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Abstract

In most treatments of motion analysis, image quantities such as the positions of interest
points and FOEs, as well as environmental quantities such as depth and translation and
rotation parameters, are treated as accurately known. Since the obtaining of such values is
in essence an experimental measurement, and such measurements are by nature uncertain,
such accuracy is almost never justifiable. In the absence of a quantitative analysis of the
uncertainty in measured parameters, one is led to unjustifiably precise values for derived
quantities.

In this paper we discuss the effect that uncertainties in the position of interest points in
an image have on the determination of 3D parameters and on search regions for matches in
successive frames. We will call this procedure Uncertainty Analysis. Our discussion is quite
general, and can be applied to any correspondence-based technique for analyzing stereo
or motion. As an example we quantitatively examine FOE-based algorithms for finding
depth from motion for pure translation of the camera. We analyze two situations. First,
we discuss the case where depths are initially unknown but can be found by measurement
of image quantities (the “startup”process). We find the quantitative effect of uncertainty
in these image quantities upon computed depth values. Second, we discuss the case of
uncertainly known initial depth, and how this uncertainty affects the search area for the
position of an interest point in future frames (the “updating” process). The latter analysis
is relevant to any situation where initial estimates of depth are available, either from
external processes such as laser ranging, or from an initial set of frames of a multi-frame

analysis.



The primary conclusions of this paper are: 1) the uncertainty in the FOE has little effect
on the calculation of search regions or the accuracy with which depths can be determined
unless the uncertainty in the FOE is large compared to that of the image points, or if
the inter—frame camera translation is a significant fraction of the depth; 2) when the
inter-frame camera transiation is a small fraction of the depth, the effect of uncertainty
in the FOE on search regions or on depth calculations is small compared to that of the
uncertainty in image points; 3) when the inter~frame camera translation is a small fraction
of the depth, the uncertainty in the depth can have a significant effect on search regions,
especially for image points far from the FOE.

We also use this uncertainty analysis to give a quantitative meaning and justification
to two well known results in the analysis of motion: depth measurements are unreliable if
(1) the interest point is close to the FOE or (2) the environmental point is far away from

the camera.
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1 Introduction

In theoretical treatments of image analysis, it is generally assumed that image points corre-
spond directly to points in the (3D) environment through, for instance, central projection
(a projective (Mobius) transformation). On a practical level, this is of course not the case.
The most obvious reason why this is so is that any image resulting from a real sensor is
spatially digitized (there is also a digitization in intensity, but we do not discuss that here).
Suppose, for example, that we imagine an ideal sensor producing an ideal image, where
points in the image correspond to points in the environment according to the equations
of perspective projection. We will call this continuous image the geometrical fmage G of
the environment. In the production of a discrete digital N x N image from G, informa-
tion about the position of a point in G is lost, so that all that is known is the pixel in
which the point lies. Thus, the position p of a point in G is known only to lie within an
“uncertainty region” R, which in this case is the pixel which contains p. If the image is
given a Cartesian z-y coordinate system, the z— and y—codrdinates of p are uncertain by
an amount Az = Ay = 1/2, where our units are such that a pixel is a 1 x 1 rectangle with
sides paralle] to the coordinate axes. We will call this quantization uncertainty.

In general, the position of the point may be more uncertain than that given by quan-
tization uncertainty alone. A point in the environment may appear in the wrong place or
with incorrect intensity as a result of sensor distortion and additive ‘noise or aliasing. We
will not treat these problems directly, but only their effects on the accuracy with which
the position of image points can be determined.

Most stereo and motion techniques find the positions of corresponding points in two



views either by using an interest operator (such as Moravec’s [Mora1980] or Kitchen and
Rosenfeld’s [Kitc1982]) to select distinguished image points which are most easy to match,
or by using a correlation measure, so we should consider how accurately the position of
such image points can be determined. We confine our present discussion to interest points
selected by some interest operator. Similar considerations hold for techniques which use a
correlation measure.

Techniques which select interest points consist in optimizing some numerical measure.
The location of the interest point is then defined as the center of the pixel in which the
position of the optimum lies. If the interest measure is represented as a surface, with a peak
corresponding to the optiraum, then the uncertainty in the position of the interest point
is related to the broadness of this peak; a broad peak corresponds to a larger uncertainty
region than does a narrow peak. Since there is no canonical definition for “broadness,”
there can be no precise definition for the uncertainty region; hence, any conclusions based
upon the size of the uncertainty region must be considered as only approximate.

