules as a
significant contribution or even as a satisfactory set; in fact some of these rules probably

need modification.

Figure 11 shows the response for three of the five rule components and the final result
for the composite rule. For each rule the region response is shown superimposed over the
image in two complementary formats. The left image of each pair shows the strength of the
rule response coded in the intensity level of each region; bright regions cor,responci to good
matches. The right image shows the vetoed regions in black (with all others uniformly
grey). Figure 12 shows the final results for the foliage, grass, and sky rules in the house

image in Figure 1b (vetoed regions not shown).

The effectiveness of the rules can be seen by examining the rank orderings of the regions
on the basis of the composite rule responses. For the grass results shown in Figure 11,
for example, the two top ranked regions are actually grass. For the grass results shown
in Figure 12, the top six regions are grass and 8 of the top 10 regions are grass; the two
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Figure 11. Rule responses for the grass component rules and the final composite rule.
In each pair of images, the left image shows the brightness encoded (bright = high) rule
response. The right image shows regions vetoed by the rule in black; all others (non-
vetoed regions) are uniformly gray. (a) color component rule; (b) texture component rule;
(c) location component rule; (d) final result from grass composite rule.
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non-grass regions were actually sidewalk and driveway. For the foliage responses shown
in Figure 12b, the top 21 regions were some form of foliage (tree, bush, or undergrowth);
of the 30 regions .n_ot vetoed, there were only 7 non-foliage regions. These 7 regions were
actually grass and were among the lowest ranked of the non-vetoed regions (7 of the last
9). For the sky results in Figure 11c, only four regions were not vetoed and the top three
were sky. The fourth region, with a significantly lower rule response, was actually foliage
with some sky showing through. Figure 13 shows the highest ranked regions for each of
the three object hypothesis rules when applied to the three example images. In Section V
we discuss how these initial object Hypothesis results may be used as the basis of a strategy

to produce a more complete interpretation.

IV.4_ A Language Interface for Knowledge Engineering

Knowledge engineering of rules can be greatly facilitated by an interactive environment
for rule construction. A user can get an immediate sense of the effectiveness of proposed
rules by displaying the rating of each symbolic candidate in intens.itir or color. Thus, rule

development becomes a dynamic process with a natural display medium for user feedback.

Even though an immediate visual response to a proposed rule or rule set is available,
the knowledge engineer must not be forced into a “parameter twiddling” mode. The rules
should be robust enough so that a fairly crude specification of the rule parameters generates
reasonable results. The specification can then be interactively refined, if necessary. Asa
first step toward an interactive specification facility, a simple language interface has been
constructed so that rules can be specified on any feature in terms of five intervals of the
dynamic range of a feature - “very low”, “low”, “medium”, “high”, “very high” [33,41].

These labels induce a partition on the range of the feature; for each interval, the user
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Figure 12. Composite rule responses for grass, foliage, and sky rules, applied to Figure
4b encoded in brightness. (a) grass, (b) foliage, (c) sky.
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Figure 13. Highest ranked object hypothesis for the three examples images.



specifies whether the rule response is “ON”, “OFF”, or “VETO”.

The results obtained from the coarsely quantized rules are quite good and are compa-
rable to the results obtained in the previous section using the more carefully defined rules.
Typical results from this rule set are shown in Figure 14 using the foliage hypothesis rule
on two of the test image segmentations (Figure 4a,c); these results are comparable to those
shown in Figure 11. For the segmentation of the house image of Figure 4a, a total of 24
regions survived the vetos. Of these, only two were incorrect (window and grass). For the
image in Figure 1b (results not shbwn), 16 regions were not vetoed and all of them were
some form of foliage (tree, bush, tall grass, or undergrowth); only one grass region was
included. 28 regions remained after running the rule on the regions making up the house
scene in Figure 1c. Of these 28, 20 were bush or tree, 2 were grass, and the remainder
were rocks, house window or shadowed areas. All of the incorrect regions were rated fairly

low by the rule. In all cases, the most highly rated regions were foliage.

Similar results were obtained for the sky and grass rules. For the image in Figure
1b, for example, 9 regions were r;ot vetoed and of these, 5 were sky, 2 were a mixture of
sky and the telephone or power wire (see Figure 4b) and two were a mixture of tree and
sky. Applying the grass rule to the segmentation of Figure 1a results in 41 fegions, 17 of
which are grass and which are among the 18 top rated regions (the other region was bush).
The remaining 23 regions, all rated very low, are bushes, trees, windows, house steps, and

shutters.

Coarse quantization of the feature range offers the knowledge engineer the opportunity
to quickly develop and assess a rule set without detailed examination of feature statistics.

It may be possible, in some cases, to completely develop the rule base using semantic
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Figure 14. Foliage results from the coarsely quantized rules applied to the segmentations
of Figure 4a and c.



terms that are intuitive to the user, including the structure of the composite rules and the

relative weights, as well as the setting of the individual rule values.

The rule system, as described in this and preceeding sections, has been applied to a
number of outdoor images of several different types (including road scenes). Although
quantitive data is not yet available in sufficient quantity to generate believable statistics,
qualitatively the results presented here are typical. The rules for grass, foliage and sky
appear to be effective in extracling a set of regions which include actual grass, foliage,
and sky regions ranked at the top or near the top of the list. Similar results have been
obtained for road and sidewalk (concrete and macadam) and, to a somewhat lesser extent,
for house roof. The rules appear to be loosely enough defined that normalization of the
features has not been necessary. Additional experimential results are being generated for

these and other rules; the results will be reported on in the future.
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V. SCHEMAS AND THEIR INTERPRETATION STRATEGIES

V.L._ Introduction

In the VISTONS system, scene independent knowledge is represented in a hierarchical
schema structure organized as a semantic network [13,15,29,41). The hierarchy is struc-
tured to capture the decomposition of visual knowledge into successively more primitive
entities, eventually expressed in symbolic terms similar to those used to represent the in-
termediate level description of a specific image obtained from the region, line, and surface
segmentations. Each schema defines a highly structured collection of elements in a scene
or object; each object in the scene schema, or part in the object schema, can have an
associated schema which will further describe it. For example, a house (in a house scene
hierarchy) has roof and house-wall as object-parts, and the house-wall object has win-
dows, shutters, and doors as object-parts. Each schema node (e.g. house, house wall, and
roof) has both a declarative component appropriate to the level of detail, describing the
relations belween the parts of the schema, and a procedural component describing image
recognition methods as a set of hypothesis and veriﬁcation'sf.rategies called interpretation

stralegies.

The contextual verification of hypotheses via consistency with stored knowledge leads
to a variety of interpretation strategies that are referred to as data-directed (or bottom-up),
knowledge-directed (or top-down), or both. In addition these strategies can be domain and
object-dependent, or uniform across domains. A rich set of possibilities opens up which
unfortunately has not been sufficiently explored by the research community carrying out
knowledge-directed vision processing. The first type of interpretation strategy discussed

uses the rule system to select “cxemplar” regions as object candidates, extending the labels
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to similar regions. A second class of strategies uses geometric information to direct the
grouping of intermediate events to better match the expected model. A third strategy
involves the detection and correction of errors in the interpretation process as shown in an

example in the section on final results.

V.2. Exemplar Selection and Extension

The most reliable object hypotheses obtained by applying the object hypothesis rules
to the intermediate level data (e.g. regions, lines, and surfaces) can be considered object
“exemplars” which capture image specific characteristics of the object. The set of exem-
plars can be viewed as a largely incomplete kernel interpretation. There are a variety of
ways by which the exemplar regions can be used to extend and refine the kernel inter-
pretation [40,41] and we will briefly present one specific implementation for an exemplar
extension strategy. The strategy is based on the expectation that the ima.ge-gpeciﬁc vari-
ation of a feature of an object is less than the inter-image variation of that feature for the
same object. In many situations another instance of the object can be expected to have a

similar color, size, or shape and this expectation can be used to detect similar objects.