We regard the production of the image of some scene as an experiment, since it cor-
responds to a measurement of the intensity distribution in the scene, projected onto the
image plane. Consequently, the position of the optimum of the interest measure for a par-
ticular interest point is just the experimental value for the position p of the interest point
F. We will call this the nominal’ position (p) of F. Note that the desc;ﬁ;t.ion ‘of the no-rﬁi.nal
position makes absolutely no reference to the structure of the interest measure around its
optimum. Consequently, the adjective “nominal” means “if uncerfainty is neglected.”

The question of how to choose the uncertainty region around the nominal position of

F cannot, as noted, be given an unambiguous answer. One could, for instance, define the

?
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uncertainty region to consist of all pixels in a neighborhood of the nominal position {p)
for which the interest measure has a value greater than (for instance) 80 % of its optimum
value. But the choice of 80 % is surely an arbitrary one, reflecting the arbitrariness in the
definition of the uncertainty region, and we do not iniend to address that problem here.
The definition of the uncertainty region for an interest point F is an essentially math-
ematical one, but should have some physical interpretation. We propose that the uncer-
tainty region should be chosen so that it is “highly likely” that the interest point in fact
lies somewhere inside the uncertainty region. This means that we make the following phys-
ical interpretation of the uncertainty region: any point in the uncertainty region for the
interest point F is a possible position of the interest point. This means that although in a
particular experiment (i.e., a particular image) we find a definite position for the interest

point (namely, its nominal position), any other point in the uncertainty region could have

been found as the position of the interest point.

1.1 The uncertainty in environmental parameters

Let an interest point F' have nominal position (p) and uncertainty region R. As we noted
in the previous section, the actual position p of F can be anywhere inside }Z Consider
the environmental (i.e., 3D) point P which gives rise to p in the image by, for example,
perspective projection 7:

T: P—p
Since p could in fact lie anywhere inside R, it follows that there mﬁst be some region R*

in the environment which is mapped onto R by r:

T: R*— R.



Clearly, P € R*. Thus, the uncertainty region R for p in the image gives rise to an
uncertainty region R* for P in the environment. This means that the location of P will
also be uncertain.

Since many different environments can give rise to the same image,! the calculation of
any environmental parameter must involve a comparison of at least two views of the envi-
ronment. For the case of motion an environmental parameter such as depth is determined
absolutely only if the inter~frame camera translation is known. If this camera parameter
is not known, then only the depth relative to the camera translation can be found.

One way to make this comparison of the two views is to use correspondence-based
techniques, most of which make use of some numerical measure to select points in both
views, and then use a matching technique to determine the correspondence between the
selected points. An environmental parameter is then determined from the relative position
in the two images of the corresponding points. If the positions of the point in the two views
are denoted by p; and p,, and if the environmental parameter is the depth Z of the 3D
point to which p, corresponds, then there is a functional relation between these three

quantities. That is, any two determine the third. We write this functional relationship as

f(pl:p21z)=0' (l)

If uncertainties in the positions of the point in the two views are neglected, then the

positions will be denoted by (p;) and (p;), and the depth will be given implicitly by

J({p1), (p2),(Z)) = 0. (2)

However, as we have argued, image points can only be determined to lie inside some

1For instance, the camera could be imaging the 2D image from another camera.
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uncertainty region. If we allow each of the points p; and p, to range independently over
their respective uncertainty regions R, and R, it follows from (1) that Z must range over
some uncertainty region as well. Since Z is just a number, this region is just an interval I.
We conclude that there must be a functional relationship between these three uncertainty

regions which we write symbolically as
F(Ri, R, I) =0. (3)

What we mean by this equation is that if the uncertainty regions for two of the arguments
of (1) are known, then the uncertainty region for the remaining argument can be calculated.
This is done by allowing the former arguments to range over their respective uncertainty
regions independently and using (1) to find the range of the latter argument.

There are three ways to choose these independent and dependent arguments. In the
first way, we can consider p, and p, to be uncertainly known and calculate the range of
values Z takes. This is the “startup” process, in which depth is initially unknown. Since Z
is a number, the uncertairty region for Z is an interval [Z mia 7 m“]. If all we know is that
Z is somewhere inside this interval, then (assuming all values in the interval are equally
probable) it is sensible to take the “best estimate” Zme2n for Z to be just the midpoint of
the interval. We thus write the uncertainty interval as [Zmean —§Z, Zme® 4+ §Z], where
6Z will be called the uncertainty in the depth. We also express this interval in the standard

notation Z = Z™» + §Z. Thus, all of the following mean the same thing:
z € [Zmin’ Zmax]
Z E [Zmean - 62“, Zmean + 62]

L = ZPn 4§27,



It should be noted that the “best” value Z™e® for the depth Z is not necessarily equal
to the “nominal” value (Z) for Z. The reason for this is that {Z) is determined from
equation (2), whereas Zme® js determined as the midpoint of the uncertainty interval I,
which is determined from “equation” (3). Since the two calculations are quite different,
there is no reason to expect the equality of the two values for Z. Indeed, in Section 4 we
will see examples where (Z ) and Z™*® are unequal.