There are a variety of ways by which tie exemplar regions can be used and by which the
selection of similar regions can be made, depending on the data and knowledge available
as well as on the complexity of the object [22,31]. For those objects for which the spectral
characteristics can be expected to be reasonably uniform over the image, the similarity of
region color and texture can be used to extend an object label to other regions, perhaps
using the expected spatial location and relative spatial information in various ways to
restrict the set of candidate regions examined. The similarity criteria might also vary as

a function of the object, so that regions would be compared to the exemplar in terms of a
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particular set of features associated with that object. Thus, a sky exemplar region would
be restricted to comparisons with regions above the horizon that look similar (in terms of
color and texture) to the largest, bluest region located near the top of the picture. A house
wall showing through foliage can be matched to the unoccluded visible portion based upon

color similarity and spatial constraints derived from inferences about house wall geometry.

The shape and/or size of a region can be used to detect other instances of multiple
objects, as in the case when one shutter or window of a house has been found [10], or
when one tire of a car has been foﬁnd, or when one car on a road has been found. In
many situations another instance can be expected to have a similar size and shape. This,
together with constraints on the image location, permits reliable hypotheses to be formed
even with high degrees of partial occlusion. If one is viewing a house from a viewpoint
approximately perpendicular to the front wall, ot.hel; shutters can l;e found via the presence
of a single shutter since the single shutter provides strong spatial constraints on the location
of other shutters. If two shutters are found then perspective distortion can be taken into
account when looking for the other shutters, even without a camera model, under an
assumption that the tops and bottoms of the set of shutters lie on a straight line on the
face of the house. There are many alternatives by which features of an object could be
used to determine the full set of regions representing the object. In the current version of
the VISIONS systems, these alternatives are represented in the interpretation strategies

associated with the object schema.

We have made a basic assumption that exemplar extension will in fact involve a knowl-
edge engineering process that will use different strategies for each object. In some cases,
color and texture may be more reliable than shape and size (as in a sky exemplar region),

while in other situations shape and size might be very important (as in the shutters).
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Spatial constraints may be used very differently in each case. One possibility is to utilize
the object-specific set of simple features that were associated with the object hypothesis
rules. In fact the same rule system presented earlier can be used to weight the feature
differences to form the similarity rating. Similarity extension rules can be implementations
of distance metrics or functions, with values of feature differences used to determine the
rule response for each. It might be appropriate in one case to employ a piecewise-linear
distance function, with high values for small differences and low values for large differences;
in another case, a rule might provide a uniformly high response within some threshold. It
is also easy to use the veto region for large differences, or for spatial constraints to restrict

the spatial area over which region candidates for exemplar extension will be considered.

For the similarity results shown in Figure 15 and 16, the full object hypothesis rules
discussed earlier were used to measure the similarity between the exemplar region and
each candidate region. The rule response was converted into a distance metric and bright
regions correspond to small differences. Each of the rules contained loca.ti§n and size
components which enter into the final distance measurement, but in general, there are
more intelligent ways of using these features in the interpretation strategy responsible for
grouping regions. Our goal here was simply to rank order the regions that were candidates
for extension; and again, the specific results shown in the figures are not as important as

the overall philosophy.

Figure 15 shows the similarity rating of regions obtained using the features of the grass
rule (Figure 9) and comparing them to the exemplar region (see Figure 13). In addition
to the final grass similarity response, the similarities obtained from the color component
rule and two of its constituent simple rules (green-magenta and intensity) are also shown.
Figure 16 shows similar results for foliage.
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(e) (d)

Figure 15. Similarity of the grass exemplar region to all other regions for Figure 4b. (a)
similarities from the composite object hypothesis rule; (b) similarities from only the color
component of the composite rule; (c,d) similarities from the simple rules associated with
excess green and intensity. In all cases, similarity is encoded as brightness.
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Figure 16. Foliage exemplar matches. (a,b) foliage matches using the largest region in
the tree area on the left side of the image (region 69 in Figure 4c); (c,d) foliage matches
using the large region in the low bushes in front of the house (region 128 in Figure 4a).



It is interesting to compare the region rankings produced by the image independent
initial grass rule and the ra.nkin-gs obtained from the exemplar matching strategy. The
original grass rule applied to the same image that in Figure 15 (these results are shown in
Figure 12) vetoed all but 27 regions; of these, 15 were grass and the 6 highest ranked regions
were grass. By way of comparison, of the 27 regions most similar to the grass exemplar
region, 18 were actually grass, and the 8 highest ranked regions were grass. Of the 16
regions most similar to the exemplar, all but two were grass. Again, the confusion was
between grass, sidewalk, and driveway. The exemplar matching strategy produces more
reliable results than the initial hypothesis rule since it takes into account image-dependent

characteristics of the object’s appearance.

V.3. Interpretation Strategies for Intermediate Grouping

In this section we briefly motivate the types of additional top-down strategies that will
be necessary for properly interpreting the primitives of the intermediate representation in
terms of the hypothesized higher level context. The work presented here is taken from
Weymouth [40], and is the subject of active exploration within the vision group at the

University of Massachusetts.

The basic idea will be sketched using as an example the problem of grouping and in-
terpreting a house roof from a fragmented intermediate representation. Figure 17 shows
a number of intermediate stages in the application of a house roof interpretation strat-
egy associated with the house roof schema. Figures 17a and b portray a pair of region
and line segmentations that exhibit typical difficulties expected in the output of low-level
algorithms; figure 17a also shows the initial roof hypothesis. In this example the region

segmentation algorithin was set to extract more detail from the image by producing more
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Figure 17. Steps in the schema directed interpretation of a roof. (a,b) region and line
representations; the initial roof hypothesis region is crosshatched. (c) long lines bordering
the roof hypothesis region boundary. (d) new roof hypothesis after merging regions which
are partially bounded by the long lines in the previous image. (e) after joining colinear,
nearby segments and filling a straight line to the joined boundaries. (f) the completed
hypothesized roof trapezoid.




regions; the result, which is typical of a class of segmentation problems, is the fragmenta-
tion of the roof, so that the shadowed left portion was broken into several regions separate
from the main roof region. (It should be noted that the segmentation in this example
is different from the segmentation used to present the interpretation results in other sec-
tions.) When examined carefully, the line extraction results show line segments that are

fragmented into shorter pieces, multiple parallel lines, and gaps in lines.

The goal is to use typical segmentation results to produce the trapezoidal region (which
is almost a parallelogram) representing the perspective projection of a rectangular roof
surface, as well as the orientation in 3D space of that surface. The top-down grouping
strategy that we employ here is organized around evidence of the almost parallel lines
forming the two sets of sides of the trapezoid. There are alternate strategies for other
typical situations where some of this information is missing. ‘Thus, this roof grouping
strategy expects some evidence for each of the four sides, and in particular uses the long
lines bounding the putative roof region. Figure 17c shows the long lines along the region
boundary; “long” is determined as a relative function of the image area of the roof region,
here 1/3 of the square root of the roof region area. Figure 17d illustrates the result of
merging similar regions which are partially bou.ded by the long lines. Figure 17e shows the
lines bounding the extended roof region, after removing shorter, parallel, almost-adjacent
lines, joining co-linear nearby segments, and then fitting straight lines to the boundaries to
form a partial trapezoid (almost a parallelogram). Finally, Figure 17f shows the complete
hypothesized roof trapezoid. The three-dimensional geometry of the roof can then be
computed (up to some possibly non-trivial degree of error) based upon cither the location
of the pair of vanishing points of the two sets of image lines that are parallel in the physical

world, or one pair of parallel lines and an assumption of perpendicular angles to a third
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Figure 19. Final interpretations. These images show the final results obtained by com-
bining the results of the interpretation strategies under the constraints generated from the
knowledge base. (a) interpretation key; (b-d) interpretation results. In (d), the missing
boundary between sky and wall results in a labelling conflict (the identification shown is
sky; a second interpretation has this region labelled house wall).



line [27].