The second way of viewing (3) is to take p; and Z as independent arguments in (1),
and calculate the uncertainty region for p,. This region is just the search region for p,,
since the uncertainty region is exactly the possible positions of p, consistent (via (1)) with
the uncertainties in p; and Z. This way of looking at (3) thus corresponds to the search
portion of the updating process.

The third way is identical to the second, but with the roles of p, and p, reversed. That
is, the uncertainty in the values of p, and Z are used to calculate the uncertainty region
R$¥¢ for p;. Since this requires the uncertainty in Z to be determined independently from
that in the position of p;, and since the uncertainty region R, for p; can be calculated
directly from the image in this frame, we can compare R and R,. Such a comparison
can lead to the testing of initial depth estimates derived from, for example, laser ranging,
and con;ld lead to a refinement of depth estimates.

In this work, we will consider only the first two ways of looking at (3). What we
have referred to as startup and updating have also been referred to as bootstrapping and
refinement [Waxm1985a).

The assumption that all values of Z within an interval are equally likely, and that

the interest point is equally likely to be found anywhere inside of, and no probability
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of being found outside of, its uncertainty region is a strong one. A more careful and
precise approach to the problem would be to associate a probability distribution for two
of the three quantities, and then use the functional relationship (1) to find the probability
distribution for the third quantity. However, what is important in practice is to constrain
the search region. An exact probability of match location is not so useful. In this paper
we do not consider such probabilistic approaches, leaving their analysis for future work

Determination of the functional relationship (3) depends on the specific situation under
investigation. In this paper, we examine the case of a camera having purely translational
motion at constant velocity through a rigid environment, and consider FOE-based methods
for finding environmental depth (a depth map) by matching points between two or more
frames from a dynamic image sequence. We consider this situationmb'o‘th Because ii‘c.an,
with a few simplifying assumptions about the shape of the uncertainty regions, be solved
mainly analytically, and because it corresponds to motion that is of practical interest, for
instance in autonomous navigation [Waxm1985b)).

In Section 2 we derive the basic equations for FOE-based motion in a form which
will be useful for our analysis. In Section 3 we make some definitions which will simplify
our discussion. The main results of the paper are derived in Section 4. In section 5 we
give numerical examples of the application of these ideas to several situations of practical
interest. In Section 6 we summarize our results. The reader who is uninterested in the
calculational details can consult this section and Section 5 for the main results of the
work. There are four appendices. In Appendix A we derive a result used in Section 4 to
calculate search regions. In Appendix B we give a quantitative justification for two well

known qualitative results in motion analysis. In Appendix C we give the details of how
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Figure 1. Perspective projection

one calculates depth uncertainties from uncertain feature positions. In Appendix D we

summarize the numerical results for search regions.

2 Basic Equations

We assume the usual geometry of perspective projection, as illustrated in Figure 1, where
we have chosen the focal length of the projection to be unity. The camera coordinate
system is denoted by (X,Y, Z). As mentioned in the introduction, the camera is moving
with constant speed in the +Z direction through a rigid environment; this is equivalent
to a rigid environment moving at the same constant speed in the —Z direction toward a
fixed motionless camera.

In the case of uniform translation of the camera toward a rigid environment, the motion

11



of the image point p of some 3D point P is analytically simple [Long1980]; each point p
moves along a straight trajectory, and and all such straight lines intersect at a single
point Q. Since all image points move away from @, this point is called the Focus of
Expansion (FOE).

If we let D(t) be the distance of p from the FOE at time ¢, ‘and let Z(t) be the
Z—codrdinate of the 3D point P to which p corresponds, then it is easy to show [Long1980]

that

D(t) - D(t) _ Z(t) - Z(t'
G (4)

where ¢ and ¢' are any two times. We shall refer to Z(t) as the depth of P at time ¢. It
follows immediately from (4) that the quantity D(t)Z (t) is a constant of the motion, i.e.,

D(t)z(t) = D(¢)Z(t') (5)
for all ¢ and ¢'.