The point of this discussion is that the interpretation process required a flexible strategy
for grouping and reorganizing the lines and regions obtained from imperfect segmentation
processes. At this point in our ﬁndersta.nding we are developing each strategy indepen-
dently, but we hope to begin to define some standard intermediate grouping primitives

that would form the basis of a variety of general top-down strategies.

V.4. Results of Rule-Based Image Interpretation

Interpretation experiments are being conducted on a large set of “house scene” images.
Thus far, we have been able to extract sky, grass, and foliage (trees and bushes) from
many of these images with reasonable effectiveness, and have been successful in identifying
shutters {or windows), house wall and roof in some of them.  Object hypothesis and
exemplar extension rules as described in previous sections were employed. = Additional
object verification rules requiring consistent spatial relationships with other object labels
are being developed. The features and knowledge utilized vary across color and texture
attributes, shape, size, locatién in the image, relative location to identified objects, and
similarity in color and texture to identified objects. In the following figures, we show

isolated intermediate and final results from the overall system.

The interpretation resulis shown were obtained from a version of the VISIONS sys-
tem that used a different (somewhat coarser grained) set of initial segmentations than
those presented earlier, and a set of object hypothesis and exemplar extension strategies
that differed in structure (but not in principle) from those presented earlier. Figure 18
shows selected results from the object hypothesis rules after exemplar extension and region

merging. Figure 19 illustrates typical interpretations obtained from a house scene schema
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interpretation strategy that utilizes a set of object hypothesis rules for exemplar selection,
extends the partial model from the most reliable of these hypotheses, and which employs
relational information for verifying hypotheses and predicting image location of object
parts and related objects. The image areas shown in white in Figure 19 are uninterpreted
either because the object did not exist in the knowledge network (and hence no label could
be assigned) or because the object varied in some way from the rather constrained set of

alternate descriptions of the object stored in the knowledge base.

The interpretation shown in Figure 19d illustrates a problem which may be expected
to occur quite frequently. The original interpretation was produced using a fairly coarse
segmentation, which is desirable from the standpoint of computational efficiency since
fewer regions are involved. However, the sky and house wall are merged into one region
(as shown more clearly in Figure 20a) since the feature differenées between the two areas
was below the resolution of the segmentation process. This is the disadvantage of using
a coarse segmentation. Parameters of the segmentation processes can be set to produce a
finer grained segmentation but many more regions are produced. On the other hand, the
smaller.regions can be expected to find more of the desired boundaries and sometimes bet-
ter match the object descriptions in the knowledge base, at the risk of overfragmentation.
Because of these conflicting constraints, we believe it is extremely important to closely
couple the lower level processes responsit:le for constructing the intermediate representa-
tion and the interpretation processes which operate on the intermediate and higher level
representations. The interpretation processes should have focus-of-attention mechanisms
for correction of segmentation errors, extraction of finer image detail, and verification of |
semantic hypotheses. The advantage of top down application of these processes rests in

the focussed nature of the processing. Since the processes do not have to be applied ev-
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Figure 20. Resegmentation of house/sky region from Figure 18d. (a) the original seg-
mentation showing the region to be resegmented; (b) the regions resulting from the reseg-
mentation of the selected region; (c) final interpretation of the house scene in Figure lc,
after inserting resegmented house/sky regions and reinterpreting the image.



erywhere in the image, they can be more computationally expensive and make heavier use

of knowledge specific to the particular problem.