We assume that the environment is sampled at regular intervals ¢,, where £, = nr
(n=0,1,...,N), and r is the (constant) interval between successive frames. Since the
motion of the camera is uniform, we let T be the distance the camera moves toward the

environment in the time interval 7. We take ¢! = tat1, ¢ =1, in (4), and define:
Dn = D(tn)y Zn = Z(tn)1 ADn = Dn-H - Dn
(see Figure 2). Then since T = Zn ~ Zpyy for all n,

AD" — D'I-H _Dn - Zn'—Zn-H _ T

D. D. Zomt Zom (6)

We can then rewrite (6) as

Dpyy = K, D,, (7)

12
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where

T _ Z, z,

Uik il vl Je

>Ko 1> 1. (8)

Equation (7) will play a central role in our analysis.

If we denote by p, the position of the projected environmental point P at time ¢,,
then all the p, (for n =0,..., N) lie along a line. Clearly, the displacements of p between
frames are constrained to lie along this line, so we will call this line the displacement path
(see Figure 2).

If we denote by ; the vector from the FOE to p;, j =0,..., N, then since all the pj

lie along the displacement path equation (7) implies that
Fart = Koo, (9)

Note that |7j| = D;. Equation (9) will prove to be very useful in the next sections.

3 Definitions

Let F be an interest point in the image. We denote by F, the instance of F in frame n at
time ¢,. The position of ¥, will be the point p, = (zn, Yn). The nominal value that any
quantity @ takes will be denoted by enclosing Q in angle brackets: (Q). Thus, the nominal
position of F, will be denoted by {p,) = ({z.), (yn)). Recall that the nominal value (@)
is the value that Q would have in the absence of uncertainty. We will refer to the line
that passes through the nominal positions df the FOE, Fy, Fy, ..., F, as the nominal

displacement path (NDP). We will use the adjective environmental to be synonymous

with 8D.
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As noted in the intreduction, the position of F,, is uncertain but can be assumed to be
in an uncertainty region R, which contains the nominal point (p),. In order to investigate
the situation analytically, we must make some assumption about R.. We will choose R,
to be a rectangle R, centered at (p,), with sides parallel to the z— and y—axes of length
2Az, and 2Ay,, respectively. We will denote these sides as {2Az,, 2Ay,}. Thus,

(xn) - AI,. S Zn S (zn) + Azm

(yn) — Ay < ¥ < () + Bya (10)

(xmyn) =p, €E R, < {

We assume, similarly, that the location of the FOE is uncertain, but lies within a
rectangle R of sides {2Az, 2Ay} centered at the nominal position (FOE) of the FOE. We
chboose the codrdinate system such that (FOE) is at the origin (0,0) of the coordinate

system.

3.1 Corilments

We note that the uncertainties in the position of features are due only to the structure of
the image. The uncertainty in the position of the FOE, however, arises from two sources.
The first is the tochnique used to identify the position of the P_‘OE. The second is the
uncertainty in the direction of translation of the camera. We have assumed that the
camera is translating along the Z-axis, but for mechanical reasons this may be difficult
to enforce. If we let the uncertainty in the translation vector be 6T and let T be the
z-component of T, then it can be easily shown that the uncertainty region for the FOE
due to this uncertainty alcne is a rectangle centered at (0,0), with sides

. _ N 6T, 6T,,} 1
{2Az, 2Ay}—tan[7/2] 7 T [ (11)

rd




where 7 is the field of view of the camera, and the image has a resolution of N x N pixels.
It should be noted that for typical values of N and v, even a small uncertainty in the
direction of translation can give a large uncertainty rectangle for the FOE. For instance,
for N = 256 and vy = 30°, a 1° uncertainty in the direction of T will give an 8x 8 uncertainty
rectangle for the FOE. Clearly, it is in general important for the direction of translation
of the camera to be accurately known (see, however, the comments at the end of Section
4.1.1).

The assumption that (p,) is at the center of R, is equivalent to equating the “best”
and “nominal” positions of F,,. This, and the assumption that the uncertainty regions are
rectangular, is made for simplicity of exposition only; other choices could be made, but
would require a more complicated analysis. The results of this paper could be applied to a
technique which uses non-rectangular uncertainty regions by, for instance, approximating
the given uncertainty region by the smallest rectangle with sides parallel to the codrdinate

axes which contains the given uncertainty region. In that event, the results of this paper

would give conservative estimates for uncertainties.

4 Startup and Updating

In this section we analyze the effect of uncertainties on the computation of depth values
from the position of an interest point in two frames of a dynamic image sequence (the
“startup” proces;), and on the search region for the interest point in subsequent frames
(the search portion of the “updating” process).

In order to analyze the startup and updating processes efficiently, we will find it useful

to derive some preliminary results. We first assume that the uncertainty regions for the
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FOE and for the interesi point in one frame of the dynamic image sequence are known.
For simplicity of exposition, we will call this frame the “0” frame. We assume that the
depth Z, of the environmental point in the chosen frame is known, in one case accurately,
and in the other, uncertainly, and in each case calculate the search region for the interest
point in the next frame, the “1” frame. This is done in Section 4.1. Although these results
are used in the present work as a basis for analyzing the startup and updating processes,
they would of course be relevant to any situation in which initial depth estimates were
available by independent means.

In the final two secticns, we use the preliminary results of section 4.1 to discuss the
startup and updating processes. In Section 4.2 we discuss the calculation of the depth Z;
from uncertainly known FOEFE, Fy, and F; (startup), and in section 4.3 we use this result

to find the search region for the interest point in the third frame, F, (updating).

4.1 Preliminary analysis: Calculating the search region R; for

F} from uncertainly known FOE and F;
4.1.1 Accurately known depth Z;, and inter—-frame camera translation T

We assume the position of the FOE and of Fy to be uncertain (see Figure 3), but that K

(i.e., Zop and T) is accurately known, i.e., there is no uncertainty associated with K.

Let the vector from {FOE) to {po) be denoted by (%), and that from (FOE) to {p,) by

(71) (see Figure 4). If uncertainties are neglected, then we have from (9) that:
(71) = Ko(ro). (12)

- This would then determine (p,). However, both the position of the FOE and the position

17
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Figure 3: Uncertainty Regions
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po of Fy are assumed uncertain; we know only that each point is somewhere inside its

respective uncertainty rectangle:
pE€Ry, FOFEE€R. (13)

This is illustrated in Figure 4, where we have indicated possible choices for FOE and Po-
If po denotes the vector from FOE to po, and 5; denotes the vector from FOE to p1, then
from (9):

A1 = Kopa. (14)
The problem is to find the region R, over which the tip of j; ranges as the FOE ranges
over R and p, ranges over Ry. This must then be the area in the second frame which must
be searched for Fy. This region can be found as follows. Let @ be the vector from (FOE)
to FOE, b be the vector from {po) to po, and 7, be the vector from (FOE) to p,. The

search region R, thus corresponds to the possible positions of the tip of 71, subject to the

constraint (13). If we write

(fo) = (zo)Z + (909,

a - ali + azﬁ,
b = biz+ b,
o= £z +ng,

where £ and § are unit vectors along the coordinate axes, then from F igure 4,

Ro= f+a

20



Hence, from (14),
7y = Ko(f) + Kob — (Ko — 1) @. (15)

Taking the components of this, we find:

§ = Ko(zo) + Koby — (Ko — 1) ay, (16)

n = Ko(yo) + Kobz — (Ko — 1) a>. (17)

The region R, is then found by determining the range of values £ and n take as @ and b

range over the uncertainty regions R and R,.
This is equivalent to the following mathematical problem: Find the maximum and

minimum values that ¢ and 5 take subject to the conditions on a,, a2z, by, and b,:

—-Az < a; < +Az,
b A.’L’o S bl S +Ax01
- Ay S az S +Ay)

—Ayy € by < +Ays. (18)

Since the limits on a, are independent of ¢, (and vnce—versa), the range of values that a,
can take is independent of the value of a; (and vice-versa). An identical statement holds
for b, and b;. Consequently, equations (16) and (17) are decoupled, and can be treated
separately. Note that this result is critically dependent on the fact that both uncertainty
regions are rectangles.? If this is not the case, then equations (16) and (17) are coupled,

and cannot be treated independently.

2For instance, if R were a circle of radius ), then a; = /A% — a}, so a2 would not be independent of a,,
nor would its limits.
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Since the equations for £ and n are indeed decoupled, we immediately conclude that
the search region R, is a rectangle R, with sides parallel to the coordinate axes. It remains
only to find the sides and the center of the rectangle. Since equations (16) and (17) are
identical except for the names of the quantities involved, we need consider only one of
them, for instance (16). The result which follows from (17) is then trivially obtained by

substituting y—components for z—components.