An example of the effectiveness of semantically directed feedback to the segmentation
processes is shown in Figure 20. The missing boundary between the house wall and sky
led to competing object hypotheses (sky and house wall) based upon local interpretation
strategies. The region is hypothesized to be sky by the sky strategy, while application of
the house wall strategy (using the roof and shutters as spatial constraints on the location
of house wall) leads to a wall hypothesis. There is evidence available that some form of
error has occurred in this example: 1) conflicting labels are produced for the same region
by local interpretation strategies; 2) the house wall label is.associated with regions above
the roof (note that while there are houses with a wall above a lower roof, the geometric
consistency of the object shape is not satisfied in this example); and 3) the sky extends
down close to the approximate horizon line in only a portion of the image (which is possible,

but worthy of closer inspection).

In this case resegmentation of the sky-housewall region, with segmentation parameters
set to extract finer detail, produces a reésona.ble segmentp.tion of this region (Figure 20b).
It should be pointed out that in this image there is a barely discernable boundary between
the sky and house wall. However, once the merged region is resegmented with an intent of
overfragmentation, this boundary can be detected. Now, the same interpretation strategy
used earlier produces the quile acceptable results shown in Figure 20c. We note that

this capability (of detecting labelling conflicts and resegmentation) is not automatic in the

current version of the system.

Future work is directed towards refincment of the segmentation algorithins, object hy-
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pothesis rules, object verification rules, and interpretation strategies. System development
is aimed towards more robust methods of control: automatic schema and strategy selection,
interpretation of images under more than one general class of schemata, and automatic
focus of attention mechanisms and error-correcting strategies for resolving interpretation

errors.
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V1. PRINCIPLES TO GUIDE

KNOWLEDGE-BASED VISION RESEARCH

In summary, we list some of the principles of our work on knowledge-based vision

systems that might provide guidance to other researchers. We do caution the reader,

however, that in no way are we asserting that this is the “only” or “correct” or “complete”

approach to high-level vision. Rather, the problem domain has proved to be so difficult

that there has been little work of any generality. Thus, our statements at this time are

distilled from the experience of a partially successful approacﬁ to general knowledge-based

vision that is continuously evolving as we understand the visual domain more thoroughly.

1)

2)

An integrated symbolic representation of 2D image events such as regions and lines,
and 3D world events such as surface patches, should be used as the symbolic inter-
face between sensory data and world knowledge. In particular it is the attributes
of these elements, potentially including depth (3D) and motion (2D and 3D) in-
formation, that provides linkages to stored knowledge and higher-level processing

strategies.

In the initial stages of bottom-up hypothesis formation, focus of attention mech-
anisms should be used to selectively group elements of the intermediate represen-
tation and construct tentative object hypotheses. The interpretation should be
extended from such “islands of reliability”. The choice of object classes for initial

consideration can be controlled (top-down) via context or expectation.

A simple initial interface to knowledge can be obtained via rules defined over a
range of the expected values of the attributes of the symbolic events that have been

extracted. These rules can be organized around the most likely events or the easiest
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5)

6)

events to extract when highly structured situations are expected.

Knowledge of the physical ‘world should be organized around scene schema and
object schema that can be represented as a structured collection of parts. This
allows the contextual relationships to guide the further processing of partial inter-
pretations. In places where 3D shape and spatial relations are complex, the general
relationships between image events in typical 2D views can be used to interface
to the bottom-up 2D symbolic representation. However, long-range progress is

dependent upon more effective 3D shape representations.

More complex strategies will be needed for matching salient aspects of the am-
biguous, incomplete, and sometimes incorrect intermediate data representation to
the object models stored in the knowledge base. They involve a diverse collection
of goals, and given our understanding at this time, it may be easigr to repre-
sent them as procedural knowledge. These strategies include knowledge-directed
grouping, deletion, and manipulation of intermediate symbolic entities, as well as

goal-oriented feedback to low-level processes.

Inference mechanisms for utilizing distributed fine-grained and weak hypotheses will
be needed. These inference mechanisms must deal with the issues of high degrees
of uncertainty and of pooling a variety of sources of information in order to control

processes for extending partial interpretations.

Highly interactive user-friendly environments for visually displaying results of knowl-
edge application are very important. The vision domain provides a natural medium

for user feedback and interaction.
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