We want to find the maximum/minimum values of £ as FOE and p, range (indepen-
dently) over their respective uncertainty regions. That is, we want to find the maxi-
mum/minimum values for £ if @, and b, are subject to (18). Since K, > 1, this problem
is trivial: ¢ is 2 maximum/minimum when b; is a maximum/minimum and @, is a mini-

mum/maximum. Thus

mn = Ko(zo) + Ko(£Az,) — (Ko — 1)(FA2)

= Ko(zo) + (KoAIo + (Ko - l)At). Tt ) (19)

If we write this as £max = gmean 4 A€ then

mid

Emean - KO (zo)’

A{ = KoAxo + (Ko - l)AZL‘

We can then immediately write down the solution for ™% by substituting y everywhere

we see T above: g2x = pmead 4 Ap where

n™** = Ko(y),

An

KoAyo + (Ko — 1)Ay.

22



Therefore R, is a rectangle R; centered at

(Ko(zo), Ko(yo)) = Ko ({20}, {v0)), (20)

and of sides

{2[Kobzo + (Ko — 1)Az], 2[KoAyo + (Ko - 1) Ay]} . (21)

We draw several conclusions from this preliminary analysis. Under the stated conditions

of uncertainly known FOE and po, and accurately known Z, and T':

o The center of the search rectangle is identical to the nominal position {p,) of F;.

Thus, in this case, the “best” and “nominal” values coincide.

e If the camera displacement is small compared to the depth, T < Z,, then according
to (8), Ko — 1 <« 1. Therefore the sides of the search rectangle R, are only weakly
dependent on Az and Ay. This means that the uncertainty in the position of the
FOE has in this case very little effect on the search region: it is the uncertainty in the
location of Fy which is most significant. In such cases the size of the search rectangle

is about the same as that of the uncertainty rectangle Rj.

One should note, however, that this does not mean that the utcartainty in the direction
of translation has little effect on the search region, since (as was discussed in Section 3)

even a small uncercainty in the direction of translation an give a large uncertainty in the

FOE.

Although all the results we derive hold for arbitrary values of T and Z, we will often
consider the case where T <« Z. The reason for this is that many of our results take a

particularly simple form when this limiting case is considered, and hence general statements
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about the effect of particular kinds of uncertainties can be made. When T is not small
compared to Z, then the only comment one can generally make is that everything is

important, i.e., the “exact” formulas must be used.

4.1.2 Uncertainly known depth Z, and inter—frame camera translation T

In this case we consider the same situation as in Section 4.1.1 except that we drop the
assumption that Z, and T, and hence Kj, are accurately krown, Thus we assume that
Zo is known only to be within §Z, of Zpe22, Since here Z, is assumed to be a directly

measured quantity, we identify Z{**® and (Z,). Thus,
2y = (2Zo) £ 62,.
From (8) it follows that K, is uncertain, but must lig in the interval I:
- Ko € I=[Kg*™® — 6K,, KP™ + 6K,

where Kg"**® is the best estimate for K, and 6 Ky is the uncertainty in K,. We can easily

calculate K§"**® and § K, from (Z,) and 6Z,. We have, from (8), that

2,
Ko= 5= (22)

We assume that T is uncertainly known and given by T = (T) + 6T.

Since Kj is a monotonically decreasing function of Z,, but a monotonically increasing

function of T, we have that

(Zo) F 6Zo

mean —
el = (Zo) 620 — ({T) £6T)

24



We then easily find that to first order in the uncertainties §Z, and 6T

(Zo)
(Zo) = (T’

.~

Kpee = (23)

52 5T .. . .
0Ko = KP=(Kps— 1)z + [Kef . (24)

Since K{*® is identical to the value (K)o that would be obtained by plugging the nominal
values of Z, and T into (8), we drop the distinction betweena K™ and (Ko).

We then have from (23) that

(o) = 1= (Z—)@—m— - um%. (25)

Using (25), we can then write Ky = (K,) + 6 K, where

_ __{%)
(Ko) = ATEIL (26)
6Ko = (Ko)({Ko)—1)[¢] (27)
and
_ 9% T
€= Zo) + T (28)

The quantity € is the sum of the relative uncertainty 62Z,/(Z,) in the depth, and that in
the inter-frame camera translation.

Recall that we have assumed a uniform distribution of the possible values for Z, in its
uncertainty interval. Strictly speaking, this will not give a uniform distribution for the
values of Kj in its uncertainty interval. However, we must ignore such subtleties here,

since we are not taking into account any non-uniform probability distributions.
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In Section 4.1.1, we found that for accurate K, the search region for the position P of
Fy was the rectangle R, described by equations (20) and (21). Since the properties of this
rectangle depend on the value of Kj, we shall write it as Ry (Ky,). If we now allow K, to
range over an interval I, the search region R, for p; must be the union of all the Ry (Ko),
for K, in I
Ri= | Ri(Ko).

Ko€l

In Appendix A we show that R, is the intersection of a “wedge,” described in the appendix,
with a rectangle R} which we will now calculate. The rectangle R} can also serve as a
simple approximation to R, in many cases (see Section 5). The rectangle R} is the smallest
rectangle having sides parallel to the coordinate axes which contains the region R,. This
can be found by a procedure similar to that used in Section 4.1.1. We use the same
notation as before. The z— and y—codrdinates again decouple, so we need look only at
the z—coordinate. From (19), the right-hand side (RHS) and left-hand side (LHS) of

Ry (K,) are located at:

RHS = fm“ = Ko(zo) + (KoAxo + (Ko - I)AZ‘),

LHS = nin = Ko(l‘o) - (KoA.’L‘o + (Ko - l)AI).

The RHS is a monotonically increasing function of K,. The LHS isa monotonically increas-
ing or decreasing function of K, depending on whetaer (o) is greater or less, respectively,
than Az + Az,. We shall consider first the former case. This amounts to assuming that

the projections of R and R, on the z—axis do not overlap.



The non—overlapping case

In the non-overlapping case, (zo) > Az + Az, Since the RHS and LHS are then both

monotonically increasing functions of Ky, the RHS (LHS) has its largest (smallest) value
when K, is as large (smail) as possible, i.e., when Ky, = (Ky) + 6 Ko (Ko = (Ko) — 6 Ky).

This means that the RHS/LHS of the search rectangle must lie at
f = [(Ko) + 6Ko](1‘o) + [((Ko) + 5K0)Azo + ((Ko) + 51{0 - I)AZI?],

where the upper sign is taken for the RHS, and the lower sign for the LHS, of the search
rectangle. Thus, the RHS/LHS of R is at:

€ = [(Ko){(zo) + 6 Ko(Azo + Az)] % [(20)6 Ko + (Ko)Azo + ((Ko) — 1)Az].

An identical argument shows that the upper/lower side of R is (assuming that the projec-

tions of R and R, on the y-axis do not overlap) at
n = [(Ko){yo) + 6 Ko(Ayo + Ay)] £ [(y0)6 Ko + (Ko)Ayo + ({Ko) — 1)Ay].

Consequently, if R and R, do not overlap, the search region R is the intersection of a wedge

with a rectangle RY centered at
({(Ko)zo) + 8 Ko(Azo + Az), {(Ko){vo) + 6 Ko(Ayo + AY)), (29)

having sides
{2[{z0)6 Ko + (Ko)Azo + ({Ko) — 1)Az], 2[{y0)6 Ko + (Ko) Ayo + ((Ko) — 1)Ay]}. (30)

Note that the center of R} is not at the nominal position (p,) of F;, unlike in the previous

case; indeed, the center of R} is in general not even along the nominal displacement path

7’
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(although the deviation from the NDP is usually small, since it is second order in the

uncertainties).
The overlapping case

We now investigate the case where the projections of R and R, on the z- or y-axis
overlap. Again, we need only consider the overlap on the z-axis. In the overlapping
case, (zo) < Az + Ax,. If this is true, then the LHS of R,{K,) is a monotonically non-
decreasing function of K,. Hence, for Ky € I the LHS has its smallest value when‘ K, is
as large as possible (cf. the previous case!), i.e., when Ky = (K,) + 6 K. This means that

the RHS/LHS of R is at
f = I(Ko) + 6K0] (l‘o) + ([(Ko) + 6K0] Ato + [(Ko) + 6Ko - l] AZC) . (31)

It then follows mutatis mutandem that if the projections of R and R, onto the y-axis

overlap, i.e., if (yo) < Ay + Ayo, then the upper/lower side of R} is at

We may summarize these results as follows: Let w be z or y. Then the rectangle R}

has center at
(€., G) (33)

and has sides
(2S.,25,), (34)

where
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{ ({(Ko) + 6 Ko){wo) }
C,= , (35)
(Ko)(CJo) + 6K0(Aw + Awo)
and
{ ((Ko) + 6K0)Awo + ((Ko) + 6Ko - I)A(JJ }
Sw = ) (36)
(wo)éKo + (Ko)Awo + ((Ko) - l)Aw

where the upper (lower) entry in curly brackets is chosen if the projection of the rectangles
R and R, on the w-axis do (do not) overlap. Substituting for § Ky from (27) into these
expressions, we find that
(Ko){wo} {1 + ((Ko) — 1) [¢]}
Cu= , (37)
(Ko){wo) {1 + ((Ko) — 1) [¢] [Astgen] }
where ¢ is defined by (28). Note that the coefficient common to both entries is just the

w-codrdinate of the nominal position

/

(p1) = ({Ko}{zo), (Ko}{yo)) = (Ko)({2o), {8))

of the interest point in the next frame, frame 1. Similarly, the sides of R} are given by

{ (Ko) Awo + ({Ko) — 1)Aw + (Ko) ((Ko) — 1) [¢] {Aw + Awo} }
Su = (38)

(Ko}Awo + ({Ko) — 1)Aw + (Ko) ((Koj — 1) [¢] {{wo)}

Please recall that the actual search region is the intersection of the rectangle R} described
above and the “wedge” described in Appendix A.

We now note the following from (33,34) with (37,38):
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e When the inter-frame camera translation T is much smaller than the depth Zy, i.e.,
(Ko) —1 < 1, then just as in the case of accurately known Z, and T, the uncertainty
in the position of the FOE has little effect on the search region. The reason for this is
that Aw (i.e., Az or Ay) is multiplied by the small quantity {Ko) — 1 in expressions

(37) and (38).

e When (K,) — 1 < 1, the uncertainty in the depth and camera translation have little
effect on the position of the center of Ry, since the quantity ¢ (which measures this
uncertainty) always appears in (37) multiplied by (K,) — i, which is by assumption
small. (Recall that the lower expression in (37) is to be used only when there is no

overlap, i.e., when [(Aw + Awy)/{wo)] < 1.)

o The uncertainty in depth and camera translation can have a non-negligible effect on
the size of Ry, however, when (K,) —1 < 1 and there is no overlap of Ry and R. This
is because for the lower choice (no overlap) in (38) the small quantity ({Ko) — 1)¢ is
multiplied by (wo), which could be much larger than Aw,. In the overlapping case
(the upper choice), the same small quantity is multiplied only by Aw,, and hence

remains small compared to the first term.

o The effect on R} of uncertainty in the position of the FOE and of F; is independent
of how far away F; is from the FOE (in the case of no overlap). In contrast, the effect
of the uncertainty in depth is a monotonically increasing function of the distance of

Fo from the FOE, owing to the presence of the (wo) in the (lower choice) in (38).
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4.2 Calculating depth from uncertainly known FOE, Fy, and F;.
4.2.1 General results

We assume that the FOE and the positions po and p; of the interest point F' are known
only to lie inside their respective uncertainty rectangles (see Figure 5). We will use the
positions and sizes of these rectangles to calculate both the “best estimate” Z2® for the

environmental depth Z,, and the uncertainty 6 Z; in this value. We have from (6) that

Do

Zl = ADO T, (39)

where Dy and A D, are assumed to lie in the intervals

(Do) —6Dy £ Dy < (Do) + 6D,,
(ADo) — §(ADs) < ADy < (ADo) +6(ADy), (40)

and T is known accurately (6T = 0, T = (T)). The latter assumption is made only for
simplicity of exposition; the effect of uncertain T is easily included, but complicates the

appearance of the formulas. We then use (39) to find the allowed range of values for Z;:
Zrr ~ 62, £2, < 7+ 62,.

To simplify the analysis, we first define the relative uncertainty « in Dy, and the relative
uncertainty S in AD,:
6D,

a=-—=;f

{Do)

We also define the nominal value {Z,) of Z, to be

_ 8(ADy)
=AD" (41)

(7). (42)

(Z)) =
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That is, (Z,) is just the value one would expect from (39) in the absence of uncertainty.

We then have that

(Do) % 6D,

7mean — .
04 = (1) 3Dy 7 6(aDy)

= (@) 55 (43)

from which it follows that
= (7)) T (44)
52, = (Z,) - ;’j[fz (45)

Note that the “best” estimate Z{™2® for Z; is not equal to the value (Z;) which would
be obtained by substituting the best values for the other quantities into (39). Indeed,
Zfe® > (Z,), equality holding only when # =0, i.e., there is no uncertainty in AD,. The
relative uncertainty in Z, is, using (44) and (45), given by

6Z| _ 0+ﬂ
Zpew T | af’

9

We use the result (46) in Appendix B to give quantitative meaning to two well known
results in motion analysis.

In practice, the relative uncertainty in inter-frame interest point displacements is often
much larger than that in the distance of interest points from th